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NETWORK TOMOGRAPHY
Carlos Berenstein!?, Franklin Gavildnez', and John Baras?

ABSTRACT. While conventional tomography is associated to the Radon trans-
form in Fuclidean spaces, electrical impedance tomography, or EI'T, is associ-
ated to the Radon transform in the hyperbolic plane. We discuss some recent
work on network tomography that can be associated to a problem similar to
EIT on graphs and indicate how in some sense it may be also associated to
the Radon transform on trees.

1. Introduction

As communication networks have become an essential part of everyday life,
disruptions may have very serious consequences. Thus, the need to prevent or, at
lcast, detect them carly on, has become very important. In order to do that we
discuss two models of the problem, one based on weighted graphs and the second
based on trees. The first one is the discrete equivalent of the inverse conductivity
problem, that is, of Electrical Impedance Tomography. The second model was
mentioned recently by E. Jonckheere and his collaborators [29]. The reason we can
think about this problem as a tomographic problem is that in both cases, the data
we collect are obtained by monitoring traflic only at distinguished subsets of the
network. We think about this subset as being the periphery of the network.

This paper is an expository version of ongoing work done by the authors in this
subject and the proofs for results mentioned here can be found in [9] and [11].

2. The weighted graph model

In this case we model our network in the following way. We have a collection
of nodes and edges between the nodes in a finite planar simple connected graph G.
We denote by V' the set of nodes of G and by E the set of edges of . Usually, the
graph G is denoted by G(E. V). A particular subset of the vertices of this graph
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the “topology” of the graph has changed, and we refer to the important work of
Fan Chung and her collaborators which offers crucial insights into this question.
(See, for instance [16], [17] and [18]). In the other, the weights change because of
“increase™ of traffic, that is, the network configuration remains the same but the
weights have either increased or remained the same. In this second situation, we
can appeal to the following theorem, whose proof appears in {11]

_ THEOREM 1. Let w; and wy be weights with wy < wy on S x S, and fi. fy
S — R be functions satisfying for j = 1,2,

Aulf_j(l‘) =0, €8
b (2)=@(z), 2 € DS

an,

Js fido, = K
for any given function ® : 95 — R uith ]aqq’ = 0, and a given constant K
with K > myg, where mg = }1;;});'771” ~wol(S,wy). my = EE:)I;fJ(:)J = 1,2 and

vol(S,w;) = 3 d, x. If we assume that
res

(IYwi(z,y) = walz,y) on 95 x ('?OS
(i) filos = falas,

then we have
and

for all x and y in S.

The condition that A_ f(x) = 0 corresponds to the fact that the value f(x) is
the weighted average of the values of f at the adjacent nodes.

We conclude that the data distinguishes the two cases. That is, we can decide
whether there is an increase of traflic somewhere in the network or not. While this
is only a uniqueness theorem, nevertheless, we can effectively compute the actual
weights from the knowledge of the Dirichlet data for convenient choices of the input
Neumann data in a way similar to that done in (21] and [23] for lattices. Similarly,
the Green function of this Neumann boundary value problem can be represented
by an explicit matrix.

What we want to discuss now is the relationship between the above results to
the problem of understanding a large network like the internet.

One way to make more concrete this problem was discussed by T. Munzner in
[32] and [33] on visualizing the internet. 1t implies that the natural domain might
be a hyperbolic space of dimension higher than 2. One can see that Munzner's
suggestion leads to a question closely resembling EIT, and it is natural to consider
it a problem in hyperbolic tomography [7], [8]. On the other hand, we have just
obtained a significant result on the inversion of the Neumann-Dirichlet problem by
studying it directly on *weighted” graphs [11]. Similarly, the Radon transform in
the hyperbolic plane has been studied in [7], [8], and [27].

In addition, in a recent lecture E. Jonckheere {29] indicated that internet traffic,
at least locally, could be modelled as being part of a tree and therefore it can be
visualized using 2-dimensional hyperbolic geometry. As a consequence, a different
way to locally study these kinds of networks would be by the use of the Radon
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We give the following definitions. Let v, w be two vertices in 7" that are connected by

a path (v = vg, ...., vy, = w), then the distance between v and w is the nonnegative
integer |v, w| = m. Also, for f € LY(T), let u, be the average operator defined by
tn f(v) 2 flw), forved
‘ Vin) '

Vv |=n

It can be seen that u,, is basically a convolution with radial kernel

; ‘ L if |o,w|=n
(v, w) = v =
0 it |v,w|#n

Let 3 = q/(2(gq+1)) and R* be the dual Radon transform defined for ® € L>(I")
by
R*®(v) / ®(v)dpy(7y) for each vertex v € T,
Ty
with respect to a suitable family {p, : v € T'} of measures on I' where I';, is the set
of all of the geodesics containing the vertex v.
[n order to obtain the inversion of R we ul__w:_;r\'t' that R* R acts as a convolution

operator given by the radial kernel h = Sho + > 23h,.
n=1
PROPOSITION 1. [Proposition 3.2,9] The tdentity

R'R=Buo+ Y 2Bpn on LN(T),
n=1
holds in L'(T), where the series is absolutely convergent in the convolution operator
norm on L*(T), thus providing a bounded extension of R*R to L*(T).

THEOREM 2. [Theorem 3.4,9] The unique bounded eztension to L*(T) of the
operator R* R is invertible on L*(T), and its inverse is the operator

2(qg+ 1)

E= q(qg—1)?

20
bo+ (=120
n=1

which acts as the convolution with the radial kernel 1—2)—((%%; [ho + Z (=1)"2h,]. As
n=1

before, this series converges absolutely in the convolution operator norm on L*(T);
in particular, E is bounded.

COROLLARY 1. [Corollary 3.5,9] The Radon transform R:LY(T) — L>(T) is
inverted by
ER*Rf = f.
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