
Continual Surface-Based Multi-Projector Blending for Moving Objects
Peter Lincoln Greg Welch Henry Fuchs

The University of North Carolina at Chapel Hill
Department of Computer Science∗

ABSTRACT

We introduce a general technique for blending imagery from mul-
tiple projectors on a tracked, moving, non-planar object. Our tech-
nique continuously computes visibility of pixels over the surfaces
of the object and dynamically computes the per-pixel weights for
each projector. This approach supports smooth transitions between
areas of the object illuminated by different number of projectors,
down to the illumination contribution of individual pixels within
each polygon. To achieve real-time performance, we take advan-
tage of graphics hardware, implementing much of the technique
with a custom dynamic blending shader program within the GPU
associated with each projector. We demonstrate the technique with
some tracked objects being illuminated by three projectors.

Index Terms: H.5.1 [Multimedia Information Systems]:
Animations—Artificial, augmented, and virtual realities I.3.7
[Computer Graphics]: Three Dimensional Graphics and Realism—
Virtual Reality; I.3.8 [Computer Graphics]: Applications;

1 INTRODUCTION

One long-term dream of VR has been to integrate synthetic objects
with a user’s immediate surroundings and to enable the user to ex-
amine, manipulate, and change aspects of those synthetic objects.
One part of this dream that is close to being realized is the con-
trol of the appearance of a physical object by projection techniques.
To achieve this effect, a projector need only render a virtual model
of the object from the point of view of the projector. In order to
allow a user to view the physical object from a wide range of view-
ing positions, multiple projectors need to be used, each projecting
from sufficiently different angles to illuminate all the visible parts
of the object. To achieve a consistent appearance, the intensity from
any projector needs to be attenuated in surface regions illuminated
by multiple projectors. This blending of multiple projected images
has to be performed precisely, and the shape and pose of the ob-
ject needs to be accurately known, because even slight errors in
illumination patterns can result in obvious and disturbing artifacts.
If the user also wants to move and manipulate the object, the re-
quired real-time computation increases significantly as the attenua-
tion mask of every projector could change for every pixel. However,
we believe that the resulting natural object-manipulation capability
will be widely useful if it can be achieved without creating disturb-
ing visual artifacts on the surface of the object. It is toward this
end that the efforts of this paper are aimed. This paper presents
preliminary work. Future efforts in geometric and latency analy-
ses should lead to further reductions in the remaining artifacts that
appear during object motion.

2 RELATED WORK

Historically, the first multi-projector systems were designed for
static surfaces. Perhaps the simplest approach is that of mechan-

∗e-mail: {plincoln, welch, fuchs}@cs.unc.edu, phone: 919-962-1700,
fax: 919-962-1799

Projector 0

Projector 1
Projector 2

Tracker Sensor Unit

(a) System layout with ball object

(b) View near Projector 1 of
hand-held head object

(c) View near Projector 0 of
hand-held head object

Figure 1: Our demonstration system, in (a), consists of three pro-
jectors, a tracking system, and a tracked physical object. Parts (b)
and (c) are two photos of a hand-held head object from two different
viewing positions, recorded at the same time.

ical blending via aperture modulation [7]. However the majority of
work in this area has been aimed at software methods for blending
imagery from multiple projectors [11, 12, 15, 5, 8, 2, 13, 3, 14].
These approaches, which usually generate per-projector blending
masks as a non-interactive pre-processing step, have demonstrated
compelling results, but again for static surfaces. There has been
some work aimed at projecting onto moving surfaces, but prior
work has been limited to using only a single projector, recomput-
ing the blending masks only when the object has stopped moving,
or dynamically assigning a single projector to each planar facet of
the surface [1, 6, 4]. The work in [6] is particularly interesting in
that the author uses continual camera imagery of the surface (and
whatever is being projected onto it) to track the object’s surface.
However, the approach is still limited in terms of its multi-projector
blending in that it only supports piece-wise planar objects, where
each complete facet is illuminated by a single projector. We are
unaware of any work aimed at real-time, on-line blending of multi-
projector imagery onto non-planar moving surfaces.

Figure 2: Two different target objects, each rigidly mounted to a
opto-electric tracking tool.

3 METHOD

In this section we describe our procedure for enable multi-projector
blending. We begin by describing the one-time operations required
to calibrate the system of projectors, tracker, and objects. We con-
tinue by describing the rendering procedure necessary for generat-
ing the real-time masks and performing the blending.

3.1 Calibration
Our system, presented in Figure 1a makes use of a three projec-
tors, a NDI Optotrak opto-electric tracker [9], and a target object,
and it requires that these components be calibrated to a common
coordinate reference frame; as a result, each of these components
must be calibrated. These components only require a one-time cal-
ibration, as long as the physical parameters remain unchanged, the
calibrations produced can be reused.

3.1.1 Projectors and Tracker Calibration
The blending procedure requires that both the geometric and pho-
tometric properties of the projectors be calibrated. In order to de-
termine the geometric properties (intrinsic and extrinsic compo-
nents) of the projectors, we use a custom application that utilizes
the OpenCV library [10]. The “camera” calibration methods of
the OpenCV library require a series of images containing checker-
boards of known sizes in a variety of poses. By using a physical
checkerboard and matching the projector imagery to that checker-
board, we collect a series of virtual “camera” images that are suit-
able for use in our OpenCV-based application for computing the
intrinsic properties of the projector. By also collecting the 3D coor-
dinates of each interior corner of the checkerboard with the tracker’s
probe tool, OpenCV can also compute the extrinsic properties of the
projectors in the reference frame of the tracking system. Using this
calibration technique typically results in a reprojection error on the
order of one pixel or less. In order to compute the projectors’ photo-
metric properties, we use a standard procedure that uses a series of
projected solid images with intensities in [0..255] and captures these
image sequences with a linear-response curve camera. Normalizing
the relative projected intensities yields both a response curve and an
inverse response curve for the target projector.

3.1.2 Object Calibration
The blending procedure also requires knowledge of the rendering
surface of the target object in both its structure and its relationship
to its tracking tool. The methods of constructing a model of an ob-
ject are beyond the scope of this paper but can include (for complex
objects) using a 3D scanner or modeling software or (for primitive
geometric objects) computing the model directly from a few key
points. For instance, the radius and center of a sphere can be di-
rectly computed from four points.

Computing each object’s static relationship to its tracking tool
requires that the object be rigidly mounted to the tracking tool, see
Figure 2. For any pair of tracking tool pose and simultaneously
captured probe point, it is possible to compute that probe point’s

locating in the tracking tool’s reference frame. We collect the cali-
bration points using the NDI Optotrak tracker, which is capable of
tracking objects with a maximum accuracy of 0.1 mm. After col-
lecting a small series of probe points in the tracking tool’s reference
frame and matching these points to their corresponding points in the
object’s model, we run an automatic optimization function over the
data to compute an homogeneous 4× 4 transformation matrix be-
tween the tracking tool and the object’s model. In order to compute
the tracker space location of a vertex on the model, we can multiply
the tracking tool’s live pose, the optimized transformation matrix,
and the vertex location.

3.2 Rendering

The multi-projector blending procedure is a multi-pass method im-
plemented in OpenGL using the fixed-function pipeline, custom
vertex and pixel shaders, and frame-buffer objects (FBOs). The
algorithm consists of three stages: each projector rendering module
first computes the min-depth maps for all projectors, then generates
the blending masks for the current projector, and finally performs an
optional remap operation to correct for distortion. As each module
operates independently and assumes that the other modules cooper-
ate, they all execute the same procedure. The procedure described
below is that of a single module of the set of n projector modules.

The first stage is the simplest and operates similarly to generating
shadow masks. It renders each projector’s perspective of the scene
to n separate FBOs; these FBOs save only the depth component
to usable textures, the remaining components are discarded. The n
depth component textures will be used in the next stage.

The second stage both generates the blending masks and per-
forms the blending operation. This stage uses both a vertex and
pixel shader and renders its result to a single color-only FBO. The
vertex shader uses each of the n projectors Model-View-Projection
matrices to compute the 2D+Depth coordinate for each vertex from
each of the n projector’s viewpoints. It also uses the current projec-
tor’s Model-View matrix to compute the 3D tracker-space position
and normal for each vertex. Finally, the vertex shader computes the
texture coordinates and passes through the vertex color for each ver-
tex in a similar fashion as the fixed-function pipeline. This stage’s
pixel shader performs the actual mask generation and blending, in-
volving two parts: depth tests and angle comparisons.

The second stage’s pixel shader’s depth test acts as a validator.
For each actively rastered pixel in the current projector, the pixel
shader compares the active projector’s distance to the surface of
the object with the minimum depth computed in the first stage. If
the two depths are sufficiently equal to a fixed tolerance, then the
shader assumes that the pixel on the objects surface is unoccluded,
else the shader is aborted with a rendered color of (0,0,0,0). This
test is repeated for the other n−1 projectors, but for the other pro-
jectors, a failure does not result in aborting the rest of the shader’s
computation.

The second stage’s pixel shader’s angle comparison performs
the actual blending. For each unoccluded projector that passed the
depth test, a blending factor is computed. A naı̈ve blending fac-
tor would be 1/u, where u is the number of unoccluded projectors;
however, this does not take into account several factors presented
in Section 5. A better solution computes the dot product between
the pixel’s unit surface normal, n, and the unit direction from the
pixel’s location and the center-of-projection of the unoccluded pro-
jector, p. This dot-product is clamped to [0,1] to ensure only lo-
cally front-facing normals are considered. However, simply using
n · p results in very large perceptively detectable overlap regions,
which can accentuate errors. In order to skew the masks towards
favoring locally face-on projectors, and thus reduce the size of the
overlap regions, we raise the dot product to a power; thus the blend-
ing factor is (n ·p)k. Increasing the value of k reduces the size of
the perceptively visible overlap regions. In practice, we have found

(a) k = 1 (b) k = 7

Figure 3: Full-screen blending masks of used by the center projec-
tor for the sphere object given different values of k in the blending
mask function, (n ·p)k.

(a) Blending Disabled (b) Blending Enabled

Figure 4: Photos of the same globe model on a white-painted bas-
ketball, render both with (b) and without (a) projector blending.
Note in (a) the sharp step-change in the color of the ocean to the
west and east of southern Africa; these are places where the num-
ber of projectors illuminate the surface changes.

that a high value of k (e.g. k = 7) works well; the effects of vary-
ing the value of k are presented in Figure 3. The final value of the
mask is computed as the ratio of the current projectors’s blending
factor to the sum of all unoccluded projector’s blending factors. In
order to account for the gamma response curves of the projectors,
the shader computes the projector’s response to color component
of the texture-mapped and color-modulated un-masked pixel value,
applies the mask factor, and finally computes the inverse response
to determine what value to select for that projector for that pixel.

The final stage performs radial distortion correction on the result
of the second stage. This ensures that radial distortion effects intrin-
sically present in the projectors are mitigated. In the unlikely case
that the projectors in use do not have significant radial distortion
effects, this stage could be skipped or implemented as a pass-thru
stage; however, in order to minimize errors, it should be executed.
CPU based radial distortion correction, like that in the OpenCV li-
brary, typically involves generating a lookup table of input pixel
coordinates for each output pixel. GPU shader-based correction
techniques can use essentially the same procedure; we use a lookup
table and the color-texture result of the second stage to produce the
final output that is written to the screen buffer.

4 RESULTS

Some results using our multi-projector blending technique are
shown in Figures 4 and 5 and in the attached video. Some anal-
ysis of these figures are presented in Section 5.

Our technique, as implemented in our test application, runs in
real-time. The test system, which drives three projectors, is com-
prised of a single 4-core, 8-thread Xeon processor running at 2.26
GHz, 3 GB of RAM, and two NVIDIA GeForce 9800 GT graph-
ics cards. When rendering the ball model, which is a 100x100
spherical grid model, we achieve around 70 fps for each projec-
tor. When rendering the head model, which has almost 15k poly-

gons, we achieve around 50 fps for each projector. The shaders
and implementation are compatible with typical optimizations such
as display lists. Each render loop for each projector operates as
an independent, unsynchronized thread. In theory the per-projector
depth maps could be shared among the projectors as they are essen-
tially identical. This would eliminate duplicated work in the first
stage of the blending pixel shader. While the O(n2) (n-depth maps
computed by n-projectors), repeated-work depth-map computation
is slight for three projectors, an alternative may be needed when
scaling up the system to more projectors.

5 DISCUSSION

Using multiple projectors can increase the coverage over the sur-
face of the target object. However, without taking special consid-
erations for overlap regions, using multiple projectors can create
noticeable bands at the boundaries of projector regions, as seen in
Figure 4a, in the first row of Figure 5, and in the attached video.
By using our multi-projector blending technique, the appearance of
these bands and self-shadowing regions are significantly mitigated;
this is evident by comparing the edges in the ocean to the immediate
west and to the east of southern Africa in Figure 4 and the nose’s
shadow regions in Figure 5. Furthermore, by using a large value
of k in the blending mask value computation (see Section 3.2), the
relative contributions of each of the projectors are skewed in favor
of the most face-on projector.

Optimizing the blending mask in favor the most-orthogonally lo-
cated projector to the surface point has the primary effect of re-
ducing blurring on the object’s surface. This blurring, or double-
imaging, on the surface typically arises from errors in projector or
object calibrations, object model construction, and/or tracker pose,
all of which contribute to produce misaligned imagery. While the
pixels as computed in OpenGL as points, they have a very notice-
able size when projected. As a result, the scale of the error’s ap-
pearance depends on the relative difference in angles between the
surface normal and direction from the surface point to the center
of projection (these are the same vectors used in the blending mask
computation); as the angle becomes more oblique, the pixel covers
a larger surface area. Similarly, if the pixel is improperly located on
the projector’s image plane, due to calibration or modeling error, the
degree to which that error manifests on the surface increases with
the obliqueness of the relative angles. Where a 1 mm wide, well-
aligned pixel (at the surface) appears as an in-place 1 mm wide re-
gion on a face-on surface, that same pixel on a relative 60° surface
at 1 mm of error along a direction parallel to the projector’s image
plane becomes a 2 mm wide pixel with a 2 mm surface offset from
its proper location. Errors in different directions by other projectors
can increase the separation of what would otherwise be identically
projected colors. Weighting the masks to favor face-on projectors
reduces the blurring not by repairing the calibration, tracking, or
modeling errors, but by reducing the size of equal-mask intensity
overlap regions. The effect of these direction-weighted masks can
be seen in rows 3-5 of Figure 5; despite the fact that two subsets of
projectors can see each side of the model’s nose, the masks favor
the left and right projectors over the center projector.

6 CONCLUSIONS

We introduced a real-time surface-based multi-projector blending
algorithm and presented a prototype implementation of that algo-
rithm. It improves a surface’s appearance across projector bound-
aries and reduces some of the effects of errors by reducing overlap
regions and by favoring face-on projectors. The real-time capabil-
ities of the algorithm and prototype enable this improved surface
appearance to persist despite continuously moving the target ob-
ject. However, there are still some problems to be solved in this
domain. The errors, while reduced, are still present in the overlap
regions, and can be caused by both static and dynamic error: static

error in the form of calibration, modeling, and tracking errors, and
dynamic error in the form of tracking latency. Each of these errors
can degrade the quality of the blended result. Thus future work in
this area primarily consists of developing additional techniques for
augmenting the presented technique in ways to handle the presence
of static and dynamic errors to better provide an improved appear-
ance.

ACKNOWLEDGEMENTS

We thank Herman Towles for his insightful suggestions, technical
help, and advice. John Thomas provided mechanical and electronic
engineering assistance. Ryan Schubert and Feng Zheng assisted
with system calibration and video capture. This work was sup-
ported in part by the Office of Naval Research (award N00014-
09-1-0813, “3D Display and Capture of Humans for Live-Virtual
Training,” Dr. Roy Stripling, Program Manager), and the National
Science Foundation (award CNS-0751187).

REFERENCES

[1] D. Bandyopadhyay, R. Raskar, and H. Fuchs. Dynamic shader lamps:
Painting on movable objects. In Proc. IEEE and ACM international
Symposium on Augmented Reality (ISAR ’01), pages 207–216, New
York, NY, USA, October 2001. IEEE Computer Society.

[2] E. S. Bhasker, P. Sinha, and A. Majumder. Asynchronous dis-
tributed calibration for scalable and reconfigurable multi-projector
displays. IEEE Transactions on Visualization and Computer Graph-
ics, 12(5):1101–1108, 2006.

[3] O. Bimber and R. Raskar. Spatial Augmented Reality Merging Real
and Virtual Worlds. A K Peters LTD, 2005.

[4] J. Ehnes and M. Hirose. Projected reality – content delivery right
onto objects of daily life. The International Journal of Virtual Reality,
5(3):17–23, September 2006.

[5] C. Jaynes, R. M. Steele, and S. Webb. Rapidly deployable multi-
projector immersive displays. Presence: Teleoper. Virtual Environ.,
14(5):501–510, 2005.

[6] T. Johnson. A Cooperative Approach to Continuous Calibration in
Multi-Projector Displays. PhD thesis, UNC-Chapel Hill, November
2009.

[7] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl,
A. Finkelstein, T. Funkhouser, T. Housel, A. Klein, Z. Liu, E. Praun,
R. Samanta, B. Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng. Build-
ing and using a scalable display wall system. IEEE Computer Graph-
ics & Applications, 20(4), 2000. ISSN 0272-1716.

[8] A. Majumder. A Practical Framework to Achieve Perceptually Seam-
less Multi-Projector Displays. Ph.d., University of North Carolina at
Chapel Hill, 2003.

[9] Northern Digitial Inc. NDI: Optotrak Certus Motion Cap-
ture System - Research-Grade Motion Capture System for Life
Sciences. http://www.ndigital.com/lifesciences/
certus-motioncapturesystem.php, March 2009.

[10] OpenCV. The OpenCV library. http://sourceforge.net/
projects/opencvlibrary/, May 2009.

[11] R. Raskar, G. Welch, and W.-C. Chen. Table-top spatially-augmented
reality: Bringing physical models to life with projected imagery. In
IWAR ’99: Proceedings of the 2nd IEEE and ACM International
Workshop on Augmented Reality, page 64, Washington, DC, USA,
1999. IEEE Computer Society.

[12] R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay. Shader
lamps: Animating real objects with image-based illumination. In Eu-
rographics Workshop on Rendering, June 2001.

[13] B. Sajadi and A. Majumder. Auto-calibration of cylindrical multi-
projector systems. pages 155 –162, mar. 2010.

[14] R. Sukthankar, T.-J. Cham, and G. Sukthankar. Dynamic shadow
elimination for multi-projector displays. Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on, 2:151, 2001.

[15] R. J. Surati. Scalable self-calibrating display technology for seamless
large-scale displays. PhD thesis, MIT Department of Electrical Engi-
neering and Computer Science, 1999. Supervisor-Thomas F. Knight,
Jr.

2 projectors1 projector

3 projectors

1 projector

2 projectors
3 projectors

Figure 5: A couple of viewpoints of a head model rendered onto
a white-Styrofoam head. Each column is a different viewpoint of
the same scene. Rows are (from top-to-bottom) blending disabled;
blending enabled; individual contributions from projector 0, 1, and
2; and projector overlap counts. The projector overlap counts (bot-
tom row) are color-coded as follows: red for regions with only one
projector contributing, green for two projectors, and blue for three
projectors.

