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Abstract 

As a multitude of sequence data are published, discovering polymorphisms 
bioinformatically becomes a valid option. In silico Single Nucleotide Polymorphism 
(SNP) detection is based on the analysis of multiple alignments. Each column of an 
alignment is considered a slice containing one base of every sequence aligned. If a 
mismatch is detected, the slice is further analysed and the mismatch may be reported as a 
candidate SNP.  
About 30,000 Expressed Sequence Tags (ESTs) of the fish European sea bass have been 
sequenced and processed. Since ESTs are redundant, they provide a resource for in silico 
SNP discovery. To prevent the detection of sequencing errors, a redundancy of two is 
chosen in order for a mismatch to be considered a candidate SNP. Among the various 
tools available to detect candidate SNPs, three software packages were tested: 
SNPServer, PolyBayes and PolyFreq. Candidate SNPs were validated in the laboratory 
by cloning and sequencing. From preliminary results PolyFreq outperforms both 
PolyBayes and SNPServer in terms of positive predictive value and SNPServer is the 
most sensitive tool. PolyFreq and SNPServer non-default identify respectively the fewest 
and highest number of candidates. Considering candidates detected by several tools 
seems to enhance both positive predictive value and sensitivity. Out of the 69 loci 
sequenced, only four were monomorphic, leading to a total of 91.3% polymorphic loci. 
Randomly chosen contigs will be sequenced to know whether SNP discovery tools tend 
to predict polymorphic fragments. Polymorphisms will be mapped, used for selection in 
aquaculture and the study of adaptation in natural populations.  

1 Introduction 

1.1 Single Nucleotide Polymorphisms 

A genetic marker is a polymorphic DNA sequence that can be easily identified. Molecular 
markers originate from several kinds of mutations, which may occur as a result of normal 
cellular operations or interactions with the environment [1]. Base substitutions, insertions and 
deletions (indels) of nucleotide sequences within a locus, inversions of a segment of DNA 
within a locus and rearrange-ments of DNA segments at a locus constitute such markers. 

Single Nucleotide Polymorphisms (SNPs) are point mutations occurring at the nucleotide 
level and producing single nucleotide differences among or within individuals of a species 
[2]. They are the most common in any organism, representing 90% of human variation [2] 
and are distributed throughout the genome [3]. They are an invaluable tool for genome 
mapping since they reveal hidden polymorphisms that cannot be discovered with other 
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markers or methods. SNPs have various impacts depending on their position within the 
genome; when located in a coding region, they can be synonymous or non-synonymous [4]. 

1.2 European Sea Bass 

European sea bass (Dicentrarchus labrax) is an economically important marine fish for 
European aquaculture. However, the industry suffers from the absence of selection programs 
and a solid genetic background. Sea bass production is largely based on wild-caught brooders 
reproducing under semi-controlled conditions. After twenty years of large-scale production 
not a single domesticated stock has been generated [5]. Since SNPs are distributed throughout 
the genome and can be numerous [6], it would be interesting to incorporate this type of 
marker in the linkage map. Moreover SNPs located in coding regions can be used to genotype 
populations and to differentiate loci under selective pressure from neutral loci. The 
identification of such sites will provide insights in the evolutionary and functional biology of 
sea bass for application in aquaculture [3]. 

1.3 Aims 

Classical molecular approaches of discovering SNPs are time and money consuming. DNA 
sequencing is the most accurate, the most commonly used and the most cost effective 
approach for SNP discovery, but requires prior knowledge of the genome [6-7]. On the other 
hand, more and more sequences are generated in order to discover new genes and study 
candidate genes [8]. It is thus feasible to use already generated sequences as a starting point 
for in silico SNP discovery [9]. Various tools using a range of strategies mine sequences for 
SNPs. Every new tool claims to outperform already existing tools but only a subset of 
candidate SNPs are molecularly validated [10-11-12]. Since about 30,000 sequences of 
European sea bass are available and since SNPs are in high demand, several SNPs discovery 
tools were compared, and their performance was evaluated. 

2 Material and Methods 

2.1 Data Description 

ESTs are partial sequences of cDNA (complementary DNA) clones measuring several 
hundred nucleotides [13]. They are single-pass reads and have thus a high error rate (between 
1 and 3 nucleotides out of 100 is expected to be wrong). Nevertheless they allow the 
discovery of SNPs in transcribed regions [14]. ESTs have to be processed to remove 
contaminating sequences (such as vector sequences) [15], to reduce their redundancy and to 
attempt to reconstruct the mRNA sequence they originate from [8]. ESTs representing the 
same mRNA transcript are pooled into a single group (or cluster) according to their similarity. 
For each cluster, ESTs are aligned against each other and assembled. A tentative consensus 
sequence or contig is built using ESTs overlaps. Ideally, each cluster represents one full 
mRNA sequence. However, the coverage of cDNA libraries is usually insufficient. 

The European Network of Excellence Marine Genomics Europe developed 14 normalised 
cDNA libraries, corresponding to 14 distinct tissues, from 5 F1 offspring from wild Atlantic 
parents. A total of 33,904 ESTs, of which 29,260 were of good quality, have been sequenced 
and processed at the Max Planck Institute for Molecular Genetics (MPI-MG). Of the 29,260 
processed sequences, 55.1% (16,117 ESTs) were redundant and thus clustered; 44.9% (13,143 
ESTs) remained singletons. 
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2.2 In silico SNP Detection 

EST redundancy is highly advantageous for mining SNPs. If several ESTs from the same 
gene (or the same contig) have alignment mismatches, they may be SNPs. ESTs allow the 
detection of either homozygous or heterozygous SNPs because both alleles are present in the 
various clones of the cDNA libraries. To prevent the detection of sequencing errors, a 
redundancy of two was chosen for a given mismatch in order to be considered a candidate 
SNP [16-17]. Thus, only contigs containing four overlapping sequences or more were 
analysed. 975 such contigs were selected using a Perl script. However, one contig contained 
too many sequences (1028 ESTs): its analysis could lead to the detection of false positive 
candidate SNPs [18]. Therefore it was removed from the analysis. 

From the clustering and assembly analysis, 974 (21.3%) contigs qualified for in silico SNP 
discovery, representing 5,548 (19%) ESTs and 477,224 overlapping base pairs. 

2.2.1 SNPServer 

SNPServer is an online tool developed by PGG Bioinformatics [20]: it uses the autoSNP 
algorithm [21], which is based on redundancy only. ESTs are clustered and assembled before 
processing (assembly parameters can be chosen). SNP discovery is ruled by five parameters 
related to five minimum redundancy scores (1 to 5). They correspond to the maximum 
number of sequences that must be part of an alignment for the mismatch to be considered as a 
candidate SNP. Default parameters are as follows: the maximum number of sequences being 
part of the alignment is 0, 4, 8, 12 and 20 for a minimum redundancy of respectively 1, 2, 3, 4 
and 5. For example, a mismatch appearing twice will be considered as a candidate SNP in all 
alignments of 4 sequences but not in an alignment of 6 or 7 sequences. Therefore SNP 
discovery is ruled by redundancy and depth of alignment. Contigs of more than 50 reads were 
not processed since they may display a disproportionate number of potential SNPs [18], the 
mean number of candidate SNPs increasing with the number of sequences present in the 
contig. 

2.2.2 PolyBayes 

PolyBayes is the most commonly used tool for in silico SNP detection [22]. It contains three 
main functional parts: an anchored multiple sequence alignment algorithm (a reference 
sequence is requi-red; ideally the genomic sequence is used but the consensus sequence can 
also be used), duplicate sequence identification and a SNP detection algorithm. Each part may 
be skipped. The SNP disco-very is based on base called nucleotides and depth of alignment, 
as well as on quality values, base composition of ESTs and an a priori polymorphic rate. The 
latter is the probability that each nucleotide may be polymorphic. Its default value is 0.006, 
meaning that one permutation occurs every 166.7 base pairs. Variation probabilities are also 
assigned; they are the probabilities that each nucleotide may be permuted by each other one. 
Their default value is 0.1666. A Bayesian-statistical scheme assigns a posterior probability to 
discriminate real SNPs from sequencing errors. This score is the probability that a position is 
poly- or monomorphic. A mismatch is considered a candidate SNP if the posterior probability 
is higher than a threshold (which default value is 0.1). 

2.2.3 PolyFreq 

One limitation of SNP discovery tools is their tendency to detect more SNPs as the number of 
aligned sequences increases [18]. PolyFreq is a tool designed to handle this problem, allowing 
an efficient mining for SNPs in alignments containing many sequences [10]. It contains five 
programs having their own set of parameters. The first program (GAP3) aligns the anchor 
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sequences in order to find paralogous sequences. The second one (DDS2) detects pairs of 
similar query and anchor sequences, which are aligned by the third and fourth programs (FIL 
and GAP22). Highly similar regions are then found and screened for candidate SNPs using 
the PolyFreq program. SNP discovery is based on a minimum a priori polymorphic rate, a 
minimum depth and a minimum percent of identity to keep ESTs aligned; default values are 
0.001, 100 and 0.97 respectively. Aligned nucleotides must have a quality value equal or 
greater than a cut-off (which default value is 20). Mismatches are considered candidate SNPs 
if the quality of the five base pairs flanking them has a good quality value and if no more 
mismatches are observed in a region of 20 base pairs. 

2.3 SNP Validation 

SNP validation of the candidate SNPs required the development of primers. The software 
package Primer3 [23] was used to design primers flanking each candidate SNP. The primers 
had to be at least 25 bp removed from the SNP, their GC content had to be between 40 and 
60% and the product length ranged between 300 and 400 bp. Other parameters were set as 
default. Once primer pairs were designed, they were optimised on DNA of two sea bass 
individuals. 

Genomic DNA was extracted from the five individuals used to produce the ESTs using the 
NucleoSpin Extraction kit (Machery-Nagel GmBH). Each locus was amplified through 
Polymerase Chain Reaction (PCR) in 25 µl reaction mixture: 1 µl DNA template, 0.8 µM 
forward and reverse primers, 1 or 2 mM MgCL2 depending on the primer pair, 0.2 mM of 
dNTPs, 10xPCR buffer (Silverstar), 1 U Taq polymerase (Silverstar) and mQ H2O. After 
initial denaturation, 3 min at 95 °C, amplification conditions were 35 cycles of denaturation at 
95 °C for 30 sec, annealing at 48-56 °C and extension at 72 °C for 1 min. A final extension 
step of 7 min was carried out. Amplification products were cloned into plasmid vectors using 
the TOPO-TA cloning kit (Invitrogen). Plasmid DNA was extracted by isolating colonies in 
100 µl of water, vortexing and heating at 96 °C for 3 min. This was used as a template (10 µl) 
in the following PCR reaction of 50 µl: 0.8 µM standard M13 forward and reverse primers, 
1.5 mM MgCL2, 0.2 mM dNTPs, 10xPCR buffer (Silverstar), 1 U Taq polymerase 
(Silverstar) and mQ H2O. Eight positive clones were sequenced in one direction using the 
BigDye Terminator version 3.1 cycle sequencing kit (Applied Biosystems) and run on an ABI 
3130-Avant sequencer (Applied Biosystems). Two software packages, Gap4 and PolyPhred, 
were used to align the traces obtained by sequencing, to visualise them and to detect SNPs. 
Genotyping the individuals used for SNP detection allowed the validation of the SNP 
discovery tools by calculating the number of candidate SNPs that turned out to be real SNPs 
and the number of candidate SNPs that turned out not to be SNPs. 

3 Results 

3.1 SNPServer 

Two different sets of parameters were used. First, 232 candidate SNPs (of which 42 were 
indels) were proposed by SNPServer using the default parameters. Then less stringent 
parameters led to the detection of 929 candidate SNPs, of which 229 were indels. Each 
mismatch appearing twice in a slice, with a minimum number of sequences of four and a 
maximum number of sequences of 50, was considered a candidate SNP. All SNPs detected by 
SNPServer using default parameters were also detected when less stringent parameters were 
used.  

The use of less stringent parameters led to the detection of almost five times the number of 
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SNPs detected using default parameters. Both sets of candidate SNPs were used for validation 
in order to evaluate the effect of stringent parameters. 

3.2 PolyBayes 

The use of default parameters led to the discovery of 5,870 candidate SNPs, of which 736 
were indels. Since the aim of using different SNP discovery tools was to compare their 
performance, only candidate SNPs appearing at least twice in an alignment of a minimum of 
four ESTs were studied. The selection of these candidate SNPs, called redundant SNPs, 
reduced the number of detected SNPs to 734 (541 mutations and 193 indels).  

Other parameters were tested in order to check their influence on the large number of detected 
SNPs. The posterior probability threshold, the a priori polymorphic rate and the quality value 
threshold were modified, as shown in Fig 1. PolyBayes parameters are displayed as follows: 
the first parameter is the posterior probability threshold, the second the a priori polymorphic 
rate and the third the quality value threshold. Modification of these parameters had a clear 
influence on the total number of detected SNPs, the maximum number of candidate SNPs 
being 5,870 using default parameters and the lowest one being 2,531 using more stringent 
parameters (posterior probability threshold = 0.1, a priori polymorphic rate = 10-6, and quality 
value threshold = 30). However there was no clear influence of the parameters on the number 
of redundant candidate SNPs that is to say the candidate SNPs to be validated in this study. 
Default parameters were thus used. 
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Fig 1: Number of detected SNPs given PolyBayes sets of parameters.    Number of SNPs detected 
by PolyBayes.    Number of redundant SNPs detected by PolyBayes 

3.3 PolyFreq 

The dataset does not contain any contig of deep coverage. Using PolyFreq's default 
parameters, only contigs containing more than 100 sequences could be analysed. 
Consequently, no SNP could be detected. The minimum depth was modified and set to four: 
all alignments containing at least four sequences were mined for SNPs. All the other 
parameters were set as default. PolyFreq identified 2,002 SNPs of which two were indels. In 
order to compare tool performance, only candidate SNPs being present twice were further 
analysed. The selection of these rendundant candidate SNPs led to a total number of 219 
SNPs of which two were indels.  

3.4 Tool Comparison 

A total of 1,059 unique candidate SNPs were detected by SNPServer (default and non-
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default), PolyBayes and PolyFreq. Only 50 candidate SNPs (4.7%) were detected by all tools 
and sets of parameters (Table 1 in supplementary material). No SNP was unique to 
SNPServer default since all its candidates were also detected by SNPServer non-default. Only 
two candidate SNPs were unique to PolyFreq. PolyBayes and SNPServer non-default 
identified most of the SNPs which were detected just once. Indeed the number of candidates 
they predicted was three to four times higher than the number of SNPs detected by SNPServer 
default and PolyFreq. The repartition of candidate SNPs by the number of tools by which they 
were detected is given in Fig 2a.  

Three kinds of SNPs were compared: transitions, transversions and indels (Fig 2b and Table 2 
in supplementary material). PolyBayes and SNPServer (default and non-default) discovered a 
similar proportion of mutations, which is comparable with earlier in silico SNP discovery 
studies [17-18-24]. Indeed, transitions counted for about 50% of detected SNPs, transversions 
for 25 to 30%, and indels for 20 to 25%. PolyFreq showed different proportions since only 
two indels were detected. More transitions were detected (68%); transversions counted for 
31% and indels for 1%. The proportions of mutations actually found in the sea bass genome 
are 57% of transitions, 36% of transversions and 7% of indels. PolyBayes and SNPServer 
tended to overestimate the number of indels whereas PolyFreq overestimated the number of 
transitions and underestimated the number of indels. 
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Fig 2: Repartition of the candidate SNPs by tool. a. Repartition by the number of tools by which 
SNP candidates are detected. b. Repartition by the number of transitions, transversions indels 
that are detected. 

3.5 Molecular Validation 

So far 69 loci were cloned and a total of 181 SNPs detected. Sixty three (91.3%) of the 
selected loci were polymorphic. Out of the 112 tested SNPs, only 59 (52.7%) turned out to be 
real SNPs (or true positives, TP) (Table 3 supplementary material). The remaining 53 
candidate SNPs turned out not to be SNPs (or false positives, FP). PolyFreq outperformed 
PolyBayes and SNPServer by predicting 21 true positive SNPs out of 25 candidates. This 
represented a positive predictive value (PPV) of 84%. However the number of SNPs detected 
by other tools but missed by PolyFreq (false negative, FN) was the highest. ESTs are cloned 
transcripts randomly sequenced. It may happen that one individual is sequenced several times 
at a given position when other individuals are not sequenced. If only one individual out of 
five is polymorphic at one locus and not sequenced at that locus, the SNP will be missed. 
Moreover a mismatch was considered a candidate SNP if it was present at least twice in the 
dataset.  This limited the number of real SNPs that could be detected. Using real data, the 
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number of false negative is underestimated since every SNP present in the data set but missed 
by all tools is not considered a false negative. The sensitivity (Sens) of PolyFreq was thus the 
lowest: only 36% of the SNPs validated were discovered by PolyFreq. The probabilities were 
calculated as follows: 

 

 

 

When non default parameters were used, SNPServer detected more true positives than when 
default parameters were used. However, more false positives were detected. The positive 
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compared to 63% and 78% for SNPServer default. Finally, PolyBayes seemed to be a 
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The results are shown in Fig 3b (Table 4 in supplementary material). Using SNPs detected by 
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Fig 3: Performance of tools mining for SNPs. a. Number of true positives, false positives and 
false negatives given by tool. b. Number of true positives, false positives and false negatives given 
the number of tools used for SNPs detection. 

4 Discussion 

As more sequence data are generated, computational extraction of relevant information from 
these sequences becomes an efficient strategy. In this study we checked the efficiency of in 
silico SNP discovery in European sea bass ESTs using three software packages. A total of 112 
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candidate SNPs in 69 loci were validated by direct sequencing. Only half of them appeared to 
be true SNPs. PolyFreq detected less false positives than PolyBayes and SNPServer, but the 
number of candidates detected by PolyFreq was very low. This is due to the fact that PolyFreq 
has been designed to reduce the number of candidate SNPs detected in sequences of deep 
coverage. From the literature records PolyFreq detected less false positives than PolyBayes 
[10]. However, the number of true positives and false negatives were reported to be similar 
whereas they were respectively lower and higher with PolyFreq than with PolyBayes. The 
fact that the number of candidates detected by PolyFreq and tested in the laboratory was about 
three times less than the number of candidates tested for PolyBayes may explain this 
difference. The number of confirmed true positives while using PolyBayes was low compared 
to what has been described for example in maritime pine (Pinus pinasterspecies) ESTs where 
PolyBayes detected 83.1% of true SNPs [24]. The ESTs originated from five cDNA libraries 
using more than 350 individuals. The number of individuals used while mining for SNPs 
might be a critical factor. A filtering strategy based on substitution redundancy and good 
quality values detected 63% of true SNPs in 10% of the candidate SNPs of human ESTs from 
19 cDNA libraries [17]. However, other studies detected lower percentages of true positives, 
the lowest being 7.8% with PolyBayes in soybean sequences [25] and 8% with autoSNP in 
human ESTs [11]. Both of them tried to increase this number either by using another tool or 
an additional selection. 

The total number of SNPs found in ESTs was about three times higher than the number of 
SNPs detected computationally. This is partly due to the criterion of redundancy. Moreover 
some true SNPs have been missed since automated SNP discovery tends to fail detection of 
less common alleles [24]. 

Not all candidate SNPs have been molecularly validated, but preliminary results suggest that 
PolyFreq gives the best positive predictive value, outperforming PolyBayes and SNPServer 
whatever the settings. PolyBayes outperformed SNPServer. Nevertheless the majority of 
SNPs detected by PolyFreq (89%) and PolyBayes (87%) were not redundant and thus not 
taken into account for further evaluation. Some of the confirmed SNPs detected by 
SNPServer were not detected by the two other tools; a number of SNPs must have been 
missed. This can be assessed by calculating the sensitivity of each tool; SNPServer non-
default had the highest sensitivity and PolyFreq the lowest. A good SNP discovery tool has to 
have both a high positive predictive value and a high sensitivity; PolyBayes outperforms the 
other tools. However, SNP detection can be further enhanced by considering candidate SNPs 
detected by three and four tools. 

Through the detection of candidate SNPs, software packages such as SNPServer, PolyBayes 
and PolyFreq predict which contigs are polymorphic. Molecular validation showed that 
91.3% of the contigs supposedly containing SNPs were actually polymorphic, even if the 
expected SNPs did not turn out to be real ones. In case this percentage is lower when 
sequencing contigs randomly, SNP discovery tools would select polymorphic contigs more 
accurately than candidate SNPs. 
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