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Abstract—This paper provides the derivation of speckle
reducing anisotropic diffusion (SRAD), a diffusion method tai-
lored to ultrasonic and radar imaging applications. SRAD is the
edge-sensitive diffusion for speckled images, in the same way that
conventional anisotropic diffusion is the edge-sensitive diffusion
for images corrupted with additive noise. We first show that the
Lee and Frost filters can be cast as partial differential equations,
and then we derive SRAD by allowing edge-sensitive anisotropic
diffusion within this context. Just as the Lee and Frost filters
utilize the coefficient of variation in adaptive filtering, SRAD
exploits the instantaneouscoefficient of variation, which is shown
to be a function of the local gradient magnitude and Laplacian
operators. We validate the new algorithm using both synthetic and
real linear scan ultrasonic imagery of the carotid artery. We also
demonstrate the algorithm performance with real SAR data. The
performance measures obtained by means of computer simulation
of carotid artery images are compared with three existing speckle
reduction schemes. In the presence of speckle noise, speckle
reducing anisotropic diffusion excels over the traditional speckle
removal filters and over the conventional anisotropic diffusion
method in terms of mean preservation, variance reduction, and
edge localization.

Index Terms—Anisotropic diffusion, image enhancement,
speckle reduction, ultrasound imaging.

I. INTRODUCTION

SPECKLE, a form of multiplicative, locally correlated noise,
plagues imaging applications such as medical ultrasound

image interpretation. For images that contain speckle, a goal
of enhancement is to remove the speckle without destroying
important image features. In certain applications, however,
the removal of speckle may be counterproductive. Examples
in which specklepreservation is important include feature
tracking in ultrasonic imaging [19] and detection of features
that are of the same scale as the speckle patterns (e.g., coagu-
lation damage) [18]. In cases where speckle removal is desired
(e.g., region-based detection, segmentation, and classification)
[17], [21]–[23], the speckle reducing filters have originated
mainly in the synthetic aperture radar (SAR) community. The
most widely cited and applied filters in this category include
the Lee [9]–[11], Frost [6], Kuan [8], and Gamma MAP filters
[12].

The Lee and Kuan filters have the same formation, although
the signal model assumptions and the derivations are different.
Essentially, both the Lee and Kuan filters form an output image
by computing a linear combination of the center pixel intensity
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in a filter window with the average intensity of the window. So,
the filter achieves a balance between straightforward averaging
(in homogeneous regions) and the identity filter (where edges
and point features exist). This balance depends on the coefficient
of variation inside the moving window.

The Frost filter also strikes a balance between averaging and
the all-pass filter. In this case, the balance is achieved by forming
an exponentially shaped filter kernel that can vary from a basic
average filter to an identity filter on a pointwise, adaptive basis.
Again, the response of the filter varies locally with the coef-
ficient of variation. In case of low coefficient of variation, the
filter is more average-like, and in cases of high coefficient of
variation, the filter attempts to preserve sharp features by not
averaging.

More recently, the Gamma maximuma posteriori(MAP) and
extended versions of the Lee filter and the Frost filter have been
introduced to alter performance locally according to three cases
[12], [13]. In the first case, pure averaging is induced when the
local coefficient of variation is below a lower threshold. Above a
higher threshold, the filter performs as a strict all-pass (identity)
filter. When the coefficient of variation exists in between the
two thresholds, a balance between averaging and the identity is
computed (as with the standard Lee and Frost filters).

Although the existing despeckle filters are termed as “edge
preserving” and “feature preserving,” there exist major limi-
tations of the filtering approach. First, the filters are sensitive
to the size and shape of the filter window. Given a filter
window that is too large (compared to the scale of interest),
over-smoothing will occur and edges will be blurred. A small
window will decrease the smoothing capability of the filter
and will leave speckle. In terms of window shape, a square
window (as is typically applied) will lead to corner rounding
of rectangular features that are not oriented at perfect 90rota-
tions, for example. Second, the existing filters do not enhance
edges—they only inhibit smoothing near edges. When any
portion of the filter window contains an edge, the coefficient of
variation will be high and smoothing will be inhibited. There-
fore, noise/speckle in the neighborhood of an edge (or in the
neighborhood of a point feature with high contrast) will remain
after filtering. Third, the despeckle filters are not directional. In
the vicinity of an edge, all smoothing is precluded, instead of
inhibiting smoothing in directions perpendicular to the edge and
encouraging smoothing in directions parallel to the edge. Last,
the thresholds used in the enhanced filters, although motivated
by statistical arguments, aread hoc improvements that only
demonstrate the insufficiency of the window-based approaches.
The hard thresholds that enact neighborhood averaging and
identity filtering in the extreme cases lead to blotching artifacts
from averaging filtering and noisy boundaries from leaving the
sharp features unfiltered.
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In this paper, we have outlined a partial differential equa-
tion (PDE) approach to speckle removal that we call speckle re-
ducing anisotropic diffusion (SRAD). The PDE-based speckle
removal approach allows the generation of an image scale space
(a set of filtered images that vary from fine to coarse) without
bias due to filter window size and shape. SRAD not only pre-
serves edges but also enhances edges by inhibiting diffusion
across edges and allowing diffusion on either side of the edge.
SRAD is adaptive and does not utilize hard thresholds to alter
performance in homogeneous regions or in regions near edges
and small features. The new diffusion technique is based on
the same minimum mean square error (MMSE) approach to
filtering as the Lee (Kuan) and Frost filters. In fact, we show
that the SRAD can be related directly to the Lee and Frost
window-based filters. So, SRAD is the edge sensitive extension
of conventional adaptive speckle filter, in the same manner that
the original Perona and Malik anisotropic diffusion [15] is the
edge sensitive extension of the average filter. In this sense, we
extend the application of anisotropic diffusion to applications
such as radar and medical ultrasound in which signal-depen-
dent, spatially correlated multiplicative noise is present.

The paper is organized as follows. In Section II, we first re-
view nonlinear anisotropic diffusion and the current speckle fil-
tering techniques. Then, we establish the relationship between
SRAD and the speckle filters. In Section III, we describe the
proposed strategy for extending nonlinear anisotropic diffusion
for imagery corrupted by speckle and derive SRAD. Section IV
defines the criteria for quantifying the performance of the pro-
posed algorithm and presents experimental results for synthetic
and real ultrasound images of human carotid artery. We also
demonstrate the possible application of SRAD to radar imaging.
In Section V, we conclude the paper.

II. A NISOTROPICDIFFUSION VS. ADAPTIVE SPECKLEFILTER

A. Anisotropic Diffusion

Perona and Malik [15] proposed the following nonlinear PDE
for smoothing image on a continuous domain:

(1)

where is the gradient operator, the divergence operator,
denotes the magnitude, the diffusion coefficient, and

the initial image. They suggested two diffusion coefficients

(2)

and

(3)

where is an edge magnitude parameter.
In the anisotropic diffusion method, the gradient magnitude is

used to detect an image edge or boundary as astepdiscontinuity
in intensity. If , then , and we have an
all-pass filter; if , then. , and we achieve
isotropic diffusion (Gaussian filtering).

A discrete form of (1) is given by

(4)

where is the discretely sampled image,denotes the pixel
position in a discrete two-dimensional (2-D) grid, andis the
time step size, represents the spatial neighborhood of pixel,

is the number of pixels in the window (usually four, except
at the image boundaries), and , .

The advantages of anisotropic diffusion include intra-region
smoothing and edge preservation. Anisotropic diffusion per-
forms well for images corrupted by additive noise. Several en-
hancements and edge detection methods have been described in
the literature [3] for images with additive noise. In cases where
images contain speckle, anisotropic diffusion will actuallyen-
hancethe speckle, instead of eliminating the corruption. The
work of this paper uses the strengths of the PDE approach to
produce edge-sensitive speckle reduction.

B. Adaptive Speckle Filters

In this section, we briefly describe the speckle reducing fil-
ters: the Lee filter and the Frost filter. Then, we examine the
relationship between the speckle filters and the diffusion tech-
nique.

1) Lee Filter [9]: The Lee filter is designed to eliminate
speckle noise while preserving edges and point features in radar
imagery. Based on a linear speckle noise model and the min-
imum mean square error (MMSE) design approach, the filter
produces the enhanced data according to

(5)

where is the mean value of the intensity within the filter
window ; and is the adaptive filter coefficient determined
by

(6)

Here,

(7)

and is a constant for a given image and can be determined
by either

(8)

or

(9)

where is the effective number of looks of the noisy image,
and are the intensity variance and mean over a homo-

geneous area of the image, respectively.
The local statistic plays an essential role in controlling

the filter: if , then , and, if , then
. In general, the value of approaches zero in uniform

areas, leading to the same result as that of the mean filter. On the
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other hand, the value of approaches unity at edges, resulting
in little modification to the pixel values near edges.

2) Frost Filter [6]: The Frost filter uses an exponentially
damped convolution kernel that adapts to regions containing
edges by exploiting local statistics. The filter output is deter-
mined by

(10)

where

(11)

(12)

where is the damping factor, are the grid coordinates
of pixel , and are those of pixel .

The factor is chosen such that when in a homogeneous re-
gion approaches zero, yielding the mean filter output; at
an edge becomes so large that filtering is inhibited com-
pletely.

C. Relationship of the Lee and Frost Filters With Diffusion

1) Lee Filter and Diffusion:Typically, the Lee filter oper-
ates in a 7 7 moving window. Now let us choose the filter
window as

at an interior site .
We can express the special case of the Lee filter with window
in the following form:

(13)

where ( 4) is the number of pixels in the window.
Substituting , , for , , in (13), respec-

tively, we obtain

(14)

Comparing (14) with (4) and noting the equality

(15)

we show that the form of (14) is a special case of (4) in which
can be taken out of the summation and . In other

words, the Lee filter can be posed as a discreteisotropicdiffu-
sion equation.

Moreover, it is interesting to show the effect of assigning
slightly different weights to the four directional differences in
(14) such that

(16)

In fact, (16) reduces to

(17)

With variable substitutions in (17), we immediately recognize
that (17) is a form of anisotropic diffusion [as in (4)] where

.
The Lee filter and enhanced Lee filter [12] process a cur-

rent pixel based on its intensity and the intensities of neigh-
boring pixels inside a fixed square window. Thus, these two fil-
ters have no mechanism to enhance edges or feature structures
within a window. The modification of the Lee filter to include
directional sensitivity and filtering perpendicular to the edge di-
rection would significantly enhance the ability to remove the
speckle in the vicinity of edges and small features. That is what
refined Lee filter [10] does. Similarly, with (17) the diffusion
assumes sort of edge directional sensitivity.

2) Frost Filter and Diffusion: Let the filter window be
chosen as . Thus, we have from (12) that

, which implies that for any . The
Frost filter (10) is reduced, in this case, to

(18)

which resembles the form of the isotropic diffusion update func-
tion with .

If we reassign weights in (10) such that

(19)

where , we can reorganize (19) as shown
in (20) at the bottom of the next page, where

.
Substituting , , for , , , respectively,

and letting (its value is between 0 and 1), we show
(20) is in the form of (4) where is space-and-time varying.
So, both the Lee and Frost filters resemble isotropic diffusion
processes and can be modified to enact anisotropic diffusion.
These observations lead to the construction of speckle reducing
anisotropic diffusion.

III. SPECKLE REDUCING ANISOTROPICDIFFUSION

Casting the Lee and Frost filters in the framework of the PDE
bridges and unifies two seemingly different methods: the PDE
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approach and the adaptive filtering approach. Perhaps more im-
portantly, the framework allows us to develop a new model
for speckle reduction, which may open new avenues for pro-
cessing ultrasound and radar images. In this section, we derive
the speckle reducing anisotropic diffusion (SRAD) method.

A. Coefficient of Variation

Until now, our focus has been on the similarity between the
conventional adaptive despeckle filters and anisotropic diffu-
sion. By extending the PDE versions of the despeckle filters,
we have formulized a more general update function

(21)

where is a bounded nonnegative decreasing function. As
with conventional anisotropic diffusion, is the diffusion
coefficient.

In discussing the background on the Lee and Frost filters, we
have noted the importance of the local statistic , the coeffi-
cient of variation, in speckle filtering. To derive a PDE version
of the classical speckle reducing filters, we must examine the co-
efficient of variation in conjunction with developing a diffusion
coefficient that inhibits smoothing at the edges. Specifi-
cally, we need to derive a discretized version of the coefficient
of variation that is applicable to PDE evolution. In a sense, this
function can be called an “instantaneous coefficient of varia-
tion.” This subsection develops such an operator.

First, we write the local variance estimate of intensity in
as

(22)

where is the average of intensity squared at position
. Then, we express the local intensity mean and local in-

tensity squared mean estimates in terms of Laplacian as follows:

(23)

(24)

Substituting first (23) and (24) into (22) and then substituting
the result and (23) into (7), we have

(25)

In the continuous domain, we have the following equality:

(26)

On the discrete 2-D grid, (26) can be represented by

(27)

where and , two difference approximations to
the gradient, are given by

(28)

(29)

Allowing to be discretized as the average of
and , and substituting (27) into (25), we

obtain the following form for :

(30)

It is required that . Although by the derivation of
(30) its numerator is nonnegative, the denominator of (30) may
become zero at some points if we do not impose some restriction
on the image function.

Proposition I: If everywhere over a 2-D coordinate
grid , then (30) is well defined over .

Proof: We only need to show that the denominator of (30)
cannot be zero if everywhere. Suppose that the denom-
inator of (30) becomes zero at position . Then,

But, by assumption, for all . So, it is not
possible for the denominator of (30) to be zero.

We denote the special case of , one that is computed over
, by for convenience and assume that the image inten-

sity function has no zero point over its support. So, can be
viewed as a discretization of

(31)

(20)
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over a uniform grid of unit step size in two directions.

As is usually called local coefficient of variation, we
call the function the instantaneous coefficient of variation.
It combines a normalized gradient magnitude operator and a
normalized Laplacian operator to act like an edge detector for
speckled imagery. High relative gradient magnitude and low rel-
ative Laplacian tend to indicate an edge. At the center of an
edge, the Laplacian term undergoes zero crossing and the gra-
dient term dominates, resulting in . Thein-
stantaneous coefficient of variationallows for edge detection in
bright regions as well as in dark regions.

So, the original anisotropic diffusion algorithm [15]
may be viewed as the edge-sensitive PDE extension of the
Gaussian-weighted averaging filter. In the same way, SRAD
may be viewed as the edge sensitive PDE version of the
conventional adaptive speckle reducing filters. With SRAD,
the instantaneous coefficient of variation plays a crucial role as
an edge detector in the presence of speckle. In the following
section, we show how the instantaneous coefficient of variation,
, is incorporated in the speckle reducing diffusion technique.
To end this subsection, we present the second proposition.
Proposition II: Given an initial image having finite

power and no zero points over domain, the diffusion process
(21) can be updated such that have no zero points over.

Proof: Step 1. Since is nonzero everywhere, is
well defined over by proposition I. This implies is
defined and upper bounded by a constant.

Since is finite power signal over , there exists an upper
bound such that for all .

Therefore, we have
.

Let be chosen such that ,
i.e., , where . Then,
we have for any . is upper bounded
by . From to we made the first iter-
ation. Let denote the chosen for this iteration.

Step 2. Assume that at theth iteration, the image is
finite power signal and has no zero point everywhere, where

with being the time step for the
th iteration. From the result of step 1, there exists a

such that is finite and has is supported (nonzero) over
.
If assigning , then we know

that (21) evolves without creating zeros. Q.E.D.

B. Speckle Removing Anisotropic Diffusion

1) Basic Theory:Based on previous discussion, we propose
a new anisotropic diffusion method for smoothing speckled im-
agery. Given an intensity image having finite power
and no zero values over the image support, the output image

is evolved according to the following PDE:

(32)

where denotes the border of, is the outer normal to the
, and

(33)

or

(34)

In (33) and (34), is the instantaneous coefficient of
variation determined by

(35)

and is the speckle scale function. We call (32) the SRAD
PDE.

In the proposed SRAD, the instantaneous coefficient of vari-
ation serves as the edge detector in speckled im-
agery. The function exhibits high values at edges or on high-con-
trast features and produces low values in homogeneous regions.
The diffusion coefficient expressions in (33) and (34) follow the
basic form of (2) and (3), respectively. The modification reflects
encouraging isotropic diffusion in homogeneous regions of the
image where fluctuates around . Similar to the
parameter in (2) and (3), the speckle scale function ef-
fectively controls the amount of smoothing applied to the image
by SRAD. It is estimated using

(36)

where and are the intensity variance and mean
over a homogeneous area at, respectively.

2) Analytical Form of Scale Function : Because of the
need of computing (36), the SRAD requires knowing a homoge-
neous area inside the image being processed. Although it is not
difficult for a user to select a homogeneous area in the image,
it is nontrivial for a computer. So, automatic determination of

is desired in real applications to eliminate heuristic pa-
rameter choice.

First of all, we state that can be approximated by

(37)

where is a constant, and is the speckle coefficient of varia-
tion in the observed image. For fully developed speckle,
for ultrasound intensity data (without compounding) and

for -look SAR intensity data. For partially correlated
speckle, is less than unity.

Now, we give the derivation of (37). As we expected, in a
uniform area the diffusion should be isotropic. Adopting the dis-
crete isotropic diffusion update, we have

(38)

Given , the standard deviation of in a homogeneous
region, we can estimate the standard deviation of in the
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region. Assuming that pixels in the region are statistically in-
dependent and identically distributed, we have from (38) and
statistical formula for the variance of a sum of random variables

(39)

On the other side, the local means remains the same before and
after an iteration. So, we have

(40)

For , the terms in (40) can be neglected, and we
have

(41)

by Taylor series expansion and neglecting the second and higher
order terms. So, (40) becomes

(42)

Dividing both sides of (42) by , and taking limit as ,
we have

(43)

where is the first derivative of with respect to .
Solving (43), yields

(44)

It is seen from (44) that through a diffusion process, speckle
would be reduced exponentially (with a decay factor of 1) in
homogeneous regions. We have observed that experimental
curves of appear as exponentially deceasing. However,
the smoothing rate predicated by (44) is faster than those found
in experiments.

The explanation for the insufficiency of (44) lies in the fact
that (39) is correct only if all of values in a homogeneous
region are truly independent at any. Assume that the
values in a homogeneous region are independent and identically
distributed one-sided exponential random variables (as in the
fully developed speckle case). As the iteration proceeds, the

values will gradually become Gaussian random variables
according to the central limit theorem. Meanwhile, the
values become correlated asincreases. In general speckle
cases, values may actually be correlated. So, the reduction
rate of speckle variance in an iteration of diffusion should
be smaller than that predicated by (44). This explanation
suggests ways of modifying (44) for better agreement with
experimental curves. One simple solution is changing (44) into
(37) with a single constant being introduced to reduce
the exponential decay rate. Fig. 1 shows the plots of
in which the solid line is predicated by (37) with , and
the dashed line represents the experimental results computed
using (36) within simulated ultrasonic image of carotid artery
(see Results section). Given and , and using (37) instead of
(36) in implementing SRAD, the user does not have to choose
a homogeneous region in the image.

C. Closer Look at SRAD

SRAD has some characteristics that are not shared with con-
ventional anisotropic diffusion. We examine two of them here.

Fig. 1. Plots ofq (t)=q versus iteration.

For clarity, we write (32) as the sum of an isotropic term and an
anisotropic term

(45)

where is the first derivative of and

(46)

where , , , and
.

First, let us consider the behavior of SRAD in homogeneous
regions. Using (33), we know that , and

. Since , at first glance, SRAD seems to be
anisotropic even in homogeneous regions. However, recall that
a homogeneous region is where the speckle is well developed.
This implies that the fluctuation of values of pixels in uniform
areas is highly random in space, leading to the spatial average
of over any microscopic zone is zero. So, macroscopically,
the anisotropic term has no accumulative influence, yielding
isotropic diffusion in homogeneous regions.

Then, we examine the behavior of (45) near an image edge.
Let the edge direction be the unit vector . Let de-
note the contour direction—the direction perpendicular to,
i.e., . Let and denote the second-order direc-
tional derivatives in the direction of and . The second-order
derivatives along the and are computed as follows:

(47)

(48)

where , , , ,
and , , and are second derivatives of.

The anisotropic term in (45) is driven by edges. So, the in-
duced diffusion flow is in the edge direction. Let

(49)

Then, in the coordinates, equation (45) becomes

(50)
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Using (33), we can reduce (50) to

(51)

Since and at an edge, we have that
near edges. This fact has a

strong impact on SRAD. At the center of an edge, sinceun-
dergoes zero crossing, the SRAD diffusion proceeds only along
the contour direction, just as with conventional anisotropic dif-
fusion. However, on either side of an edge, “negative” diffusion
occurs along the edge direction. This phenomenon in SRAD
has not been observed with anisotropic diffusion, where the
diffusion in the edge direction is gradually suppressed as ap-
proaching the edge center from either side of an edge. It is this
“negative” diffusion that makes the dark side of edge darker and
bright side of an edge brighter, leading to a sharper edge contour.
Our experiments confirm the mean-preserving behavior in ho-
mogeneous regions and edge preserving and enhancement be-
havior at edges.

D. Discretization

The differential equation (32) may be solved numerically
using an iterative Jacobi method. Assuming a sufficiently small
time step size of and sufficiently small spatial step size
of in and directions, we discretize the time and space
coordinates as follows:

where is the size of the image support.
Let . We then use a three-stage ap-

proach [7] to calculate the right hand side of the SRAD PDE. In
the first stage, we calculate the derivative approximations and
the Laplacian approximation as

(52)

(53)

(54)

with symmetric boundary conditions

(55)

(56)

In the second stage, we calculate the diffusion coefficient
[see (33) and (34)] according to

(57)

Within the third stage, we calculate the divergence of ,
needed for the SRAD PDE in (32), as

(58)

with symmetric boundary conditions

(59)

(60)

Finally, by approximating time derivative with forward differ-
encing, the numerical approximation to the differential equation
is given by

(61)

Equation (61) is called theSRAD update function. With the
SRAD update function in hand, we now demonstrate the effi-
cacy of SRAD using (32) in terms of preserving the intra-region
mean, reducing the intra-region variance, and preserving the
edge positions. In numerical implementation, we choose
and ; moreover, since the diffusion coefficient will
not be exactly equal to zero at any edge in a digital image, as
an option, we may set to be zero if it is less than a lower
threshold , to better stop diffusion across main edges.

IV. EXPERIMENTS AND RESULTS

In this section, we test the SRAD PDE using both simu-
lated and real ultrasound data. Additionally, we demonstrate
the algorithm with real SAR data. First, we describe computer
simulation of ultrasonic data. Then, we conduct three experi-
ments using synthetic ultrasound images. In each experiment,
we compare the results of the SRAD with those of three ex-
isting schemes, i.e., the enhanced Lee filter [12], the enhanced
Frost filter [12], and anisotropic diffusion [15] applied as a ho-
momorphic filter. We examine the mean preservation error and
the standard deviation reduction to quantify the performance of
algorithms in homogeneous regions. To compare edge preser-
vation performance, we use Pratt’s figure of merit [16]. Finally,
we present two filtering results using real ultrasonic data and
SAR data. So, the synthetic experiments allow the computation
of ground truth information and thus the quantification of algo-
rithm performance. The real image examples show the useful-
ness of SRAD for actual image processing applications using
acquired data.

A. Simulation of Ultrasound Imagery of Carotid Artery

Let represent a 2-D ultrasonic echo data set, where
and denote axial and lateral coordinates, respectively.
is a bandpass signal in the axial direction. It is assumed that the
imaging system has a linear, space-invariant point spread func-
tion. Allowing the population of scatterers of an object being
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Fig. 2. Simulated data (a) backscatter cross section distribution (b) simulated
image (imaging parameters:f = 10 MHz, � = 2, and� = 1:5).

imaged to be represented by a scattering function, , the
raw (“RF”) data is governed by [4]

(62)

where denotes spatial convolution. accounts for
acoustic impedance inhomogeneities in the object due to
density and speed perturbation that generates the scattering,
and is the point spread function or impulse response
of a hypothetical ultrasound imaging system. We assume that

is separable, i.e., where
is a Gaussian-weighted sinusoidal function (a Gabor function)
determined by

(63)

where , is the speed of sound in tissue, is the
center frequency, and represents the pulse-width of trans-
mitting ultrasonic wave. The second term is the spatial
response for the transmitting and receiving aperture determined
by

(64)

where represents the beam-width of transmitting ultrasonic
wave. So, (62) can be computed by using two sequential 1-D
convolutions: .

A realistic biomedical model would include subresolution
variations in object impedance from an average value. There-
fore, in our test, we employ the following scattering model:

(65)

where is the echogenicity model (or ultrasound cross
section distribution) of the object being imaged, is a
Gaussian white noise field with zero mean and some variance.
Specifically, a carotid artery echogenicity model for
is employed in our experiments as illustrated in Fig. 2(a). We
chose the carotid artery as a prototypical experiment, because
it is an application in which precise segmentation/boundary
detection is required. The arterial wall thickness and the
diameter of the artery reveal important parameters concerning
diseases such as artheroschlerosis.

Since is a bandpass signal, we express it in quadra-
ture representation [1]

(66)

where is the Hilbert transform of with respect
to . Finally, we create an envelope-detected amplitude image
(representing echo magnitude) given by

(67)

TABLE I
CAROTID ARTERY MODEL PARAMETERS

The simulated ultrasound image corresponding to Fig. 2(a) is
shown in Fig. 2(b). The image is log-compressed for display,
and the size of the image is 128128 pixels.

B. Criteria for Quantifying Algorithm Performance

In our experiments, we are quantifying the algorithm perfor-
mance in terms of edge preservation, mean preservation in a
homogenous region and variance reduction in a homogeneous
region.

1) Edge Preservation:To compare edge preservation per-
formances of different speckle reduction schemes, we adopt the
Pratt’s figure of merit [16] defined by

(68)

where and are the number of detected and ideal edge
pixels, respectively, is the Euclidean distance between theth
detected edge pixel and the nearest ideal edge pixel, andis
a constant typically set to 1/9. ranges between 0 and 1,
with unity for ideal edge detection.

strongly depends on what method is used to obtain a
binary edge map. Instead of using different edge detector that
maximizes for each despeckle scheme, we apply the
same detector, the Canny detector [5], to provide a fair compar-
ison of algorithms. To avoid oversmoothing due to the detector
itself, we let the standard deviation of the Gaussian kernel in
the Canny detector be . Note that edge detection is per-
formed on the processed intensity data, not upon the processed
log compressed data (used for display). The ideal edges are ex-
tracted by applying the Canny detector with to the carotid
artery model as shown in Fig. 2(a). The resulting ideal edges are
close to manually delineated edges from the synthetic image.

2) Mean Preservation and Variance Reduction:The mean
preservation and fluctuation reduction in homogeneous region
are measures of success in terms of radiometric estimation. A
successful speckle reducing filter will not significantly alter the
mean intensity within a homogeneous region. Likewise, the ef-
fective speckle-reducing filter will reduce the variation within
each homogeneous region. We compute and compare the mean
and standard deviation over three different regions in our carotid
artery simulation: within the artery, within the vessel wall and
within fat/muscle regions.

C. Results

1) Simulation Results:Here, we present three sets of exper-
imental results using three carotid artery echogenicity models
that are parameterized as in Table I. In this table, and

denote the mean values of the ultrasound cross sections of
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Fig. 3. (a)–(d) Filtered images using En-Lee, En-Frost., AD-Homomorph, and
SRAD. In each case, the image displayed in Fig. 2(b) is the input image.

the artery interior, the muscle/fat region and the vascular wall,
respectively. is the variance of the Gaussian fluctuation
around mean cross sections, andTilt denotes the orientation of
the artery with respect to the horizontal direction.

Fig. 2(b) shows the simulated noisy image used in experiment
I. Fig. 3 shows the smoothed images in experiment I, processed
by using four speckle reduction schemes: enhanced Lee filter
[12], enhanced Frost [12], anisotropic diffusion-based homo-
morphic filtering (denoted by “AD-homomorph” in the results),
and SRAD, respectively. When applying the enhanced Lee filter
(En-Lee) and enhanced Frost filter (En-Frost), the input data are
intensity images, and the window sizes are set to 77 pixels.
To compare SRAD to conventional anisotropic diffusion [15],
we implemented diffusion in a homomorphic manner, since the
conventional algorithm cannot eliminate multiplicative noise.
The anisotropic diffusion-based homomorphic filtering is per-
formed as follows: first we take the logarithmic transform of
input data; then, we apply anisotropic diffusion [see (1) and (3)],
and then compute the exponential point operation of the diffused
data. In implementing the homomorphic anisotropic diffusion,
we used a fixed number of iterations (150) and a fixed time
step ( 0.1). To achieve the best results, we chose scaling factor

for synthetic data and SAR data, and for real ultra-
sound data in (3). SRAD, in contrast, is applied directly to the
intensity data. With SRAD, the diffusion coefficient is chosen
as (33), the time step size is set to , and the number
of iterations applied is 300.

Table II summarizes the mean preservation and variance re-
duction performance of the four filtering schemes in three exper-
iments. In each experiment, the mean and standard deviations of
three test areas are computed for each filtering scheme. The test
areas are chosen in the artery interior (area I), the muscle/fat re-
gion (area II) and vessel wall region (area III).

Table III summarizes the edge preservation performance of
the four filtering techniques in the three experiments.

These quantitative results show that the SRAD can elimi-
nate speckle without distorting useful image information and
without destroying the important image edges. In each exper-
iment, SRAD outperformed the conventional speckle reducing
filters and the conventional anisotropic diffusion algorithm in
terms of edge preservation measured by the Pratt figure of merit.
In nearly every case in every homogeneous region, SRAD pro-
duced the lowest standard deviation and were able to preserve
the mean value of the region. The numerical results are further
supported by qualitative examination (see Fig. 3, for example).

2) Real Image Results:A real ultrasonic image (128 128
pixels) of a human cartoid artery is shown in Fig. 4(a). The data
was acquired using a LOGIQ 700 MR ultrasonic scanner man-
ufactured by GE Medical Systems. During the data acquisition,
the baseband complex echo signal was recorded. The real ultra-
sound image is taken as the amplitude of the baseband complex
data set with time gating compensation for attenuation losses.
Fig. 4(b)–(e) shows the smoothed images given by the four fil-
ters tested on the synthetic data. Note the smoothness of the ho-
mogeneous regions and the sharp, strong edges given by SRAD.
The only negative feature of the SRAD result that is observ-
able qualitatively is the slight broadening of the vessel walls.
SRAD was implemented in Matlab (Mathworks, Natick, MA)
and achieved a processing rate of 40 msec/iteration for a 128
128 image on a PC with a Pentium 4 (1.7 GHz) processor.

Fig. 5(a) shows a HH polarized 4-look SAR image of a cen-
tral area in Hong Kong, China. The image data set was ac-
quired by the NASA SIR-C L band polarimetric SAR system.
Fig. 5(b)–(e) shows the smoothed images of the four filters when
applied to the test data set. For AD-Homomorphic, and SRAD,
the diffusion is stopped automatically when the residual error,
defined as the mean square error of images between two itera-
tions is smaller than 0.01.

From Fig. 5, it may be observed qualitatively that the con-
ventional anisotropic diffusion cannot preserve salient features
in the presence of speckle. The En-Lee filter and the En-Frost do
reduce speckle but blur details. The proposed technique, SRADs
gives the best performance in terms of smoothing noise and pre-
serving edges at various scales. This SAR example is a dramatic
exhibition of the improvement made possible by the PDE ap-
proach.

For all the results shown in Fig. 5(b)–(e), it appears that the
linear features at the bottom of the image in Fig. 5(a) have
been markedly degraded or lost. Essentially, features at the same
scale as the speckle will be eliminated by all of the speckle re-
ducing algorithms shown (Lee, Frost, SRAD) and will be also
degraded by the conventional diffusion algorithm. The major
region boundaries, however, are preserved, especially by the
SRAD technique. Although this processed SAR result is purely
qualitative, it shows promise for SRAD as a general-purpose
speckle reducing filter.

V. CONCLUSIONS

In this paper we have developed a nonlinear anisotropic dif-
fusion technique, speckle reducing anisotropic diffusion, for re-
moving multiplicative noise in imagery. Unlike other existing
diffusion techniques [2] that process log-compressed data, our
technique processes the data directly in order to preserve useful
information in the image. We have shown that with a special
window, both the Lee filter and the Frost filter (which are com-
monly used for filtering SAR imagery) can be cast into the
framework of a diffusion method. This observation has directed
us to formulate a new adaptive edge-preserving PDE (in contin-
uous image domain) tailored to speckled imagery. The SRAD
PDE exploits the instantaneous coefficient of variation in re-
ducing speckle. The performance figures obtained by means
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TABLE II
MEAN AND STANDARD DEVIATION FOR UNIFORM REGIONS

TABLE III
PRATT’S FIGURE OFMERIT

Fig. 4. (a) Original noisy image. (b)–(e) Filtered images from En-Lee,
En-Frost, AD-Homomorph, and SRAD.

Fig. 5. (a) Original 125� 125 SIR C SAR L-band HH image. (b)–(e) Filtered
images by the En-Lee, En-Frost, AD-Homomorph, and SRAD filters.

of computer simulation reveal that the SRAD algorithm pro-
vides superior performance in comparison to the conventional
anisotropic diffusion, the enhanced Lee filter and the enhanced
Frost filter, in terms of smoothing uniform regions and pre-

serving edges and features. The effectiveness of the technique
encourages the possibility of using the approach in a number of
ultrasound and radar applications.
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