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Speckle Reducing Anisotropic Diffusion
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Abstract—This paper provides the derivation of speckle in a filter window with the average intensity of the window. So,
reducing anisotropic diffusion (SRAD), a diffusion method tai- the filter achieves a balance between straightforward averaging
lored to ultrasonic and radar imaging applications. SRAD is the (in homogeneous regions) and the identity filter (where edges

edge-sensitive diffusion for speckled images, in the same way that . ; . i
conventional anisotropic diffusion is the edge-sensitive diffusion and point features exist). This balance depends on the coefficient

for images corrupted with additive noise. We first show that the ~Of variation inside the moving window.

Lee and Frost filters can be cast as partial differential equations, The Frost filter also strikes a balance between averaging and
and then we derive SRAD by allowing edge-sensitive anisotropic the all-pass filter. In this case, the balance is achieved by forming
diffusion within this context. Just as the Lee and Frost filters o, o, onentially shaped filter kernel that can vary from a basic
utilize the coefficient of variation in adaptive filtering, SRAD ) . o L . .
exploits the instantaneouscoefficient of variation, which is shown 2verage filter to an identity filter on a pointwise, adaptive basis.
to be a function of the local gradient magnitude and Laplacian Again, the response of the filter varies locally with the coef-
operators. We validate the new algorithm using both synthetic and ficient of variation. In case of low coefficient of variation, the
real linear scan ultrasonic imagery of the carotid artery. We also  fijter is more average-like, and in cases of high coefficient of

demonstrate the algorithm performance with real SAR data. The variation, the filter attempts to preserve sharp features by not
performance measures obtained by means of computer simulation

of carotid artery images are compared with three existing speckle averaging. . o
reduction schemes. In the presence of speckle noise, speckle More recently, the Gamma maximumposteriori(MAP) and

reducing anisotropic diffusion excels over the traditional speckle extended versions of the Lee filter and the Frost filter have been
removal filters and over the conventional anisotropic diffusion iniroduced to alter performance locally according to three cases
method |n'terr.ns of mean preservation, variance reduction, and [12], [13]. In the first case, pure averaging is induced when the
edge localization. ' . ! p ging

local coefficient of variation is below a lower threshold. Above a
higher threshold, the filter performs as a strict all-pass (identity)
filter. When the coefficient of variation exists in between the
two thresholds, a balance between averaging and the identity is
I. INTRODUCTION computed (as with the standard Lee and Frost filters).

PECKLE, aform of multiplicative, locally correlated noise, Although the existing despeckle filters are termed as “edge
lagues imaging applications such as medical ultrasouREEServing” and “feature preserving,” there exist major limi-
image interpretation. For images that contain speckle, a g&alions of the filtering approach. !:II’St, the filters are sensitive
of enhancement is to remove the speckle without destroyikgy the size and shape of the filter window. Given a filter
important image features. In certain applications, howeva¥indow that is too large (compared to the scale of interest),
the removal of speckle may be counterproductive. Exampl@4er-smoothing will occur and edges will be blurred. A small
in which specklepreservationis important include feature Window will decrease the smoothing capability of the filter
tracking in ultrasonic imaging [19] and detection of featureaNd will leave speckle. In terms of window shape, a square
that are of the same scale as the speckle patterns (e.g., codadow (as is typically applied) will lead to corner rounding
lation damage) [18]. In cases where speckle removal is desifddectangular features that are not oriented at perfetro@-
(e.g., region-based detection, segmentation, and classificatii@s for example. Second, the existing filters do not enhance
[17], [21][23], the speckle reducing filters have originate§dges—they only inhibit smoothing near edges. When any
mainly in the synthetic aperture radar (SAR) community. THeortion of the filter window contains an edge, the coefficient of
most widely cited and applied filters in this category includ¥ariation will be high and smoothing will be inhibited. There-
the Lee [9]-[11], Frost [6], Kuan [8], and Gamma MAP filterdore, noise/speckle in the neighborhood of an edge (or in the
[12]. neighborhood of a point feature with high contrast) will remain
The Lee and Kuan filters have the same formation, anhoujier filtering. Third, the despeckle filters are not directional. In
the signal model assumptions and the derivations are differdfi Vvicinity of an edge, all smoothing is precluded, instead of
Essentially, both the Lee and Kuan filters form an output imad@hibiting smoothing in directions perpendicular to the edge and
by computing a linear combination of the center pixel intensi%"courag'”g smoothing in directions parallel to the edge. Last,
the thresholds used in the enhanced filters, although motivated
. . . b}/ statistical arguments, ai hocimprovements that only
Manuscript received August 9, 2001; revised June 24, 2002. The assoc{ﬁ e hei ffici fth ind b d h
editor coordinating the review of this manuscript and approving it for public lemonstrate the insufficiency of t evym ow-base apprqac es.
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from averaging filtering and noisy boundaries from leaving the
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In this paper, we have outlined a partial differential equa- A discrete form of (1) is given by
tion (PDE) approach to speckle removal that we call speckle re- At
ducing anisotropic diffusion (SRAD). The PDE-based speckle et =gty —
removal approach allows the generation of an image scale space 7. peT,

(a set of filtered images that vary from fine to coarse) without L _ ) )
bias due to filter window size and shape. SRAD not only préthere.; is the discretely sampled imagedenotes the pixel

serves edges but also enhances edges by inhibiting diffusRffition in a discrete two-dimensional (2-D) grid, ahdis the

across edges and allowing diffusion on either side of the ed&1€ Step sizey, represents the spatial neighborhood of piel

SRAD is adaptive and does not utilize hard thresholds to alt@ | IS the number of pixels in the window (usually four, except

performance in homogeneous regions or in regions near edgEte image boundaries), aNd; , = I — I}, Vp € 7,. _

and small features. The new diffusion technique is based onl "€ advantages of anisotropic diffusion include intra-region

the same minimum mean square error (MMSE) approach sgroothing an(_j edge preservation. Anisotropic diffusion per-

filtering as the Lee (Kuan) and Frost filters. In fact, we shofPrms well forimages corrupted by additive noise. Several en-

that the SRAD can be related directly to the Lee and Frdagncements and edge detection methods have been described in

window-based filters. So, SRAD is the edge sensitive extensiif literature [3] for images with additive noise. In cases where

of conventional adaptive speckle filter, in the same manner tHg}2ges contain speckle, anisotropic diffusion will actuaiy

the original Perona and Malik anisotropic diffusion [15] is thf@ncethe speckle, instead of eliminating the corruption. The

edge sensitive extension of the average filter. In this sense, WK of this paper uses the strengths of the PDE approach to

extend the application of anisotropic diffusion to applicatiod"oduce edge-sensitive speckle reduction.

such as radar and medical ultrasound in which signal-depep- . :

dent, spatially correlated multiplicative noise is present. ¥ Adaptive Speckle Filters
The paper is organized as follows. In Section II, we first re- In this section, we briefly describe the speckle reducing fil-

view nonlinear anisotropic diffusion and the current speckle fiters: the Lee filter and the Frost filter. Then, we examine the

tering techniques. Then, we establish the relationship betweééfationship between the speckle filters and the diffusion tech-

SRAD and the speckle filters. In Section IlI, we describe thique.

proposed strategy for extending nonlinear anisotropic diffusion1) Lee Filter [9]: The Lee filter is designed to eliminate

for imagery corrupted by speckle and derive SRAD. Section IsPeckle noise while preserving edges and point features in radar

defines the criteria for quantifying the performance of the prénagery. Based on a linear speckle noise model and the min-

posed algorithm and presents experimental results for synthéfi¢/m mean square error (MMSE) design approach, the filter

and real ultrasound images of human carotid artery. We aReduces the enhanced data according to

demonstrate the possible application of SRAD to radar imaging. PO _

In Section V, we conclude the paper. Li=T+k (I, - 1) ®)

c(VI;p)VISip 4

where I, is the mean value of the intensity within the filter
Il. ANISOTROPICDIFFUSION VS ADAPTIVE SPECKLEFILTER  window7,; andk, is the adaptive filter coefficient determined

A. Anisotropic Diffusion by
Perona and Malik [15] proposed the following nonlinear PDE ke=1-C2%/C2. (6)
for smoothing image on a continuous domain:
Here,
oI
— =div[e(|VI]) - VI] -2 -2
ot ) 2=/l (L-1)" ) (L,-T.)°  (7)
I(t = 0) =1 pEN

whereV is the gradient operatot;v the divergence operator,and CS is a constant for a given image and can be determined
|| denotes the magnitude(,z) the diffusion coefficient, and, by either
the initial image. They suggested two diffusion coefficients

C2=1/ENL (8)
1
r)=— 2) or
) = T iy @ )
and o _ var(z
9 Cu (E’)Q (9)
c(x) = exp[—(x/k)] @)
whereE N L is the effective number of looks of the noisy image,
wherek is an edge magnitude parameter. var(z') andz’ are the intensity variance and mean over a homo-

In the anisotropic diffusion method, the gradient magnitude geneous area of the image, respectively.
used to detect an image edge or boundarysae@discontinuity The local statistiaC; plays an essential role in controlling
in intensity. If|VI| > k, thene(|VI]) — 0, and we have an the filter: if C; — C,, thenks; — 0, and, ifCs — oo, then
all-pass filter; if [ VI| < k, then.c(JVI]) — 1, and we achieve k; — 1. In general, the value df; approaches zero in uniform
isotropic diffusion (Gaussian filtering). areas, leading to the same result as that of the mean filter. On the
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other hand, the value &f, approaches unity at edges, resulting Moreover, it is interesting to show the effect of assigning

in little modification to the pixel values near edges. slightly different weights to the four directional differences in
2) Frost Filter [6]: The Frost filter uses an exponentially(14) such that
damped convolution kernel that adapts to regions containing 1
edges by exploiting local statistics. The filter output is deter- I, ; =1; ; + W[(l — kiv1,5)Tig1,5 — L, 5)
mined by s
+ (1= ki j)Lica, 5 — L )
=Y ml, (10) + (1= ki jo1)Li 1 — L )
PEn: + (1= ki j)(Li, -1 — Li, )] (16)
where In fact, (16) reduces to
. 1
my, = exp(~KC2d, ;) [ Y exp(-KC%d,,)  (11) Iij=1T; + i div[(1 = ki, ;)VI; 5] an
pEN *
UREY R 5 With variable substitutions in (17), we immediately recognize
ds,p = \/(" —1p)* + (7~ Jp) (12)  hat (17) is a form of anisotropic diffusion [as in (4)] where

here ¢ is the damping factof, j) are the grid coordinates ' "
whereK'is the damping factoi;, j) are the grid coordinates 1o | e filter and enhanced Lee filter [12] process a cur-
of pixel s, and(i,, j,) are those of pixep.

The factorK is ch h that when in a h rent pixel based on its intensity and the intensities of neigh-
_'nhe a‘; OFt 1S Chosen such that when in a homogeneous r8(3ring pixels inside a fixed square window. Thus, these two fil-
gion K C? approaches zero, yielding the mean filter output;

5 R #rs have no mechanism to enhance edges or feature structures
an edgek’C; becomes so large that filtering is inhibited COMyithin a window. The modification of the Lee filter to include
pletely. directional sensitivity and filtering perpendicular to the edge di-
rection would significantly enhance the ability to remove the
speckle in the vicinity of edges and small features. That is what

1) Lee Filter and Diffusion: Typically, the Lee filter oper- refined Lee filter [10] does. Similarly, with (17) the diffusion
ates in a 7x 7 moving window. Now let us choose the filterassumes sort of edge directional sensitivity.

windowasns =7, ={(:—1,7), (4,5 —1), 1 + 1, 7), (i + 2) Frost Filter and Diffusion: Let the filter window be

C. Relationship of the Lee and Frost Filters With Diffusion

1, j)} at an interior sites = (i, j). chosen as), = 7,. Thus, we have from (12) thak, , = 1
We can express the special case of the Lee filter with windowy, ¢ 7, which implies thatn,, = 1/|7,| for anyp € 7. The
7,in the following form: Frost filter (10) is reduced, in this case, to
. - . 1 1
Ii,j :L;, —|— (1 — ki,j) (I,,j’j _Lﬁ,j) Ii,j :ﬁ Z Ip :Ii,j + H Z (Ip _Ii,j)
1 " PEM, M PET,
=Li+(0—ki)| = > Li—1I,; 1
> J ( 1]) |775| Z p > J :Ii,j+__V2[i,j (18)
PEN, |775|
1 which resembles the form of the isotropic diffusion update func-
=1ij+ (1= ki) 7| Z (Ip = Li5) tion with At = 1.
° pe, If we reassign weights in (10) such that
1
=Iij+(1—Fki ) ] i (13 =
B _ ' _ _ _ M, jLigr, j+M; jLiq, j+M; 1L j1+M; 1 -1 (19)
Where|n§| (_:4)t|flthe; nun;ber of pixels in the_ window. Mgy j+M; j+M; ji1+M;
Substituting!; " A7k jforL-_j,L-_j,ki_j in (13), respec-
_ i, L3 i, sdr b, g R, o oy .
tively, we obtain whereM; ; = exp(—KC7 ;), we can reorganize (19) as shown
. in (20) at the bottom of the next page, whéfg = ((M;11,; +
I =1+ (L= k)= VI ;. 14) Mi o1 +2M; ) /47 )
i, j i ( ,J) .| i Substitutinglff}At' It i ]gij forI; ;.1 ;, k: j, respectively,

and lettingAt = K (ifs value is between 0 and 1), we show

Comparing (14) with (4) and noting the equality (20) is in the form of (4) wheré\¢ is space-and-time varying.

V2L =Ty i+ Liq 40 iaq + 1 iy — AL So, both the Lee and Frost _fi_lters resemble i_sotropi_c di_ffusi_on
A BT ! processes and can be modified to enact anisotropic diffusion.
= Z (Ip — 1i,5) (15)  These observations lead to the construction of speckle reducing
PEN, anisotropic diffusion.

we show that the form of (14) is a special case of (4) in which
¢() can be taken out of the summation afd = 1. In other

words, the Lee filter can be posed as a discigtgropic diffu- Casting the Lee and Frost filters in the framework of the PDE
sion equation. bridges and unifies two seemingly different methods: the PDE

I1l. SPECKLE REDUCING ANISOTROPICDIFFUSION
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approach and the adaptive filtering approach. Perhaps more Bubstituting first (23) and (24) into (22) and then substituting
portantly, the framework allows us to develop a new modéte result and (23) into (7), we have

for speckle reduction, which may open new avenues for pro-
" . . . - 2.+ L w2z,
cessing ultrasound and radar images. In this section, we derive cz o L EN 0] ) 25)
the speckle reducing anisotropic diffusion (SRAD) method. Cr A 1 oo 2"
[+ 7 V2L 5]
A. Coefficient of Variation In the continuous domain, we have the following equality:
Until now, our focus has been on the similarity between the V2I% = 2|VI|* + 2IV?]. (26)

conventional adaptive despeckle filters and anisotropic diffu- ) )
sion. By extending the PDE versions of the despeckle filte/@n the discrete 2-D grid, (26) can be represented by
we have formulized a more general update function V212 = |Vl j? + Vel ;| + 2L, V2 (27)

whereVI; ; andVgl; ;, two difference approximations to

Ifj'm _ If,j i ?t' div[c(Cf,j)VIf,j] 1) the gradient, are given by
s Vil j=[Li; = Lica,j, iy — L j—1] (28)
wherec(- - -) is a bounded nonnegative decreasing function. As Vil j=liv1,j — Lij, Li j+1 — L j]- (29)
with conventional anisotropic diffusion(- - -) is the diffusion

Allowing |VI; ;| to be discretized as the average of
Vi1 j|* and [VRI?;|, and substituting (27) into (25), we
§Btain the following form forC? ;:

coefficient.

In discussing the background on the Lee and Frost filters,
have noted the importance of the local statistjc;, the coeffi-
cient of variation, in speckle filtering. To derive a PDE version ) %|v[m»|2 — %(vﬁm)?
of the classical speckle reducing filters, we must examine the co- ij 1 oo 2

ici iation in conjunction wi i iffusi 13,5+ 5 V21, 5]
efficient of variation in conjunction with developing a diffusion
coefficientc(- - -) that inhibits smoothing at the edges. Specifi- It is required that”; ; > 0. Although by the derivation of
cally, we need to derive a discretized version of the coefficiet80) its numerator is nonnegative, the denominator of (30) may
of variation that is applicable to PDE evolution. In a sense, tHcome zero at some points if we do notimpose some restriction
function can be called an “instantaneous coefficient of varign the image function.

(30)

tion.” This subsection develops such an operator. Proposition I: If I; ; > 0 everywhere over a 2-D coordinate
First, we write the local variance estimate of intensityjin grid €2, then (30) is well defined ove.
as Proof. We only need to show that the denominator of (30)

cannot be zero if; ; > 0 everywhere. Suppose that the denom-
1 TN 7 T2 inator of (30) becomes zero at position 5). Then
T (p=1) =) - (1) (@) 0 postien j). Then.
PEM. V2 j = =AL . = T i+ 1o+ e =4
where (12); ; is the average of intensity squared at position "J tLithion gt hign
(i, ). Then, we express the local intensity mean and local iBut, by assumption/; ; > 0 for all (i, j) € Q. So, itis not
tensity squared mean estimates in terms of Laplacian as folloywsssible for the denominator of (30) to be zero.
We denote the special case(@f ;, one that is computed over
75, by g¢;, ; for convenience and assume that the image inten-
7 7 1 ity function has no zero point over its support %0, can be
Lijj=lj+ T —L=1;+= Y (I,—1L; Slunctionhasnozerop PPOM. %05
S R N gﬁ: 0y = 1)) viewed as a discretization of

1 2 27\ 2
=Lty Vi (23) 3 (1) - & (%)
2 2 [ 272 = L (v21))? D
(I2); ; =%, + (/[0 )V=(IL7)s, 5. (24) [1+ 3 (57)]
AP Mii, ilivr,j + Mi jliz1,j + Mijiadi jon + Mijli o1
R Misr,j + Mi,j + M, ji1 + M v
I M1, j(Ligr,j = 1) + M j(Lioa,j — L) + My g (i i — Li ) + My (L j—1 — L)
v Miga,j+ My j + M jyr + M,
K/
= Ii,j + —0 div[MivjVIi’j] (20)

17|
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over a uniform grid of unit step size in two directions. whered() denotes the border 6i, i is the outer normal to the
As C; ; is usually called local coefficient of variation, wed¢2, and
call the functionq the instantaneous coefficient of variation 1

It combines a normalized gradient magnitude operator and ac(q) = ) N2 ) p) (33)
normalized Laplacian operator to act like an edge detector for L+ la*(e, g5 8) = @ (O lao () (1 + go (1))
speckled imagery. High relative gradient magnitude and low rélt

ative Laplacian tend to indicate an edge. At the center of an

edge, the Laplacian term undergoes zero crossing and the gl%q = exp{=[¢*(z, y: 1) — O/ [ (D1 + a6 (D)]}- (34)
dient term dominates, resultingin ; — |V1; ;|/I; ;. Thein- |, (33) and (34)4(x, y;
stantaneous coefficient of variatiafiows for edge detection in
bright regions as well as in dark regions.

So, the original anisotropic diffusion algorithm [15] (1/2)(IVI|/1)% — (1/42)(V2I/1)2
may be viewed as the edge-sensitive PDE extension of the?(¥: ¥i 1) = [1+ (1/4)(V2I/D)]2
Gaussian-weighted averaging filter. In the same way, SRAD
may be viewed as the edge sensitive PDE version of thadqg(¢) is the speckle scale function. We call (32) the SRAD
conventional adaptive speckle reducing filters. With SRAIRDE.
the instantaneous coefficient of variation plays a crucial role asIn the proposed SRAD, the instantaneous coefficient of vari-
an edge detector in the presence of speckle. In the followiagon ¢(z, y; t) serves as the edge detector in speckled im-
section, we show how the instantaneous coefficient of variaticagery. The function exhibits high values at edges or on high-con-
q, is incorporated in the speckle reducing diffusion techniquetrast features and produces low values in homogeneous regions.

To end this subsection, we present the second propositionThe diffusion coefficient expressions in (33) and (34) follow the

Proposition II: Given an initial image{7? ;1 having finite  basic form of (2) and (3), respectively. The modification reflects
power and no zero points over domé&nthe diffusion process encouraging isotropic diffusion in homogeneous regions of the
(21) can be updated such tHdf ;} have no zero points ovér. image wherey(z, y; t) fluctuates aroundy(t). Similar to the

Proof: Step 1. Slncel0 is nonzero everywherq,L is parametek in (2) and (3), the speckle scale functigs(t) ef-
well defined overQ2 by proposmon . This implies:(q? J) is fectively controls the amount of smoothing applied to the image

t) is the instantaneous coefficient of
variation determined by

(35)

defined and upper bounded by a const@nt by SRAD. It is estimated using
Sincel? . ;. ; 1s finite power signal ovef2, there exists an upper

boundB such thatly ; < B forall (i, j) € Q. Qolt) = Vvarfz(8)] (36)
Therefore, we hav@iiv[ (a HVIP ]| < Cldin[VID ]| = #(t)

C(IV217,1) < 4BC. wherevar|[z(t)] and z(t) are the intensit i d

: y variance and mean
Let At be chosen such thatin{I} ;} — (At/[77,[)4BC > 0,  over a homogeneous area atespectively.

i.e., At < b/(BC), whereb = mln{L ;> (i, j) € 2}. Then,  2) Analytical Form of Scale Functiop(¢): Because of the

we haveIA! > 0 for any (i, j) € Q. I*! is upper bounded need of computing (36), the SRAD requires knowing a homoge-

byB + (At/|77 )4BC.FromI} ; to I we made the first iter- neous area inside the image being processed. Although it is not

ation. LetAt(1) denote the chosent for this iteration. difficult for a user to select a homogeneous area in the image,
Step 2. Assume that at theth iteration, the imagd_ ; is it is nontrivial for a computer. So, automatic determination of

finite power signal and has no zero point everywhere whege(t) is desired in real applications to eliminate heuristic pa-

T = Y"1 At(m) with At(m) being the time step for the rameter choice.

mith iteration. From the result of step 1, there existAi#n) First of all, we state thaj,(¢) can be approximated by
such thatITJ’At(") is finite and has is supported (nonzero) over
Q. q0(t) ~ qo exp[—pt] @37)

If assigningAt = min{At(:)| = 1, 2, ...}, then we know

. ! Where is a constant, angl is the speckle coefficient of varia-
that (21) evolves without creating zeros. L % i b

QED, tion in the observed image. For fully developed speaes 1
for ultrasound intensity data (without compounding) apd=
1/V/N for N-look SAR intensity data. For partially correlated
speckley is less than unity.

Now, we give the derivation of (37). As we expected, in a

1) Basic Theory:Based on previous discussion, we proposgniform area the diffusion should be isotropic. Adopting the dis-
a new anisotropic diffusion method for smoothing speckled irgrete isotropic diffusion update, we have

agery. Given an intensity imagl(z, y) having finite power

At
and no zero values over the image suppnrthe output image IH—Af _ It = (I7t+1 J—I-If '+[f,j+1+[f,j_1 _ 4If,j)-

B. Speckle Removing Anisotropic Diffusion

I(z, y; t) is evolved according to the following PDE: 4 38)
Ol (z, y; t)/0t = div[e(q)VI(z, y; t)] (32) Given o(t), the standard deviation df ; in a homogeneous
I(z, y; 0) = Io(z, y), (O(z, y; t)/07)|sq = 0 region, we can estimate the standard deviatiod/gf*'in the
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region. Assuming that pixels in the region are statistically in- TR
dependent and identically distributed, we have from (38) and N [ EXPERIMENTAL
statistical formula for the variance of a sum of random variables 0.8 | \\ —— THEORETICAL
o(t+ At) = /(1 — At)202(t) + (At/4)2402(t).  (39) 506 N
On the other side, the local means remains the same before and 9@ \
after an iteration. So, we have S 04 - S
S
qolt + At) = qo(t) /(1= AD? + (AD?/L. (40) 02 | e

For At < 1, the(At)? terms in (40) can be neglected, and we 0 S M“"“
have 131 B1 81 121 151 181 211 241 271 301

V1-2At~1- At (41) ITERATION
by Taylor series expansion and neglecting the second and higher Fig. 1. Plots ofg(f)/qo Versus iteration.
order terms. So, (40) becomes

qo(t + At) — qo(t) + qo(t) At =~ 0. (42) For clarity, we write (32) as the sum of an isotropic term and an
o . o anisotropic term

Dividing both sides of (42) byAt, and taking limit asAt¢ — 0, a1
we have 5= c(q)V2I + ¢ (¢)F (45)

Go(t) + qo(t) = 0 (43)  wherec/(x) is the first derivative of(z) and
where ¢o(t) is the first derivative ofgo(¢) with respect tot. 1
Solving (43), yields F= (¢ole + qy1y) (46)

qo(t) = qo exp[—1]. (44) whereq, = 9q/0z, q, = 9q/0y, I, = 81/0z, andI, =

. e 1/0y.
Itis seen from (44) that through a diffusion process, Speck(?eFirst, let us consider the behavior of SRAD in homogeneous

would be reduced exponentially (with a decay factor of 1) in ions. Using (33), we know that ~ go(t), c(q) ~ 1 and

homogeneous regions. We have observed that experiment : )
curves ofqy(t) appear as exponentially deceasing Howeve] .q) 7 0._S|ncec’.(q) 7 0, atfirst glanoe, SRAD seems to be
0 : a{rasotroplc even in homogeneous regions. However, recall that

f{he smoothing rate predicated by (44) is faster than those fo%‘ omogeneous region is where the speckle is well developed.
n _Ioﬁpenmtantsi_ for the insuffici £ (44) lies in the f This implies that the fluctuation of values of pixels in uniform
e explanation for the insufficiency of (44) lies in the aClreas is highly random in space, leading to the spatial average

! . ; .
that (39) is correct only if all of; ; values ina homogeneousof F over any microscopic zone is zero. So, macroscopically,

. . . 0
region are truly independent at amy Assume that thd, ; the anisotropic term has no accumulative influence, yielding

voluos ina homogeneous regioo are independont and ideotic Bﬁropic diffusion in homogeneous regions.

distributed one-sided exponential random vonables (asin th hen, we examine the behavior of (45) near an image edge.
fully developod speckle case). As the iteration proceed_s, tbgt the edge directiom be the unit vectofu, v]. Let £ de-

I;-J val_ues will gradually b_ec_ome Gaussian random Va”abl?l%te the contour direction—the direction pérpendiculaw,to
according to the central I|m|t. theorem. Meanwhile, tﬁej e.,¢ = |—v, u). Let1,, andl¢ denote the second-order direc-
values become correlated asncreases. In general SF)G(:kletional derivatives in the direction of and¢. The second-order

0 .
cases/; ; values may actually be correlated. So, the reduc“%‘érivatives along the and¢ are computed as follows:

rate of speckle variance in an iteration of diffusion shou
be smaller than that predicated by (44). This explanation 1, = I,,u® + I,,v* + 2L uv + [(u?),/2 + vu,] L,
suggests ways of modifying (44) for better agreement with + [(v2)y/2 + ]I (47)
experimental curves. One simple solution is changing (44) into Lo T o — o] 2) 79 _ I
(37) with a single constant(<1) being introduced to reduce g6 = LaaV” + yytt eyt + [(17)a /2 — uy |1

the exponential decay rate. Fig. 1 shows the plotgyf) /o + [(u?)y /2 = vug ]I (48)

in which the solid line is predicated by (37) with= 1/6, and whereu, = du/dx, u, = du/dy, v, = dv/dz, v, = v/dy

the dashed line represents the experimental results compuied; 7 4147 are second derivatives 6f ’
using (36) within simulated ultrasonic image of carotid artery ThgmongiggotropioJ!{erm in (45) is driven by edges. So, the in-

(see .Rosults secti_on). Givggandp, and using (37) instead Ofduced diffusion flow is in the edge direction. Let
(36) in implementing SRAD, the user does not have to choose

a homogeneous region in the image. I, = F. (49)

C. Closer Look at SRAD Then, in they — £ coordinates, equation (45) becomes

ventional anisotropic diffusion. We examine two of them here. ot (50)

SRAD has some characteristics that are not shared with con- oI qc(q)
= C(q) 1 + c(q) LIU + Iff .
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Using (33), we can reduce (50) to Within the third stage, we calculate the divergence(efV I,
needed for the SRAD PDE in (32), as
oI 1 —¢*/q5(t)
5t = ¢l@) T /a0 Ioy + Iee ¢ - (51)
0 dij = gylein j (L — 45) + (L 5 = 1)
Sincego(t) < 1 andg > qo(t) at an edge, we have thét — et (I — TP ) e (I — T 58
2/at()/(1 + ¢*/¢(t))] = —1 near edges. This fact has a Lol = )+ e U = 105 (38)
strong impact on SRAD. At the center of an edge, sihgeun-  \yiih symmetric boundary conditions
dergoes zero crossing, the SRAD diffusion proceeds only along

the contour direction, just as with conventional anisotropic dif- v —=dn n _
; ; : « Lo e -1, = %0,5> M,j = OM—1, >
fusion. However, on either side of an edge, “negative” diffusion

occurs along the edge direction. This phenomenon in SRAD §j=012..,N-1 (59)
has not been observed with anisotropic diffusion, where the di _y =d3 g, di n =d3 Ny_q,
diffusion in the edge direction is gradually suppressed as ap- 1=0,1,2, ..., M —1. (60)

proaching the edge center from either side of an edge. It is this

“negative” diffusion that makes the dark side of edge darker andFinally, by approximating time derivative with forward differ-
bright side of an edge brighter, leading to a sharper edge contaricing, the numerical approximation to the differential equation
Our experiments confirm the mean-preserving behavior in hig-given by

mogeneous regions and edge preserving and enhancement be- A

havior at edges. =gy Tt a . (61)

D. Discretization
Equation (61) is called th&RAD update functionVith the

The differential equation (32) may be solved numericallgrAp ypdate function in hand, we now demonstrate the effi-
using an iterative Jacobi method. Assuming a sufficiently smalhcy of SRAD using (32) in terms of preserving the intra-region
time step size ofA¢ and sufficiently small spatial step sizeémean, reducing the intra-region variance, and preserving the
of h in 2 andy directions, we discretize the time and SPacgdge positions. In numerical implementation, we chdose 1
coordinates as follows: and At = 0.05; moreover, since the diffusion coefficient will
not be exactly equal to zero at any edge in a digital image, as
‘ . an option, we may sef; ; to be zero if it is less than a lower
x =ih, i=0,1,2,..., M -1 thresholdT’, to better stop diffusion across main edges.
y=jh, §j=0,1,2 ..., N—1

t =nAt, n=20,1,2,...

. . . IV. EXPERIMENTS AND RESULTS
whereMh x Nh is the size of the image support.

Let I7'; = I(ih, jh, nAt). We then use a three-stage ap- In this section, we test the SRAD PDE using both simu-
proach [7] to calculate the right hand side of the SRAD PDE. Iated and real ultrasound data. Additionally, we demonstrate
the first stage, we calculate the derivative approximations atte algorithm with real SAR data. First, we describe computer

the Laplacian approximation as simulation of ultrasonic data. Then, we conduct three experi-
. . . . ments using synthetic ultrasound images. In each experiment,
VRl = {[£+1,j _ Im’, I — Im} (52) We compare the results of the SRAD with those of three ex-
! h h isting schemes, i.e., the enhanced Lee filter [12], the enhanced
n 'y =nty; L= 10 Frost filter [12], and anisotropic diffusion [15] applied as a ho-
Vil = { h ’ h ] (53) momorphic filter. We examine the mean preservation error and
yo AP A IR R I — AL the standard deviation reduction to quantify the performance of
Vi = B (54) algorithms in homogeneous regions. To compare edge preser-
vation performance, we use Pratt’s figure of merit [16]. Finally,
with symmetric boundary conditions we present two filtering results using real ultrasonic data and
" " " " SAR data. So, the synthetic experiments allow the computation
I =15 5 Iy =1Ihr-a, 5 of ground truth information and thus the quantification of algo-
J=0,1,2 .. N-1 (55) rithm performance. The real image examples show the useful-
I =1}, 'y =1'n_1, ness.of SRAD for actual image processing applications using
i=0,1,2,...,M—1. (56) acquired data.

In the second stage, we calculate the diffusion coefficient A. Simulation of Ultrasound Imagery of Carotid Artery

[see (33) and (34)] according to LetV (z, y) represent a 2-D ultrasonic echo data set, where
)] andy denote axial and lateral coordinates, respectié(y:, y)

is a bandpass signal in the axial direction. It is assumed that the
imaging system has a linear, space-invariant point spread func-
(57) tion. Allowing the population of scatterers of an object being

G j=¢c l(l <IT \/|VRIi,j|2 + VoI, ?, T VA7
)

%]
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TABLE |
CAROTID ARTERY MODEL PARAMETERS
B M w

Experiment No. | Areal | Areall | Arealll | Var Tilt
1 1 5 20 1 =~45°
Fig. 2. Simulated data (a) backscatter cross section distribution (b) simulated .

image (imaging parameterf; = 10 MHz, o, = 2, ando,, = 1.5). I 1 5 15 1 =45
1 1 5 20 2 =45°

imaged to be represented by a scattering funcfltfn,, y), the
raw (“RF") data is governed by [4] The simulated ultrasound image corresponding to Fig. 2(a) is
] shown in Fig. 2(b). The image is log-compressed for display,
Vi(z, y) = hiz, y) « T(z, y) (62)  and the size of the image is 128128 pixels.

Where_* Qenotes spat_|al convolut|_o_rT(x_, v) accognts for B. Criteria for Quantifying Algorithm Performance
acoustic impedance inhomogeneities in the object due to

density and speed perturbation that generates the scatterindf) OUr €xperiments, we are quantifying the algorithm perfor-
andh(z, y) is the point spread function or impulse respons@ance in terms of edge preservation, mean preservation in a
of a hypothetical ultrasound imaging system. We assume tﬁ&mogenous region and variance reduction in a homogeneous
h(z, y) is separable, i.eh(x, y) = hi(z)h2(y) whereh,(z) region. _ _

is a Gaussian-weighted sinusoidal function (a Gabor function)l) Edge PreservationTo compare edge preservation per-

determined by formances of different speckle reduction schemes, we adopt the
Pratt’s figure of merit [16] defined by
hyi(z) = sin(kox) exp[—2?/(202)] (63) &
1 1
whereko = 27 fo /¢, c is the speed of sound in tissug, is the FoM = Z (68)

V : L~ 1+ d?a
center frequency, and, represents the pulse-width of trans- tax {N’ N“le‘”} =t ‘

mitting ultrasonic wave. The second tefm(z) is the spatial \yhere N andN,,.,; are the number of detected and ideal edge
response for the transmitting and receiving aperture determlr}ggeb, respectively; is the Euclidean distance between itie
by detected edge pixel and the nearest ideal edge pixelpasd
_ 2 9 a constant typically set to 1/ O M ranges between 0 and 1,
ho(x) = expl—y”/(20,)] (64) with unity for ideal edge detection.
whereo, represents the beam-width of transmitting ultrasonic /"0 strongly depends on what method is used to obtain a
qlupary edge map. Instead of using different edge detector that

wave. So, (62) can be computed by using two sequential 1°D'¢
convolutions:V (z, y) = ha(y) * h(z) * T(z, y). maximizes FOM for each despeckle scheme, we apply the

A realistic biomedical model would include subresolutiof2Me detector, the Canny detector [3], to provide a fair compar-
variations in object impedance from an average value. Thefg2" Of algorithms. To avoid oversmoothing due to the detector
fore, in our test, we employ the following scattering model: itself, we let the standard deviation of the Gaussan k_ernel in

the Canny detector be = 0.1. Note that edge detection is per-

T(x,y) =t(z, y) Gz, y) (65) formed on the processed intensity data, not upon the processed

log compressed data (used for display). The ideal edges are ex-
wheret(z, y) is the echogenicity model (or ultrasound crosgacted by applying the Canny detector with= 4 to the carotid
section distribution) of the object being imageez, y) is @ artery model as shown in Fig. 2(a). The resulting ideal edges are
Gaussian white noise field with zero mean and some varianggse to manually delineated edges from the synthetic image.
Specifically, a carotid artery echogenicity model fdr, y) 2) Mean Preservation and Variance Reductiofihe mean
is employed in our experiments as illustrated in Fig. 2(a). Weeservation and fluctuation reduction in homogeneous region
chose the carotid artery as a prototypical experiment, becadse measures of success in terms of radiometric estimation. A
it is an application in which precise segmentation/boundagyiccessful speckle reducing filter will not significantly alter the
detection is required. The arterial wall thickness and thfiean intensity within a homogeneous region. Likewise, the ef-
diameter of the artery reveal important parameters concernfegtive speckle-reducing filter will reduce the variation within

diseases such as artheroschlerosis. N each homogeneous region. We compute and compare the mean
SinceV(z, y) is a bandpass signal, we express it in quadrand standard deviation over three different regions in our carotid
ture representation [1] artery simulation: within the artery, within the vessel wall and
A within fat/muscle regions.
Valz, y) =V(z, y) +5V(z, y) (66)

- . . . C. Results
whereV (z, y) is the Hilbert transform oV (z, y) with respect

to =.. Finally, we create an envelope-detected amplitude imagel) Simulation ResultsHere, we present three sets of exper-
(representing echo magnitude) given by imental results using three carotid artery echogenicity models

that are parameterized as in Table I. In this taBleM and
Az, y) = [Va(z, y)l. (67) W denote the mean values of the ultrasound cross sections of
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2) Real Image ResultsA real ultrasonic image (128 128
pixels) of a human cartoid artery is shown in Fig. 4(a). The data
was acquired using a LOGIQ 700 MR ultrasonic scanner man-
ufactured by GE Medical Systems. During the data acquisition,
the baseband complex echo signal was recorded. The real ultra-
sound image is taken as the amplitude of the baseband complex
data set with time gating compensation for attenuation losses.
Fig. 4(b)—(e) shows the smoothed images given by the four fil-
ters tested on the synthetic data. Note the smoothness of the ho-
Drlr[]':)geneous regions and the sharp, strong edges given by SRAD.

e only negative feature of the SRAD result that is observ-
able qualitatively is the slight broadening of the vessel walls.
o ) SRAD was implemented in Matlab (Mathworks, Natick, MA)
the artery interior, the muscle/fat region and the vascular wallaq achieved a processing rate of 40 msec/iteration for a128
respectively.Var is the variance of the Gaussian fluctuation g image on a PC with a Pentium 4 (1.7 GHz) processor.
around mean cross sections, anid denotes the orientation of Fig. 5(a) shows a HH polarized 4-look SAR image of a cen-
the artery with respect to the horizontal direction. tral area in Hong Kong, China. The image data set was ac-

Fig. 2(b) shows the simulated noisy image used in experimejifired by the NASA SIR-C L band polarimetric SAR system.
|. Fig. 3 shows the smoothed images in experiment I, processag. 5(b)—(e) shows the smoothed images of the four filters when
by using four speckle reduction schemes: enhanced Lee filfgjplied to the test data set. For AD-Homomorphic, and SRAD,
[12], enhanced Frost [12], anisotropic diffusion-based homgne diffusion is stopped automatically when the residual error,
morphic filtering (denoted by “AD-homomorph” in the results)defined as the mean square error of images between two itera-
and SRAD, respectively. When applying the enhanced Lee filtghns is smaller than 0.01.

(En-Lee) and enhanced Frost filter (En-Frost), the input data arg=yom Fig. 5, it may be observed qualitatively that the con-
intensity images, and the window sizes are set to 7 pixels. yentional anisotropic diffusion cannot preserve salient features
To compare SRAD to conventional anisotropic diffusion [15}n the presence of speckle. The En-Lee filter and the En-Frost do
we implemented diffusion in a homomorphic manner, since thgduce speckle but blur details. The proposed technique, SRADs
conventional algorithm cannot eliminate multiplicative noisqji\,eS the best performance in terms of smoothing noise and pre-
The anisotropic diffusion-based homomorphic filtering is pekerving edges at various scales. This SAR example is a dramatic
formed as follows: first we take the logarithmic transform ofxhibition of the improvement made possible by the PDE ap-
input data; then, we apply anisotropic diffusion [see (1) and (3Hroach.

and then compute the exponential point operation of the diffusedeor a| the results shown in Fig. 5(b)—(e), it appears that the
data. In implementing the homomorphic anisotropic diffusionnear features at the bottom of the image in Fig. 5(a) have
we used a fixed number of iterations 150) and a fixed time pheen markedly degraded or lost. Essentially, features at the same
step £0.1). To achieve the best results, we chose scaling faci@iale as the speckle will be eliminated by all of the speckle re-
k = 3 for synthetic data and SAR data, ahe- 5 for real ultra-  gycing algorithms shown (Lee, Frost, SRAD) and will be also
sound data in (3). SRAD, in contrast, is applied directly to thgegraded by the conventional diffusion algorithm. The major
intensity data. With SRAD, the diffusion coefficient is chosegegion boundaries, however, are preserved, especially by the
as (33), the time step size is setd = 0.05, and the number SRAD technique. Although this processed SAR result is purely
of iterations applied is 300. qualitative, it shows promise for SRAD as a general-purpose

Table Il summarizes the mean preservation and variance gpeckle reducing filter.
duction performance of the four filtering schemes in three exper-
iments. In each experiment, the mean and standard deviations of
three test areas are computed for each filtering scheme. The test
areas are chosen in the artery interior (area l), the muscle/fat re-

Fig.3. (a)—(d) Filtered images using En-Lee, En-Frost., AD-Homomorph, al
SRAD. In each case, the image displayed in Fig. 2(b) is the input image.

V. CONCLUSIONS

gion (area Il) and vessel wall region (area Il). In this paper we have developed a nonlinear anisotropic dif-
Table Il summarizes the edge preservation performancefaion technique, speckle reducing anisotropic diffusion, for re-
the four filtering techniques in the three experiments. moving multiplicative noise in imagery. Unlike other existing

These quantitative results show that the SRAD can elindiffusion techniques [2] that process log-compressed data, our
nate speckle without distorting useful image information artéchnique processes the data directly in order to preserve useful
without destroying the important image edges. In each exparformation in the image. We have shown that with a special
iment, SRAD outperformed the conventional speckle reducimgndow, both the Lee filter and the Frost filter (which are com-
filters and the conventional anisotropic diffusion algorithm imonly used for filtering SAR imagery) can be cast into the
terms of edge preservation measured by the Pratt figure of mdriamework of a diffusion method. This observation has directed
In nearly every case in every homogeneous region, SRAD pigs to formulate a new adaptive edge-preserving PDE (in contin-
duced the lowest standard deviation and were able to preseneeis image domain) tailored to speckled imagery. The SRAD
the mean value of the region. The numerical results are furtHf®DE exploits the instantaneous coefficient of variation in re-
supported by qualitative examination (see Fig. 3, for examplajucing speckle. The performance figures obtained by means
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TABLE I
MEAN AND STANDARD DEVIATION FOR UNIFORM REGIONS
Experiment I Areal Area I1 Area I11
Mean Std. | Mean Std. | Mean Std.
Noisy image 1.0271 0.5605 | 5.3025 2.6896 22.7993 10.6100
En-Lee 1.1110 0.3227 | 5.7238 1.4223  |21.7544 5.3673
En-Frost 1.1164 0.3207 | 5.7417  1.4066 |21.8316 5.3034
AD-Homomorph | 0.9009 0.2023 | 4.6416 1.0948 14.6472 3.5148
SRAD 1.1914 0.1470 | 6.1739 0.6957 18.8888  2.8543
. Area I Area Il Area II1
E t I1
xperimen Mean Std. | Mean Std. | Mean _ Std.
Noisy image 1.0202 0.5585 | 5.2468 2.7187 143283  7.4439
En-Lee 1.1019 0.3301 | 5.6991 1.3541 13.9513  3.5778
En-Frost 1.1054 0.3263 | 5.7185 1.3412 | 14.0347 3.5354
AD-Homomorph | 0.8887 0.2266 | 4.6019  0.8944 9.5239  1.9055
SRAD 1.1624 0.1632 | 6.0765  0.4165 | 12.9034  2.4012
Experiment Ill Areal Area I1 Area III
Mean Std. | Mean Std. Mean Std.
Noisy image 1.2289 0.6697 | 5.5649 2.9400 20.2824 10.7690
En-Lee 1.3339 0.3671 | 6.0814  1.4934 |19.6820 4.9464
En-Frost 1.3391 0.3652 | 6.0972  1.4827 |19.7429  4.8886
AD-Homomorph | 1.0729 0.2261 | 4.8765 1.0793 | 13.2277 2.8778
SRAD 1.4101 0.1531 | 6.4900 0.6902 17.6416  2.9878
TABLE Il serving edges and features. The effectiveness of the technique
PRATT'S FIGURE OF MERIT encourages the possibility of using the approach in a number of
Experiment I | Experiment II | Experiment 111 ultrasound and radar applications-
Image FOM FOM FOM
Noisy 0.3072 0.3026 0.3002
En-Lee (7x7 window) 0.4632 0.4034 0.4591 ACKNOWLEDGMENT
i‘BFI;OSt (7x7 Wlindow) 83%‘1 gjggz 8;‘3(9); The authors thank Dr. W. F. Walker, K. Ranganathan,
San P 05557 06341 06958 M. J. McAllister, and F. Viola of the Department of Biomedical

Engineering at UVa, for the discussions on ultrasonic image
simulation and for providing real ultrasonic data.
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