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Abstract

Active particles contain internal degrees of freedom with the ability

to take in and dissipate energy and, in the process, execute system-

atic movement. Examples include all living organisms and their

motile constituents such as molecular motors. This article reviews

recent progress in applying the principles of nonequilibrium statis-

tical mechanics and hydrodynamics to form a systematic theory of

the behavior of collections of active particles–active matter–with

only minimal regard to microscopic details. A unified view of the

many kinds of active matter is presented, encompassing not only

living systems but inanimate analogs. Theory and experiment are

discussed side by side.
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1. INTRODUCTION

Physics enters biology in two broad and overlapping areas—information and mechanics

(1, 2). This review is about the mechanics, statistical and otherwise, of living matter. This is

not a review of soft matter physics in a biological setting. The aspect of biological matter of

interest here is the ability to transduce free energy into systematic movement. This property

is the defining characteristic of active matter, and my interest is in the unique mechanical

properties that arise as a consequence of such active processes (3). This review focuses on

the collective behavior of systems with a large number of constituents and will thus use the

ideas of condensed matter and statistical physics. I do not discuss the physics of molecular

motors or the related and vast exclusion-process family of problems (4, 5, 6). The aim is to

complement and update the perspectives of earlier reviews (7, 8) and to present the achieve-

ments and limitations of this rapidly advancing subfield. I begin with the realizations of

active matter to be covered.

1.1. Systems of Interest: Flocks, Rods, and the Cytoskeleton

1.1.1. Flocks: theoretical, real, and imitation. It is natural for a condensed matter physi-

cist to regard a coherently moving flock of birds, beasts, or bacteria as an orientationally

ordered phase of living matter. This idea was first implemented (9, 10) in computer models

of interacting particles moving with a fixed speed and trying to align their velocity vectors

parallel to those of their neighbors, in the presence of noise. To a student of magnetism,

these are itinerant, classical, ferromagnetically interacting continuous spins that move in

the direction in which they point, which is what makes flocks different from magnets. The

models showed a nonequilibrium phase transition from a disordered state to a flock with

long-range order (10, 11, 12, 13) in the particle velocities as the noise strength was

decreased or the concentration of particles was raised. The nature of order and fluctuations

in a flock, the character of the transition to a flock, and the flocking of active particles with

an axis but no polarity are among the issues this review deals with.

Amazingly, the physics of flocking can be imitated by a collection of rods lying on a

horizontal surface and agitated vertically (14). Indeed, vibrated monolayers of macro-

scopic grains have provided some of the most fruitful realizations of active matter. This

review explains briefly the physics behind this analogy and highlights experiments that

exploit it (15).

Flocking in a fluid medium introduces physics absent in the simplest flocking models:

Each swimming creature generates fluid flow, which moves and reorients other swimmers

far away. Including this interaction (16) leads to a modified liquid-crystal hydrodynamics

(17), in which the constituent particles carry permanent stresses that stir the fluid.

The implications of this interplay of self-propelling activity and fluid flow for order and

macroscopic rheology are an important part of this review.

1.1.2. The cytoskeleton as an active gel. The physics of the flocking of organisms in

a fluid reappears at a subcellular scale in the cytoskeleton (3, 18), the polymeric scaffolding

that governs transport, adhesion, movement, and division in the living cell. Two

nonequilibrium processes drive the cytoskeleton: the adenosine triphosphate (ATP)-

assisted polymerization and depolymerization known as treadmilling, which I do not

discuss; and contractility (illustrated in Figure 1, which arises from the ATP-driven
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movement of motor proteins in specific directions on biofilaments and is central to this

review. The cytoskeleton is thus a suspension of filaments endowed with active internal

forces. Moreover, there are natural mechanisms that promote the alignment of neighboring

filaments, through excluded volume as well as activity. Therefore, we must allow for the

possibility of orientational order. It is then not surprising that the hydrodynamic equations

obtained in the active-gel description (19, 20) of the cytoskeleton have precisely the same

form as those (16) for collections of swimming organisms, ignoring complications such as

permanent cross-linking. A condensed matter physicist accustomed to symmetry argu-

ments should find it reassuring that identical hydrodynamic descriptions apply for a

10-km fish shoal and a 10-mm cytoskeleton.

1.2. Viewpoint: Active Systems as Material

The viewpoint of this review is that living matter can fruitfully be regarded as a kind of

material (21) and studied using the tools of condensed matter physics and statistical

mechanics; that there is a practical way to encode into such a description those features of

the living state that are relevant to materials science; and that the results of such an

endeavor will help us to better understand, control, and perhaps mimic active cellular

matter. A community of respectable size has grown around this activity, approaching the

problem at different length scales and with a variety of techniques. What do they, and we,

hope to gain from this enterprise? First, active matter is condensed matter in a fundamen-

tally new nonequilibrium regime: (a) The energy input takes place directly at the scale of

each active particle and is thus homogeneously distributed through the bulk of the system,

unlike sheared fluids or three-dimensional bulk granular matter, where the forcing is

applied at the boundaries. (b) Self-propelled motion, unlike sedimentation, is force free:

The forces that the particle and fluid exert on each other cancel. (c) The direction of

self-propelled motion is set by the orientation of the particle itself, not fixed by an

external field. Indeed, these can be taken as the practical defining properties of active

matter. A comprehensive theory of this ubiquitous type of condensed matter is a natural

imperative for the physicist and should yield a catalog of the generic behaviors, such as

Figure 1

A cluster of motors with heads on both sides exerting contractile forces on the cytoskeletal network.
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nonequilibrium phases and phase transitions, the nature of correlations and response, and

characteristic instabilities. Second, therefore, the generic tendencies emerging from the

theory of active matter, unless suppressed by specific mechanisms, must arise in vivo,

which is why biologists should care about it. Last, if we can understand active matter,

perhaps we can manufacture faithful imitations of it in chemomechanical systems without

components of biological origin (22, 23).

The reader should keep in mind that theories of active matter were formulated not in

response to a specific puzzle posed by experiments but rather to incorporate living, metab-

olizing, spontaneously moving matter into the condensed-matter fold. This was done

through minimal models whose consequences are relatively easy for theoreticians to work

out. Natural realizations of living matter are far from minimal; thus, comparisons of

active-matter theory with experiment are likely to be qualitative until well-controlled

model systems are devised.

1.3. Prehistory

Although this is not a historical review, it must be stated here that the active-matter idea is

not new. In a prescient article, Finlayson & Scriven (24) argued that biological matter

could display hydrodynamic instabilities driven by stresses arising from metabolic activity

in the bulk of a fluid. Unlike in this review, they built active stress-tensor contributions

from gradients of existing scalars, such as concentration and temperature. They pointed

out that the field poses “challenges to theoretical rheology” and is “virgin territory

for experimental research in the physics of complex fluids.” They concluded that

“continuum. . .analysis. . .of instability by active stress is probably. . .destined to play a

large part in understanding some of the engines operating at the cellular level in living

systems.” The developments surveyed in this review prove them right.

1.4. Overview

The body of this review consists of several sections, each treating a specific example of an

active-matter system. In Section 2, the simplest models of moving flocks, without solvent

flow, are introduced and some key properties are discussed. Flocks without macroscopic

polarity, and hence no migration velocity, are surveyed in Section 3. The theoretical

framework for collective self-propulsion in a fluid medium is provided in Section 4 and

includes a discussion of general symmetry-based approaches and the active mechanics of

the cytoskeleton (Section 4.6). Nonbiological self-driven particles are the subject of Section

5. The review closes with Section 6, which summarizes the achievements and limitations of

the approach adopted here to the modeling of active matter and attempts to set a course for

future experiments and theory in this vital and rapidly evolving field.

2. POLAR FLOCKS ON A SUBSTRATE

Arrows are polar objects; uniform cylinders are apolar. A flock moving in one direction has

polar order, whereas equal numbers of ants moving from south to north and from north to

south are macroscopically apolar even though the individual ants are polar. We begin by

discussing polar ordered states.
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2.1. The Vicsek Model

In the simplest models (9,10) of ordering transitions of active particles, the medium

through which the particles move is treated as an inert substrate. Each particle carries a

velocity vector of fixed magnitude, which it rotates to point parallel to the mean of its

neighbors’ velocities, with an angular tolerance �. It then takes a small step in the direction

of the updated vector. Like the continuous-spin magnets that they resemble, the Vicsek

family of models displays a well-defined phase transition from a disordered phase to a

coherent flock as � is decreased or the number density is increased (10, 25, 26). Unlike

planar spins (27, 28), flocking models show true long-range order even in two dimensions.

How they do so was shown by Toner & Tu (7, 11, 12), whose continuum field-theoretic

approach, which amounts to a coarse-graining of the Vicsek rules, I sketch below.

2.2. Toner-Tu Field Theory

A coarse-grained dynamical description works with slow variables (29), whose relaxation

times increase unboundedly with increasing wavelength. For the Vicsek model, these are

(11, 12) the number-density field c, given that total number is conserved, and the velocity

field p, whose fluctuations transverse to the mean ordering direction are the spin-waves or

Nambu-Goldstone (30, 31) modes of the flock. (Fluctuations in the magnitude jpj are slow
only at a continuous ordering transition.) With the slow variables in hand, Toner & Tu

(11, 12) write down the equations of motion, incorporating the physics of the Vicsek

model, on general grounds of symmetry.

First, the dynamics of p is described in the equation below:

@tpþ lp � rpþ . . . ¼ ða� bp � pÞpþ Grrp�rPðcÞ þ f: 1:

Ignoring all gradients in Equation 1, a phase transition from the isotropic state p ¼ 0 to an

ordered flock with jhpij ’ ffiffiffiffiffiffiffiffi
a=b

p
, spontaneously breaking rotation invariance, should

occur as the control parameter a is tuned from negative to sufficiently large positive values;

G, in general a tensor, controls the elastic1 restoring forces to distortions in the ordered

phase. The random error � of the Vicsek update rule is summarized in a nonconserving,

Gaussian noise f, uncorrelated in space and time. The crucial difference from traditional

models of dynamic critical phenomena (32) lies in the Navier-Stokes-like l term,2 which

says that distortions in p are advected by p because p is not only an order parameter but

also a velocity. P(c), a general increasing function of concentration, then embodies the

equation of state for the pressure.

Second, c evolves through the continuity equation

@tcþr�cp ¼ 0 2:

because p is the velocity field of the particles. Equations 1 and 2 can be viewed as the

dynamics of a fluid with a preferred speed relative to a background medium, or of a

magnet whose spin is a velocity. In the latter interpretation, the nonequilibrium character

of the Toner-Tu model enters only through the advective l term in Equation 1 and the

1This is a matter of interpretation. If p is regarded as a velocity, G is like a viscosity.

2Lacking Galilean invariance, we cannot impose l ¼ 1. The ellipsis denotes the two other allowed terms (11, 33) with

oner and two factors of p.
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current in Equation 2. The right-hand side of Equation 1 can be written as �dF/dp plus

noise, with a free-energy functional

F p½ � ¼
Z
ddr � a

2
p � pþ b

4
ðp � pÞ2 þ G

2
rprpþ p �rP cð Þ

� �
3:

of Ginzburg-Landau form, in which the pressure gradient rP(c) appears as an orienting

field for p. In the absence of l, the average dynamics is downhill in F. A flock governed by

Equations 1–3 is a strange blend of magnet and fluid. Let us rediscover some of its unique

properties (11), all consequences of the fact that the order parameter is itself a velocity.

2.3. Sound Modes, Giant Fluctuations, and 2d Long-Range Order

2.3.1. Sound modes. Let us linearize Equations 1 and 2 about a uniform ordered state

with jhpij ¼ p0, c ¼ c0, denote directions along and transverse to hpi by k and ?, and see

how small disturbances dc, dp � ðdp?, dpkÞ travel. As in Heisenberg or XY magnets (34),

we can see from Equation 1 that dpk relaxes rapidly, so that on long timescales dp ’ dp?. If
we take l ¼ 1 in Equation 1, a shift to a frame moving with speed p0 eliminates advective

terms from Equations 1 and 2 in this linearized analysis without losing the essential

physics. To leading order in gradients, and ignoring the noise, Equations 1 and 2 then

become

@tdc ¼ �c0r?�dp? 4:

and

@tdp? ¼ �P
0 ðc0Þr?dc, 5:

leading to propagating modes with frequency

o ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0P

0 ðc0Þ
q

q? 6:

at wavevector q ¼ (q?, qk). No, we have not rediscovered normal sound waves. Long-

wavelength sound in a fluid propagates because of momentum conservation, which a flock

lacks. The sound modes in a flock are a consequence of spontaneously broken rotation

invariance: They propagate at long wavelength because dp? is not damped at zeroth order

in wavenumber.

2.3.2. Giant number fluctuations. dp? is the Nambu-Goldstone mode (30, 31) of broken

rotation invariance, easily excited and slow to decay at small wavenumber q. Hence, when

noise is included, the steady-state variance hjdp?qj2i of the qth Fourier component should

diverge at small wavenumber q, like spin waves in an XY magnet (34) or director fluctua-

tions in a nematic (17). However, Equations 4 and 5 imply that, for frequencies and

wavenumbers related by Equation 6, dc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0=P

0 ðc0Þ
p

dp?. Therefore, the variance of dc
should also diverge at small q. In real space, this means that for regions withN particles on

average, the variance in the number grows faster than N: A flock should display giant

number fluctuations (GNFs).

2.3.3. Long-range order in 2d. Equations 1 and 2, when linearized, yield hjdp?qj2i � 1=q2.

Taken literally, this would mean only quasi-long-range order in dimension d ¼ 2, by analogy
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with the XY model. However, nonlinearities in Equations 1 and 2 are strongly relevant in

d ¼ 2 and lead to hjdp?qj2i diverging more slowly than �1/q2 for most directions of q, thus

preserving long-range order (11, 12, 13). Below is a qualitative explanation of how this

happens.

Let us consider a flock with hpi ¼ p0ẑ at a given instant. Because p is a velocity, a long

wavelength fluctuation dp? will allow creatures in the flock to exert their orienting influ-

ence on regions out to a distance dp?t in a time t. This effective enhancement of the range

of influence ultimately leads (11, 12, 13) to a suppression of orientational fluctuations

on large scales and thus to long-range order in d ¼ 2. The effect is absent in d ¼ 1,

where rotations are a discrete symmetry and there is no dp?. We return to this point in

Section 2.4.3.

I have not discussed microscopic derivations of the Toner-Tu equations (35, 36; S. Mishra,

unpublished data), dynamics near the onset of polar ordering (37, 38), or the application

of flocking models (39, 40) to motor-microtubule extracts (41).

2.4. Tests of Vector Flocking Models

Two types of tests of the physicist’s approach to flocking are required. Experiments on real

flocks are of course the real test. However, it is equally important to check the predictions

of coarse-grained theories against computer experiments on microscopic models. I discuss

both below, although measurements of the phase-transition variety on real flocks are

scarce.

2.4.1. Scaling in the ordered phase: simulations. Quantitative agreement has been found

between numerical experiments on microscopic models and the predictions of the coarse-

grained theory, including long-range order in d ¼ 2, the form of the propagating modes,

anomalous density fluctuations, and superdiffusion of tagged particles (7, 11, 25). I am not

aware of any laboratory or field-based attempts to measure ordered-phase correlation

functions for flocks on a substrate.

2.4.2. Nature of the flocking transition: simulations. Although some studies (10, 42, 43)

claim to see a continuous onset of the ordered phase, as a mean-field treatment of Equation 1

or an analogy to continuous-spin magnets would suggest, very-large-scale numerical studies

of the Vicsek model and its relatives show that the transition is in general a discontinuous

one, characterized by a complicated coexistence (25, 44). (See also Reference 45.)

2.4.3. On one-dimensional flocks. In numerical studies of the Vicsek model in one space

dimension, long domains of coherently moving particles do appear at low noise and high

density. It is occasionally claimed (10, 46) that this is a true phase transition in the limit of

infinite system size, as occurs in Vicsek models in dimension d 	 2. Let us recall that the 1d

Ising model fails to order because of the proliferation of kinks (34). Does some magic

suppress kinks, i.e., velocity flips, in 1d flocks? Raymond & Evans (47) estimate the

lifetime t(L) of a 1d flock of length L as the mean time for the appearance of a kink. They

show that if t(L) is to grow at least as a power of L, the number of particles per site must

grow, artificially, at least as log L. Accepting the constraint of a finite number density yields

a finite lifetime and correlation length for the would-be flock. Ultimately, nothing saves

1d flocks from the fate of the 1d Ising model because flocking in 1d breaks a discrete
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symmetry and is thus not accompanied by Nambu-Goldstone modes, whose long range is

responsible for the rescue act in d ¼ 2.

Nevertheless, lowering the noise strength or raising the density at fixed Lwill eventually

yield a system with a correlation length larger than L and a bistable time series of the

flocking order parameter, i.e., a finite transient flock with a large lifetime. Precisely this

phenomenon has been seen in experiments, to which we turn next.

2.4.4. Real experiments on flocks on a substrate.

1. Couzin and colleagues (48) study the one-dimensional flocking of desert locusts on an

annular track. The onset of coherent motion seen in the experiments as the number of

locusts is increased, and the bistable time-series switching between clockwise and coun-

terclockwise circuits of the track, are well described by the 1d Vicsek model (10), to

which the paper makes a comparison. One must not, of course, conclude that there is a

true phase transition here (see Reference 47 and Section 2.4.3). All the same, the

experiment demonstrates convincingly the relevance of simple flocking models to an

understanding of the behavior of real organisms.

2. Szabó et al. (49) created a polar flock in a petri dish by using motile keratocytes

extracted from fish scales. As the cells divide and the areal density of cells crosses a

threshold, there is a well-defined onset of a state of macroscopic order in the orienta-

tions and velocities of the keratocytes that can plausibly be interpreted as a flocking

phase transition, which should be governed by the local physics of the models we have

been discussing, as the cells interact only by contact. The data quality makes it impos-

sible to draw conclusions regarding the order of the transition. The authors make

further inferences on the transition from a computational model, not from data. Despite

limitations, the experiment is valuable as a realization of the flocking transition, with

potential for higher-precision studies including finite-size scaling.

3. There is a surprising link between vibrated granular monolayers and self-propulsion

(7, 14, 23, 50, 51). Polar rods (23) placed on a vertically vibrated horizontal linear track

move on average with small end forward. Systematic unidirectional motion of apolar

rods (50) was effected by keeping them permanently tilted, by overfilling an annular

channel with rods. The propulsion mechanism (51, 52, 53) is illustrated in Figure 2. The

reader is encouraged to check that this system satisfies all three defining properties of

active matter in Section 1.2. So far, published studies (54) of polar rods at high coverage

on a vibrated surface report order and anomalous density fluctuations on a local scale,

and an abrupt flight to the boundary when the vibration amplitude crosses a threshold,

but not a macroscopically ordered flock. The case of apolar rods (15, 55) is discussed in

Section 3.2.2.

Equal friction:
symmetric propulsion

Low frictionHigh friction

Figure 2

A rod landing after being tossed up will in general be impelled away from the end that makes first

contact with the surface. If the two ends differ in weight, geometry, or friction, the rod will be

propelled toward one end.
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3. FLOCKS THAT GO NOWHERE ON A SUBSTRATE

3.1. The Origin of Giant Number Fluctuations in an Active Nematic

At least one example is known (56) of living, pulsating, elongated cells forming a state with

spontaneous, uniaxial orientational order with a macroscopic axis n̂ with n̂ ! �n̂ symme-

try. This is the spatial symmetry of nematic liquid crystals, and it guarantees that the mean

macroscopic velocity of such a flock is zero. Yet, active nematics are profoundly different

from dead ones. In particular, here, as in polar flocks, GNFs are predicted (14), even

though the order parameter for the nematic is not a velocity. Below is an explanation of

how it works.

In the presence of noise, long-wavelength fluctuations of the axis of orientation—the

broken-symmetry mode—are abundant. Working in two dimensions for simplicity, where

distortions are described by a single angle y, we see (Figure 3) that bend or splay produces a

polar configuration. The absence of time-reversal invariance in a driven state, together

with the polarity, means (57) that particles in the curved region must drift in a direction

defined by the curvature as pictured in Figure 3, leading to a current of particles J with

Jx / @zy, Jz / @xy in two dimensions. In steady state, this active flux must be balanced

on average by restoring diffusive currents �rc. Thus, fluctuations in c and y must be

of the same order. Orientational fluctuations, being a broken-symmetry mode, should

have a variance of the order 1/q2 at wavenumber q. Therefore, number density fluctuations

hjcqj2i �1/q2 as well, which means the number fluctuations in regions containing

N particles on average have a standard deviation

DN / N1=2þ1=d � N for d ¼ 2 7:

for largeN. Unlike for polar flocks (11, 12), these results of the linearized theory for apolar

systems survive quantitatively when nonlinearities are included (36, 58).

Splay
Bend

div n

n × curl n

Jx ∝ ∂zθ Jz ∝ ∂xθ

n0

n0

n

δn

δn

θ

Asymmetry leads to current

Figure 3

In an apolar nematic, curvature confers local polarity and hence local motion.
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3.2. Tests of Apolar Flock Theories: Experiments and Simulations

3.2.1. Particle models for active apolar order. The first test of the existence of GNFs in

active nematics was a computer experiment on a clever apolar generalization (59) of the

two-dimensional Vicsek model described in Section 2.1. Each particle is assigned an axis,

rather than a unit vector, which it aligns parallel to the mean of its neighbors’ axes, subject

to an angular noise. The particle then takes a small step preferentially along the axis,

forward or back. Because the orientation variable and the moves are all defined modulo

p, the model has no polarity. As noise or mean interparticle separation is decreased, a

continuous transition is seen from an isotropic state to a phase with quasi-long-range

nematic order of the particle axes, as in equilibrium (17, 60). However, the density fluctu-

ations are giant: DN was found to grow far more rapidly than N and could be fitted to a

form a
ffiffiffiffiffi
N

p þ bN in precise agreement with the predictions (14) whose derivation was

sketched above. Real-space snapshots showed strong transient inhomogeneity, with a

banded structure. If the anisotropic, detailed-balance-violating move is replaced by an

isotropically distributed random step, the nematic phase survives, but with normal number

fluctuations, because detailed balance now holds. Mishra (36) has shown that coarse-

graining the model of Chaté et al. (59) yields the equations of motion discussed in Refer-

ence 14, with the active current first presented in Section 3.1. Further numerical studies on

a particle model (61) show a close connection between the GNFs of an active nematic and

the phenomenon of fluctuation-dominated phase ordering (62).

3.2.2. Experiments on apolar flocks on a substrate.

1. Melanocyte nematics: Living melanocytes, the cells that spread pigment in skin, have been

shown (56) to form apolar, nematic order in vitro as concentration is increased. The

resulting 2d nematic phase has large regions of oriented cells with occasional point

topological defects of strength �1/2, which reinforce the nematic interpretation (17, 56).

Although Gruler et al. (56) emphasize that their systems are very far from thermal

equilibrium, the analysis they bring to bear on the problem, especially in the apolar case,

is largely inherited from the equilibrium theory of liquid crystals. The focus is on model-

ing cell orientations in a population-averaged description that cannot resolve spatial

variations in the density. Consistent with this limitation, their experiments do not look at

the behavior of density fluctuations. The purpose of this discussion is to urge experi-

menters to take another look at the melanocyte system, especially as the strange properties

of active nematics (14, 59, 61) remain to be checked in a biological experiment.

2. Active apolar states in granular matter: Narayan et al. (15, 55) carried out a systematic

study of liquid-crystalline order in a vertically agitated monolayer of copper-wire segments.

In particular, they measured number density fluctuations in the nematic and the isotropic

phases. Their findings (15) confirmed the predictions (14) of GNFs in the nematic phase.

A typical nematic configuration and a plot of standard deviation versus mean number are

shown in Figure 4 and Figure 5. An additional consequence of the theory that the autocor-

relation of the local density should decay as �log t over a large time range (14) was also

confirmed (15). Lastly, single-particle tracking showed that the rods moved preferentially

along their length just like the apolar flockers in Chaté et al.’s (59) model.

Other experiments of interest on chiral structures in active granular matter include the

work of Tsai et al. (63) and of Blair et al. (50). The measurements on granular matter
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Figure 4

Snapshot from the active nematic phase of vibrated copper-wire segments. Figure credit: Vijay

Narayan.
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ϕ = 61% (Ntot = 2600)
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0.60.6
0.7
0.8

Figure 5

Giant number fluctuations in experiments on the copper-wire active nematic. Standard deviation DN
scaled by

ffiffiffiffiffi
N

p
grows with mean number N. (Inset) No such growth in the isotropic phase.

Figure credit: Vijay Narayan.
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reported above are among the few quantitative tests of active-matter theories. That they

are not carried out on living systems only serves to reinforce the universality of the

approach reviewed here.

4. SWIMMING ORGANISMS AND THE CYTOSKELETON

4.1. The Equations of Active Hydrodynamics

The collective motion of swimming organisms can be understood by constructing

the coupled dynamical equations for the swimmer concentrations and orientations, and

a generalized Navier-Stokes equation for the velocity field u of the suspension. Self-

propelling activity enters via force densities in the Navier-Stokes equation. These have no

monopole moment because the mutual forces of swimmer and fluid cancel by Newton’s

third law (64). The minimal model of an active particle in a fluid is therefore a permanent

force dipole (see Figure 6), whose strength W is positive for extensile and negative for

contractile swimmers. [See also the modeling of ion pumps in a model membrane by

Manneville et al. (65).] Associating a local orientational order parameter field p(r, t)

with the vectorial orientation of the swimmers in a coarse-graining cell around r at time

t, a straightforward calculation (16) shows, to leading order in a gradient expansion,

that a collection of active particles at concentration c(r, t) has an active force density

Fa(r, t) ¼ �r � sa, with an active stress

sa ¼ Wcðr, tÞpp
¼ Wc r, tð ÞQ r, tð Þ þW

3
cp2I, 8:

where I is the unit tensor, and Q, the trace-free part of pp, determines the deviatoric stress,

which is all that concerns us in the incompressible limit r � u ¼ 0. Activity thus produces

flow, and flow in turn reorients the principal axes of rod-like particles preferentially along

the extensional axis (and platelike along the compressional axis) as it would in nonliving

Extensile

Contractile

=

=

n

n

Figure 6

The flows around a swimming bacterium (top) and an algal cell (bottom). Bacteria are extensile, and

algae contractile, force dipoles.
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liquid crystals. The resulting equations of motion for p are obtained by adding flow-

orientation couplings to Equation 1:

Dtpþ lp:rpþ . . . : ¼ gA:p� dF=dpþ f, 9:

where Dt is the time-derivative in a frame locally comoving and corotating with the fluid,

the coefficient g governs the orienting effect of the extensional part of the flow through the

term in A ¼ [ru þ (ru)T]/2, and the remaining terms are as defined for Equation 1, F

being the free energy of Equation 3. Inertia, viscosity �, elastic forces from the free energy

(Equation 3), and activity compete to determine the dynamics of the suspension velocity

field:

rð@t þ u�rÞu ¼ �r�ðsa þ shÞ � �r2u�rP;r�u ¼ 0, 10:

with incompressibility r�u ¼ 0 enforced by the pressure P. In Equation 9, sh is the contri-
bution to the stress from Equation 3 for the free-energy functional (17). Lastly, the current

in the continuity equation for the concentration, in the lab frame, is (pþu)c because we can

simply identify the orientation field p with the active-particle velocity with respect to the

fluid. We turn next to the dramatic consequences of this dynamics.

4.2. The Instability of Orientationally Ordered Active Suspensions

Active suspensions with uniform orientational order are in a state of permanent uniaxial

tension or compression and are therefore intrinsically unstable (16, 66, 67): An individual

contractile particle (Figure 6) pulls fluid in from both ends along its main axis. In a

perfectly ordered, unbounded, parallel collection of contractile particles, these self-gener-

ated flows cancel. A long-wavelength splay fluctuation disrupts this delicate balance,

resulting in flows upward on one side and downward on the other, as shown in Figure 7.

The ensuing shear will amplify the rightward tilt of the middle portion, hence the instabil-

ity. The same argument, mutatis mutandis, implies a bending instability of tensile fila-

ments. A detailed solution (16, 66, 67) of Equations 9 and 10 bears out this pictorial

argument.

Note that we have assumed instant, global response of the fluid flow, which amounts

to the steady Stokesian approximation in which inertia and acceleration are ignored in

W < 0

W > 0

Figure 7

The heart of the generic instability of ordered active filaments. Long-wavelength splay produces shear
flows that further distort a row of parallel contractile force dipoles (left). Similarly, bend disrupts

extensile filaments (right).
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Equation 10. In that limit, in an unbounded system with mean concentration c0, the

growth rate of the instability must be proportional to the only available inverse timescale,

namely, the ratio Wc0/� of active stress to viscosity.

In a container with smallest dimension L, active stresses compete (67) with Frank

elasticity from Equation 3, resulting in a threshold W c0 � K/L2 for the instability. Far

beyond threshold, scaling at wavenumber q yields a growth rate (qL)2 W c0/� for qL 
 1,

crossing over to W c0/� for qL � 1. The detailed form of the instability depends on the

experimental geometry. In Reference 66, for example, it appears as an active version of the

Freedericksz transition of nematic liquid crystals (17). Novel instability mechanisms

recently noted in polar systems include oscillations and banding if a concentration field is

included (68), and traveling undulations if a deformable free surface is present (69).

Aranson et al. (70) study free-standing active thin films and introduce ad hoc a propulsive

force simply proportional to the thickness-averaged p. Such a term can be obtained from

the treatment of this section and Reference 16 if p is neither parallel nor perpendicular to

the free surface. Muhuri et al. (71) discuss the stabilizing effect of shear.

There is detailed evidence for the basic instability in numerical studies of particles self-

propelled through a fluid (72–83), which also find a variety of instabilities in the isotropic

phase. Studies of the partial differential equations of active hydrodynamics include Refer-

ences 84 and 85, which show that the linear instability leads to complex flow patterns and

turbulence driven not by Reynolds number but an active Ericksen number (W c0/�)t, where

t is the collective relaxation time of the Q tensor.

For small but nonzero Reynolds number Rea on the length scale a of a particle, the

instability arises for wavenumber q with

Rea 
 qa 
 1, 11:

a range that clearly does not exist for swimmers of macroscopic size and speed.

4.3. The Effect of Activity on Viscosity

The enhancement or reduction of viscosity by activity (86) in a suspension in the isotropic

phase is one of the most robust predictions of active hydrodynamics. The mechanism is

readily understood, pictorially (see Figure 8) or verbally: Consider a collection of filaments

endowed with contractile or extensile force dipoles in the isotropic phase but at high

enough concentration that collective orientational relaxation is slow. A modest imposed

shear flow will then produce appreciable alignment. Contractile filaments will then pull

Figure 8

How activity modifies viscosity. Shear orients filaments; the permanent force dipoles pull back, if

contractile, and push out, if extensile, on the flow.

336 Ramaswamy

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
0.

1:
32

3-
34

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 8

6.
16

7.
16

3.
93

 o
n 

09
/0

2/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



back on, and extensile filaments push out on, the flow that oriented them. The result is a

higher stress/rate ratio; that is, a viscosity, for contractile filaments, and lower for extensile

filaments, than would be found for dead particles of the same shape and at the same

concentration. Upon tuning a parameter such as concentration to increase the collective

orientational relaxation time, a suspension of contractile filaments should show strong

viscoelasticity, as with an equilibrium system approaching a glass transition (86, 87), and

extensile filaments should show enhanced unstable shear thinning. Numerical studies (88)

find a complex active rheology, including the predicted (86, 87) glassy enhancement of

viscosities for contractile systems, and shed valuable light on the role of boundary condi-

tions. Liverpool & Marchetti’s (87) microscopic models for filaments and motors, and

Saintillan’s (89) model for swimmers, recover the predictions of Reference 86.

4.4. Fluctuating Active Hydrodynamics

The enhancement of biological noise by active processes was studied some years ago in the

context of membranes with pumps (65, 90–94). A natural explanation for the enhanced

noise temperature of swimming bacteria (95) was found in the active hydrodynamic frame-

work by including random forces, torques, and currents (16, 86), which are consistent with

conservation laws but unrelated a priori to transport coefficients, because these are systems

far from thermal equilibrium. Lau and colleagues (96, 97) model the microrheology of

bacterial suspensions in the active hydrodynamic framework with noise. They relate the

collective noise to the tumbling of bacteria and show that Equation 8 implies a t�1/2 decay

of the stress autocorrelation for times shorter than the collective orientational relaxation

time t. They also show, as do Underhill et al. (98), that equal-time correlations of the

suspension velocity field on intermediate length scales r should decay as 1/r. Related pre-

dictions regarding time correlations arise in work by Golestanian (99) in the a priori different

context of catalytically self-propelled colloids (22). Active noise in the ordered phase is pre-

dicted (100) to lead to diffusivities that depend on sample thickness, through a mechanism

related to the giant fluctuations (11, 12, 13, 14, 16) discussed in Sections 2 and 3.1.

4.5. Fish Schools

Schools of fish (101) appear to be spontaneously ordered phases at high Reynolds number

(102) and, as a consequence of Equation 11, evade the instability of the oriented state of low-

Re self-propelled particles. As a first step toward applying active hydrodynamics to macro-

scopic swimmers, Simha & Ramaswamy (16) studied linear perturbations about an ordered

steady state of uniform number density and propulsion velocity relative to a quiescent fluid.

Ignoring inertia and retaining active stresses and the Navier-Stokes acceleration term in

Equation 10, they found that all modes were propagative, with highly anisotropic speeds of

the order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wc0=r

p
, and showed that the inclusion of fluid flow did not eliminate the GNFs in

polar flocks predicted by Toner&Tu (11). It would seemworthwhile to test these predictions

on fish schools. (See Reference 103, to which we return in Section 4.7.3.)

4.6. Active Hydrodynamics of the Cytoskeleton

The cytoskeleton with its motors, on timescales longer than the release time of transient

cross-links, is also an active fluid suspension of polar orientable objects (8, 19, 20, 104,

105) with macroscopically contractile stresses along the filament axes (106).
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4.6.1. The active-gel picture. Hydrodynamic equations for active gels (8, 19, 20, 105)

were formulated with the goal of modeling the cytoskeleton, mainly on long timescales

when it is fluid. The description turns out to be precisely the same as that of Reference 16,

but the construction uses linear irreversible thermodynamics (29, 107) for a non-

equilibrium steady state near equilibrium. A linear relation is assumed (19) between

“fluxes” (including the stress sij and the rate r of ATP hydrolysis) and “forces” including

the velocity gradient riuj and the chemical potential difference Dm between ATP and its

reaction products, allowing for a nondiagonal matrix of kinetic coefficients. The existence

of the polar order parameter p makes it possible to construct a scalar zpipj ri uj contribu-

tion to r, linear in ru, where z is a phenomenological parameter. By the (anti)symmetry of

reversible kinetic coefficients, this implies a piece �zpipjDm in the stress sij, which we

recognize as the active stress of Equation 8.

Below is some recommended reading on recent applications of active hydrodynamics to

the cytoskeleton. Active stresses have been shown (108) to be important in the formation

of the contractile ring around the equator of an animal cell about to divide. Oscillations in

experiments on nonadhering fibroblast cells have been understood through the interplay of

active stresses in the cortical actin layer with the entry of calcium through ion channels

(109). Strong departures from the fluctuation-dissipation theorem (FDT) (110) have been

seen in a permanently cross-linked actin network studded with myosin motors and ana-

lyzed using active hydrodynamics extended to the case of a permanently cross-linked

network (111, 112). Strongly non-FDT behavior has been predicted (113) in an active

hydrodynamic treatment of a stiff filament in an active medium, and connections have been

drawn to the dynamics of auditory hair cells (114) and axons (115, 116). The idea of actin-

based active transport parallel to the cell membrane has been proposed in Reference 117.

4.6.2. From motors and filaments to active hydrodynamics. Kruse & Jülicher (118),

motivated by actomyosin phenomena, studied active stresses in one-dimensional micro-

scopic models of motors and filament bundles. In an important series of papers, Liverpool,

Marchetti, and collaborators (33, 87, 119) have carried out a systematic construction of

the coarse-grained equations of motion of active filaments, for systems on a substrate as

well as in bulk suspension, starting from a microscopic description of motors gripping

filaments and moving along them. They obtain equations of the form proposed by purely

phenomenological theories (11, 12, 14, 16, 19, 39, 40), but each parameter in the coarse-

grained theories is traced to a microscopic process involving motors and filaments. A useful

outcome (33, 87, 119) is phase diagrams including the various well-known instabilities of

actin solutions such as bundling, with a connection to experimentally accessible control

parameters such as filament concentration and strength of motor activity. The initial

approach was motivated by cytoskeletal physics, but more recently (120) the focus has

been on swimmers.

4.7. Experiments on Active Suspensions

4.7.1. Viscosity measurements on microbial suspensions. The prediction (86) that activity

alters the viscosity of suspensions, as discussed in Section 4, has recently been tested by

Rafaı̈ et al. (121, 122) on the motile alga Chlamydomonas, a contractile swimmer, in a

conventional rheometer, and by Sokolov & Aranson (123) on the bacterium Bacillus

subtilis, an extensile swimmer, by monitoring the decay of an imposed vortex as well as
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by measuring the viscous torque on a rotating particle. The idea was to check whether the

change in viscosity could be attributed directly to the swimming activity. Figure 9 shows

the viscosity of the microbe suspension as a function of concentration f and compares the

values obtained with live and dead cells, for f up to 25%. The dependence of viscosity on

f was approximately twice as strong for live as for dead cells. For B. subtilis, the viscosity

was suppressed by as much as a factor of seven in some cases (123). These experiments not

only confirm the predictions of Hatwalne et al. (86) but also provide strong support for the

idea that a medium suffused with active processes such as swimming should be thought of

as a distinct type of material.

4.7.2. Order and instability of active suspensions. There is ample qualitative evidence of

the instability of active ordered suspensions predicted in Reference 16 and discussed in

Section 4.2. It would appear that collections of bacteria cannot swim straight, even if they

set out to do so (124–126), and that their own active stresses are responsible. Bacterial

turbulence is seen in Figure 10. The role of instabilities in focusing the bacterial concentra-

tion has been stressed by Goldstein and coworkers (124, 127).

4.7.3. The structure factor of fish shoals. A remarkable underwater acoustic measure-

ment (103) of the static structure factor of the number density of fish shoals, for

wavenumbers k from 10�4 to 10�2 m�1, reveals a power law �k�1.5 and a rapid wave-like

response of fish to perturbations, both of which are consistent with the Toner-Tu (11) work

described above. However, to deal with the fact that the fish are in water, a more complete

theory of active suspensions at high Reynolds number, or at least in the unsteady-Stokes

0.0

0.00 0.05 0.10 0.15 0.20 0.25

0.5
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1.5
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 –
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Figure 9

Relative viscosity of suspensions of Chlamydomonas (measured at shear rate 5 s�1) versus volume

fraction f. Solid symbols: live cell data; crossed symbols: dead cell data. Reprinted with permission

from Rafaı̈ et al. (121) (http://prl.aps.org/abstract/PRL/v104/i9/e098102). Copyright 2010 by the
American Physical Society.
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description, is clearly needed. Power counting on Equations 9 and 10 shows that

nonlinearities are relevant in dimension d < 4. An actual renormalization-group calcula-

tion for this problem is even more daunting than that for the Toner-Tu model (11) and

therefore has not been done. A useful first step would be a comparison of the fish-shoal

observations (103) to the unsteady-Stokes predictions (16) discussed under “Fish Schools”

(Section 4.5).

5. ARTIFICIAL SELF-DRIVEN PARTICLES

We have already seen one imitation of active matter in Section 3.2.2, namely, a vertically

agitated horizontal layer of bits of wire. Several efforts are under way to make colloidal

active matter, including beads or rods half covered with platinum and immersed in H2O2

(22, 128). The platinum catalyzes H2O2 ! H2O, and the asymmetry leads to directed

motion as a result of osmotic gradients. These have been analyzed theoretically (see

References 99, 129, 130). Electroösmotic propulsion has been explored by Lammert et al.

(131). A magnetically driven artificial flagellum has been demonstrated by Dreyfus et al.

(132). The study of self-propelled liquid drops on a surface, a common sight on a hot skillet

in the kitchen, is a subfield in itself and cannot be reviewed in any detail here. The driving

force is generally evaporation of one or more constituents from the liquid. A couple of

recent examples are the work of Thakur et al. (133) on nematic drops and Chen et al. (134)

on oil drops driven by surface tension gradients. It should also be possible to make motors

by forcing asymmetric elastic dimers with nonequilibrium noise (135, 136). An intriguing

new theoretical development holds out the possibility of using mechanical agitation to

make Stokesian swimmers from collections of elastic dimers (137). In all these cases, a

35 μm

Figure 10

Turbulence at zero Reynolds number in a sitting drop of Bacillus subtilis, viewed from below.
Reprinted with permission from Dombrowski et al. (124) (http://prola.aps.org/abstract/PRL/v93/i9/

e098103). Copyright 2004 by the American Physical Society.
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well-known general principle (57) seems to work: Polarity together with sustained dissipa-

tion leads to motility.

6. CONCLUSION AND OUTLOOK

What has the active-matter effort achieved? It has opened a new area of fundamental

physics—the hydrodynamics of liquid crystals and suspensions in an entirely novel regime.

It is part of a larger process: Biology is increasingly concerned with the mechanical forces

exerted in living systems, and the active-matter approach provides the framework in which

to ask these questions. It has made specific predictions, and experimenters are managing to

check some of them. The impact on biology is already being felt, from the subcellular scale to

starling flocks (138). In cell biology, tissue is clearly the next mountain, and some steps on it

have already been taken (139). The active hydrodynamic framework, suitably adapted,

should apply to self-driven particles in more complex media and geometries (141–146).

The approach to active matter advocated in this review shares an important weakness

with all coarse-grained theories: an abundance of phenomenological parameters. If ther-

mal Brownian motion and active processes are present in comparable magnitude, a clear

distinction can probably be made between parameters determined primarily by equilib-

rium physics and arising strictly from activity. However, this nice separation is lost if noise

and coefficients themselves are functions of activity (122), as they probably are in bacteria

and certainly are in granular matter. This limits somewhat the predictive power of coarse-

grained theories. This is a limitation we are used to in equilibrium physics: Ginzburg-

Landau free-energy functionals predict temperature dependences best near continuous

phase transitions, not over an entire phase. In addition, living systems are finite in space

and time and thus not ideally suited for gradient-expanded approaches. We must admit

these limitations and accept humbly the need for microscopic theories.

There are two imperatives if the field is to make a real contribution to biology. Future

theory work must aim to integrate the combined effects of growth, cross-linking,

treadmilling, multiple species of filament, and the coupling of the cytoskeleton to the cell

membrane (117). Future experimental work must aim for quantitative tests of existing

predictions of active hydrodynamics on controlled experimental systems.
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NOTE ADDED IN PROOF

A polar flock has just been realized in a granular system (147).

Popescu and colleagues (148, 149) have conducted recent work on osmotic self-propulsion.

Several works provide important theoretical and simulational results on clustering and related pheno-

mena in self-propelled rods (150–154).
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