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Abstract

Many bioinformatics problems implicitly depend on estimating large-scale co-

variance matrix. The traditional approaches tend to give rise to high variance and

low accuracy due to “overfitting”. We cast the large-scale covariance matrix es-

timation problem into the Bayesian hierarchical model framework, and introduce

dependency between covariance parameters. We demonstrate the advantages of

our approaches over the traditional approaches using simulations and omics data

analysis.

Estimating covariance matrix from high-throughput “omics” data is indispensable

for many tasks, notably for finding clusters in the data. The problem remains challeng-

ing due to the large number of variables p (such as genes or proteins) and the compar-

atively small number of samples n (such as conditions under which gene expression is

measured). The existing approaches that rely on the maximum likelihood estimation

or the related unbiased empirical covariance matrix suffer from low accuracy and high

variance inherent in any “large p, small n” type of data. A regularized and conditioned
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covariance matrix would be a great improvement over the unconstrained simple esti-

mation of the covariance matrix in the high-throughput omics data setting. Estimation

of such a matrix is a difficult problem because inadequate degree of freedom to draw

reliable statistical inference on tens of thousands of correlation parameters. Proper

constraints need to be imposed on these parameters to overcome this difficulty.

There are two existing approaches. One is based on pairwise correlation estima-

tion followed by variance reduction techniques such as bagging (Hastie et al. 2001)

and bootstrap aggregation (Breiman 1996). Representative work includes the full or-

der (also called Gaussian Graphical Modeling (GGM)) partial correlation estimation

approach (Schafer and Strimmer 2005a), which introduced a Bayes model from which

all correlations are estimated using an Empirical Bayes method. Another approach is

to obtain improved estimates of the covariance matrix via shrinkage combined with

analytic determination of the shrinkage intensity according to the Ledoit-Wolf theo-

rem (Ledoit and Wolf, 2003). The authors showed that the new regularized estimator

greatly enhances inferences of gene association networks for synthetic data (Schafer

and Strimmer 2005b). Their approach is based on the assumption that the omics data

is independently and identically distributed (i.i.d) p-variate observations sampled from

a p-variate Gaussian distribution with the (p× p) covariance matrix of interest. The

assumption is plausible only for small sized homogenous data because the underlying

statistical distribution of larger sized heterogenous data is often mixed (Yeung et al.

2001). In both approaches, dependency was introduced among the correlation param-

eters in different ways.

We advocate the framework of the first set of approaches since it relies on less

stringent assumptions, and it’s usage has been demonstrated by numerous biological

examples. We improve over the existing Empirical Bayes method by providing a full

Bayesian treatment of the problem. In the Bayesian framework, we derive the posterior

distribution for each correlation parameter based on the observed the n× p data matrix.
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The posterior distributions allow statistical inference of the correlation parameters to

be easily drawn.

In our previous work (Zhu et al. 2005a), we described an error control procedure

based on a correlation statistic that simultaneously controls statistical significance and

biological significance of the estimated covariance matrix. The correlation statistic

works reasonably well for data with relatively large sample size. However, it has poor

accuracy for data with small sample size due to overfitting (Ledoit and Wolf 2004,

Schafer and Strimmer 2005b). Introducing some form of strong dependency among

correlation parameters can lead to improved accuracy in this small sample situation.

Many approaches to introducing dependency can be adopted. Bayesian hierarchical

models accomplish this in a simple but effective manner.

The remainder of the paper is organized into five parts: Introduction of Bayesian

Hierarchical Model for large-scale covariance matrix estimation (Sec. 2); Simulation

studies of comparing the Bayesian estimator versus simple estimator (Sec 3); Analyz-

ing the galactose metabolism data using proposed Bayesian approach and compared

with the traditional approach (Sec 4); Conclusion and discussion (Sec 5).

1 Bayesian Hierarchical Model of Covariance Matrix

The framework of Bayesian hierarchical models allows for high complexity of mod-

elling structure without a large number of parameters (pairwise correlation parameters

in this context) (Gelman et al. 2004). We assume the correlation parameters are ex-

changeable meaning that their joint distribution is invariant to permutations of their

indices. It represents a kind of topological invariance that imposes prior assumptions

on the location of high correlations in the network. We then regularize variances of the

marginal correlation densities by specifying a parent Gaussian distribution from which

marginal correlation parameters are sampled. Using a prior population distribution we

are able to introduce dependency into the parameters that tends to avoid problems of
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overfitting. Using quantiles of posterior distributions of the correlation parameters pro-

vide a seamless combination of correlation estimation and strength thresholding that

can be used as an alternative to FDR-CI methods (Benjamini and Yekutieli 2005, Zhu

et al. 2005a) for small samples.

Without loss of generality, we employ the marginal correlation coefficient to demon-

strate the Bayesian hierarchical model for large-scale (marginal) correlation matrix es-

timation. The model can be easily extended for large-scale partial correlation matrix

estimation, and we will discuss this issue in section 5. We use ρ to denote the true

correlation coefficient between a pair of gene expression profiles (Bickel and Doksum

2000). Specifically, let Xg j(n) be the n-th condition index of the j-th gene profile and

let SXgi ,Xgi
, SXg j ,Xg j

, and SXgi ,Xg j
be sample variances and covariance defined as:

SXgi ,Xgi
= (N−1)−1

N

∑
n=1

(Xgi(n)−Xgi)
2,

SXg j ,Xg j
= (N−1)−1

N

∑
n=1

(Xg j(n)−Xg j)
2,

SXgi ,Xg j
= (N−1)−1

N

∑
n=1

(Xgi(n)−Xgi)(Xg j(n)−Xg j).

The true correlation coefficient is defined as

ρ =
E[SXgi ,Xg j

]
√

E[SXgi ,Xgi
]E[SXg j ,Xg j

]
, (1)

where E[.] is statistical expectation. For G gene expression profiles in a gene microarray

sequence, there are Λ =
(G

2

)
of these correlation parameters ρ that need to be estimated,

denoted as ρλ,λ = 1, . . . ,Λ. We define ρ̂λ as the λth sample correlation coefficient, and

Γ̂λ as the hyperbolic arc-tangent transformation of ρ̂λ. Then the transformed sample

correlation coefficients Γ̂λ = atanh(ρ̂λ) are asymptotically Gaussian distributed with
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means of ρλ and stabilized variance approximations of σ2
λ = 1/(N−3) (Fisher 1923).

Here N is the sample size. We define Γλ = atanh(ρλ) as the corresponding transformed

true correlation coefficients.

Our previous simulation studies showed that this variance approximation works

reasonably well even at a relatively small sample size (e.g. N < 10) (Zhu et al. 2005a).

In this sequel we assume known variance of the transformed correlation matrix to re-

duce computational complexity of the full Bayesian correlation matrix estimation. In

case of unknown variances, the conditional posterior distribution can not generally be

written in closed form, for this reason, Markov Chain Monte Carlo (MCMC) tech-

niques might be applied but at high computational cost.

From our assumption that the {ρλ}Λ
λ=1 are exchangeable we model {ρλ}Λ

λ=1 as

random variables drawn from a Gaussian distribution with unknown hyperparameters

(α,β2) (Fig. 1).

p(Γ1, . . . ,ΓΛ|α,β2) =
Λ

∏
λ=1

P(Γλ|α,β2), (2)

where P(Γλ|α,β2) is a Gaussian distribution with mean α and variance β2.

In order to generate conditional posterior distributions p(Γλ|α,β,y) for each pa-

rameter Γλ,λ = 1, . . . ,Λ, where y represents crude estimate of correlation (e.g. using

Pearson correlation coefficient) throughout this article, we performed simulation steps

as follows: (Gelman et al. 2004, Chapter V) (refer to Appendix for details):

• Assign prior distribution for β, e.g. uniform prior distribution p(β) ∝ 1. Note,

the choice of uniform prior yields a proper posterior density while other nonin-

formative prior distributions such as, p(β) ∝ β−1 do not. (refer to Appendix for

mathematical proof.)
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• Draw β from posterior distribution p(β|y).

p(β|y) ∝
p(β)∏Λ

λ=1 N(Γ̂λ|α̂,σ2
λ + β2)

N(α̂|α̂,Vα)
(3)

∝ p(β)V 1/2
α

Λ

∏
λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ− α̂)2

2(σ2
λ + β2)

), (4)

where α̂ and Vα are defined as:

α̂ =
∑Λ

λ=1
1

σ2
λ+β2 Γ̂λ

∑Λ
λ=1

1
σ2

λ+β2

, (5)

and

V−1
α =

Λ

∑
λ=1

1
σ2

λ + β2 . (6)

See Appendix for detailed derivation of p(β|y).

• Draw α from p(α|β,y). Combining the data with the uniform prior density

p(α|β) yields,

p(α|β,y)∼ N(α̂,Vα). (7)

where α̂ is a precision-weighted average of the Γ̂’s and Vα is the total precision.

Note, we define precision as inverse of variance.

• Draw Γλ from p(Γλ|α,β,y)

p(Γλ|α,β,y)∼ N(Θ̂λ,Vλ), (8)

where Θ̂λ,Vλ are defined as:

Θ̂λ =

1
σ2

λ
Γ̂λ + 1

β2 α
1

σ2
λ

+ 1
β2

, (9)
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and

Vλ =
1

1
σ2

λ
+ 1

β2

. (10)

The atanh-transformed posterior mean correlation coefficient Θ̂λ is a precision-

weighted average of the prior population mean α and the λth sample mean Γ̂λ.

The posterior distribution (Eq. 8) contains all the current information about the

atanh-transformed parameter ρλ. In particular, the posterior mean and posterior confi-

dence interval can be derived. The posterior mean is

E[Γλ|y] = E[atanh(ρλ)|y]

= avg(Γ̂λ). (11)

For deriving the posterior interval of the ρλ, we used the fact that the Cumulative

Density Function (CDF) of Γλ
′ = Γλ−Θ̂λ√

Vλ
is Φ, the cdf of standard Gaussian random

variable. Hence, we define its quantile function as Φ−1, and write the (1−q)×100%

posterior interval of the parameter Γλ
′:

IΓλ
′
(q) = [Φ−1(q/2),Φ−1(1−q/2)]. (12)

After some algebra derivation and based on the fact that tanh is a monotonically in-

creasing function, we have a (1− q)× 100% posterior confidence interval for the pa-

rameter ρλ:

Iρλ (q) = [tanh(
√

Vλ(Φ−1(q/2)) + Θ̂λ), tanh(
√

Vλ(Φ−1(1−q/2)) + Θ̂λ)]. (13)
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2 Simulation Studies

2.1 Comparisons in terms of Confidence Interval, Mean Squared

Error, and Variance

We evaluated the performance of full Bayesian hierarchical model estimation of corre-

lations and compared with the frequentist method in Zhu et al. 2005a. We define the

frequentist CI as follows: If L and U are statistics (i.e., observable random variables)

whose probability distribution depends on some unobservable parameter θ, and

Pr(L≤ θ≤U) = q,q ∈ (0,1),

then the random interval [L,U] is a (1− q)× 100% confidence interval for θ. A fre-

quentist confidence interval may strictly be interpreted only in relation to a sequence

of similar inferences that might be made in repeated trials, while a Bayesian (confi-

dence) interval for an unknown quantity of interest can be directly regarded as having

a high probability of containing the unknown quantity. Therefore, the Bayesian ap-

proach, where a reliable prior is available, facilitates a common-sense interpretation of

statistical conclusions (Gelman et al. 2004).

We first compared two point estimators of correlations in terms of the average width

of the individual frequentist (Pearson) CI’s for the correlation parameters versus that

of the posterior CI’s for the same set of correlation parameters at the corresponding

significance levels. Obviously, more concentrated (narrower) CI’s, at the given signif-

icance level, are superior to less concentrated CI’s. It is clear from Fig. 2 and Fig.

3 that the average Bayesian posterior CI’s are uniformly narrower than the average

freqentist CI’s in both small (N = 4) and larger sample data (N = 20). This dramatic

contrast indicates the advantages of Bayesian approach for small sample size problems

(Fig. 3). From Eqs. 21 and 3, the posterior distributions of the mean p(α|β,y) and

of the variance p(β|y) are decreasing functions of Λ, i.e., the number of correlation

8
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parameter Γ′s. Therefore, narrower posterior CI’s are expected for larger Λ. On the

other hand, wider CI’s are expected when transforming individual frequentist CI’s into

simultaneous FDR-CI’s.

We also compared these two correlation estimators in terms of Mean Squared Error

(MSE) and variance criteria. Similar to the definition in Zhu et al. 2005a, the MSE is

defined as:

MSE(ρ̂λ) = E(ρ̂−ρ)2) =
1
Λ

Λ

∑
λ=1

(ρ̂λ−ρλ)2, (14)

where ρλ is the true population correlation, and ρ̂λ is the sample correlation estimator,

λ is the parameter index, and Λ is the total number of parameters.

The simulation steps proceed as follows:

• Draw Λ population correlations from a normal distribution with known mean (α)

and variance (β) (hyperparameters) as defined in Eq. 2.

• Re-estimate the Λ parameters either separately using the frequentist (Pearson)

correlation estimator or using the Bayesian hierarchical model estimator. For the

Bayesian approach, the correlation estimator is the posterior mean (Eq. 11).

• Compare the two estimators in terms of both MSE and variance. An estimator

with low MSE and variance is considered to be superior.

Fig. 4 plots MSE’s (upper panel) and variances (lower panels) of Bayesian corre-

lation estimators and frequentist (Pearson) correlation estimators at a small sample size

(e.g. N = 4) and a larger sample size (e.g. N = 20) over 500 runs of simulations. It is

evident in upper panel of the Fig. 4 that the MSE of Bayesian estimators is about three-

fold smaller than the frequentist estimators for larger sample size. Similarly to the CI’s

comparisons, this indicates the advantages of the Bayesian correlation estimator for

small sample size problems (Fig. 4). The lower panel of the Fig. 4 plots variances of

the Bayesian correlation estimator and the frequentist correlation estimator. Again, the

comparison of variances follow the same trend as that of the MSE’s (Fig. 4).
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It is worth mentioning that the above simulations assumed a known Bayesian hi-

erarchical model. In order to test robustness of our algorithm to model mismatch, we

also generated data using the uniform distribution but implemented with Pearson CI’s

and Bayesian CI’s that assume mismatched Gaussian and hierarchical models, respec-

tively. In Fig. 5, we compared the average width of individual Pearson CI’s with that

of individual Bayesian intervals. The superior performance of hierarchical Bayesian

estimator (Fig. 2, Fig. 3) is clearly offset by the invalid model assumption in that

average Bayesian CI’s are slightly wider than average frequentist CI’s (Fig. 5). This

simulation result reflect the importance of the Fisher transformation.

2.2 Evaluation of the Bayesian Hierarchical Model

In order to evaluate our Bayesian approach in terms of error control and compare

with the frequentist counterpart, we simulated pairwise gene expression data based

on known population covariances, and then simulated Bayesian confidence intervals

for each parameter from the hierarchical model. The actual False Positive (FP) at a

given Minimal Acceptable Strength (MAS) level is calculated as a ratio of the num-

ber of screened gene pairs whose corresponding population correlation parameters ρi, j

are less than the MAS level specified, divided by the total number of gene pairs. The

actual MAS is the minimum true discovery of population correlation ρi, j among the

screened pairs. We specified 16 pairs of (FP,MAS) criteria (Four FP levels: 0.2, 0.4,

0.6, 0.8; Four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a different upper

case Roman alphabet (Red) in Fig. 6. The 16 corresponding pairs of actual (FP,MAS)

criteria are also shown in Fig. 6 using the same set of lower case Roman alphabets

(Blue). It can be observed that generally the actual FP’s (lower case) fall further below

the specified constraint (upper case) than those did in Fig. 4 of Zhu et al. 2005a (Fig.

6), and the actual MAS’s (lower case) fall above the specified constraints (upper case).

The more dramatic deviations of actual FP’s from their specified levels are due to mul-

10
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tiple factors, such as, lack of multiplicity adjustment and the conservative asymptotic

approximation made in Zhu et al. 2005a. Simulations using some other combinations

of N and Λ, as compared with the FDR-CI approach, give rise to similar results. We

conclude that Bayesian hierarchical model yields better correlation estimates. How-

ever, the false positive rate is overestimated by the Bayesian procedure and this leads

to overly stringent error control.

3 Applications to Network Construction and Seeded Clus-

tering

3.1 Constructing Relevance Networks

We applied the Bayesian hierarchical model to high-throughput data and compared it

with the frequentist approach using the same subset of yeast galactose catabolism two-

color microarray data that was described in Zhu et al. 2005a. The data contains 997

gene expression profiles across 20 genetic/physiological conditions that was identified

by Ideker et al using the generalized likelihood ratio test (Ideker et al. 2000).

Following the procedure described in section 1, we simulated the empirical pos-

terior distribution for each of the
(997

2

)
= 496,506 correlation parameters ρλ. The

(1− q)× 100% posterior interval for each ‘parameter’ was obtained by thresholding

q/2×100% and (1−q/2)×100% of it’s quantile function (Eq. 13). Analogous to the

FDR-CI screening procedure described in Zhu et al. 2005a, a network edge is declared

to be present at the significance level q and the MAS level cormin if it’s posterior CI

does not intersect with [−cormin,cormin]. We sought to compare the two approaches

in terms of network topological properties that are interesting to the biologists. In par-

ticular, we compared the biological functional annotations of the top hub genes of the

two networks. In Zhu et al. 2005a, we controlled FDR at 5%, and constructed networks

at five MAS levels, i.e. 0.5, 0.6, 0.7, 0.8, 0.9. Correspondingly, 18135, 9337, 4151,
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1346, 133 edges were declared to be present using Pearson correlation statistic alone.

Controlling the significance level at 5%, we screened the same set of numbers of edges

using Bayesian hierarchal model to construct the five networks that are more compara-

ble to those in Zhu et al. 2005a. A list of stable hub genes were obtained by calculating

and sorting the average rank of each vertex (gene) degree over five networks (Table 1).

Comparing the Table 1 with the that is reported in Zhu et al. 2005a, note that

the GO biological process annotation “protein biosynthesis[GO:0006412]” and/or it’s

children annotations “hypusine biosynthesis[GO:0046515]”, “branched chain family

amino acid biosynthesis[GO:0009082]”, and “tryptophan biosynthesis[GO:0000162]”

are significantly enriched in both tables. This is consistent with the established fact

that protein biosynthesis plays a key role in galactose metabolism (Berg et al. 2006).

The underlying biological mechanism is that many types of proteins need to be syn-

thesized upon switching from primary carbon source (glucose) to secondary carbon

source (galactose) or the other way around (Wieczorke et al. 1999).

A salient feature in Table 1 that differs from that of Zhu et al. 2005a is that it in-

cludes several transporters and regulators such as GAP1[GO:0006865], YBR043C[GO:0006855],

and ASC1[GO:0006417] etc. These proteins are essential for a smooth transition from

glucose to galactose (Berg et al. 2006, Wieczorke et al. 1999). In addition, Table 1

also includes several uncharacterized genes that are hypothesized to be important for

galactose metabolism. In general, the Bayesian data analysis results not only conform

to the previous frequentist data analysis results, but also provide additional justification

for the biological mechanism and motivation for illustrating new gene functions.

3.2 Seeded Clustering

In parallel with the application of the two-stage algorithm to rediscover the galactose

metabolic pathway reported in Zhu et al. 2005a, we also applied the Bayesian hier-

archical model to perform the seeded (one-to-all) clustering. Performance was evalu-
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Table 1: Top twenty “hub genes” from Bayesian hierarchical model applied to the galactose
metabolism data (Ideker et al. 2000). The rank of each gene is the average rank over five different
networks with the same set of edge numbers as in Table 1 of Zhu et al. 2005a. The highest ranked
gene is the most connected and stable gene under varying constraints of (FP,MAS).

Gene Name Average Rank GO Annotation
YJR070C 4 hypusine biosynthesis[GO:0046515]
YBR043C 4.4 multidrug transport[GO:0006855]

AGA2 4.4 agglutination[GO:0000771]
RPP0 4.6 protein biosynthesis[GO:0006412]

RPL26A 4.6 protein biosynthesis[GO:0006412]
YOR263C 5 biological process unknown

TRP2 5.4 tryptophan biosynthesis[GO:0000162]
ASC1 5.6 regulation of protein biosynthesis[GO:0006417]

YIL064W 5.6 biological process unknown
BOP2 5.6 biological process unknown
GAP1 5.8 amino acid transport[GO:0006865]
RPS2 6 protein biosynthesis[GO:0006412]

RPL11A 6.2 protein biosynthesis[GO:0006412]
SSF2 6.2 ribosomal subunit assembly[GO:0042257]
ILV5 6.2 branched chain family amino acid biosynthesis[GO:0009082]

YPL185W 6.2 biological process unknown
PCK1 6.4 hexose biosynthesis[GO:0019319]

YDR100W 6.4 biological process unknown
YMR291W 6.6 biological process unknown

ATC1 6.6 bipolar bud site selection[GO:0007121]
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ated according to the relative ranks of a handful of known members of the galactose

metabolic pathway. The gene ranks were reported instead of p-values due to substantial

differences of the two statistical frameworks.

We selected gene “GAL10” as the “seed gene” in order to compare the results with

those reported in Zhu et al. 2005a. The comparison was made at a large sample size

N = 20 and a smaller sample size N = 4 respectively aiming to examine the perfor-

mance of the two methods as a function of the sample size. In the former, we used

all the 20 genetic/physiological conditions under which gene expression levels were

measured (Table 2); In the later, we sampled a small subset (e.g. N = 4) of these 20

conditions each time without replication and repeated a number of times to obtain a

“bagged” (stable) estimation of gene ranks in the seeded clusters (Table 2).

When all the 20 observations were used, the two approaches give rise to very similar

seeded clusters indicating that the Bayesian hierarchial model approach is as powerful

as the frequentist approach for relatively large sample size problems. As shown in

Table 2, all of the top 20 seeded gene pairs have identical ranks across two methods.

When multiple random subsets of the data were used, many genes have dissimilar

average ranks across the two approaches. Among the top five genes (GAL10, GAL7,

GCY1 GAL1, GAL2) screened by the seeded clustering using “GAL10” as the seed

gene (see Zhu et al. 2005a and Table 3), 4 out of 5 (GAL10, GAL7, GAL1, GAL2)

genes rank higher in Bayesian estimation than those in frequentist estimation, and the

remaining “GCY1” gene receives tie ranks. See supplemental figures for comparing

untransformed and transformed example posterior distributions. In addition, our results

provide strong experimental motivation for examining the genes that received higher

ranks in the Bayesian analysis, for example, gene YEL057C. The evaluation using

“GAL7” as the “seed gene” gave similar results.
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Table 2: Comparison of Bayesian estimations versus frequentist estimations using “seeded”
clustering at a small and a larger sample sizes. In the former, the ranks were averaged over 100
estimations, in each of which a subset data of sample size N = 4 was randomly sampled from
the whole data of sample size N = 20. In the later, the ranks were obtained using the whole data
of sample size N = 20.

N = 4 N = 20
Gene1 Gene2 Bayesian Frequentist Gene1 Gene2 Bayesian Frequentist

GAL10 GAL1 5.25 5.35 GAL10 GAL7 1 1
GAL10 GAL2 6.65 7.4 GAL10 GCY1 2 2
GAL10 GAL7 6.7 6.85 GAL10 GAL1 3 3
GAL10 GCY1 7.7 7.7 GAL10 GAL2 4 4
GAL10 YOR121C 8.05 7.8 GAL10 YOR121C 5 5
GAL10 YEL057C 8.55 10.6 GAL10 YEL057C 6 6
GAL10 SSU1 8.6 7.65 GAL10 YDR010C 7 7
GAL10 FKS1 8.75 8.25 GAL10 SSU1 8 8
GAL10 PCL10 9.95 7.85 GAL10 PCL10 9 9
GAL10 YJL212C 11 8.85 GAL10 YJL212C 10 10
GAL10 MET14 11.1 10.4 GAL10 FKS1 11 11
GAL10 YDR010C 11.3 10.9 GAL10 MET14 12 12
GAL10 MCM1 11.35 12.3 GAL10 MCM1 13 13
GAL10 EXG1 11.85 13.1 GAL10 EXG1 14 14
GAL10 CRH1 12.05 12.95 GAL10 ARG1 15 15
GAL10 ARG7 12.8 12.3 GAL10 CRH1 16 16
GAL10 YPR157W 13.2 15.35 GAL10 PRY2 17 17
GAL10 PRY2 14.4 13.3 GAL10 YPR157W 18 18
GAL10 YKR012C 14.6 16.25 GAL10 YKR012C 19 19
GAL10 CPA2 16.15 14.85 GAL10 CPA2 20 20
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Table 3: Clustering co-expressed genes with Bayesian hierarchical model at the significance
level 5% using “GAL10” as the “seed gene”. Known genes in the pathway are in bold face
(N = 20).

Gene1 Gene2 2.5% 50% 97.5%
GAL10 GAL7 0.699967273 0.843269806 0.919377659
GAL10 GCY1 0.695895931 0.83904824 0.917448689
GAL10 GAL1 0.685628575 0.824914454 0.906837751
GAL10 GAL2 0.664031223 0.817631953 0.903466008
GAL10 YOR121C 0.652511568 0.814118521 0.901500909
GAL10 YDR010C 0.574348042 0.77081336 0.875409524
GAL10 YEL057C 0.582835775 0.769743768 0.880618535
GAL10 SSU1 0.584487078 0.769335123 0.879019784
GAL10 PCL10 0.552529392 0.751817344 0.871763977
GAL10 YJL212C 0.543601479 0.747480187 0.862433646
GAL10 MET14 0.525320838 0.723128249 0.852859396
GAL10 FKS1 0.515021843 0.719874179 0.854759107
GAL10 MCM1 0.474061933 0.697313988 0.834101087
GAL10 EXG1 0.446476056 0.666889754 0.818233838
GAL10 ARG1 0.382292245 0.63708452 0.807736956
GAL10 CRH1 0.344971636 0.594425382 0.773435199
GAL10 PRY1 0.299057555 0.588919717 0.774038296
GAL10 YPR157W 0.29645952 0.576125639 0.765975044
GAL10 CPA2 0.303356019 0.571475575 0.745218878
GAL10 YKR012C 0.262900828 0.566724743 0.748081117
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4 Discussion

Numerous previous studies have demonstrated the suitability of using gene co-expression

networks for functional discoveries (e.g. Butte and Kohane 2000, Zhu et al. 2005b).

Different approaches to estimate correlation matrix, of testing significance of these cor-

relations, and of controlling the error rate have been proposed. We emphasize that our

goal is to estimate correlation matrix with reduced variance and improved accuracy.

Towards this goal, the major improvement that we have made is that we provided a

full Bayesian treatment that combines correlation estimation and significance testing.

For estimation, we improve over existing approaches by providing a regularized full

Bayesian estimation. For the hypothesis test, the main improvement over the existing

approaches is that we test whether the magnitude correlation is different from a non-

zero threshold. This allows for more stringent control of biological significance. For

example, in small-sample data the traditional test declares many small but statistically

significant correlations to be biologically relevant. However, these may be caused by

non-biological effects such as spatial and positional effects of genes along the chromo-

some (Kluger et al. 2003).

Our framework is sufficiently general to be extended to many different correlation

measures, such as full order (Schafer and Strimmer 2005a) and limited order (Fuente

et al. 2004) partial correlation statistics. The rational is that these correlation statistics

are asymptotically normal distributed through transformations (Hotelling 1953). Our

approach is also not computational cumbersome. In deriving the posterior distribu-

tions of the correlation ‘parameters’, the conjugate prior and likelihood (i.e. Gaussian

parental distribution) were assumed in order to keep the posterior distributions in a

closed form. The computational load is thus greatly reduced, making the application

to larger networks feasible.

As discussed in Zhu et al. 2005a, one should seek a good combination of level of

significance and correlation strength. The Bayesian approach prescribed here imposes
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a model of the parameters as random variables sampled from a parental population dis-

tribution. This model structure allows the regularization of variances by introducing

dependency between the parameters. Using simulations, we have shown the superior

performance of the Bayesian hierarchical model approach to frequentist estimation ap-

proach, in terms of width of the CI’s, MSE and variance, especially for small sample

size. The posterior distribution provides a natural way of correlation thresholding that

bridges between statistical correlation and biological relevancy.

Appendix

Selecting Prior Distribution

We need to show the joint posterior density p(Γ,α,β|y) is improper if we select the

hyperprior distribution p(β) ∝ β−1, while p(Γ,α,β|y) is proper if we select the hyper-

prior distribution p(β) ∝ 1. Interested readers may refer to exercise 2.8 in Gelman et al.

2004.

Deriving Posterior Distribution p(β|y)

Here we present the mathematical details for the posterior distribution p(β|y) as de-

scribed in section 1. The following is adapted from Chapter V of Gelman et al. 2004.

We factor the marginal posterior density of the hyperparameters as follows:

p(α,β|y) = p(α|β,y)p(β|y), (15)

which is equivalent to:

p(β|y) =
p(α,β|y)

p(α|β,y)
. (16)
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We then derive p(α,β|y) and p(α|β,y) respectively as follows. For hierarchical model,

p(α,β|y) ∝ p(α,β)p(y|α,β). (17)

For many problems, the decomposition in Eq. 17 is of no help since p(y|α,β) can-

not generally be written in closed form. For the Gaussian distribution, the marginal

likelihood has a particularly simple form. The marginal distributions of the sample

correlation Γ̂λ are independent (but not identically distributed) Gaussian:

p(Γ̂λ|α,β) ∝ N(α,σ2
λ + β2). (18)

Thus we can write the marginal posterior density as

p(α,β|y) ∝ p(α,β)
Λ

∏
λ=1

N(Γ̂λ|α,σ2
λ + β2). (19)

Assume a uniform conditional prior density p(α|β), and p(α|β,y) is Gaussian, i.e.

p(α|β,y) ∝ N(α̂,Vα), (20)

with

α̂ =
∑Λ

λ=1
1

σ2
λ+β2 Γ̂λ

∑Λ
λ=1

1
σ2

λ+β2

, (21)

and

V−1
α =

Λ

∑
λ=1

1
σ2

λ + β2 . (22)

Here α̂ is a precision-weighted average of Γ’s and Vα is the total precision. We define
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precision as inverse of variance. From Eqs. 16, 19 and 20,

p(β|y) =
p(α,β|y)

p(α|β,y)
(23)

∝
p(β)∏Λ

λ=1 N(Γλ|α,σ2
λ + β2)

N(α|α̂,Vα)
(24)

This identity holds for any value of α, in particular, it holds if we set α to α̂, which

makes evaluation of the expression quite simple.

p(β|y) ∝
p(β)∏Λ

λ=1 N(Γ̂λ|α̂,σ2
λ + β2)

N(α̂|α̂,Vα)
(25)

∝ p(β)V 1/2
α

Λ

∏
λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ− α̂)2

2(σ2
λ + β2)

), (26)

where α̂ and Vα are defined in Eqs. 21 and 22. Both expressions are functions of β,

which means that p(β|y) is a complicated function of β.

On Implementations and Computational Complexities

Overall the proposed simulation procedure is computationally inexpensive. The step

of drawing β from p(β|y) using inverse Cumulative Density Function (CDF) method

requires iterative computation:

• (Numerically) scale p(β|y)(Eq. 3) into a probability distribution, ie, P(β|y) so

that
R

P(β|y) = 1.

• (Numerically) calculate the CDF of the P(β|y), denoted, P (β|y).

• Draw X from P (β|y) using inverse CDF method, ie, X = P−1(U)∼ P , where U

is drawn from [0,1] bounded uniform distribution.

• Re-scale to obtain random draws from p(β|y).

Each of first three steps require n iterations.
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Drawing α from p(α|β,y) and drawing Γλ from p(Γλ|α,β,y) do not require itera-

tion since they follow normal distributions specified in Eqs: 7 and 8 and can be drawn

directly.
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Figure 2: Comparison of average posterior CI’s versus average individual frequentist CI’s over
a wide range of significance levels at a small sample size (N = 4).
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Figure 3: Comparison of average posterior CI’s versus average individual frequentist CI’s over
a wide range of significance levels at a larger sample size (N = 20).
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Figure 4: Mean Squared Errors (MSE’s) and Variances of the Bayesian estimations versus the
frequentist estimations over 500 runs of simulations.
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Figure 5: Comparison of average CI’s when the Bayesian model is unsustained.
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Figure 6: Evaluation of error control of the Bayesian hierarchical model. Sample size N = 20,
and Λ = 1000 correlation coefficients were simulated. Simulations using smaller sample size
data yield more stringent error control.
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