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The Mutual Information Criterion for SPECT
Aperture Evaluation and Design
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AND NEAL H. CLINTHORNE, MEMBER, IEEE

Abstract—An aperture performance criterion for single photon
emission computed tomography (SPECT) is proposed based on the mu-
tual information {MI) between the source and detector processes. The
MI is a measure of the reduction in uacertainty of the emitter location
given the detector data, and it takes account of the inhercnt tradeoffs
between the effects of sensitivity and resolution on source estimation
accuracy.

Specific expressions for the MI are derived for one-dimensiona! lin-
ear geometries and two-dimensional, parallel slice, ring geometries un-
der the following assumptions: Poisson emission times; uniform emis-
sion angles; no scattering: and a known lost-count correction factor.
For one-dimensional geometries a necessary and sufficient ¢condition
for an aperture to maximize the mutual information is given. Then MI-
optimal apertures are derived for various sonrce distributions using an
iterative maximization procedure. The MI is then numerically calcu-
lated for various ring zpertures associzted with the parallel slice
SPRINT II system.

NOMENCLATURE
T Acquisition time.
T; Detection time—time the gamma-ray de-

tection occurs.

n The number of emissions.

t The time the ith emission occurs.

N Emission process, consisting of » and
{6 -

X X = {X;}]., source emitter spatial posi-
tions,

Y Y = {¥;}{-, incident gamma-ray posi-
tions on the detector.

F Failure to detect an emission,

w W = {W; }/_. observation symbols. If a
gamma-ray detected at ¥;, W, = Y¥;, W,
= F otherwise.

alx,y) Apemire indicator function as a function of
xandy.

a(z) Aperture indicator function as a function of

position on aperture axis z.
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F(x) Mean emitter distribution, a probability
density.

5(y) Fluence distribution at the detector sur-
face, an unnormalized probability den-
sity.

P(F)} Probability of failure to detect an emitter.

F{y]x) Conditional probability of y given x with-
out an aperture; a probability density.

f(y|x) Conditional probability y given x with an
aperture; an unnormalized probability
density.

fulZ) Fluence distribution along the aperture
axis.

Sf(x|w) Conditional probability of x given obser-
vation w; a prebability density.

H(X) Entropy of the source distribution f,(x).

H{n) Entropy of the Poisson random variable n
with rate A.

I(X; W) Mutual information between X and W.

H(X| W) Conditional entropy of X given observation
W.

q,(z) Information delivered to the detector by a
gamma-ray which passes through the ap-
erture.

${(2) Information delivered by the gamma-ray

failure events F.

1. INTRODUCTION

HE principal components of gamma-ray imaging sys-

tems consist of an aperture constituted of lead or other
gamma-tay absorbing material and a position-sensitive
gamma-ray detector. Gamma-rays are detected as discrete
events which are characterized by the coordinates where
the gamma-ray interacts with the detector surface. The
average number of detected events per time interval as a
function of position will be referred to as the fluence dis-
tribution. This fluence distribution corresponds to a pro-
jection of the source distribution through the aperture. The
purpose of the aperture is to restrict the set of possible
emitter locations which can correspond to a gamma-ray’s
incident position on the detector. This effectively reduces
the uncertainty in the possible emitter locations fora given
detected event, however, at the expense of decrcased flu-
ence,
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For an ideal uniform parallel hole collimator, the
FWHM (full width at half maximum) of a point spread
function (PSF) provides a measure of intrinsic spatial res-
olution of the detection system. Likewise, the area under
the PSF, which is the average fluence, provides 2 measure
of intrinsic sensitivity of the detection system. The sen-
sitivity can be related to the detection signal-to-noise ratio
(SNR) where the PSF plays the role of a signal and the
conditional Poisson statistics in the measurement consti-
tute the noise. Sensitivity is an important patameter for
nuclear medicine imaging instruments since the adminis-
tered radioactive dose to the patient has to be minimized
and imaging must be restricted to a time interval over
which the emission statistics are stationary.

For parallel-hole collimators, resolution and sensitivity
are invariant to the spatial position of the point source. It
is well known that improved sensitivity can be achieved
by using nonuniform ‘‘coded’’ apertures at the expense of
“‘multiplexing’” the image data onto the detector [1]-[4].
For these nonuniform apertures the spatial resolution must
be calculated from the PSF of the reconstructed image or
its modulation transfer function (MTF), which is gener-
ally not invariant to source position and depends on the
reconstruction algorithm [5], [6]}. This system resolution
is sometimes called the recoverable resolution. The con-
ventional design strategy has been to find apertures which
strike a reasonable compromise between resolution and
detection sensitivity.

Although sensitivity and spatial resolution (FWHM) are
convenient performance parameters for conventional ap-
etture systems, they do not adequately account for the
shape and spatial dependence of the point source response
function. In addition, the proper tradeoff between sensi-
tivity and resolution for a given object or class of objects
is not simply determined. One way around this problem
is to quantify the performance of the SPECT system by
way of its accomplishment of specific tasks [7], [8]. This
has the disadvantage of depending on the specification of
a particular estimation, classification, or detection algo-
rithm, In this paper we propose a mutual information (MI)
measure as a yardstick for gauging the effect of the trade-
off between resolution and sensitivity on the transfer of
information from the source to the detector. Our approach
is similar in concept to the approaches described in [9]
and [10]. However, our approach differs from these pre-
vious approaches in the following significant ways, First,
in [9] and [10] the imaging system was modeled as a lin-
ear, spatially invariant channel with additive Gaussian
noise statistically independent of the source signal. While
this model may be appropriate to the CT and photographic
imaging systems considered in the above references, it is
inappropriate for the spatially varying channel with sig-
nal-dependent non-Gaussian noise which characterizes the
SPECT detection process. Second, in [9] and [10] the
channel capacity rather than the MI is considered. While
the channel capacity provides a source independent mea-
sure of information transfer, it provides no indication of
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the degree to which a particular detection system is
matched to a particular source distribution. The MJ pre-
sented in this paper accounts for the non-Gaussian spa-
tially varying channel characteristics of SPECT. Further-
more, the source independent channel capacity can be
obtained from the MI presented here by means of a func-
tional maximization over possible source distrbutions.

The MI can be put into context by the following com-
ments, First, the MI can be interpreted as a measure of
concentration of the a posteriori distribution of the emit-
ter locations about the true locatiens. Second, the MI can
be directly related to conventional measures of resolution
and fluence associated with the projections. Third, the MI
specifies a fundamental limit on the achigvable mean
square error {MSE) of any estimator of emitter locations
through the rate distortion lower bound of information
theory.

The main results of the paper are the following.

* An exact analytic expression for the MI is derived
under the assumption of Poisson processes, no scattering,
and a known count correction tactor. The count correction
factor is the ratio of the total number of emitted counts to
the total number of detected counts. In the case where a
count correction factor is not available, the data process-
ing theorem [11] implies that the MI expression which is
derived here is an upper bound on the actual M1 associ-
ated with the reconstruction system. The degree to which
the expression derived overestimates the MI is treated in
a separate study [12].

¢ The MI can be put into a form which brings out the
dependence of the information transfer from the source to
the detector on resolution and fluence. The resolution is
manifested in the MI as the conditional entropy of the
emission distribution given the detector measurements.

® We derive a necessary and sufficient condition for a
particular aperture to maximize the MI for a given source,
This condition indicates the MI-optimal aperture should
have openings at locations where the information deliv-
ered to the detector by passing gamma-rays exceeds the
information delivered to the detector by blocking gamma-
rays.

¢ For onc-dimensional linear geometries, we numeri-
cally maximize the MI and find the MI-optimal apertures
for uniform, Gaussian, two-level, and bimodal sources.
The results show that a substantial (factor of three) gain
in MI can be achieved in some cases by using coded ap-
ertures as opposed to parallel hole collimators.

# The robustness of an optimal aperture is studied by
using an optimal aperture to image a different source than
the one for which the aperture was optimized. The results
suggest that the MI-optimal aperture is relatively robust
(within 0.3 percent of the optimal MI) to small deviations
of the source from the assumed source distribution.

* We derive an explicit form of the optimal MI for par-
allel slice ring geometries, such as SPRINT II. It is found
that for a uniform ten-slit ring aperture and a uniform cy-
lindrical source, the MI is maximized when the aperture
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openings have a duty cycle of 43 percent. This duty cycle
is similar to that of the optimal coded apertures found in
[41 via maximization of signal-to-noise ratio.

In this paper only the cases of infinite detector resolu-
tion and ideal 100 percent detector pheton collection ef-
ficiency are considered, For a treatment of nonideal de-
tector resolution and sensitivity the reader is referred to
[13]. The MI analysis in this paper holds for the ideal case
of known number of emissions over the cbservation in-
terval. Hence, the MI introduced here is actually an upper
bound on the MI of nonideal detection systems. For a
study of the impact of this additional knowledge on the
MI, see [12].

The paper is organized as follows. In Section II, a
mathematical model for the gamma-ray detection system
is described. In Section 111, the genera! form of MI is de-
fined, and its relation to estimation error, resolution, and
sensitivity is discussed. In Section IV, the problem of
finding MI optimal apertures for a fixed source distribu-
tion is considered, and several numerical examples are
presented. Finally, Section V concludes with suggestions
for future work.

II. BACKGROUND AND MaTHEMATICAL MODEL

Two examples of three-dimensional SPECT systems are
illustrated in Figs. 1 and 2. In both figures the object is a
radioactive source composed of a set of gamma-ray em-
itters which are randomly located at positions {x € X}
according to the probability density function £.{x). Each
emitter generates a gamma-ray at a random angle (6, ¥)
€ [0, 27] X [0, «] which is uniformly distributed, and
may be detected ai some position y € Y on one of the
detector surfaces. In order to reduce the effect of angular
uncertainty on the determination of emitter positions from
detected events, a perforated lead aperture may be intro-
duced between the object and the detector. The shape,
depth, and placement of these perforations determine a set
of projections of the source onto the detector. In the par-
allel-slice ring geometry of Fig. 2, the parallel collimator
collimates the gamma-rays in the axial direction, while
the aperture may be arbitrarily specified along the ring
circumference, This reduces the imaging task to recon-
struction of a set of two-dimensional slices from a set of
one-dimensional projections taken off the circumference
of the detector ring { y € Y }. The sample distributions
of the locations of incident gamma-rays along each detec-
tor surface, which are the planes in Fig. 1 and the thin
ring in Fig. 2, comprise the projections of the sample dis-
tribution of cmitters. The mean distributions along each
detector surface, called the fluence distributions f.{ y),
comprise the projections of the (mean) source distribution
fx(x). Since both the emission and detection processes
ate random, the mean performance of the detection sys-
tem is determined by the nature of the joint probability
distribution of the emission and detection random pro-
cesses. In the sequel we focus on the derivation of this
distribution and we compute the MI associated with a
general detection systen,
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Fig. V. A generalized rectangular parallel-detector three-dimensional ge-
ometry for SPECT.
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Fig. 2. Ring geometry SPECT system.

The relevant statistical quantities which characterize the
process of acquiring data during a finite interval of time
[0, T] along the detector surface are; 1) the emission
counting process N consisting of the number r of emis-
sions and the emission times {4 }{.:, ; € [0, T1; 2) the
source emitter spatial position X;, at time ¥;, taking values
x € X; 3) the position ¥; of an incident gamma-ray on the
detector at detection time 74, taking values y € U; 4) the
failure F of the gamma-ray at time # to make it to the
detector; 5) the observation symbol W;, at time 7;, taking
values we { F } U Y. It can be shown that 7; can be taken
ast;,, i =1, -+, nfor the SPECT problem without loss
of generality.

We assitme the following model for the processes N,
{X; ¥/~ and { W, }[_: 1) the point process N is inho-
mogeneous Poisson with intensity A(r) over the data ac-
quisition time interval [0, T]; 2) given N, the emission
locations {X; }7_, are independent identically distributed
(1.1.d.) random variables with probability density function
(p.d.f.) f.(x); 3) the gamma-ray emitted from position X;
= x travels along the straight line path &y (see Fig. 3)
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X objectapace

a(x,y) wperture function

Y projection space

(detector space)

Fig. 3. One-dimensional detector system. The emission process can be de-
scribed at an emission time { 7; } by a line intersecting the source emitter
location x and oriented at gamma-ray emission angle #. The gamma-ray
is detected at y if the aperture is open at every point along the segment
x¥, 1.e., alx, y) = 1, while a failure occurs if the aperure is closed at
any point along the segment &3 i.e., a(x. ¥) = 0.

whose direction is drawn independently from a wniform
distribution of angles; 4) if the path ¥ passes through an
opening in the aperture, then the observation W; = y, oth-
erwise W, = F (failure).

Note that the straight line path assumption 3) is valid
only for the case where there is no scattering. Note also
that assumption 4) requires measurement of the ‘‘fail-
ures’” W; = F over [0, T]. Presently, systems do not
incorporate such measurements. On the other hand, it is
conceivable that methods for generating lost-count cor-
rections may be incorporated into future instruments. In
any case, the MI to be derived under the above model is
an upper bound on the MI of any system which does not
incorporate lost-count corrections. For a rigorous analysis
of the effect of lost-counts on MI, refer to [12].

For convenience, we define the aperture function a(x,
y) as follows:

1  the gamma-ay path X3 passes through

an opening in the aperture
a(x,y) = pening P
0 otherwise.

(1)

Fig. 3 provides an illustration for the one-dimensional
case.

In the next two subsections we derive the joing distri-
butions for X; and W, for one- and two-dimensional ge-
ometries.

A. Joint Distributions: One-Dimensional Geometries

We first consider the case of one-dimensional linear ge-
ometries and infinite detector resolution. The type of one-
dimensional geometries considered is a mathematical
idealization of a single projection in a parallel slice tomo-
graphic system. Fig. 3 shows a line source which is par-
allel to a linear aperture and a linear detector, all lying in
the same plane. In the figure, D,, denotes the source-ap-
erture distance, Dy, denotes the detector-aperture dis-
tance, and I, denotes the object-detector distance. For
this case x and y become the scalars x and y, respectively,
where, conditioned on an emission at time ¢#;, X; is dis-
tributed according to the mean emitter distribution f, (x),
and, conditioned on emitter location, the emission angle,
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denoted § in Fig. 3, is uniformly distributed on [ — (7 /2),
(m/2)1. .

Under the above statistical model, several distributions
must be derived for the MI calculation.

First, the observation W; is a mixed random variable
whose conditional distribution has 2 continuous compo-
nent £ (¥ | x) and a discrete component P(F | x)

Fly|x)dy, #welyny+dyl;

ap(w[x) = {P(le) ifw=F (2)

Referring to Fig. 3, the conditional distribution of ¥
given X; = x for the case of no aperture, f,{ y | x), which
will be called the *‘nominal conditional distribution,’” is
[13]

1
X—=¥Y\2 ‘
D1
" od( i ( Dy ) )
Now with an aperture (1), the unnormalized conditional
density £ y | x) of y given x is given by

F(rix) = a(x y) £,(y]x). (4)

F(y|x)is unnormalized since the probability that W; =
F is nonzero. For an aperture of zero thickness (Fig. 4),
the aperture function a(x, y) is a function of (x, ¥) only
through the point of intersection z of the path X3 and the
Tine supporting the aperture

foly]x) =

(3)

z=ax+ (1 —a)y
or

a(x, y) = a{ax + (1 - a)y)
where

Dda
& = —"_.
(Doa + Dda)

Second, the detector fluence distribution f,( y) is ob-
tained by averaging f{ ¥ | x) overx

+@

s = _romiwae ©

J(y) is unnormalized with mass 1 — P(F) since f ( y |x)
is unnormalized.

Third, conditioned on x, the failure probability is the
sum of the probabilities that the directed path X¥ intersects
the aperture in regions such that a{x, y) = 0. This is
simply the integral of [1 — a(x, )15 (y|x)overy

(5)

+o

Prlo = | ol et i l0. @)

The total probability of getting a failure over the ensemble
of possible emitter locations is therefore

+o=

PR = | _PFlOA0E  (®)
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y Y projection space
(Getector space)
Fig. 4. Same system as in Fig. 3 but with zero thickness aperture. Point

of interseciion of xy with aperture is at the apenure coordinate z = ax
+ {1 — ) ywhere @ = 8, /(D,,).

Finally, the a posteriori distribution of the emitter lo-
cation X; = x given a single observation W; = w is given
by Bayes’ rule [14]

F(y|x) £i(x)
£(»
P(F|x) f(x)

pF)

’ W=y

flx|w)= (9)

The probability distribution f (x | w) is an assignment of
probabilities to the possible emitter locations x given w.
The concentration or width of f (x| w) is a measure of
the resolution of the emitter location provided by the ob-
servation. Fig. 5 shows the support of f (x | w) for w =
y and a zero thickness aperture.

B. Joint Distribution: Ring Geometries

In tomographic imaging system design, there are sev-
eral constraints which may be imposed to reduce the range
of aperture configurations. First, the field of view may be
limited to a cylindrical region corresponding to the di-
ameter of a human brain or torso. Second, the detector
configuration may also take on cylindrical geometry in
order that the detector solid angle may be maximized with
the minimum detector area. A third constraint, which may
be imposed to simplify the reconstruction, is to limit the
axial incidence angles so that collimation along the axis
of the cylindrical field of view is limited to nearly parallel
slices. SPRINT 1I is a three-dimensional imaging system
which incorporates these constraints. The detection sys-
tem as shown in Fig. 2 consists of a slit-aperture ring, a
detector ring, and a field of view inside the ring. In the
axial direction the portion of the object which can be im-
aged is constrained to lie in a single slice by the parallel
collimator.

The ring geometry emission/detection model is illus-
trated in Figs. 6 and 7. Conditioned on an emission at
time #;, the emitter location X; is distributed over a planar
region within the field of view according to the emitter
distribution f,(x), and, conditioned on emitter location
X; = x, the emission angle (§, ¢) is uniformly distrib-
uted.
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L 2 Daa

Y projection spice
(detector space)
Fig. 5. The a posteriori distribution of emitter location given the obser-

vation W = y is supported by the set of possible source locations which
may pass through the aperture 10 yield a detector event at y,

Fig. 6. A planar source is detected via incident gamma-rays along a finite
width detector ring of radius R in a ring geometry tomographic system.
The chisel shape region indicates the possible gamma-ray paths for which
a source at position x = (x,, x,) may be detected in the region A5 along
the detector ring,

Fig. 7. A blow-ug of the chisel shaped region of Fig. 6. The possible po-
sitions on the detector ring are parameterized by the coordinates (¢, 5}
relative 1o the origing O and o, respectively. The emission angles of the
emitier at position x = (x|, ¥,) are the uniformly distributed angles (8.
¥) in the figure. .

We consider the ideal case of infinite detector resolu-
tion. Since the aperture collimates along the vertical axis
of Fig. 6, the possible detection positions are constrained
to a narrow ring-strip of width 2Ar, shown in Fig. 7. We
parameterize the positions along this ring-strip by the an-
gular variable ¢, and the lateral position along the inside
of the ring by s, relative to the origins O and o in Fig. 7,
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respectively. Under the practical assumption that the ra-
dius R is much preater than the ring width 2A r (the thick-
ness of a slice), we have from (47) in Appendix B

PACREY)

1 R* — R(xycos ¢ + x, sin ¢)

277 ((x, — Rcos #)° + (x3 — R sin 6)°)7
(10)

forg € [0, 27] and —co < 5 < oo. The conditional dis-

tribution with an aperture is found analogously to the one-
dimensional case

F(os]x) = A, 6, ) (e s|x)  (11)

where A(x, ¢, 5) is an aperture function which has the
value one if there is a path Xy from x to y £ (¢, 5) and is
equal to zero otherwise.

IfTI. TueorY oF MutuaL INFORMATION
A. Mutual Information Measures

We briefly introduce the MI concept in this section.
More details concerning the mathematical attributes of MI
[151, and its role in estimation and detection theory {11],
[16], can be found in the references.

Assume there are two random processes X € & and W
€ W with marginal probability distribution P, (x), P, (w)
and a joint probability distribution P(x, w). We want to
find a quantitative measure of how much the occurrence
of a particular event, W = w say, tells us about the prob-
ability of some alternative, X = x say. Ml is such a mea-
sure. The general MI formula is

dP(x, w) (1)
dP (x) dP(w)

The random processes can be continuous or discrete.
For this paper, since we consider infinite resolution de-
tection processes, the case of interest is when one random
process is continuous, say X with p.d.f. f,(x), and the
other is a mixture of discrete and continuous, say W, with
distribution f,,(w) and P.(w) over the continuous and
discrete components of W. In this case the MI has the
form

X, w)= S dP(x, w)log

cominuous"-"«"fw(W) Sxf (x | W)

1 | *) dx dw
f(x)
+ 2

discrete W Pw(w) Sxf(xl W)

KX, W) = S

- log

flx|w) e (13)
fe(x)

- log
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B. Qualitative Interpretations of Mutual Information

MI can be viewed in terms of entropy (discrete case) or
differential entropy (continuous case). Both entropy and
differential entropy are measures of the inherent uncer-
tainty associated with the values taken on by a random
process. For concreteness we consider the discrete case
here. The entropy of a discrete process is defined as [15]

H(X) = ~X p.(x) log py(x) (14)

and the conditional entropy is

H(X|W) = =2 p(x, w)log p(x|w).  (15)

Substituting (14) and (15) in (12), we obtain the following
classical relation between the MI and the entropies

(X WY = H(X) — H(X|W). (16)

Several simple conclusions can be made from (16).
H(X) represents the (a priori) uncertainty in X and
H(X | W) represents the (a posteriori) conditional un-
certainty of X after W is observed. If X and W are inde-
pendent, then H(X | W) = H(X), i.e., there is no re-
duction in uncertainty of X, which leads to I{X; W) = 0.
On the other hand, if there is a one-to-one correspondence
between X and W, then H(X | W) = 0, and the MI will
be the same as the entropy of X. If W is a noisy obscrva-
tion of X over which one has some control, one can at-
tempt to maximize MI by reducing @ posteriori uncer-
tainty, i.e., making H(X | W) small.

For the case where X is continuous, similar interpreta-
tions can be made using a relation of the MI to differential
entropy functions.

C. Relation to Mear Square Error

The MI can be related to a lower bound on the mean-
square error of the reconstructed emitter locations via rate-
distortion theory. Specifically, it can be shown [17] that
if X is a random variable and X is any estimator of X based
on W

a2 | _ .
E(X-X) = o 2HK) , ~2ma KX H)
2me

Hence, the limiting case of low MI necessarily implies
poor mean square error performance. Similar bounds can
be established for a wide class of error measures.

D. Relations ro Resolution and Fluence

The application of resolution and sensitivity to system
design is rendered difficult due to the fact that resolution
and sensitivity are spatially dependent and coupled. In
many cases higher resolution can only be obtained at the
expense of lower fluence. These factors make system op-
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timization difficult to perform based solely on the criteria
of resolution and fluence. A systematic approach to im-
aging evaluation and design is provided by the MI mea-
sure, which forms a composite resolution/sensitivity cri-
terion relevant to the inherent estimatibility of emitter
position for a given geometry.

Specifically, in view of (16), the system geometry af-
fects the MI only through the conditional entropy
H(X|W). For a gamma-ray imaging system, the con-
ditional entropy (15) can be expressed as

A wy = ~ [ apw) { de gy tog £ (x| )

—deﬁ.(y) Sdrf(x|y)logf(x[}’)

— P(F) gdxf(xw) log f (x| F)

I

[ a0 xiw =)
+ P(F)H(X|W = F). (17)

In (17), f,( y) is the fluence distribution along the de-
tector, i.e., the integral of f,( y) is the total detector fiu-
ence, and H{X | W = y) and H(X | W = F) are the con-
ditional entropy densities given the observation W = y
and W = F, respectively. The conditional entropy densi-
ties are measures of the concentration of the a posteriori
distributions £ (x | y) and f (x | F) over emitter locations
x given the observations y and F, respectively. Specifi-
cally, a highly concentrated a posteriori distribution has
low conditional entropy, while a diffuse distribution has
high entropy. Hence, the conditional entropy plays the
role of resolution in as far as resolution affects the MI
measure. Since (X, W) = H(X) - H(X| W), (17) im-
plies the intuitive result that in order to achieve high MI,
the imaging system should be such that fluence density
Jy(y) be smail at points y along the detector which are
associated with inherently low resolution, i.e., points y
where H(X | W = y) is high.

As an illustration, consider the special case where x and
y are scalars and f(x| y) is closely approximated by
a Gaussian function

1
\‘21I'O'I|y

where p, |, and a§| y are the conditional mean and vari-
ance of x given y. For this case the conditional entropy
can be calculated [11]

Flxly) = grmatl, (1g)

H(X|W=y)=}In(2mee’| ;) =Ino,, +c (19)

In the context of SPECT, ¢, 2+In (4) is the FWHM
measure of resolution of X given W = y. In light of (19),
modulo an additive constant, H{X | W = y) is equal to
the conventional FWHM resolution measure plotted on a
log (dB) scale. The MI is a composite measure of reso-
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lution and fluence which is obtained by averaging a func-
tion of the FWHM resolution H{(X | W = w) over the
possible observation cutcomes w.

1V, APPLICATION TO APERTURE EVALUATION

In this section we use the results of Sections II and 111
to compute the MI between the observation (N, W} =
{(2, W1), *++, (1, W,)} and the emitter locations X
={X,, -, X,}, where n = N([0, T}) is the total
number of observations. Since the number of observations
n is a random variable, the relevant source random vector
is the (n + 1) X 1 vector (X, n). In [13] we derive the
following:

I((X, n); (N, W)) = AK(X;, W;) + H(n) (20)

where A = [jo 7) A is the average number of counts, and
H{(n) is entropy of the Poisson random variable n with
rate A,

An important implication of the expression (20) is that
the MI only depends on the joint emitter and observation
distribution dP(X;, W;) through the A-independent MI
I(X;, W;). This is due to the fact that A and H(n) are
independent of f.(x) and f ( y | x).

For infinite detector resolution ¥, is a mixed random
variable taking on the continuous set of values { y} and
the discrete value F so that from (13)

F(y]%)

£(¥)
P(F|x)

P(F)

(21)

The expression (21) is a general MI formula for the ith
emission—-observation pair which will be applied to
SPECT geometries in the following section. Since in gen-
eral the MI depends on the source distribution £, (x), the
relative MI will be used to permit comparisons between
the MI associated with different sources. The relative MI
is defined as the ratio of the MI f(X;, W;) to the entropy
of the source distribufion H(X;)

I(X; W;)
H(X)

10 %) = |_ae o) | ars(rleion

+ L dx f,(x) P(F|x) log

The relative M1 is a measure of the transfer of information
per bit of source entropy.

A. Linear Geometries

We first consider the application of the MI to a one-
dimensional zero thickness aperture and a one-dimen-
sional infinite resolution linear detector for imaging a sim-
ple line source. The casc of finite length will be discussed
in the sequel. In view of the distributions f (x), fi(»).
F(y|x),and P(f] y) found in the previous section, we
substitute (4), (6), and (7) into (21} to obtain I(X;, W;)

Authorized licensed use limited to: University of Michigan Library. Downleaded on July 28, 2008 &t 13:03 from |EEE Xplore. Restrictions apply.



SHAO et al.: MUTUAL INFORMATION CRITERION FOR SPECT

explicitly in terms of the aperture function a(z) =
a(x, y)

X log ———

329
HX; W) = S: S:d"d” alax + (1 = o) y) £y | %) £ilx)
alax + (1 = )y} fily]x)
_ alav + (1 = a)y) £(7| ) f(2) do
+ S S_mdxdy [V - afox + (1 — o)y} £lx] ») £lx)
S_m dull — a{ox + (1 = a)u)] fo(u]x)
(23)

Consider the objective of finding an aperture function
a(z) that maximizes the MI in (23). In order to make the
dependency structure of 7(X;, W, } on a (z) more explicit,
we make a change of variable and rearrange formula (23)

+o

105, W) = | e 00 + (1 - a(2)) (o))
(24)

where ¢,(z) and g;(z) are functions, given in Appendix
A,ofa(z), o, f,(x),and f (¥ | x).

Specifically, g, {z) corresponds to the information de-
livered to the detector by the gamma-rays which pass
through the aperture at position z(a(z) = 1), while g,(2)
corresponds to the information delivered by the gamma-
rays which are blocked by the aperture at position z{a(z)
= 0). In other words, ¢,(z) and gq,(z) are measures of
the information delivered by the detection events and fail-
ure events, respectively,

B. A Global Condition for the Optimal Aperture

The expression (24) gives a necessary and sufficient
condition which must be satisfied by an optimal aperture
a(z) = a(x, y) which maximizes the MI. Because a(z)
is a piecewise binary function, only one of the nonnega-
tive quantities a(z) ¢,(z) or {1 — a{(z)) g2(z) can be
nonzero for a fixed value of z. Define 4, as an optimum
aperture and let this aperture have associated MI: I, (X;;
W;) = max, [,(X;; W;). Also define ¢,(2; a,) and g.(z;
a,) 1 be the evaluation of g, (32) and g, (33) of Appendix

S S :dvdu[l—-a(av+(l —a)u)]f,,(u[v)ﬂ(v)

A, respectively, for the optimum aperture a,. Then, for
any aperture g it can be shown [13]

L W) = | dela(z) ai(z a)

+ (1 = a(2)) ga(z: a,)] + O(lJa — a.])
(25)

where |a — a,l] 2 [z |a(z) — a,(z)| dz is 2 measure
of distance between the two apertures a and a,. If a is
close to a,,, then the term O (| — &, ||} can be neglected,
and therefore (13] the optimal aperture @ = @, must sat-
isfy the threshold rule

— L
a(z) = 0,

The rule (26) specifies that the optimal aperture is such
that a(z) has an opening at z if and only if the information
contributed by passing gamma-rays at z exceeds the in-
formation contributed by absorbing gamma-rays at z. The
threshold rule is valid for apertures which can be com-
pletely described on a line, i.e., zero thickness apertures,
For apertures, a(x, y), of nonzero thickness, an analo-
gous threshold-type optimality rule holds

( {1’
alx,y) = 0.

71{z) = qfz);

26
7:1(z) < @(z). (26)

alx, ¥} = qalx y):

(27)
qi(x y) < qa(x, y)
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where g (x, ¥) and g, (x, y) are functions of a(x, v}, «,
and f{ y | x) given in [13].

C. Aperture Optimization

Although the conditions (26) and (27) characterize the
optimal aperture, from our simulation results, it was found
that (26} and (27) were difficult to mechanize to search
for the optimal aperture. However, the optimality of any
designated aperture can be verified posr facto by using
properties (26) and (27).

When we numerically optimized the aperture, practical
constraints were imposed on (24) and (23). In the case of
a finite one-dimensional detector system, we assumed the
detector had length 2I,;, the object field had length 27,
and the aperture had thickness D,, length 2/, and a finite
number of openings. For an aperture with minimum open-
ing width X, the maximum possible number of openings
in the aperture is 1 = 21, /K.

We tried several ways to search the space of aperture
functions @ = {a(z)} for the optimal aperture including
hill climbing algorithms. In the numerical study described
below we used a local hill climbing algorithm which
searched over the MI function for a sequence of mone-
tortically improving apertures. After each iteration of
search, only the aperture which yielded the highest MI
was retained, and the search was continued until the MI
reached a maximum value.

The algorithm is given as follows.

Specify an initial aperture ay{z). Compute its MI,
K{X;; W;) by using formula (24).

2) Forj = 1,2, - -, find an updated aperture a; by
toggling a;_,(z) for some z. In the numerical study we
used a simple sequential toggling of adjacent aperture ele-
ments Z) to z,.

3) Calculate the MI, /; ( X;; W;), associated with the
updated aperture a; using the formula (24). If J; > [;_,,
set @j4 = gy, and gotostep 4. f ; < I,_ ), setayyy =
a; . and go back to step 2.

4) Pick a stopping rule:

a) Check the rate of increase of MI; if there is not
much increase in MI, i.e., the difference between I;_, (X;;
W;) and [ (X;; W;) is within some tolerance, stop the
search, Otherwise go back to step 2.

b} Check the optimality of 4;,, with the condition
(26). If optimal, stop the search. Otherwise go back to
step 2.

For the above algorithm the initial starting point for the
aperture was found to be important. If the initial aperture
is far away from the optimal aperfure, it is possible that
the search will converge to a local maximum instead of a
global maximum of the MI. In the numerical results sec-
tion to follow, the global optimality of the aperture ob-
tained from the above algorithm was determined by re-
peatedly running the algorithm for several different initial
apertures. With some hindsight, provided by the results
of the numerical results section, the observed structure of
the optimal apertures suggests the following strategy for
choosing the initial aperture. Let the fluence distribution
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Fig. 8. Source distributions. and their associated mutual information op-
timal apertures, used in the simulation study of one-dimensional linear
geometries. Here, D, = 30 mm, D, = 29 mm, and the apertures have
160 mm in length, 1 mm in thickness, and 1.6 mm for the minimal open-
ing element.
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Fig. 9. A series of optimal apertures which show how the optimal apenure
patiern changes when the location of aperture changes between the object
and detector. The object-detector distance is fixed (50 mm). the aperture
has 200 mm in length, 2 mm in thickness, and | mm for the minimal
opening element. The source distribution js uniform over 50 mm width.

along the aperture be denoted f, (z}. Select the initial ap-
erture as a parallel hole collimator for those values z where
fo(2) is large (sacrificing detector fluence for better res-
olution), and as an open aperture for those values z where
Jo{z) is small (sacrificing resolution for detector fluence).

In the numerical study, to be discussed in the next sec-
tion, we will apply the above hill ¢climbing algorithm to
aperturc optimization for several one-dimensional object
distributions, including uniform, Gaussian, bimodal uni-
form, and two-level uniform, which are shown in Fig. 8
along with the associated optimal apertures. The effect of
varying the aperture location between the object and de-
tector will be studied for the uniform source, Fig. 9. Then,
the sensitivity of the optimal aperture to variations in the
source distribution will be studied.

D. Ring Geometry

An MI formula can be derived for the ring geometry,
which differs somewhat from (23). A distinctive feature
of the SPRINT ring geometry is that during acquisition
the aperture ring rotates to attain sufficient angular sam-
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pling within the field of view. For a rotating ring the data
acquisition intcrval [0, T] is divided into m equal inter-
vals {[ Ty Ty 1} over which the average source activity
is A;. At the end of each subinterval, the aperture function
a; (x, ¢, 5) changes incrementally to the kth rotated ver-
sion of the original aperture. Since, conditioned on the
emission times {#; }, the emission/detection process (X;,
W;) is independent over the time index i/, we have the
expression

"
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which makes the state of the aperture irrelevant for
gamma-rays on paths which do not intersect the detector
surface. It is also noteworthy that, generally speaking, the
width of the openings in the aperture is relatively small
and constant over the center region of the source distri-
bution, while the width is increasingly large outside of the
range of support of the source distribution. This structure
can be related to the greater need to reduce the uncertainty

X, WY = k§1 Ay S dx S do 5 ds | a(x, &, 5) fold, | x) f,(x)

ak(xi d}v s)ﬁ)(‘#a 5 I.\f)

- log

e 6.9 00, 5|2 A ) e

+ de qus S ds| (1 — a(x, ¢, 5)} f(#, 5| x) fi(x)

5 do' S ds'(1 — ay(x, @', 5°)) folod' s' | x)

* log

de S de’ j ds'(1 — ae(x', &', s")) fold" 5" | 2" Y filx ")

where f, {x) is the two-dimensional object distribution and
fold, s ’ x) is the nomina! conditional distribution (10).
In the next section, two aperture rings of different di-
ameters containing nine-slits and ten-slits, respectively,
will be compared based on the MI measure (28). In both
rings, the slits are so designed that the systems have the
same object resclution at the center of the field of view.
It is important to note that the off-axis resolution of the
two rings are differént. In the numerical evaluations of
(28), we first make comparisons between the two rings
for different sources. Then, the change in MI as a function
of slit-width for the ten-slit aperture ring will be studied.

V. NuMERICAL RESULTS
A. One-Dimensional Linear Geometry

As previously mentioned, for the linear geometry, op-
timization of the one-dimensional detector system was in-
vestigated for the following line sources: uniform, Gauss-
ian, biomodal uniform, and two-level uniform.

A series of optimal apertures derived for a uniform
source distribution is shown in Fig. 9 as a function of
object-aperure distance. General observations relating to
Fig. 9 are as follows. As the distance between the source
and the aperture decreases from 43 mm to 13 mm, the
opening and closing aperture transitions become increas-
ingly clustered near the center or mean of the source dis-
tribution. This is due to the finite length of the detector

(28)

in the center region than is needed for photons detected
farther from the center. The structure of these optimal ap-
ertures illustrates the following optimal strategy. In the
center region where fluence at the aperture is relatively
high, the detector views the source through a parallel hole
collimator aperture which sacrifices some fluence for
higher detector resolution. On the other hand, outside of
the center region where nominal fluence is comparatively
low, the detector views the source through an aperture
with a large opening, which sacrifices some resolution
while maintaining fluence. It was observed that when the
aperture is at the midpoint between the object and detec-
tor, the optimal aperture has three times as much MI as
the uniform parallel collimator with equivalent smallest
opening width, This indicates the importance of maintain-
ing an optimal tradeoff between resolution and fluence at
the detector.

Dependency of the optimal aperture on source distri-
butions is illustrated in Fig. 8. Four one-dimensional op-
timal apertures derived for the uniform, the equivalent
variance Gaussian, the bimodal uniform, and the two-level
source distributions are shown. The optimal apertures for
the uniform source and the Gaussian source are very sim-
ilar. Both optimal apertures have rapid transitions ncar the
center of the distributions, and similar relative MI. This
suggests that the variance is the principal attribute of uni-
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modal source distributions which affects the structure of
optimal apertures. On the other hand, for the bimodal
source distribution, the optimal aperture differs signifi-
cantly from the optimal apertures for the unimodal
sources. Also, the two-level uniform distribution has an
optimal aperture which concentrates its structure about the
center of the source distribution 1o a somewhat greater
degree than for the one-level uniform source previously
discussed.

Examples illustrating the loss of relative MI when an
optimal aperture is used to image a different source than
the one for which it was optimized are shown in Table I.
In the examples the performance of optimal apertures for
the two-level sourge, the bimodal scurce, and the yniform
source of Fig. § are compared when the sources are
switched. It can be seen that, between two-level and uni-
form sources, the relative MI percentage loss is less than
0.3 percent for both cases, On the other hand, between
uniform and bimodal sources or two-level and bimodal
sources, the relative loss is significantly higher. This sug-
gests that, while the MI is certainly dependent on the un-
derlying distribution, the MI optimal aperture matched to
the uniform source is relatively robust to deviations of the
source from the assumed distribution used to derive the
optimal aperture.

B. Two-Dimensional Extended Sources

The evaluation of two aperture rings using MI is pre-
sented in Table II. The first aperture ring has a diameter
of 306 mm with nine equally spaced slits over the aperture
with slit width of 3.4 mm (see Fig. 2). The second aper-
ture ring has a diameter of 340 mm with ten equally spaced
slits of slit width 2.4 mm. Both imaging systems have the
same fields of view, 220 mm in diameter, the same de-
tector ring diameters, 5060 mm in diameter, and the same
geometric resclutions of 9.2 mm on-axis. Four different
sources were simulated, including a uniform cylindrical
source which filled the ficld of view, a small central
source, multiple small sources, and a small off-center
source, The MI and fluence for the two rings with these
sources is shown in Table II. These resuits indicate that
the nine-slit ring has higher MI than the ten-slit ring for
all sources. The ratio of the MI of the nine-slit ring to the
ten-slit ring (denoted by R = I3/I1p) is very close to the
ratio of the respective fluences. This is significant in that
it suggests that for fixed geometric resolution the MI is
essentially a measure of fluence. Table III shows the rel-
ative MI for the same sources as in Table II. For both
aperture rings, the small off-center source gives the high-
est relative MI. This can be attributed to the higher geo-
metric resolution of the ring geometry for off-center
sources and essentially equal fluences [18]. This implies
that the small off-center source is more easily estimated
from detected data than other sources, These results are
in agreement with conventional arguments [18].

Fig. 10 shows the relative MI as a function of slit width.
The slit width is specified by duty cycle which is the num-
ber of aperture elements which are open relative to the
total number of elements. For both small on- and off-cen-

IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 8. NO. 4. DECEMBER 1989

TABLE [
RELATIVE MUTUAL INFORMATION FOR TRUE ARD MISMATCHED SOURCES
RELATIVE TO AN OPTIMAL APERTURE

Optimal [ Uniform optimal [Two-level opeimad [Bimadal oprimal
e aperte apecture aperae
Uniform MI; =0,0333 M 00332 | M3, =D.0248
source Loas=0.0 % Loss=03 % Low=255 %
Tug-level ML, =0.0335 ML =00836 | Mk 00045
source Loss=03 % Loss=00 % Los=27.1 %
Bimodal M, =0.0358 Mi =0.0339 § MI, =004%0
source Eoss=273 % Lowsx308 % | Loss=00%
TABLE 11

COMPARISON OF THE MUTUAL INFORMATION AND THE FLUENCE BETWEEN
NINE- AND TEX-SLIT RING APERTURES FOR VARIOUS SOURCES

Mual informason Fhuence My e
107 * @iz g4 Mg ..
1ILW)
10-alie | 2.070 14
22em Disnit il 1.386
Uniform st | 2870 2,044
10sk | 0.412 1373
1.5¢m di = 1389
on-ocoler it | 9476 1.389
1.5cm dismeger | 10lit | 0567 1474 L35
olf-cenier oslis | 0797 2020
1.50m 10ak ] 1642 1415 L350
wliplaource  Logi | 5950 1946
TABLE III

RELATIVE MUTUAL INFORMATION PER BIT OF SOURCE ENTROPY FOR THE
ININE- AND TEN-SLET APERTURES AND THE IDENTICAL SOURCES AS IN TABLE

M= GV
Source x10°* (UBID
10 slit apesture. | 9 slit aperture
22cm dismeter
wmiform 0.803 L112
dismeter
oot 0.875 1224
Lem dimmeix] oo 1521
1.5cm diameter
multiple source 0.952 1323

ter sources, the relative MI does not change significantly
except at the extremes of 4.5 and 95.5 percent, where the
geometric resolution is inadequate relative to the diame-
ters of the sources. The relative MI for uniform and mul-
tiple sources increases as duty cycle increases and reach
their maximum at duty cycle of about 43 and 60 percent,
respectively. This maximum provides the optimal tradeoff
of fluence and resolution for maximum MI.,

The results indicated in Fig. 10 are very similar to the
results obtained in [4] where the relative standard devia-
tion was compared for different size on-axis uniform
sources as a function of mean code transparency (duty
cycle of the aperture openings). This similarity is con-
sistent with the theoretical remarks in Section III con-
cerning the relation of the MI to fluence and resolution.
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Retfative Mutual Information for Different Sources
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Fig. 10, The mutual information for the ten-slit SPRINT 1l ring geometry
for varying width slits. The horizontal axis is expressed in duty cycle of
openings in the ring aperture. The relative MI for point sources are fairly
constant, while the MI for uniform and multiple-point sources have a
maximum at duty cycle values of 43 and 60 percent, respectively.

VI. CoNcLusIlON

The MI criterion can be used to evalvate and optimize
apertures based on the fundamental measure of transfer of
source information across the aperture to the detector.
While the conventional parallel-hole collimator weights
the emitter positions within the object equally, the opti-
mal MI aperture strives for an optimal tradeoff between
the fluence and resolution, depending on the object dis-
tribution and the system geometry.

One major issue is information robustness of given ap-
ertures, For the cases studied, our results show that, while
specifically designed to match a particular mean emitter
distribution, the optimal aperture appears fairly robust
relative to small deviations in the assumed source distri-
bution. This implies that when a source is only partially
known, an optimal aperture designed under this partial
knowledge should be nearly optimal for the true source,
as long as the true source does not differ too much from
the design point.

As presented in this paper, the MI is primarily useful
for the evaluation of a prespecified aperture for a pre-

333

specified mean emitter distribution. For practical appli-
cation of the MI criterion to optimal aperture design, the
model must be extended to unknown sources. There are
several methods which are currently being investigated,
including maximum-likelihood iteration and min-max de-
sign, Other areas of investigation worth pursuing are the
extensions of the MI formulation to emission/detection
processes with attenuation due to Compton scattering and
absorption, and to dynamic processes where the mean em-
itter distribution may change over time. Finzally, we are
considering the formulation of MI for characterizing the
inherent ability of tomographic systems to perform spe-
cific tasks. These tasks may not be limited to tomographic
reconstruction. For example, classification, detection, or
feature extraction may be of primary interest.

A final issue is the relation between the MI and “‘image
quality.’” As a theoretical issue, it is known that high MI
is necessary for good performance of any classifier, esti-
mator, or detector, regardless of the specific form of the
penalty criterien (see Section III-C). As a practical issue,
however, high MI will not be sufficient for high quality
images unless good reconstruction algorithms are speci-
fied for the MI-optimal apertures. While, due to the irreg-
ular aperture hole patterns, parallel beam algorithms based
on reconstruction from line integrals are not directly ap-
plicable to these MI apertures, algorithins such as maxi-
mum likelihood (ML) [19] can be used. The issue of im-
age quality improvement of high M! detection systems
can only be resolved through experimental studies of joint
implementation of MI-optimal apertures and associated
reconstruction algorithms.

APPENDIX A

In this Appendix the form for the mutual information
(24) is derived. Recalling the form for the mutual infor-
mation (23) we have ( f £ fx)

(X, w)= S_: S_: dedy{ a(ax + (1 — a) ¥) Fiiyfx ~ y) f(x)

alex + (1 — a)y) Floalc —y)

X log o

_alav + (1 = @) y) Frsa(o = ) £ (2) do

+ S S_m dedy § [1 = a(ax + (1 — &) y)] Fiealx — y) f(x)

S-—m du[l — af{ax + (1 — cz)u)] Fiozlx —u)

X log

+m +w

(29)

. dvdu[l — alav + (1 - oz)u)] Fiolv —w)f(v)
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where, to simplify via change of variables, F,,.{y —x) Now, define
has been defined

1 - -
Fliy—x)= * — y\O\ g(z,y)élFH.z(z_y)f(z u a”) (31)
o1+ (2) Sl )
Dod
Let and
ax+(l-ao)y2z, ax+(l—a)uly"
Then
7 —
_& L_im U=y - o) Fa(23)
a o ai(z) & g_m dy 8(z, y} log —5
' du w—z+(1-a)y S dg'alz') g(z', »)
du’' = , u= e
(1 — «) (1 -a) (32)
Z=y z-(1—a)y— au'
r—y= . x—u=
o x(l — a)
Substituting these variables into (29)
+& +co I — l_
wew={ | o a(z)éFlJ,z(za})f(Z L “”)
(@ s (227)
x log —— l
: A =1~
S—m a(z )EF1+2( = )f(z (a a)y) dz’
+m + o0 _ — 1_
+S_mdz L dy [1—-a(z)]éF1+z(zay)f(z (a a)y)
+oo 1 2~ (1 ~e)y —ou’
S_w du'[l —a(u‘)]l__";FHz el — @)
X log . (30)

E de’ S: du[1 - d(z’)]éFm(""; “>f(z’ - (la_ a)u)
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+o 1 z—(l —a)y — au'
. §_m du’[l—a(u')]l__aFHz( (1 — a) )

a(z) & Ln dy glz, y) log

S: dz* E dull — a(z')] g(z". u)

Finally, substitute (31), (32), and (33) into (30) to obtain
24)

4o

(G W) = S_w dz[a(z) g1(z) + (1 — a(z)) qz(z)].

APPENDIX B

In this Appendix the conditional probability distribu-
tion of the gamma-ray path intersection on a ring detector
is derived. Fig. 6 shows the coordinate parameterization
for the ring while Fig. 7 is a blow-up of the chisel shaped
region in Fig. 6. Referring to Fig. 7 we make the follow-
ing definitions. An emitter located at a point lying in the
plane, x = (x;, x;), emits a gamma-ray at azimuthal an-
gle ¥ and longitudinal angle # whose path intersects a flat
annular detector ring at ring coordinates (¢, s), The
emission angles are referenced to an arbitrary zero angle,
e.g., in Fig. 7 ¢ is measured relative to the indicated (hor-
izontal} baseline, and @ is measured relative to the line
connecting the emitter position x to the origin 0. Posi-
tions on the detector ring are parameterized by the angle
¢ measured relative to the origin O in Fig. 7 and the hor-
izontal position on the interior of the ring s is relative to
the center line o in the figure. The emission angle (6, )
is assumed to be uniform over [0, 271 X { -7 /2, 7/2].
The path length from the emitter location x to the detector
intersection (¢, 5) is denoted by a.

The objective is to find the nominal conditional distri-
bution £, (¢, s | x) of the detector hitting point without an
aperture. Since the transformation from (8, ¥) to (¢, 5}
is one-to-one we have the following:

£(8.5]%) = £(6, ¥]x) |—j,—| (34)

where J is the Jacobian matrix associated with the trans-
formation. Referring to Fig. 7 it is evident that J is a tri-

R?

(33)

angular matrix since variations in \y produce no variations
in ¢. Hence,

(35)

Furthermore, due to the assumed uniform distribution of
(8, ¥), (34) becomes

1
flp.s|x) ==

24?

%
a¢

Y
asi’

¢ e[, 2r],se(~o, ). (36)
In reference to Fig. 7, we have
asin (f) = Rsin (e}, (Law of sines); (37)

s=atany, (38)

a= \/(_x, — R cos «;b)2 + {x3 — Rsin r,b)z,
(39)

= tan-! (22) _
o = tan (x ) &. (40)
Now from (37) we have

8 = sin™’ (—§ sin a). (41)

Substitution of (40) into (41) gives the following {13]:

2
2f & . 1 ooz
R 2(x,cosd:+xzsm¢)—-E(x.cos¢ + x, sin @) + =
9

d¢

2
2< . llx\l)
a’l x,cos ¢ + x;8neé —

(42)

R
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and an expression for ds /dy is obtained from (38)
ds 1 1

" n?) {1+ (5))

(43)

Substitute (42) and (43) into (36) to obtain the final form
for the joint distribution of ¢ and s given x:

dy Yoty

f{@, 5| x)

PL

R —=
R

2(.’:lcosqﬁ-+x;,sinc,b)—ﬁ(.\r,cosgi: +xzsin¢>)2+—
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[4} W. L. Rogers and R. 8. Adler, **Time-coded aperture design for nu-
clear medicine imaging: A swdy of signal-to-noise ratio.”* Appi. Opi..
vol. 21, pp. 324-333, 1982,

[5] G. F. Knoll, **Single photon emission computed tomography.” JEEE
Proc, . vol. 71, pp. 320-329. Mar. 1983.

[6} B. M. Tsuiand R. ). Jaszczak, “*Interactions of collimation. sampling
and filtering on SPECT spatial resolution,” fEEE Trans. Nucl. Sci..
vol. NS-3]1, pp. 527-531, Feb. 1984,

[7] H. H. Barrett. W, E. Smith, K. J. Meyers, T. D. Milster, and R. D.
Fiete, “*Quantifying the performance of imaging systems,”” in Proc.
SPIE, pp. 65-69, 1986.

=

1
R

1
2x?

s\ [E1 N
a3(l + (E) ) X cos ¢ + xysin ¢ —

forg €[0,2r]and s € (— 0, ).

Substitution of a? into the numerator of (44), use of
(39

L(#, s|x)

1
R? E(x.cosqb-%-xzsinqb) X, COS ¢ + x5 8in ¢ —

(44)

R

[E1%

R

I=1" .
R = lx cosd + xysin¢ —

-
2%

3 s\ . "-"”2
all + E)) xlcosd)-i-xzsqu——R_

and after some algebraic manipulations

R? - .
ﬁ)(d’sslx) = _1_2 R{x cos ¢ + x, sin ¢)

27 2
(- ()
a
In the case of a far-field source and a thin axial slice,

s?/a*® << 1, and hence, using (39)

FACKIES

(46)

_ 1 R? — R(x, cos ¢ + x, sin ¢)
27t ((x; — R cos ¢))2 + {x4 — Rsin ¢)2)3/2-
(47)
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