
5. MECHANICAL PROPERTIES AND PERFORMANCE OF MATERIALS

Samples of engineering materials are subjected to a wide variety of mechanical

tests to measure their strength, elastic constants, and other material properties as well as

their performance under a variety of actual use conditions and environments.  The results

of such tests are used for two primary purposes: 1) engineering design (for example,

failure theories based on strength, or deflections based on elastic constants and

component geometry) and 2) quality control either by the materials producer to verify the

process or by the end user to confirm the material specifications.

Because of the need to compare measured properties and performance on a

common basis, users and producers of materials use standardized test methods such as

those developed by the American Society for Testing and Materials (ASTM) and the

International Organization for Standardization (ISO).  ASTM and ISO are but two of many

standards-writing professional organization in the world.  These standards prescribe the

method by which the test specimen will be prepared and tested, as well as how the test

results will be analyzed and reported.  Standards also exist which define terminology and

nomenclature as well as classification and specification schemes.

The following sections contain information about mechanical tests in general as

well as tension, hardness, torsion, and impact tests in particular.

Mechanical Testing

Mechanical tests (as opposed to physical, electrical, or other types of tests) often

involves the deformation or breakage of samples of material (called test specimens or test

pieces).  Some common forms of test specimens and loading situations are shown in Fig

5.1.  Note that test specimens are nothing more than specialized engineering components

in which a known stress or strain state is applied and the material properties are inferred

from the resulting mechanical response.  For example, a strength is nothing more than a

stress "at which something happens" be it the onset of nonlinearity in the stress-strain

response for yield strength, the maximum applied stress for ultimate tensile strength, or

the stress at which specimen actually breaks for the fracture strength.

Design of a test specimen is not a trivial matter.  However, the simplest test

specimens are smooth and unnotched.  More complex geometries can be used to

produce conditions resembling those in actual engineering components.  Notches (such

as holes, grooves or slots) that have a definite radius may be machined in specimens.

Sharp notches that produce behaviour similar to cracks can also be used, in addition to

actual cracks that are introduced in the specimen prior to testing.
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Figure 5.1  Geometry and loading scenarios commonly employed in mechanical testing of
materials.  a) tension, b) compression, c) indentation hardness, d) cantilever flexure, e)

three-point flexure, f) four-point flexure and g) torsion

Equipment used for mechanical testing range from simple, hand-actuated devices

to complex, servo-hydraulic systems controlled through computer interfaces.  Common

configurations (for example, as shown in Fig. 5.2) involve the use of a general purpose

device called a universal testing machine.  Modern test machines fall into two broad

categories: electro (or servo) mechanical (often employing power screws) and servo-

hydraulic (high-pressure hydraulic fluid in hydraulic cylinders).  Digital, closed loop

Figure 4.2 Example of a modern, closed-loop servo-hydraulic universal test machine.
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control (e.g., force, displacement, strain, etc.) along with computer interfaces and user-

friendly software are common.  Various types of sensors are used to monitor or control

force (e.g., strain gage-based "load" cells), displacement (e.g., linear variable differential

transformers ( LVDT's) for stroke of the test machine), strain (e.g., clip-on strain-gaged

based extensometers).  In addition, controlled environments can also be applied through

self-contained furnaces, vacuum chambers, or cryogenic apparati.  Depending on the

information required, the universal test machine can be configured to provide the control,

feedback, and test conditions unique to that application.

Tension Test

The tension test is the commonly used test for determining "static" (actually quasi-

static) properties of materials.  Results of tension tests are tabulated in handbooks and,

through the use of failure theories, these data can be used to predict failure of parts

subjected to more generalized stress states.  Theoretically, this is a good test because of

the apparent simplicity with which it can be performed and because the uniaxial loading

condition results in a uniform stress distribution across the cross section of the test

specimen.  In actuality, a direct tensile load is difficult to achieve (because of

misalignment of the specimen grips) and some bending usually results.  This is not

serious when testing ductile materials like copper in which local yielding can redistribute

the stress so uniformity exists; however, in brittle materials local yielding is not possible

and the resulting non uniform stress distribution will cause failure of the specimen at a

load considerably different from that expected if a uniformly distributed load were applied.

The typical stress-strain curve normally observed in textbooks with some of the common

nomenclature is shown in Fig. 5.3.  This is for a typical low-carbon steel specimen.  Note

that there are a number of definitions of the transition from elastic to plastic behavior.  A

few of these definitions are shown in Fig. 5.3.  Oftentimes the yield point is not so well

defined as for this typical steel specimen.  Another technique for defining the beginning of

plastic behavior is to use an offset yield strength defined as the stress resulting from the

intersection of a line drawn parallel to the original straight portion of the stress strain

curve, but offset from the origin of this curve by some defined amount of strain, usually 0.1

percent ( ε  = 0.001) or 0.2 percent ( ε  = 0. 002) and the stress-strain curve itself.  The total

strain at any point along the curve in Fig. 5.3 is partly plastic after yielding begins.  The

amount of elastic strain can be determined by unloading the specimen at some

deformation, as at point A.  When the load is removed, the specimen shortens by an

amount equal to the stress divided by elastic modulus (a.k.a., Young's modulus).  This is,

in fact, the definition of Young's modulus E =
∆σ
∆ε

 
 

 
  in the elastic region.
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Figure 5.3  Engineering stress-strain diagram for hot-rolled carbon steel showing
important properties (Note, Units of stress are psi for US Customary and
MPa for S.I.  Units of strain are in/in for US Customary and m/m for S.I.

Other materials exhibit stress-strain curves considerably different from carbon-steel

although still highly nonlinear.  In addition, the stress-strain curve for more brittle

materials, such as cast iron, fully hardened high-carbon steel, or fully work-hardened

copper show more linearity and much less nonlinearity of the ductile materials.  Little

ductility is exhibited with these materials, and they fracture soon after reaching the elastic

limit.  Because of this property, greater care must be used in designing with brittle

materials.  The effects of stress concentration are more important, and there is no large

amount of plastic deformation to assist in distributing the loads.
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As shown in Fig. 5.3, often basic stress-strain relations are plotted using

engineering stress, σ , and engineering strain, ε .  These are quantities based on the

original dimensions of the specimen, defined as

  
σ =

Load

Original Area
=

P

Ao
(5.1)

  
ε =

Deformed length - Original length

Original length
=

L − Lo

Lo
(5.2)

The Modulus of Resilience is the amount of energy stored in stressing the material

to the elastic limit as given by the area under the elastic portion of the σ  - ε  diagram and

can be defined as

Ur =  σ dε ≈
σoεo

20

ε o

∫ (5.3)

where σo  is the proportional limit stress and εo  is the strain at the proportional limit stress.

Ur is important in selecting materials for energy storage such as springs.  Typical values

for this quantity are given in Table 5.1.

The Modulus of Toughness is the total energy absorption capabilities of the

material to failure and is given by the total area under the σ  - ε   curve such that

Ut =  σ dε ≈
(σo + Su)

20

ε f

∫ εf (5.4)

where Su is the ultimate tensile strength, σo  is the proportional limit stress and ε f  is the

strain at fracture.  Ut is important in selecting materials for applications where high

overloads are likely to occur and large amounts of energy must be absorbed.  This

modulus has also been shown to be an important parameter in ranking materials for

resistance to abrasion or cavitation.  Both these wear operations involve tearing pieces of

metal from a parent structure and hence are related to the "toughness" of the material.

Table 5.1 Energy properties of materials in tension

Material
Yield

Strength
(MPa)

Ultimate
Strength

(MPa)

Modulus of
Resilience,

(kJ/m3)

Modulus of
Toughness,

(kJ/m3)
SAE 1020 annealed 276 414 186 128755
SAE 1020 heat treated 427 621 428 91047
Type 304 stainless 207 586 103 195199
Cast iron 172 586
Ductile cast iron 400 503 462 50352
Alcoa 2017 276 428 552 62712
Red brass 414 517 828 13795
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The ductility of a material is its ability to deform under load and can be measured

by either a length change or an area change.  The percent elongation, which is the

percent strain to fracture is given by:

%EL = 100εf = 100
L f − Lo

Lo

 
 
  

 
 = 100

Lf

Lo

−1
 
 
  

 
 (5.5)

where Lf is the length between gage marks at fracture.  We should note that this quantity

depends on the gage length used in measuring L, as non uniform deformation occurs in a

certain region of the specimen during necking just prior to fracture, hence, the gage length

should always be specified.  The percent reduction in area is a cross-sectional area

measurement of ductility defined as

%RA = 100
Ao − Af

Ao

 
 
  

 
 = 100 1−

Af

Ao

 
 
  

 
 (5.6)

where Af is the cross-sectional area at fracture.  Note %RA is not sensitive to gage length

and is somewhat easier to obtain, only a micrometer is required.  It should be realized that

the stress-strain curves just discussed, using engineering quantities, are fictitious in the

sense that the σ  and ε  are based on areas and lengths that no longer exist at the time of

measurement.  To correct this situation true stress (σT ) and true strain (εT ) quantities are

used.  The quantities are defined as:

σT =
P

Ai

(5.7)

where Ai is the instantaneous area at the time P is measured.  Also

εT =
dL

L
Lo

L

∫ = ln
L

Lo

(5.8)

or

εT = −
dA

A
Ao

A

∫ = ln
Ao

A
(5.9)

where L is the instantaneous length between gage mark at the time P is measured.

These two definitions of true strain are equivalent in the plastic range where the

material volume can be considered constant during deformation as shown below.

Since

  AL = AoLo (5.10)

then

  L Lo = Ao A (5.11)

The constant volume condition simply says the stressed volume AL is equal to the
original volume AoLo.  (Note this is only true in the plastic range of deformation, in the
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elastic range the change in volume   ∆V per unit volume is given by the bulk modulus B

(where B =
E

3(1− υ)
 and υ

 is Poisson's ratio).

Prior to necking, engineering values can be related to true values by noting that

εT = ln
Li

Lo

= ln
Lo + ∆L

Lo

 (5.12)

then
εT = ln(1+ ε) (5.13)

and since
  

Ao

A
=

L

Lo
=

Lo +∆ L

Lo
  (5.14)

so

  
A =

Ao

1 + ε
(5.15)

and since

σT =
P

A
 (5.16)

then

σT =
P

Ao

1+ ε( ) = σ(1+ ε ) (5.17)

where σ  and ε  are the engineering stress and strain values at a particular load.

True stress and true strain values are particularly necessary when one is working

with large plastic deformations such as large deformation of structures or in metal forming

processes.  In the elastic region the relation between stress and strain is simply the linear

equation

  σ = Eε (5.18)

and also

σT = EεT (5.19)

In the plastic region, a commonly used relation to define the relation between

stress and strain is given by
σT = K (εT )n = H(εT )m (5.20)

where strength coefficient, K or H, is the stress when εT  =1 and m or n is an exponent

often called the strain hardening coefficient.  Typically values for K or H and m or n are as

given in Table 5.2.
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Table 4.2 Material constants m or n and K or H for different sheet materials

Material Treatment n or m K or H
(MPa)

Specimen
Thickness

(mm)
0.05% carbon rimmed steel Annealed 0.261 532 24
0.05/0.07% phosphorus
     low-carbon steel Annealed 0.156

644 24

SAE 4130 steel Annealed 0.118 1168 24
Type 430 stainless steel
     (17% Cr) Annealed 0.229

986 32

Alcoa 24-S aluminum Annealed 0.211 386 258

The last two equations can be written in the form

log σT  = log E + log εT (elastic) (5.21)

and

log σT  = log K+ m log εT (plastic) (5.22)

by taking logarithms of both sides of the equations.

In this form we see that when plotted on log-log graph paper the following are true.

1.  The elastic part of the deformation plots as a 45° line on true stress and

true strain coordinates.  The extrapolated elastic (45° line) at a value of

strain of one corresponds to a stress value equal to the elastic modulus

(a.k.a., Young's modulus).

2.  the plastic part of the deformation is a straight line of slope m.  The

strength coefficient, K or H, is that stress existing when the strain is one.  This

type of graph is shown for a particular aluminum alloy in Fig. 5.4.  This type

of plot clearly shows the difference in elastic and plastic behavior of ductile

materials and the distinct transition between ductile and brittle behavior.

Test specimens used for tensile experiments may be either cut from flat sheet stock

or turned from round stock.  The round specimens have the advantage of being usable for

many types of materials.  The specimens typically have a 0.505 in (51 mm) diameter

reduced section (giving a cross sectional area of 0.2 in2.) and may have either a button

head or threaded ends for mounting in the machine.  The button heads are used more

commonly for brittle materials because of less chance of failure in the heads as can occur

with threaded specimens.

The load in the specimen is read directly from the testing machine, while the

elongation is measured with some type of extensometer.  In the elastic region the strains

are so small that some type of magnification of the deformations are necessary.  There are

many ways to achieve this magnification.
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Figure 5.4  Logarithmic true stress-logarithmic (true) strain data plotted on 

logarithmic coordinates

In the plastic region, the strains become sufficiently large that a finely graduated

scale used in conjunction with a pair of dividers to measure linear strain, or a micrometer

to measure lateral strain can be used.

In the U.S., generally a 2.0 in (50.8 mm) gage length is used to measure

deformations.  The 2.0 in (50.8 mm) interval is often marked off with a special tool that

marks the interval with punch marks.  These punch marks should be very light or fracture

will occur at this point.  Alternatively an indelible marker can be used to avoid damaging

the surface of the test specimen.
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Hardness

In the field of engineering, hardness is often defined as the resistance of a material

to penetration.  Methods to characterize hardness can be divided into three primary

categories:

1) Scratch Tests

2) Rebound Tests

3) Indentation Tests

Scratch tests commonly involve comparatively scratching progressively harder

materials.  In mineralogy, a Mohs hardness scale is used as shown in Fig. 5.5.  Diamond,

the hardest material, is assigned a value of 10.  Decreasing values are assigned to other

minerals, down to 1 for the soft mineral, talc.  Decimal fractions, such as 9.7 for tungsten

carbide, are used for materials intermediate between the standard ones.  Where a

material lies on the Mohs scale is determined by a simple manual scratch test.  If two

materials are compared, the harder one is capable of scratching the softer one, but not

vice versa.  This allows materials to be ranked as to hardness, and decimal values

between the standard ones are assigned as a matter of judgment.

Rebound tests may employ techniques to assess the resilience of material by

measuring changes in potential energy.  For example, the Sceleroscope hardness test

employs a hammer with a rounded diamond tip.  This hammer is dropped from a fixed

height onto the surface of the material being tested.  The hardness number is proportional

to the height of rebound of the hammer with the scale for metals being set so that fully

hardened tool steel has a value of 100.  A modified version is also used for polymers.

Indentation tests actually produce a permanent impression in the surface of the

material.  The force and size of the impression can be related to a quantity (hardness)

which can be objectively related to the resistance of the material to permanent

penetration.  Because the hardness is a function of the force and size of the impression,

the pressure (and hence stress) used to create the impression can be related to both the

yield and ultimate strengths of materials.  Several different types of hardness tests have

evolved over the years.  These include macro hardness test such as Brinell, Vickers, and

Rockwell and micro hardness tests such as Knoop and Tukon.

Brinell Hardness Test  In this test, a relatively large steel ball, specifically 10 mm in

diameter is used with a relatively large force.  The force is usually obtained with either

3000 kg for relatively hard materials such as steels and cast irons or 500 kg for softens

materials such as copper and aluminum alloys.  For very hard materials, the standard

steel ball will deform excessively and a tungsten carbide ball is used.  The Brinell
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hardness dates from the late 1800's and is probably the most common hardness test in

the world.

The Brinell hardness number is obtained by dividing the applied force, P, in kg, by

the actual surface area of the indentation which is a segment of a sphere as illustrated in

Fig. 5.6 such that:

BHN = HB =
P

πDt
=

2P

πD D − D 2 −d 2( )[ ] (5.23)

where D is the diameter of the ball in mm, t is the indentation depth from the surface in

mm, and d is the diameter of the indentation at the surface in mm.

Brinell hardness is good for averaging heterogeneities over a relatively large area,

thus lessening the influence of scratches or surface roughness.  However the large ball

size precludes the use of Brinell hardness for small objects or critical components where

large indentations may promote failure.  Another limitation of the Brinell hardness test is

that because of the spherical shape of the indenter ball, the BHN for the same material

will not be the same for different loads if the same size ball is used.  Thus, geometric

similitude must be imposed by maintaining the ratio of the indentation load and indenter

diameter such that:
P1

D1

=
P2

D2

=
P3

D3

= etc. (5.24)

The Meyers hardness test is a variation on the Brinell hardness test and addresses

this lack of geometric similarity by using the projected area of the indentation such that:

MHN = HM =
P

πd 2 /4
(5.25)

Although the Meyers hardness is less sensitive to applied load and is a more fundamental

measure of hardness, it is rarely used.

Vickers Hardness Test (a.k.a.. diamond pyramid hardness)  In this test, the same

general principles of the Brinell test are applied.  However, a four-sided diamond pyramid

is implied as an indenter rather than a ball to promote geometric similarity of indentation

regardless of indentation load (see Fig. 5.7).  The included angle between the faces of the

pyramid is 136° which corresponds to a desired d/D ratio for the Brinell test of 0.25.  The

resulting Vickers indentation has a depth, h equal to 1/7 of the indentation size, L,

measured on the diagonal.  The Vickers hardness is obtained by dividing the applied

force by the surface area of the paramedical impression such that:

VHN = HV =
2P

L2 sin
α
2

(5.26)

where P is the indentation load which typically ranges from 0.1 to 1 kg but may be as high

as 120 kg, L is the diagonal of the indentation in mm and α  is the included angle of 136°.
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Figure 5.5  Approximate relative hardnesses of metals and ceramics for Mohs scale and

indention scales.

The primary advantage of the Vickers hardness is that the result is independent of

load.  However, disadvantages are that it is somewhat slow since careful surface

preparation is required. In addition, the result may be prone to personal error in

measuring the diagonal length along with interpretation of anomalies such as "pin

cushioning" for soft materials and "barreling/ridging" for hard materials.
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Figure 5.6  Brinell hardness test.

Rockwell Hardness Test  The Rockwell test is the most widely accepted hardness

test in the United States.  In this test, penetration depth is measured, with the hardness

reported as the inverse of the penetration depth.  A two step procedure is used as

illustrated in Fig. 5.8.  The first step "sets" the indenter in the material and the second step

is the actual indentation test.  The conical diamond or spherical indenter tips produce

indentation depths, the inverse of which are used to display hardness on the test machine

directly.  The reported hardness is in arbitrary units, but the Rockwell scale which

identifies the indentation load and indenter tip must be reported with the hardness

number (otherwise the number is useless).  Rockwell scales include those in Table 5.3.

Figure 5.7 Vickers hardness indenter
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Table 5.3 Representative Rockwell indenter specifics

Rockwell

Scale

Indenter Major Load

(kg)

A Brale 60

B 1/16" Ball 100

C Brale 150

D Brale 100

E 1/8" Ball 100

F 1/16" Ball 60

M 1/4" Ball 100

* Brale is a conical diamond indenter

 Some important points concerning Rockwell hardness testing include the following

1) Indenter and anvil should be clean and well seated.

2) Surface should be clean, dry, smooth, and free from oxide

3) Surface should be flat and normal

A primary advantage of the Rockwell hardness test is that it is automatic and self-

contained thereby given and instantaneous readout of hardness which lends itself to

automation and rapid through put.

Elastic/Plastic Correlations and Conversions

The deformations caused by a hardness indenter can be correlated to those

produced at the yield and ultimate tensile strengths in a tensile test.  However, an

important difference is that the material cannot freely flow outward, sot that a complex

triaxial state of stress exists under the indenter (see Fig. 5.9).  Nonetheless, various

correlations have been established between hardness and tensile properties.

For example, the elastic constraint under the hardness indenture reaches a limiting

value of 3 such that the yield strength can be related to the pressure exerted by the

indenter tip:
Sy = BHN x 9.816  / 3 (5.27)

where Sy is the yield strength of the material in MPa and BHN is the Brinell hardness in

kg/mm2.
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Figure 5.8 Rockwell hardness indentation for a minor load and for a major load.

Empirical relations have also been developed to correlate different hardness

number as well as hardness and ultimate tensile strength.  For example, for low- and

medium carbon and alloy steels,
Su = 3.45 x BHN (5.28)

where Su is the ultimate tensile strength of the material in MPa and BHN is the Brinell

hardness in kg/mm2.

Figure 5.9 Plastic deformation under a Brinell hardness indenter.
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Note that for both these relations, there is considerable scatter in actual data, so

that these relationships should be considered to provide rough estimates only.  For other

classes of material, the empirical constant will differ, and the relationships may even

become nonlinear.  Similarly, the relationships will change for different types of hardness

tests.  Rockwell hardness correlates well with ultimate tensile strength and with other

types of hardness tests, although the relationships can be nonlinear.  This situation results

from the unique indentation-depth basis of this test.  For carbon and alloy steels,

conversion charts for estimating various types of hardness from one another as well as

ultimate tensile strengths are contained in an ASTM standard, ASM handbooks and

information supplied by manufacturers of hardness testing equipment

Torsion

The torsion test is another fundamental technique for obtaining the stress-strain

relationship for a metal.  Because the shear stress and shear strain are obtained directly

in the torsion test, rather than tensile stress and tensile strain as in the tension test, many

investigators actually prefer this test to the tension test.  Since all deformation of ductile

materials is by shear, the torsion test would seem to be the more fundamental of the two.

The torsion test is accomplished by simply clamping each end of a suitable

specimen in a twisting machine that is able to measure the torque, T, applied to the

specimen.  Care must be used in gripping the specimen to avoid any bending.  A device

called a troptometer is used to measure angular deformation.  This device consists of two

collars which are clamped to the specimen at the desired gage length.  One collar is

equipped with a pointer the other with a graduated scale, so the relative twist between the

gage marks can be determined.  The troptometer is useful for measuring strains up to and

slightly past the elastic limit.  For larger plastic strains, complete revolutions of the collars

are counted.

The test, then, consists of measuring the angle of twist, θ  (radians) at selected

increments of torque T (N-m).  Expressing the twist as θ '= θ /L, the angular deflection per

unit gage length, one is able to plot a T - θ ' diagram that is analogous to the load-

deflection diagram obtained in the tension test.  To be useful for engineering purposes, it
is necessary to convert this T - θ  'diagram to a shear stress (τ ) - shear strain (γ ) diagram

similar to the previous normal stress ( σ ) - normal strain (ε ) diagram.  Of course, one can
also convert the τ  - γ  diagram to a σ  - ε  diagram as will be shown later.
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Figure 5.10 Torsion of cylindrical test bar

Two possible approaches are used: 1) a mechanistic approach which requires no

a priori knowledge of the properties of the particular material, only the form of the resulting

stress-strain relations, and 2) a materials approach which requires a priori knowledge of

the properties of the particular material along with the form of the resulting stress-strain

relations.

For the mechanistic approach, consider first a circular, thin-walled specimen as

shown in Figure 5.10
The shear strain γ  is the relative rotation of one circular cross-section with respect

to a section one unit length away or:

  
γ =

rθ
L

 (5.29)

where θ  is in radians.  This relation is true in either the elastic or plastic range.

The shear stress τ  is simply the average applied force at the tube cross section

(T/r) divided by the cross-sectional area. This is so because the stress can be assumed

uniformly distributed across the thickness of the tube, t.  This gives:

  
τ =

T

2πr2t
(5.30)

Using the Eqs. 5.29 and 5.30, the complete τ  - γ  diagram in the elastic and plastic range

can be obtained.
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Figure 5.11 Elastic Shear Stress Distribution

The τ  - γ   diagram can also be obtained from T - θ  information obtained using a

solid circular test specimen.  This specimen has the advantage of being somewhat easier

to grip in the testing machine and has no tendency to collapse during twisting.  This is the

specimen type to be used in this laboratory.  For the solid specimen, the shear strain

relation remains the same as for the tubular specimen, i.e. 
  
γ =

rθ
L

.

The shear stress distribution is somewhat more difficult to obtain because we can

no longer assume the stress distribution to be uniform across the section.  The derivation

for the equation giving τ  from T-θ  data is as follows:

In the elastic deformation range the stress is distributed uniformly across the

section as shown in Fig. 5.11

Considering the very thin circumferential ring shown above, the torque resisted by

this ring is given by

dT = (shear stress) ×  (area) ×  (lever arm)

dT= 
  
τ × τr ×

a

r
=   2πa2τda (5.31)

since

dA = 2π ada. (5.32)
Since the stress distribution is linear, at any radius, a, the shear stress, γ , is related to the
maximum shear stress,   τr , existing at r by

  
τ = τr ×

a

r
(5.33)

so substituting in the equation for dT, the torque on a small area becomes:

  
dT= 2πτr

r
a3da (5.34)

and integrating over the entire cross-sectional area, the total external torque is equal to
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T=2πτr

r o
r a3da  

  
= 2πτ r

r
r4

4
= πτ rr

3

2
(5.35)

and the shear stress at the outermost fibers is

  
τr =

2T

πr 3 (5.36)

Note that Eqs. 5.33 to 5.34  applies only in the elastic region.  When the metal starts to

deform plastically, the shear stress distribution is no longer linear, but is as shown in Fig.

5.12.

The relation between T and τ  is no longer the same.  To evaluate this relation we

begin as before, noting that the torque at a very thin ring of radius a is again given by

  dT = 2πτa2da (5.37)

So the total external torque resisted across the section is then

  
T = 2π τ

o

a
∫ a2da (5.38)

The shear strain relation 
  
γ =

aθ
L

 at any radius a is still valid, however, and substituting this

in Eq. 5.38, we obtain

  
T = 2π

τγ 2L2

θ2o
r∫

L

θ
dγ (5.39)

The shear stress T at any radius a is also a function of γ  only, i.e.

  τ = f γ( ) (5.40)

so the expression for torque T can be written in terms of γ  only as

  
Tθ3 = 2πL3 f γ( )

o

γ
r∫ γ 2dγ (5.41)

Fig. 5.12   Elastic-Plastic Shear Stress Distribution
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Differentiating both sides of this equation with respect to 9, one obtains

  

d

dθ
= Tθ3( ) = 2πL3f γ r( )γ

r
2 dγr

dθ
` (5.42)

since
  
γ r =

rθ
L

 then

  

dγ r

dθ
=

r

L
(5.44)

and substituting these quantities in the equation for 
  
d dθ Tθ3( )  and working out the

derivative, one obtains

  
3Tθ2 +

dt

dθ
θ3 = 2πτr 3θ2 (5.45)

and

  
3T +θ

dt

dθ
= 2πτr3 (5.44)

Solving for the shear stress, the result is

  
τ =

1

2πr3
 
 
 

 
 
 θ

dt

dθ
+ 3T

 
 
  

 
 (5.45)

This was rather a lengthy derivation, but the application is easy.  Refer to the typical

T - θ  diagram as obtained from a torsion test shown in Fig. 5.13.

Fig. 5.13   Example of torque-twist curve used for data
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At the typical point P at which it is desired to obtain the shear stress, observe that

  θ = BC  and that 
dT
dθ

=
PC
BC

 
 
such that T = AP.  Substituting these quantities, the result is

  
τ =

1

2πr3 BC
PC

BC
+ 3AP

 
  

 
   or 

  
τ =

PC + 3AP

2πr3 .

With this last relation it is then a simple matter to obtain values of τ  at various θ

positions of the plastic part of the T - θ  curve.  Remember that 
  
γ =

rθ
L

, the complete τ  - γ

curve can be obtained.

For the materials approach, it is possible to again make the valid assumption that

  
γ =

rθ
L

.  However, τ  is determined as one of two functions of γ   depending on whether the

internal stress state is in the elastic or plastic range.  However, calculating this internal

stress state requires a priori knowledge of material properties usually determined from a

tensile test.  In particular, E is required to calculate G =
E

2(1+ υ)
, σo  is required to calculate

τo =
σ o

3
, K and n are required to calculate Kτ =

K
3( n +1)/2  and n for shear equals n for

tension.  Once these relations are established, then it is possible to calculate the shear

stress from the shear strain for the elastic or plastic condition as follows.

τ = Gγ for τ ≤ τo  and/or γ ≤ γ o (5.46)

or
τ = Kτ γ n for τ > τo  and/or γ > γ o (5.47)

where G is the shear modulus, Kτ =
K

3( n +1)/2  in which K and n are the strength coefficient

and strain hardening exponent from the tension test, respectively.  The shear strain at

yield can be determined from an effective stress-strain relation from plasticity such that

γ o =
τo

G
(5.48)

where τo =
σ o

3
 in which σo  is the "yield" strength from a tension test.

For any given T-θ  combination, it is possible to calculate the shear strain at the

surface of the specimen (that is, r=R) as 
  
γ =

rθ
L

.  Comparing this shear strain to that

calculated in Eq. 5.48, allows the choice of either Eq. 5.46 or 5.47.

Note that when the shear stress at r=R is plastic, the total torque, T, required to
produce the deformation, θ , will have two components: an elastic torque, Te and a plastic

torque, Tp since the shear stress across the cross section of the specimen will have both a
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plastic part and an elastic part as shown in Fig. 5.14.  The relation for T can then be

written as:
Ttotal = Telastic + T plastic (5.50)

where

Telastic = τ dA r =
0

τo

∫ Gγ dA r
0

γ o

∫ (5.51)

Tplastic = τ dA r =
τ o

τR

∫ Kτγ n  dA r
γ R

γ R

∫ (5.52)

For convenience it is possible to rewrite the integration variables in Eqs. 5.51 and 5.52 in

terms for the specimen radius, r, only such that

Telastic =
τ y

ry

2πr 3dr
0

ry

∫ (5.53)

Tplastic =
K

3
rθ '

3
 
 

 
 

n

2πr 2dr
r y

R

∫ (5.54)

where θ ' =
θ
L

 and ry =
θ
L

γ o =
θ
L

τo

G
= θ '

τo

G
.

Equations 5.53 and 5.54 can be solved either closed form or numerically for any

combination of T and θ .

Radial distance, r

τ
γ

r=Rr=0 r
y

=K 
n

=f(    )γ

τ=Gγ τ γ
τ

=r     /Lθ

Elastic Plastic

Figure 5.14  Shear stress and shear strain as functions of radial distance
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Once the shear stress-strain curve is obtained, engineering properties are easily

calculated. A few of the more important quantities will be discussed.  As in the tension test,

yield strengths for shearing stress can be defined, such as a proportional limit or an offset
yield strength. The Modulus of Rupture is the total area under the τ  - γ  curve determined

at r=R and represents the total energy absorption abilities of the material in shear.

Figure 5.15   Mohr's circles for the tensile test and torsion test
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 As in the tension test, the Modulus of Resilience is the area under the elastic
portion of the τ  - γ  curve such that

Ur = τ d
o

γ o

∫ γ (5.55)

Similarly, the Modulus of Toughness is the area under the total τ  - γ  curve such

that

Ut = τ d
o

γ f

∫ γ (5.56)

The Modulus of Rigidity (or Shear Modulus), G, is the slope of the τ  - γ  curve in the

elastic region and is comparable to Young's Modulus, E, found in tension.  Recall that the

relation between E and G is G =
∆τ
∆γ

=
E

2(1+υ )
.

The true shear stress-strain curve can be compared to the tensile true stress-strain

curve by converting the normal values to shear values. The conversion is as follows:

Elastic range: τ  equivalent = 
  

σ
2

; γ  equivalent = 1.25ε (5.57)

Plastic range: τ  equivalent = 
  

σ
2

; γ  equivalent = 1.5ε (5.58)

That these values are correct can be seen from Mohr's circle of stress and of strain

for the elastic and plastic ranges (Fig. 5.15).  Knowledge of Poisson's ratio, υ , is needed

for Mohr's circles of strain for the tensile test. For mild steel in the elastic range, υ  = .0.30;

in the plastic range, υ  =0.5 as a result of the constant volume assumption.

Impact

The static properties of materials and their attendant mechanical behavior are very

much functions of  factors such as the heat treatment the material may have received as

well as design factors such as stress concentrations.

The behavior of a material is also dependent on the rate at which the load is

applied.  Polymeric materials and metals which show delayed yielding are most sensitive

to load application rate.  Low-carbon steel, for example, shows a considerable increase in

yield strength with increasing rate of strain.  In addition, increased work hardening occurs

at high-strain rates.  This results in reduced local necking, hence, a greater overall

material ductility occurs.  A practical application of these effects is apparent in the

fabrication of parts by high-strain rate methods such as explosive forming.  This method
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results in larger amounts of plastic deformation than conventional forming methods and,

at the same time, imparts increased strength and dimensional stability to the part.

In design applications, impact situations are frequently encountered, such as

cylinder head bolts, in which it is necessary for the part to absorb a certain amount of

energy without failure.  In the static test, this energy absorption ability is called

"toughness" and is indicated by the modulus of rupture.  A similar "toughness"

measurement is required for dynamic loadings; this measurement is made with a

standard ASTM impact test known as the Izod or Charpy test.  When using one of these

impact tests, a small notched specimen is broken in flexure by a single blow from a

swinging pendulum.  With the Charpy test, the specimen is supported as a simple beam,

while in the Izod it is held as a cantilever.  Figure 5.16 shows standard configurations for

Izod (cantilever) and Charpy (three-point) impact tests.

A standard Charpy impact machine is used.  This machine consists essentially of a

rigid specimen holder and a swinging pendulum hammer for striking the impact blow (see

Fig. 5.17).  Impact energy is simply the difference in potential energies of the pendulum

before and after striking the specimen.  The machine is calibrated to read the fracture

energy in N-m or J directly from a pointer which indicates the angular rotation of the

pendulum after the specimen has been fractured.

Figure 5.16 Charpy and Izod impact specimens and test configurations
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h1

h2

mass, m

IMPACT ENERGY=mg(h1-h2)

Figure 5.17 Charpy and Izod impact specimens and test configurations

The Charpy test does not simulate any particular design situation and data

obtained from this test are not directly applicable to design work as are data such as yield

strength.  The test is useful, however, in comparing variations in the metallurgical structure

of the metal and in determining environmental effects such as temperature.  It is often

used in acceptance specifications for materials used in impact situations, such as gears,

shafts, or bolts.  It can have useful applications to design when a correlation can be found

between Charpy values and impact failures of actual parts.

Curves as shown in Fig. 5.18 showing the energy to fracture as measured by a

Charpy test indicate a transition temperature, at which the ability of the material to absorb

energy changes drastically.  The transition temperature is that temperature at which,

under impact conditions, the material's behavior changes from ductile to brittle. This

change in the behavior is effected by many variables.  Metals that have a face-centered

cubic crystalline structure such as aluminum and copper have many slip systems and are

the most resistant to low-energy fracture at low-temperature.  Most metals with body-

centered cubic structures (like steel) and some hexagonal crystal structures show a sharp

transition temperature and are brittle at low temperatures.

Considering steel; coarse grain size, strain hardening, and certain minor impurities

can raise the transition temperature whereas fine grain size and certain alloying elements

will increase the low temperature toughness.  Figure 5.18 shows the effect of heat

treatment on alloy steel 3140 and 2340.  Note that a transition temperature as high as

about 25°C is shown.  This material, then should not be in service below temperature of

25°C when impact conditions are likely to exist.
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Figure 5.18   Variation in transition-temperature range for steel in the Charpy test

In defining notch "toughness", a number of criteria have been proposed to define

the transition temperature. These include:

a. some critical energy level

b. a measure of ductility such as lateral contraction of the specimen after fracture

c. fracture surface appearance - the brittle fracture surface has a crystalline
appearance, while the portion of the specimen which fracture in a ductile
manner will have a so-called fibrous appearance.

Any of these criteria are usable.  Perhaps the most direct criteria for a particular

metal is to define the transition temperature as that temperature at which some minimum

amount of energy is required to fracture.  During World War II, allied Victory ships literally

broke in two in conditions as mild as standing at the dock because of the use of steel with

a high-transition temperature, coupled with high-stress concentrations.  It was found that

specimens cut from plates of these ships averaged only 9 J. Charpy energy absorption at

the service temperature.  Ship plates were resistant to failure if the energy absorption

value was raised to 20 J at the service temperature by proper control of impurities.
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Plasticity Relations

Plasticity can be defined as non recoverable deformation beyond the point of

yielding where Hooke's law (proportionality of stress and strain) no longer applies.  Flow

curves are the true stress vs. true strain curves which describe the plastic deformation. As

shown in Fig. 5.19, are several simple approximations made to represent mathematically

represent actual plastic deformation.

σο

εT

Rigid-Perfectly Plastic

σο

εT
Elastic-Perfectly Plastic

σο

εT
Elastic-Linear Hardening
Elastic-Power Hardening

Power
Linear

EE

Figure 5.19  Mathematical approximations of plot curves

The hardening- flow curve is the most generally applicable type of flow curve.  This

type of plastic deformation behaviour has been modeled two different ways: Simple

Power Law and Ramberg-Osgood.

In the Simple Power Law model, the stress strain curve is divide into two discrete
region, separate at σ = σo  such that:

Elastic :   σ = Eε         (σ ≤ σo) (5.59)

Plastic :   σ = Hεn
          (σ ≥ σo) (5.60)

In the Ramberg-Osgood relationship the stress-strain curve is modeled as a

continuous function such that the total strain is sum of elastic and plastic parts:

ε = εe + εp =
σ
E

+ εp (5.61)

and

σ = H εp
n ⇒ ε =

σ
E

+
σ
H

 
 

 
 

1
n

(5.62)
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For the Ramberg-Osgood relation, σo  is not distinct "break" in the stress-strain curve, but

is instead calculated from the elasticity and plasticity relations such that

σo = E
H

E

 
 

 
 

1
1− n (5.63)

General stress-strain relations can be developed for deformation plasticity theory

such that the effective stress is

σ eff =
1
2

(σ1 − σ2)2 + (σ2 −σ3)2 +(σ3 − σ1)2 (5.64)

and the effective total strain is

ε =
σ
E

+ ε p  (5.65)

where the effective plastic strain is

 ε p =
2
3

(εp 1 − εp 2)2 + (εp2 − εp 3)2 + (εp 3 − εp1)
2 (5.66)

The resulting effective stress-effective strain curve is independent of the state of stress

and is used to estimate the stress-strain curves for other states of stress.  Of particular

importance for are equations which allow correlation of plasticity relations for tension and

torsion such that:
τ = Kτ γ n (5.67)

where Kτ =
K

3( n +1)/2   in which K and n are the strength coefficient and strain hardening

exponent from the tension test, respectively.  In addition,

τo =
σ o

3
(5.68)

where σo  is the yield strength from a tension test.

Strain

Strain
 Hardening

σο

Ε

εεp e

Figure 5.20 Elastic-plastic stress-strain curve
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