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Abstract 
 

Despite the increasing importance and popularity of association football forecasting systems there is no 
agreed method of evaluating their accuracy. We have classified the evaluators used into two broad categories: 
those which consider only the prediction for the observed outcome; and those which consider the predictions for 
the unobserved as well as observed outcome. We highlight fundamental inconsistencies between them and 
demonstrate that they produce wildly different conclusions about the accuracy of four different forecasting 
systems (Fink Tank/Castrol Predictor, Bet365, Odds Wizard, and pi-football) based on recent Premier league 
data. None of the existing evaluators satisfy a set of simple theoretical benchmark criteria. Hence, it is dangerous 
to assume that any existing evaluator can adequately assess the performance of football forecasting systems 
and, until evaluators are developed that address all the benchmark criteria, it is best to use multiple types of 
predictive evaluators (preferably based on posterior validation). 
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1. Introduction 
 
Evaluating the predictive accuracy of any forecasting system is a critical part of its validation. Even 

within a narrow application domain the nature of forecasting systems can vary greatly, so there are no universally 
accepted predictive evaluator methods. In the absence of an agreed method of evaluation, it is difficult to reach a 
consensus about which of two or more competing systems is ‘best’. Moreover, given the potential of different 
evaluators to be highly sensitive to very small differences between forecasting systems, the choice of evaluator is 
clearly critical in determining the success or otherwise of any ‘validation’. 

 
Association football (referred to henceforth simply as football) is the world’s most popular spectator sport 

and it constitutes an ever-increasing share of sports gambling worldwide (Dunning, 1999). Consequently, football 
forecasting systems have also attracted increasing attention. For the purpose of this paper we assume a football 
forecasting system is one that provides outputs in the form of three probability values (��, ��, ��) corresponding 
to the three possible outcomes of any given match - home win, draw, and away win. Systems like 
FinkTank/Castrol Predictor (Castrol Football, 1999) and the various online betting websites (Bet365, 2001) that 
make their predictions publicly available, are typical examples of popular forecasting systems.  

 
The need to evaluate the predictive accuracy of football forecasting systems is evident. Given the 

simplicity of the outputs of such systems, it is not unreasonable to expect there to be an agreed satisfactory 
evaluator. Yet surprisingly, as we will show in this paper there is none. That is not to say that there is a shortage 
of different evaluators. We will review the 10 that have been proposed and used and will highlight the problems 
associated with them. The fundamental concern is lack of consistency whereby one evaluator might conclude 
that system α is more accurate than system β, whereas another may conclude the opposite. Given the critical 
need to ‘validate’ such systems it is clear that the selection of the evaluator can be as important as the 
development of the forecasting system itself. Otherwise outstanding systems might be erroneously rejected while 
poor systems might be erroneously judged as outstanding.  

 
To motivate our concerns with some very simple examples, consider the predictions provided by 

systems α and β for matches 1, 2 and 3 presented in Table 1. 
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Match System P(H) P(D) P(A) Result 

1 α 0.6 0.2 0.2 H 

β 0.7 0.2 0.1 

2 α 0.5 0.45 0.05 H 

β 0.5 0.05 0.45 

3 α 0.35 0.30 0.35 D 

β 0.6 0.30 0.10 
 

Table 1. Hypothetical predictions by systems α and β for matches 1, 2 and 3. 
 

These examples raise the following issues, which we regard as benchmark criteria for any evaluator: 
 

i. Predicted value of the observed outcome: In match 1 both α and β ‘correctly’ assign the highest 
probability to the winning outcome (H).  But should we also have to take into consideration the fact that 
the value for β is higher, and therefore intuitively, more accurate?  

ii. Predictions of unobserved probabilities: For match 2, both systems α and β again ‘correctly’ assign 
the highest probability to the winning outcome (H). Moreover, not only do they assign the same 
probability to the winning outcome (both are 0.5), they also assign the same probability values – albeit in 
a different order - to the unobserved outcomes (0.45 and 0.05). So should we conclude that α and β 
have identical accuracy?  If we did it would contradict the intuition of any football fan who would confirm 
that α is more accurate than β since a draw is ‘closer’ to a home win than an away win.  

iii. Distribution of unobserved probabilities: For match 3, both systems predicted the draw with 
probability 0.3. Do we consider the predictions equal or are we supposed to take into consideration the 
distribution of the unobserved probabilities as well? Intuitively α is superior because its distribution of 
probabilities is far more indicative of a draw than is β, which strongly predicts a home win. Formally, if 
we regard the match result as being on a scale from 0 to 1 (with Home win at the 0 end and Away at the 
1 end) then system α generated a distribution of high variance with a mean of 0.5, whereas system β 
generated a distribution of lower variance with mean pointing towards the home win.  

iv. Goal difference: Although the outcomes are presented simply as H, D or A, can we really afford to 
ignore the actual final score? If the home team wins 5-0 does this make us more certain that model β is 
superior to α on match 1? And if the score was 4-3 does this lead us to conclude that maybe α was 
more accurate?  

v. Red card effect: What if one or more red cards have dramatically impacted the outcome? For example, 
in match 3 if the home team had a player sent off near the beginning of the match does that imply that 
model β is superior to α after all? There might be cases in which a bad prediction will look better 
because of the red card effect (Vecer, Kopriva, & Ichiba, 2009). Is this especially important when 
evaluating a small number of matches? 

 
 To help structure our review of the various evaluators found in the literature, we have classified them 
into two broad categories: those which consider only the prediction for the observed outcome (e.g. informational 
loss); and those which consider the predictions for the unobserved as well as observed outcome (e.g. Brier 
score); In Section 2 we present a detailed overview of the evaluators in the context of this classification. In 
Section 3 we describe the four different forecasting systems and match results that were used in the analysis of 
the evaluators. Section 4 presents the results, which demonstrate spectacular inconsistency between evaluators. 
The discussion in Section 5 summarises our concerns over the results and the rationality of each of the 
evaluators.  
 
The paper provides a number of novel contributions: 
 

• The first comprehensive review of evaluators of football forecasting systems. 

• A useful classification of evaluators and a simple unifying way to describe how they are defined. 

• A comprehensive empirical study that applies all of the evaluators to four very different forecasting 
systems using the most recent data from the UK Premiership. 

• Full online access to the data including all of the model predictions.  

• Conclusive evidence that none of the existing evaluators can be reliably used to judge the performance 
of football forecasting systems (hence casting doubt on all previous evaluations). 

• A set of simple benchmarking criteria that evaluators need to satisfy 

• Constructive guidelines on how to develop improved evaluators. 
 
 

2. Overview of the proposed evaluators 
 
We start with some definitions and assumptions. Football forecasting is a special case of any forecasting 

problem in which there is a (fixed) finite number k of outcomes for each of a sequence of problem instances. A 
forecasting system is assumed to assign probability values to each of the outcomes in each problem instance, 
i.e. a vector: 
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� = (�	, �
, … , ��) 
 

where �
 	is the probability of the �th outcome predicted by the forecasting system. We will also assume that, 
for each problem instance, we know the corresponding vector of actual observed outcome probabilities 
 � = (�	, �
, … , ��)	
 
For football forecasting we make some especially simple assumptions: 
 

• The outcomes are restricted to the elementary outcomes {�, �, �}, so � = 3. We do not consider 
here non-elementary outcomes like “H or D”, “A or D” (even though these are important in football 
betting). Because of this assumption the vector of actual observed outcome ‘probabilities’ will 
always be of the form (1,0,0) in the case of H, (0,1,0) in the case of D, or	(0,0,1) in the case of A. 
Although some of the researchers in our review have constructed models that generate predictions 
about the final score, those researchers have used the scores to generate predictions for the three 
possible outcomes as the basis for evaluation. Whether this is appropriate or not is out of the scope 
of this paper. Our concern relies only on the integrity and consistency of evaluators of the 
predictions, and not on how the predictions are generated. The same applies for cases in which the 
probabilities were given by experts instead of a model.  

• The problem instances are matches between an identifiable home team and identifiable away team. 
Because of the universal importance of home advantage in football matches, and the shortage of 
data on matches played at neutral venues, we do not consider matches played at neutral venues as 
being within scope here.  

 
By an evaluator we mean a method that specifies for any forecasting system α: 
 

1. An accuracy score �
(�) for each individual problem instance �; and 
2. A cumulative accuracy score �(�), i.e. a means of combining the accuracy scores of a set of � 

problem instances �	(�), �
(�), … , ��(�) 
 
It should be noted that, in some of the evaluators we consider, the individual accuracy score is a special 

case of the cumulative score and so it is sufficient to define the latter. With these assumptions an evaluator is 
able to compare two forecasting systems α and β simply by comparing their respective cumulative accuracy 
scores over a set of problem instances.  

 
To give a simple example of the above assumptions, if we wanted to use the standard Bayesian model 

assessment approach (Open University Course Team, 2007) as the basis for an evaluator we would define: 
 

1. Accuracy score �
(�) is the probability value a model α assigns to the actual outcome. So, 
considering the models α and β in Table 1 we get: 
 �	(�) = 0.6, �	(") = 0.7	�
(�) = 0.5, �
(") = 0.5	�%(�) = 0.3, �%(") = 0.3 	
The score in this case is just the probability of observing the data assuming the model is correct; 
this is called the likelihood. By Bayes theorem, if we have no prior reason to assume one model is 
more correct then another, then the model that results in the highest likelihood is the one most likely 
to be ‘correct’. So, on the basis of match 1, β is deemed to be more accurate than α, since it has a 
higher probability of being the ‘correct’ model. For matches 2 and 3 the models are of course 
indistinguishable.  

 
2. Cumulative accuracy score �(�) is the product of the individual accuracy scores, so �(�) 	 =	0.09		�(") 	 = 	0.105. Since individual matches are assumed to be independent, it also follows from 

Bayes that the probability of observing a set of match results given a model is correct, is simply the 
product of the individual likelihoods.  

 
It is surprising that, given the importance of the chosen evaluator in validating and comparing the 

performance of football forecasting systems, we have found no published articles that focus on the issue of 
evaluators. As described below, there has been little consistency in which evaluators are used. Although most 
studies have chosen a single evaluator, some of the researchers, notably (Hvattum & Arntzen, 2010), have 
identified the potential problems that popular evaluators could create, and this led them into proposing more than 
one evaluator. 

 
With the above assumptions we have classified the evaluators into two categories: 
 

1. Those which consider only the prediction for the observed outcomes (Section 2.1).  
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2. Those which consider the predictions for the unobserved as well as observed outcomes Section 
2.2) 

 
2.1 Evaluators which consider only observed outcomes 

 
The evaluators in this category may all be viewed as some kind of variant of the Bayesian evaluator 

described in the above example, since they take into consideration only the assigned likelihood of the observed 
outcomes. Table 2 provides a summary of the evaluators in this category applied to the hypothetical predictions 
and results in Table 1. In all of the evaluators here we assume that, for an individual match � the number �
 is the 
probability value that the forecaster assigns to the actual outcome. So for example, in match 1, �	 is 0.6 for 
model α as �	 is 0.7 for model β. 

 
• Geometric mean  

 
For an individual match � the score is simply �
.  

 
Cumulative score:  

	'( �

�


)	 *	�
 

 
This can be interpreted as a normalised pseudo-likelihood measure. We have found three cases where 
the geometric mean has been used as the definitive single evaluator: 

 
o Rue and Salvesen (2000) used it to compare their own model predictions with the odds 

provided by the bookmaker Intertops (Rue & Salvesen, 2000).  
o Graham and Stott (2008) used it to compare their proposed ordered probit model, with the 

predictions provided by the bookmaker William Hill (Graham & Stott, 2008).  
o John Goddard (2005) used it to compare the one forecasting model that depended on 

goals scored and conceded, and another that predicted only the outcomes H, D and A. 
 

• Informational loss  
 
This is defined in (Witten & Frank, 2005): 
 
For an individual match: 

 −log
 �
 
Cumulative score: 

 / −012
�

�


)	  

 
The informational loss generates identical assessment with that of the negative log-likelihood function 
which is optimised by logistic regression (Witten & Frank, 2005).  

 
Hvattum and Arntzen (2010) have proposed informational loss as one of their six evaluators for 
assessing the performance of their two proposed models. Both of their models were based on the ELO 
rating system, and were used to derive covariates that were then used in ordered probit regression 
models. The resulting performance was then compared against other economical measures and 
statistical tests (Hvattum & Arntzen, 2010). 
 
In order to avoid the zero-frequency problem (whereby the information loss is minus infinity when any pi 
is zero) Witten and Frank (2005) suggest that non-zero probabilities have to be assigned to every 
outcome. Since none of the predicted outcomes is logically false, this is sensible since assigning a 
probability of zero to any of the outcomes contradicts Cromwell’s rule (Lindley, 1985). However, in cases 
where a model really does predict a zero probability outcome there are simple and plausible solutions, 
such as the standard Laplace estimator technique (see (Laplace, 1951) for a translation of Laplace’s 
original paper). 
 

• Maximum Likelihood and Maximum Log-Likelihood Estimations  
 
Proposed by Sir Ronald Aylmer Fisher (see e.g. (Aldrich, 1997)) as an approach to parameter 
estimation and inference in statistics, Maximum Likelihood Estimation (MLE) states that the desired 
probability distribution is the one that makes the observed data “most likely”. As in most cases, we are 
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presenting the Maximum Log-likelihood estimation over the MLE since it generates identical behaviour 
while reducing the computational costs significantly (Myung, 2003). For a likelihood test, the Binomial 
distribution has been widely used in order to tabulate the different parameter values. 

 
For an individual match:  0� �!ℎ! (� − ℎ)!	�
5(1 − �
)�65 

 
Cumulative score: 

/ 0� �!ℎ! (� − ℎ)!	�
5(1 − �
)�657
8)	  

 
where �
 represents the probability for observing the specified outcome, � represents the total number 
of trials, and ℎ represents the number of successes for the given prediction. Consequently, for a given 
observation there is always a MLE and thus, the closer to �, the better the prediction is considered. 
However, since we only have one observation for every match prediction (� and ℎ are always equal to 1) then there is no need in calculating the likelihood. Thus, the likelihood always equals �
 and hence, 
the Log-likelihood 0�(�
). As a result, the informational loss generates identical assessment with that of 
the negative Log-likelihood function which is optimised by logistic regression (Witten & Frank, 2005). 
Therefore, in order to avoid unnecessary calculations in this paper we simply introduce 
 
For an individual match: 0�	(�
) 

 
Cumulative score: / 0�	(�
)�


)	  

 
 MLE has been used as the basis for evaluating football forecasting systems as follows:  

 
o Hirotsu and Wright (2003) used MLE it to examine the use of Markov process models for evaluating 

the characteristics of the English Premier League (EPL) teams by means of parameters 
representing home advantage, offensive and defensive strength, and their interactions.  

o Forrest Goddard and Simmons (2005), used it as one of their evaluators to compare the 
effectiveness of forecasts based on published bookmaker odds and the forecasts made using a 
benchmark statistical model which incorporated a large number of quantifiable variables, as well as 
the experts’ views which were represented by published odds (Forrest, Goddard, & Simmons, 
2005). 

o Karlis and Ntzoufras (2003) used the Maximum Log-likelihood ratio for a bivariate Poisson 
distribution model analysing sports data. They also proposed the Bayesian Information Criterion 
(BIC) developed by Gideon E. Schwarz (1978) and its closely related Akaike Information Criterion 
(AIC), which was modified by Akaike (1977) for model fitting. In this paper, we ignore both the BIC 
and AIC since they also take into consideration the number of parameters for each model. We 
simply do not have this information for the selected forecasting systems under assessment. 

o Graham and Stott (2008), who have already been mentioned for making use of the geometric mean 
function, have also used the Maximum Log-likelihood as part of their predictive evaluation 
described above. 

 
• Pair-wise comparison evaluator  

 
Although it does not strictly fit into our definition of an evaluator (since it only makes sense for 

comparing two forecasting systems) we include in this classification the simple pair-wise comparison 
used by Dixon and Pope (2004). 

For two systems α and β this is defined as: for an individual match assign a score of 1 to the 
model which has the highest probability value assigned to the actual outcome (otherwise 0, including if 
there is a tie).  

The cumulative score is simply the sum for each model of the individual matches and can be 
presented as follows for two given systems α and β: 

 �(9) = / :1	,								�;
 > 	 �=
0	,								otherwiseE�

)	 , �(") = / :1	,								�=
 > 	 �;
0	,							otherwiseE�


)	  
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Using the example of Table 1, the overall score for the 3 matches results in system α equal to 0 and 
system β equal to 1 (since system β ‘wins’ match 1 and matches 2 and 3 are tied), as demonstrated in 
table 2. Dixon and Pope (2004) used this method to evaluate the predictions of two bookmakers. 

 
Evaluator Formula  

(as expressed in section 2.1) 

 
 
 
 

 
 

Geometric 
Mean 

 

 
e.g. when F9GHℎ = 1 and IJIG�F = � then: 
 �	(9) = (∏ �
�
)	 )LM = (0.6)LL = 0.6 

 
Cumulative:     

�(9) = '( �

�


)	 *	� = (0.6 × 0.5 × 0.3)	% = O. PPQR 

 
Cumulative:      

�(") = '( �

�


)	 *	� = (0.7 × 0.5 × 0.3)	% = O. PSRS 

 
 
 

 
 

 
Informational 

Loss 
 

 
e.g. when F9GHℎ = 1 and IJIG�F = � then: 
 �	(9) = −log
 �
 = 	 −log
 0.6 = 0.7379  
Cumulative:      
 �(9) = / −log
p8

U
8)	 = VW−log
 0.6X + W−log
 0.5X + W−log
 0.3XZ = [. PS[\ 

 �(") = / −log
p8
U

8)	 = VW−log
 0.7X + W−log
 0.5X + W−log
 0.3XZ = [. ]^R^ 

 
 
 
 

 
 
 
 
 

Maximum 
Log-likelihood 

Estimation 
 

 
e.g. when F9GHℎ = 1 and IJIG�F = � then: 

 �	(9) = 0�	(�	) = 0�(0.6) = −0.5108 
Cumulative:      
 

�(9) = / 0�	(�
)7
8)	 = W−0.5108X + W−0.6931X + W−1.2039X = −]. POS\ 

 

 

�(") = / 0�	(�
)7
8)	 = W−0.3566X + W−0.6931X + W−1.2039X = −]. ]^[S 

 

 
 
 

 
 

 
Pair-wise 

comparison 

 
e.g. when F9GHℎ = 1, IJIG�F = � and G�9F = ℎ then: 

 �	(9) = :1, �;	 > 	 �=	0,										otherwise 		 = 		 a1, 0.6 > 	0.70,									otherwise 	 = 0EE 
 
Cumulative:      �(9) = / :1	,								�;
 > 	 �=0	,						otherwiseE�


)	 = 0 + 0 + 0 = O 

 �(") = / :1,								�;
 > 	 �=0,						otherwiseE�

)	 = 1 + 0 + 0 = R 

 
Table 2. The demonstration (4d.p.) of evaluators which consider only observed outcomes (Geometric Mean, Informational 
Loss, Maximum Log-Likelihood Estimation, pair-wise comparison) according to the examples presented in table 1 for systems � 
and β. For the Geometric mean and Pair-wise comparison, a higher score indicates better performance, whereas for the 
Informational Loss and Maximum Log-likelihood Estimation an error closer to 0 indicates better performance. 
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2.2 Evaluators that consider both observed and unobserved outcomes 
 

In all of the evaluators in this section we assume that, for an individual match � (�
	,	�

,	�
%) is the vector of 

predicted probability values that the forecaster assigns to (H, D, A) and (�
	,	�

,	�
%,) is the actual outcome (so 

each �
b is either 0 or 1). Table 3 shows the evaluators applied to the hypothetical predictions and results in Table 

1. 
 

• Brier score  
 
Also known as Quadratic Loss (Hvattum & Arntzen, 2010), the Brier Score measures the average 
squared deviation between predicted probabilities for a set of their events and their outcomes. For an 
individual match � the score is (Brier, 1950) 
 /(�
b − �
b)
c

b)	  

 
The cumulative score is: 

 1� / /(�
b − �
b)
c
b)	

�

)	  

 
Forrest, Goddard, & Simmons (2005) used the Brier score as one of their evaluators in the study 
described above. Hvattum and Arntzen (2010), who have already been mentioned for making use of the 
Informational loss function, have also proposed the Brier Score as part of their predictive evaluation 
described above.  

 
• Binary decision  

 
This is a very simple evaluator defined for a single match � as: 
  
 1 if one of �
	, �

, �
% is greater than the others and corresponds to the actual outcome � 

 
 0 otherwise 
  
The cumulative score is simply the sum of the scores for single matches � 

 
Joseph, Fenton and Neil (2006) used this evaluator to compare the performance of their proposed 
expert Bayesian network model against the predictive performance generated by other well known 
machine learning techniques. Their model was explicitly developed to handle the predictions of 
Tottenham Hotspur football club. 
 

• Overall posterior validation  
 
This is actually a class of evaluators that compare the predicted performance of specific teams over a 
number of matches with their actual performance or involve a comparison of posterior summary 
statistics. For an individual match � we simply compute the expected number of points for each team. 
So, assuming 3 points for a win and 1 for a draw we get:  
 �
5(9) = 3 × �
	 + �

 

 �
d(9) = �

 + 3 × �
% 
 

for a single match � where ℎ = ℎ1F�e�9F and f = 9g9Je�9F. For example, for match 1 of Table 1 
model α scores 2 for the home team (3 × 0.6	 + 	0.2) and 0.8 for the away team (0.2	 + 	3 × 0.2), while 
model β scores 2.3 for the home team (3 × 0.7	 + 	0.2) and 0.5 for the away team (0.2	 + 	3 × 0.1). 

 
For the cumulative-point score we simply add the individual scores for each team and also determine 
the team rankings based on each team’s score to be used by the evaluators RMS and Relative rank 
error. This ‘predicted’ ranking can then be compared with the actual ranking of the team based on actual 
points using one of the following proposed metrics: 

 h�09G�i�	j9��	�jj1j / kj9��;lmd;n − j9��opcq
lmcqkj9��;lmd;nmc;rs  
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htu	�jj1j = 	 v / wj9��;lmd;n − j9��opcq
lmcqx
j9��;lmd;nmc;rs  

 
The following studies have used one or more of these approaches: 

 
• Baio and Blangiardo (2010) compares a simple application of Bayesian hierarchical 

modelling against the bivariate Poisson structure model that was proposed by Karlis and 
Ntzoufras (2003).  

• Byungho et al (Min, Kim, Choe, Eom, & McKay, 2008) used it to evaluate their proposed 
model, described as FRES, using Bayesian inference and rule-based reasoning along with 
an in-game time series approach in an aim to predict the results of World Cup matches. 

• Dixon and Pope (2004) extended the analysis of a previous study (Pope & Peel, 1988), in 
addition to using a Poisson distribution model derived from another study (Dixon & Coles, 
1997) in an attempt to test the efficiency of the odds provided by the betting market with 
respect to that model. Their evaluation and comparison of the models was focused on the 
summary statistics retrieved by each of the models. Particularly, they have taken into 
consideration the mean, median and standard deviation of the probable outcomes of a home 
win, a draw and an away win. Additionally, Dixon and Pope (2004) have presented a 
histogram comparison demonstrating the frequency of the specified odds and probability 
estimates, including comparisons of Kernel density estimated of aggregated match 
probabilities for models, and odds from bookmakers. 
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Evaluator Formula  

(as expressed in section 2.2) 

 
 
 
 
 
 
 
 

Brier  
Score 

 
e.g. when F9GHℎ = 1 and IJIG�F = � then: 

 

�	(9) = /(�
b − �
b)
 =	%
b)	 (0.6 − 1)
 + (0.2 − 0)
 + (0.2 − 0)
 = 0.24 

 
Cumulative:      

 

�(9) = 1� / /(�
b − �
b)
%
b)	

�

)	 = 	 z W(0.60 − 1)
 + (0.20 − 0)
 + (0.20 − 0)
X+W(0.50 − 1)
 + (0.45 − 0)
 + (0.05 − 0)
X+W(0.30 − 1)
 + (0.35 − 0)
 + (0.35 − 0)
X{ 13 = O. PS|| 

 

 

�(") = 1� / /(�
b − �
b)
%
b)	

�

)	 = z W(0.70 − 1)
 + (0.20 − 0)
 + (0.10 − 0)
X+W(0.50 − 1)
 + (0.05 − 0)
 + (0.45 − 0)
X+W(0.30 − 1)
 + (0.60 − 0)
 + (0.10 − 0)
X{ 13 = O. PQ^ 

 
 
 
 
 
 
 
 

Binary 
Decision 

 
e.g. when F9GHℎ = 1 and IJIG�F = � then: 
 1, if one of �
	, �

, �
% is greater than the others and corresponds to the actual outcome � 

 0, otherwise 
 �		corresponds to outcome � (home win, 60%) �	
, �
%correspond to the unobserved outcomes (draw 20% and away win, 20%) 
 0.60 > 0.20	and	0.60 > 0.20, therefore	�	(9) = 1 
 
Cumulative: �(9) = 1 + 1 + 0 = ] 

 

 
Cumulative: �(") = 1 + 1 + 0 = ] 

 

 
 

 
 
 
 
 

Overall 
Posterior 
Validation 

 
(Cumulative 

Points) 
 

 
e.g. when F9GHℎ = 1, IJIG�F = � and G�9F = ℎ then: 
 �	5(9) = (3 × �		) + (�	
) = (3 × 0.60) + (0.20) = 2�. 
 
Cumulative: 
 �5(9) = (3 × 0.60) + (0.20) + (3 × 0.50) + (0.45) + (3 × 0.35) + (0.30) = ^. [O�. �HGf90	�1��GI	 = 	7 thus, �jj1j = |5.30 − 7| = 1.7 
                      �d(9) = (3 × 0.20) + (0.20) + (3 × 0.05) + (0.45) + (3 × 0.35) + (0.30) = ]. S^�. �HGf90	�1��GI	 = 	1 thus, �jj1j = |2.75 − 1| = 1.75 
 
where ℎ = ℎ1F�e�9F and f = 9g9Je�9F 
 �5(") = (3 × 0.70) + (0.20) + (3 × 0.50) + (0.05) + (3 × 0.60) + (0.30) = ^. \^�. �HGf90	�1��GI	 = 	7 thus, �jj1j = |5.95 − 7| = 1.05 
 
         �d(") = (3 × 0.10) + (0.20) + (3 × 0.45) + (0.05) + (3 × 0.10) + (0.30) = ]. ^O�. �HGf90	�1��GI	 = 	1 thus, �jj1j = |2.50 − 1| = 1.5 
 
where ℎ = ℎ1F�e�9F and f = 9g9Je�9F 

 
Table 3. Demonstration of evaluators Brier Score, Binary Decision and posterior cumulative-point comparison according to the 
examples presented in table 1. For the Brier Score a lower score indicates better performance, whereas for the Binary Decision 
a higher score indicates better performance. For the posterior cumulative-point comparison a lower error between expected 
and actual points indicates a better performance. 
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3. Data 
 

In order to demonstrate the behaviour and the results of the proposed evaluators, it was important to 
find predictions that come from diverse approaches to football forecasting. Diverse approaches are more likely to 
generate predictions with greater variance between them, thus serving as better test data for the evaluators. 
Based on diversity and also availability of relevant data, we have chosen four forecasting systems: 

 

• Fink Tank (also presented as Castrol Predictor) is highly respected in the UK and its predictions are 
published weekly by The Times and the CastrolRankings 

• Bet365 is representative of probabilities given by the betting industry 

• Odds Wizard is an industrial professional based forecasting software where users have to pay in 
order to retrieve any live predictions, or predictions before the matches are played.  

• pi-football, which is a recent Bayesian network based model (Probabilistic Intelligence in Football, 
2010) incorporating data and expert judgement. 

 
The data used is for the first 221 matches of the English Premier League (EPL) during season 2010-

2011. The reason for this choice is because at the time of writing this paper, the 2010-2011 season was still in 
progress and the full relevant data for previous seasons did not exist. Nevertheless, 221 predictions by each of 
the forecasting systems is more than enough information in order to demonstrate potential inconsistencies 
between the proposed evaluators. The full data used in the study is presented at www.pi-football.com 

 

4. Results 
 

All of the evaluators presented in section 2 have been used to evaluate the predictions generated from 
each of the four forecasting systems discussed in section 3. Table 4 presents the results.  

 
For each evaluator we have computed: 

 

• Overall score (as defined in Section 2) for each of the four forecasting systems  

• Relative performance of the four forecasting systems. To calculate this, the system with the best 
overall score is given the value of 0%, and each subsequent system is given the proportional 
increase in error from the model ranked first. For example, for the Brier score, BET365 is best (it 
has the lowest value 0.6227) so it gets 0%, while Odds Wizard with value 0.6247 is 0.33% worse 
and so gets assigned the value 0.33%. Fink Tank with value 0.6289 is 1.01% worse and so is 
assigned the value 1.01%.   

• Ranking. This is simply the ranking of the four systems based on the overall score (the system with 
the best overall score is ranked 1 etc.) 

 
The results clearly demonstrate the inconsistency between the evaluators. There is not a single system 

of the four on which the evaluators agree on the ranking. For example, the pi-football system varies from best to 
worst, being ranked best four times and worst twice out of 9 distinct evaluators. The results demonstrate the 
deeply worrying extent to which our confidence in the performance in a forecasting system is wholly at the mercy 
of the choice of particular evaluator.  

 
If the four systems produced very similar predictions then it could be argued that differences in the 

evaluator rankings might be due to random noise. But it is easy to show that the systems produce very different 
predictions: 

 

• Figure 1 demonstrates the posterior predictive validation of cumulative points generated by 
each of the systems, as well as the actual cumulative points for each of the teams. For the 
teams Manchester City, Aston Villa, Everton, Newcastle, Sunderland, Bolton, West Brom, 
Blackpool, Wolves and Wigan, a very important variation in performance is observed between 
at least two of the forecasting systems for each case.  

• Table 5 presents the posterior predictive validation of the outcomes H, D and A, illustrating the 
overall inconsistency between the forecasting systems. The largest variation appears to occur 
for the outcomes of a draw, particularly with pi-football and Fink Tank models with posterior 
probabilities of 27.12% and 22.53% respectively; almost up to an incredible difference of 5% of 
the total rate.  

• Table 6 presents the actual and estimated league table between the forecasting systems, 
illustrating the significant differences in team-ranking. The most important variation regarding 
high quality teams has to be Manchester City, with systems ranking the team at positions 3, 4, 
5 and 6. A much greater variation is observed for lower quality teams. For example, 
Sunderland had been estimated at positions 8, 9, 11 and 17, a staggering 9 positions in 
variation, as well as West Brom at positions 10, 14, 15 and 18. 
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Evaluators pi-football BET365 Fink Tank Odds 
Wizard 

 
Type 1: (section 2.1) 
 
1) Geometric Mean 
... score (higher  better) 
... relative performance 
... ranking 
2a) Informational Loss (or MLE) 
... score (lower  better) 
... relative performance 
... ranking 
2b) Maximum Log-likelihood Estimation 
... score (higher  better) 
... relative performance 
... ranking 
3) Pair-wise Comparison Score 
... score (lower  better) 
... relative performance 
... ranking 

 

0.3504 0.3540 0.3516 0.3537 

1% 0% 0.66% 0.09% 
4 1 3 2 

 

334.28 331.07 333.17 331.36 

0.97% 0% 0.63% 0.09% 
4 1 3 2 

 
-231.71 -229.48 -230.94 -229.68 

0.97% 0% 0.63% 0.09% 
4 1 3 2 

 

2.38 2.47 2.73 2.39 

0% 3.79% 14.58% 0.19% 
1 3 4 2 

 
Type 2: (section 2.2) 
 
4) Brier Score 
... score (lower better) 
... relative performance 
... ranking 
5) Binary Decision 
... score (higher better) 
... relative performance 
... ranking 
6) Overall Posterior Validation 
... score (lower better) 
... relative performance 
... ranking 
7) Relative Rank Error 
... score (lower  better) 
... relative performance 
... ranking 
8) Root Mean Squared Error (RMS) 
... score (lower  better) 
... relative performance 
... ranking 
9) Summary Stats – PD Posterior Error 
... score (lower  better) 
... relative performance 
... ranking 

 

0.6256 0.6227 0.6289 0.6247 
0.48% 0% 1.01% 0.33% 

3 1 4 2 

 

0.4841 0.4932 0.4660 0.4751 

1.87% 0% 5.50% 3.67% 
2 1 4 3 

 

3.96 3.86 5.06 4.51 

3% 0% 31.22% 16.90% 
2 1 4 3 

 
7.75 8.03 13.14 9.38 

0% 3.58% 69.53% 20.99% 
1 2 4 3 

 

5.81 5.89 8.62 7.09 

0% 1.41% 48.29% 22.04% 
1 2 4 3 

 

7.29 10.13 16.47 12.37 

0% 38.85% 125.73% 69.54% 
1 2 4 3 

 
 
Table 4. Score/Error (4d.p.) according to the specified evaluator for models pi-football, Bet365, Fink Tank and Odds Wizard. 
Evaluators 2a and 2b provide identical assessment. Data represents the first 221 observed results from the English Premier 
League matches, season 2010/2011. 
 
 
 
 
 
 
 
 
 



 

Figure 1. Overall Posterior validation of 
Tank/Castrol predictor, Bet365 and Odds Wizard
English Premier League, season 2010/2011
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Posterior validation of cumulative points expected by the each of the forecasting systems

365 and Odds Wizard. Observed and estimated cumulative points for the first 221 matches of the 
2011 (colour version online). 

 
 
 
 
 

 

forecasting systems; pi-football, Fink 
for the first 221 matches of the 



13 

 

 Observed pi-football 
(posterior) 

Bet365 
(posterior) 

Fink Tank 
(posterior) 

Odds Wizard 
(posterior) 

Home Win 
Draw 
Away Win 

45.24 
30.76 
23.98 

46.56 
27.12 
26.31 

45.61 
25.70 
28.67 

47.62 
22.53 
29.83 

48.94 
24.58 
26.46 

Error – Home Win 
Error – Draw 
Error – Away Win 

 
- 
 

1.31 
3.64 
2.33 

0.36 
5.06 
4.69 

2.38 
8.23 
5.85 

3.69 
6.18 
2.48 

Total error - 7.29 10.13 16.47 12.37 

 

Table 5. Posterior predictive validation (2d.p.) of the outcomes home win, draw and away win. Observed and estimated 
outcomes for the first 221 matches of the English Premier League, season 2010/2011. 

  
 Observed pi-football 

(Posterior) 
Bet365  

(Posterior) 
Fink Tank 
(Posterior) 

Odds Wizard 
(Posterior) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Man United 
Man City 
Arsenal 
Chelsea 

Tottenham 
Sunderland 

Bolton 
Stoke 

Newcastle 
Blackpool 
Blackburn 
Everton 

Liverpool 
West Brom 

Fulham 
Birmingham 
Aston Villa 

Wigan 
Wolves 

West Ham 

45 
45 
43 
38 
37 
34 
30 
30 
29 
28 
28 
26 
26 
25 
23 
23 
22 
22 
21 
20 

Chelsea 
Man United 

Man City 
Arsenal 

Tottenham 
Liverpool 
Everton 

Aston Villa 
Sunderland 

Bolton 
Stoke 

Blackburn 
Fulham 

Newcastle 
Birmingham 
West Ham 

Wigan 
West Brom 

Wolves 
Blackpool 

48.12 
44.85 
41.91 
38.87 
35.73 
35.26 
32.63 
30.81 
28.46 
27.87 
27.18 
26.93 
25.51 
25.34 
24.45 
24.04 
22.87 
22.58 
19.96 
19.61 

Chelsea 
Man United 

Arsenal 
Man City 
Liverpool 

Tottenham 
Everton 

Sunderland 
Aston Villa 

Bolton 
Fulham 
Stoke 

Newcastle 
Blackburn 
West Brom 
West Ham 

Birmingham 
Wigan 
Wolves 

Blackpool 

47.93 
44.07 
42.07 
41.02 
37.24 
36.08 
32.50 
27.87 
27.76 
27.47 
26.68 
26.65 
26.61 
26.03 
25.08 
24.56 

24 
22.47 
21.94 
18.05 

Chelsea 
Arsenal 

Man United 
Everton 

Liverpool 
Man City 

Tottenham 
Newcastle 
Aston Villa 
West Brom 

Fulham 
Bolton 

West Ham 
Stoke 

Blackburn 
Wigan 

Sunderland 
Birmingham 

Wolves 
Blackpool 

49.48 
43.43 
43.33 
37.23 
36.78 
36.36 
35.99 
30.29 
28.73 
28.49 
28.40 
27.14 
25.31 
25.06 
25.03 
24.51 
23.89 
23.78 
21.29 
18.59 

Chelsea 
Man United 

Arsenal 
Liverpool 
Man City 

Tottenham 
Everton 

Aston Villa 
Stoke 

Fulham 
Sunderland 
Blackburn 
Blackpool 

West Brom 
Newcastle 
West Ham 

Birmingham 
Bolton 
Wolves 
Wigan 

50.21 
46.03 
40.09 
38.42 
38.33 
34.75 
33.69 
30.40 
27.58 
27.14 
26.96 
25.99 
25.59 
25.50 
25.40 
24.31 
24.22 
22.56 
21.01 
20.39 

 

Table 6. Posterior predictive validation (2.d.p) of the models pi-football, Fink Tank, Bet365 and Odds Wizard. Observed and 
estimated league table for the first 221 matches, season 2010/2011. 

5. Discussion 

The empirical results suggest that none of the existing evaluators can be trusted to accurately assess 
the performance of a football forecasting model. In fact, returning to the examples in Table 1 it is easy to see why 
theoretically the evaluators are unsatisfactory, by reviewing how the evaluators address the benchmark issues 
that we already highlighted: 

 
Predicted value of the observed outcome: Any evaluator that cannot identify system β as superior to α in 
match 1 clearly fails to preserve intuitive notions of accuracy. This rules out binary decision as an acceptable 
evaluator (all of the others preserve intuition here). 

 
Consideration of the probabilities of the unobserved outcomes: The viewpoint that only the predicted 
probability of the observed outcome matters is best summed up by Ian Witten and Eibe Frank (2005) who stated 
(in defence of the  informational loss evaluator) that  

 
“if you’re gambling on a particular event coming up, and it does, who cares how you distributed the 
remainder of your money among the other events?”  

 
It appears that much of the confusion here relates to the particular sport of the forecasting system under 
evaluation.  Obviously in sports for which there are just two outcomes, we only need to consider the probability of 
the observed outcome since the other is automatically determined from it. This includes, for example, the US 
National Football League (NFL) where draws are eliminated. In such a situation, the problems of finding an 
‘optimal’ evaluator may be feasible. For example, by ignoring the confidence of any given prediction, (Boulier & 
Stekler, 2003) showed that the Brier score performed optimally where they measured the predictive accuracy of 
the outcomes of NFL games for the 1994-2000 using power scores. Boulier and Stekler compared the generated 
forecasts from probit regression based on power scores published in The New York Times with those of a naive 
model, the betting market, and the opinions of the sports editor of The New York Times.  
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But Witten and Frank’s viewpoint is also relevant to any sport in which we are trying to predict which one, from a 
set of competitors, wins. In particular, this covers any type of racing event.  

 
However, the three outcomes of a football match are definitely not like the outcomes of a three horse race. In the 
event of a home win, a prediction of a draw is not equally as poor as a prediction of an away win, since a draw is 
‘closer’ to being a home win than an away win is to a home win. So, in the case of match 2 Table 1, any rational 
evaluator should determine that α is more accurate than β despite the fact that they assign the same probability 
to the winning outcome (0.5). To see why, consider a person placing a double-chance 1X bet (home team not to 
lose). A bookmaker who used system α would have pay less than that of system β. This is because system α 
considers that there is only 5% probability for the home team to lose the match, as opposed to system β which 
considers a 45% probability for the same scenario.  

 
This rules out, as potentially satisfactory evaluators, every evaluator that considers only the observed 
outcomes. However, what makes the match 2 predictions interesting is that the unobserved probabilities are 
both 0.45 and 0.05 in both cases – but they are in a different order.  It follows that an evaluator that does 
consider the unobserved outcomes but is indifferent to the order of these (such as Brier Score) is also 
inherently unsatisfactory (the latter evaluators will only be satisfactory if the unobserved outcomes are evenly 
distributed).  

 
This rules out every one of the proposed evaluators except those based on posterior validation. Because 
posterior validation is based on comparing expected points with actual points, it correctly determines that α is 
more accurate than β. Moreover, unlike any of the other evaluators, posterior validation is also able to correctly 
determine that in match 3 α is more accurate than β since its distribution is ‘closer’ to the actual outcome (draw). 

 
However, approaches based on overall posterior validation are far from being optimal in assessment. That is to 
say, comparisons based on these should be interpreted with care as they highlight the overall performance of the 
specified models rather than the distinct performance between matches. As an example, a difference of total 
points between observed and estimated outcomes during a posterior validation of either cumulative points or 
team-ranking provides inadequate information regarding the distinct predictive performance between matches 
and is thus inappropriate for devising ultimate conclusions.  

 
Also, none of the evaluators can account for the issues of goal difference and red card effects raised in Section 1.  

 
6. Concluding Remarks 

 
We have provided an analysis of the various evaluators that have been used to assess the performance 

of association football forecasting systems. Given the massive surge in popularity of the sport, and its increasing 
dominance of sports betting internationally, the need for widely accepted evaluators in this domain is evident. 
Moreover, given that the outputs of any football forecasting system are very simple (in this paper we have 
assumed that the outputs are simply three probability values corresponding to the three possible outcomes of any 
given match - home win, draw, and away win) it is not unreasonable to expect there to be an agreed satisfactory 
evaluator. Yet surprisingly, there is no such agreed method. We classified the various evaluators (10 in total) into 
two broad categories: those (such as the geometric mean and informational loss) which consider only the 
prediction for the observed outcome; and those (such as the Brier score and overall posterior validation) which 
consider the predictions for the unobserved as well as observed outcome. 
 
We have demonstrated both empirically and also theoretically that the existing evaluators are all inadequate to 
more or lesser degrees. In our empirical study we used the evaluators to assess the accuracy of four different 
forecasting systems (Fink Tank/Castrol Predictor, Bet365, Odds Wizard, and pi-football) based on data for the 
first 221 matches of the 2010-2011 Premier league. We found fundamental inconsistencies between the 
evaluators and demonstrated that they produce wildly different conclusions about the accuracy of the four 
forecasting systems. What is quite shocking is the extent to which the four systems in the study were ranked 
differently by the different evaluators. For example, one forecasting system pi-football, was ranked 3rd or 4th by 
all of the common simple evaluators, but was ranked 1st by most of the posterior validation based evaluators.  
 
From the theoretical perspective we have provided some simple benchmark validity criteria that need to be 
satisfied by any reasonable evaluator. Many of the existing evaluators fail to satisfy the most basic of these 
criteria. Only those methods based on posterior validation come close to satisfying the most important criteria. 
 
With the relentless increase in interest in football forecasting it will become more important than ever that 
effective evaluators of forecasting systems are used. We have highlighted the areas for improvement and 
recommend that our benchmark criteria should be used as a basic validity check for any new proposed evaluator. 
In the mean time, in the absence of a satisfactory evaluator, we recommend that multiple types of predictive 
evaluators (preferably based on posterior validation) be used in order to avoid most seriously erroneous 
conclusions. 
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