
The Implementation of Prolog via VAX 8600 Microcode

Jeff Gee, Stephen W. Melvin, Yale N. Patt

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

We have implemented a high performance Prolog engine by
directly executing in microcode the constructs of Warren’s
Abstract Machine. The imulemention vehicle is the VAX 8600
computer. The VAX 8600 is a general purpose processor
containing 8K words of writable control store. In our system,
each of the Warren Abstract Machine instructions is implemented
as a VAX 8600 machine level instruction. Other Prolog built-ins
are either implemented directly in microcode or executed by the
general VAX instruction set. Initial results indicate that. our
system is the fastest implementation of Prolog on a commercrally
available general purpose processor.

1. Introduction

Various models of execution have been investigated to attain
the high performance execution of Prolog programs. Usually,
this involves compiling the Prolog program first into an
intermediate form referred to as the Warren Abstract Machine
(WAM) instruction set [l]. Execution of WAM instructions
often follow one of two methods: they are executed directly by a
special purpose processor, or they are software emulated via the
machine language of a general purpose computer.

In the case of software emulation by a general purpose
machine, three levels of translation are required. Prolog code
must first be transformed to WAMcode, then translated to host
machine code, and finally interpreted by host microcode. We can
enhance performance by bypassing one or more of these levels.

The approach taken in this paper is to eliminate the host
machine code level by adding microcode which interprets
directly the Warren instruction set. We chose the VAX 8600
general purpose processor as the implementation vehicle.

This naner is divided into six sections. Section 2 describes
the hardv%e and software elements of our system. Section 3
describes the Warren Abstract Machine. Section 4 describes our
implementation of the Warren machine in the VAX 8600.
Section 5 contains our performance results and compares these
measurements with those of alternative schemes. Section 6
offers some concluding remarks.

2. Operating Environment

2.1 8600 System Architecture

We have implemented the Warren Abstract Machine on a
VAX 8600 computer operating under 4.3 BSD UNIX. The

VAX 8600 is a 32 bit computer designed with ECL macrocell
arrays. Figure 1 shows a simplified block diagram of the 8600.
The cycle time of the 8600 is 80 nanoseconds.

Vimal Address
I

Figure 1. Simplified Block Diagram of the VAX 8600

The 8600 consists of six subprocessors: the EBOX. IBOX,
FBOX. MBOX, Console. and UO adamer. Each of the seuarate
boxes perform fairly independent operations, thus we need not
modifv all 8600 subsvstems for our Proloz irnnlementation.
The EBOX executes &e VAX instruction set &rd generally
supervises the entire sytsem. The IBOX is responsible for
prefetching instructions and operands. Because the EBOX and
IBOX operate simultaneously, the IBOX can decode and fetch
operands for instructions before the previous instruction
completes execution in the EBOX.. The FBOX is a floating point
accelerator, containing special hardware to achieve a high
performance computing capability. The MBOX performs
memory accesses requested by the IBOX and EBOX.

Sixteen general purpose registers are available to the
programmer. Four copies of these registers are maintained to
guarantee fast and flexible access to the data. Any modification
updates, by means of special hardware, all copies of the
registers.

Buses interconnect the various boxes. All memory and I/O
accesses occur via the Memory Data Bus which connects the
MBOX to the IBOX. Memory operands are passed from the
IBOX to the EBOX across the Operand Bus. Operands in the
general purpose registers are represented as GPR numbers
passed across the IBGPR bus. Results from the EBOX or
FBOX destined for memory are returned to the IBGX via the
Write Bus. Any modifications to the general purpose registers
are also broadcast across the Write Bus to UDdate: all other
copies. The IBOX passes memory results to the=MBGX via the

68
CH2350-7/86/0000/0068$01 .oO 0 1986 IEEE

Memory Data Bus. The EBOX and IBOX supply virtual 32 bit
addresses to the MBOX.

2.2 8600 Microarchitecture

All of the boxes are microprogrammed independently. Most
of the microcode, including all instruction specific microcode, is
contained in the EBOX. To implement the Warren instruction
set, we modified only the EBOX microcode and the DRAM
entries described in sections 2.3 and 4.5. Our additional
microcode performs the operations required for each of the
WAM constructs and for several of the Prolog built in functions
which are normally re
The IBOX and MB 8

resented as Warren escape sequences.
X perform the duties of instruction

prefetching, operand prefetching, and memory accesses. No
IBOX modifications were necessary other than the DRAM
entries which are needed by the EBOX, since we use normal
VAX addressing modes and the extended VAX opcodes
(FD xy) to represent a WAM program.

The EBOX contains 8K x 92 bits of w&able control store.
The horizontal microinstruction format facilitates the
implementation of a simple, but flexible data path. This
flexibility accounts for much of the power of this machine.

The EBOX data path consists of a dual-ported 256 x 32 bit
scratchpad register file, an ALU, and a barrel shift network. The
scratchpad contains Internal processor registers, temporary
registers, constants, and architecturally defined general purpose
lt?giSttXS.

The 8600 microcycle is 80 nanoseconds. In one microcycle,
the machine can perform an ALU or shifter operation on two
scratchpad elements and store the result back in the scratchpad.
The barrel shifter works in parallel with the ALU and can select
any 32 consecutive bits from a 64 bit value. Two scratchpad
registers or one register concatenated with a memory operand
supply this 64 bit value.

The MBOX contains a 16 Kbyte data cache to speed up
memory accesses. A memory read takes two microcycles if the
data is found in the cache, and seven cycles in the event of a
cache miss.

2.3 Microcode F’low

Both EBOX and IBOX microcode share in the execution of
an instruction. The IBOX microcode Drefetches and decodes the
instruction. Decoding is facilitated by’s decode RAM containing
opcode specific information. Based on the decode information,
a microcode fork address is passed from the IBOX to the
EBOX, directing the EBOX to the entry point of a
microsequence which performs the execution phase of the
particular instruction. If operands are required, the IBOX
delivers a fork address causing the EBOX to loop until the
MBOX can fetch the operands from memory. As the operands
become available, the IBOX directs the EBOX to microcode
which operates on the data. After the EBOX completes the
execution phase, it may transfer results back to the IBOX. The
IBOX delivers any memory result to the MBOX. Otherwise, the
EBOX has already stored the result into a general purpose
register, with all copies of the general registers updated via the
Write Bus.

The fork addresses sent to the EBOX by the IBOX are
stored in the decode RAM. The RAM contains up to eight fork

entries for each instruction. As a result of each fork, the EBOX
reads data, operates on data, or both. An optimization OCCUTS

when one operand is in memory and another is in a general
purpose register. The IBOX delivers the memory data on the
Operand Bus and the register number on the IBGPR bus.

The EBOX fork addresses are operand specific. The
particular microsequence which is executed depends on the
location of the data, its data type, and whether or not it is a
special case handled by optimization microcode. The IBOX
decodes the operand specifiers and generates the EBOX fork
addresses appropriately.

2.4 Compilation and Assembly of Prolog Programs

Three levels of translation are required to transform Prolog
programs into an executable VAX 8600 object file. First, the
Prolog program is compiled into its equivalent Warren Abstract
Machine form. An intermediate assembler then takes the output
of the compiler and generates a VAX assembly language file.
This file is then assembled into a VAX executable file.

The Prolog compiler was developed at Berkeley as a
Master’s Thesis by Peter Van Roy [3]. The compiler is written
in Prolog, and is invoked from a Cprolog intepreter running
under 4.3 BSD Unix. Input to the compiler is a set of Prolog
clauses and a query. The output is the equivalent translation into
the Warren instruction set.

The intermediate assembler transforms the code generated
by the compiler into a VAX assembly language file. It is written
in C, and performs a one to one translation of Warren code to
VAX code. Each WAM instruction corresponds to a single VAX
mstruction. An extended VAX opcode is defined to represent
each of the Warren constructs. The operands of the Warren
instructions are represented as normal VAX operand specifiers.
The intermediate assembler is responsible for parsing the WAM
file and generating the appropriate VAX code. The assembler
also creates symbol and string tables which represent Prolog
atoms, lists, and structures.

The VAX/UNIX assembler as generates executable VAX
object code from the output of our WAM assembler.

In addition, our implementation supports several built-in
Prolog functions which are represented as escape sequences in
the Warren Abstract Machine. These include the output functions
write(X) and nI, the is function, the in@) function, and the
binary relational operators ==, =<, >=, <, and 7.

The escape functions are implemented either directly in
microcode or via the standard VAX instruction set. The
relational operators and the int(X) function are implemented in
microcode, each corresponding to a newly defined VAX
instruction. Write(X) and nl make useof the standard C library.
These escapes are represented as VAX subroutine Calls to C
routines compiled to the VAX instruction set. These routines
are compiled separately from the Warren code, and the two files
are later linked mto a single VAX 8600 executable image.

The is escape function is more complicated. The arithmetic
expression to be evaluated may require multiplication or
division, and may contain nested expressions. Currently we

69

evaluate non-nested expressions requiring only addition or
subtmion directly in microcode. More complicated expressions
are evaluated by C routines.

3.2 Registers

The entire compilation and assembly process is shown in
figure 2.

The Warren Abstract Machine architecture contains 18
special purpcse registers:

Al - A8: the Argument reglstcrs, containing the

P:

WStTCll
Compiler

intermediate
assembly

C
Compilef

VAX object
code

cp:

E:

B:

+ _
VAX assembly
code

VAX/UNIX
assembler

TR:

H:

I

VAX object
code

+f-

FIB:

VAX
Iinkel

s:

+
VAX executable image

PDL:

Figure 2. Prolog Compilation Process N:

3.3 Data Memory Allocation
3. Details of the Warren Abstract Machine

3.1 Data Types
The data memory is partitioned into four spaces: the Stack,

Heap, Trail, and Push Down List (PDL).

Prolog manipulates four types of data: constants, variables,
lists, and structures. The data type is determined by a tag field
in the uppermost two bits of a 32 bit data word.

The stack is used to store control information necessary for
the correct execution of a Prolog program. Choice points and
environments are placed on the stack by special instructions
which save data needed for backtracking.

Constants can be integers, atoms, floating point values, and
the special constant NIL. Integers are stored in the data word
itself, atoms are represented as pointers to the item in the symbol
table, and floating point values are represented as pointers to the
value on the heap.

Variables can be bound or unbound. The contents of a
variable point to the element to which it is bound. Unbound
variables contain pointers to themselves.

Lists are represented as a data word containing a pointer to
the first element of the list. Lists are &-coded. The car of the
list is the first element; the cdr points to the remainder of the list.
To im rove memory efficiency, the c& cell is not included if.the

P rest 0 the list directly follows the car in memory. Otherwrse,
the cdr cell directly follows the car. A cdr bit in the data word
detects this condition. If the cell following the car has its cdr bit
set, it points to the rest of the list. Otherwise, it is the first
element of the mmainder.of the list.

An environment contains the saved state of a Prolog clause.
It contains register values and “permanent variables” which must
be retained lktween goals in ii multi-goal clause. Permanent
variables are variables whose use is not restricted to the first goal
in a clause. Thus, if kept in argument registers, these variables
may be overwritten during execution of a subsequent clause
goal. These variables are stored on the stack and retrieved when
the appro riate goal is invoked. In addition, an enviroment
contams tf: e CP, E, N, and B registers which are necessary to
continue computation when the last goal in a clause succeeds.

A choice point contains the information necessary to restore
the nrocess state when a goal faiIs. Choice points are placed on
the &ack whenever a r&dure contains more than one clause
which can unify with tfl e current goal. Choice points contain the
following register values:

Structures are lists with principal functors. The fist element
of the list is the principal functor of the structure.

Au: the contents of the argument registers

E: the location of the last environment

CP : address to continue if the current goal succeeds

arguments of a Prolog goal.

the Program counter, addressing the next
instruction to execute.

the Continuation pointer, where execution
continues should the current goal succeed.

the Environment pointer, refetences the last
environment pushed onto the stack.

the Backtrack pointer, contains the address
of the last choice point placed on the stack.

the Trail pointer, pointing to the top of the trail.

the Heap pointer, pointing to the top of
the heap.

the Heap Backtrack Pointer, the value of
the heap pointer when the last choice point
was placed on the stack.

the Structure pointer, pointing to the
current element of a list or structure
being unified.

the Push Down List pointer, pointing to
the last element placed on the push down ‘list.

the number of permanent variables in
the current environment.

70

B: location of previous choice point

TR value of the trail pointer

H: top of the heap

N: number of permanent variables in the current
environment

L: address to continue should the current goal fail

The heap is used to store lists and structures. These data
items are difficult to store on the stack. Instead, pointers to the
lists and structures are stored on the stack. In addition, the heap
is used to globalize variables on the stack which may become
dangling references when an environment is deallocated [4].

The trail is used to store addresses of bindings which must
be undone upon goal failure. When the current goal fails, the
trail value saved in the current choice point is retrieved. All
addresses in trail locations between this saved value and the
current trail pointer are reset to unbound variables.

Finally, the PDL is a small stack used to unify nested
structures and lists. Dangling references occur when unifying
nested lists. During the depth fit traversal of a nested list, we
lose pointers to the remainder of the higher levels of the list,
This occurs if the address of the cdr is not saved when a nested
list is encountered. The Push Down List contains pointers to the
remainder of a nested list. Unification resumes at the topmost
PDL location during a depth first traversal. When the PDL is
empty, the list has been traversed.

3.4 Instruction Set

The Warren Constructs are usually grouped into the
following six classes. Details on the functions of each
instruction are available in [1,4].

Indexing

switch-on-constant
switch-on-term
switch-on-structure

Clause Control

proceed get-variable
execute get-value
Cdl get-constant
escape get-nil
allocate
deallocate

get-structure
get-list

Put

put-variable
put-value
put_unsafe_value
put-constant
put_saucture
putJist

Procedure Control

try
rev trust
try-me-else
retry-me-else
trust~me~else
fail
cut
cutd

Get

Unify

unify-void
unify-value
unify-variable
unify_constant
IlnifyJxir
unify-nil

The available escape sequences include:

escape write
escape integer
escape <
escape >=
escape is

escape nl
escape >
escape =
escape =<

4. bgementation of the Warren Architecture on the

i.1 Data Tags

Our method for implementing data tags is shown in figure 3.
The two high order bits of a 32 bit data word specify the type of
the data. The third bit supports the &-coding of lists. Another

Reference

Constant

11 C G XX identifier
I

xx = 00 - small integer
01 - other numeric value
10 - atom

Structure
11 -NIL

01 C G pointer
I

List

cm C G pointer
I

c = 0-noncdr
l-cdl

G = garbage collect

Figure 3. Data Types

bit is allocated for garbage collection, which is not yet
implemented in our current system. (Our plans are, however, to
handle garbage collection by means of a separate sequence of
microinstructions.) Constants require two secondary tag bits
which determine the type of constant.

4.2 Register Allocation

The architectural registers of the Warren Abstract Machine
are mapped onto the sixteen VAX general purpose registers and
two of the four VAX stack Pointers. The argument registers,
program counter, heap pomter, environment pointer, and
backtrack pointer each were assigned a VAX general purpose
register. VAX general purpose registers were also allocated for
the CP, N, and S registers. The last available GPR is shared
among the TR and PDL registers, since 16 bits of address space
is sufficient for both the trail and PDL. The HB register is
stored in the Executive Mode Stack Pointer. The Supervisor
Stack Pointer is used for collecting performance data of the
executing Prolog program; i.e.. it contains the number of logical
inferences made. A logical inference is defined as the total
number of calls, executes, and escapes executed.

Several WAM instructions perform different functions
depending on the state of two mode bits. The cut bit
determines the proper number of choice points to discard when
the Prolog cut (!) operator is executed. Normally, all choice
points above the B register value saved in the current
environment are discarded. However, if the current procedure
has placed a choice point on the stack, then one more choice

71

point must be discarded. The cut bit is set when a choice point
is placed on the stack and cleared by a call, execute, or proceed
instruction. The read/write bit determines the mode for the
unify instructions. In write mode, a list or structure is unified
with an unbound variable, and a copy of the data is written on
the heap. In read mode, two lists or structures are unified, and
their elements on the heap are compared. The mode bit is set to
read when the argument dereferences to a list or structure, and is
set to write if the argument dereferences to a variable.

The read/write and cut bits are stored directly in the VAX
Processor Status Longword (PSL). The PSL negative flag
implements the read/write bit, and the the PSL overflow flag
implements the cut bit.

Our register allocation scheme is shown in figure 4.

RO

Rl

R2

R3

R4

RS

R6

RI

R8

R9

AX1 I RlO CP 1
AX2 I Rll N I

[AX3 I R12 H 1
AX4 I R13 B 1

1 AX5 I RI4 E 1
AX6 I PC P 1

1 AX7 I ESP 1 HB I

AX8 J SSP inferences 1

I S I
PSL.N m

1 TR IPDL [PSL.V I

Figure 4. VAX 8600 Register Assignments

4.3 Memory Allocation

The VAX 8600 has 31 bits of process address space. Our
Prolog implementation requires only 28 bits, due to the four bit
tag in the data word. The virtual address space is allocated
according to figure 5.

The code space corresponds to the size of the individual
Prolog program. The heap space begins where the code space
ends and grows towards high memory. The stack grows in the
opposite direction. No space is allocated for the Push Down
List. Instead, the PDL is stored on top of the stack, as no choice
points or enviromnents will be placed on the stack while
unifying two lists.

Two memory locations (7FFF 0004 and 7FFF 0008) are
reserved for UNIX control data. A Prolog program is invoked
by a C function call to procedure main, which initializes the
heap pointer, saves the current frame pointer in location 7FFF
0008, and jumps to procedure doplm. Doplm stores the return
address to main in location 7FFF 0004 and executes the Pro10
program After execution completes, doplm returns the resu t P
of the query to main. Main prints the result, restores the frame
pointer from the reserved location, and returns to the calling C
Program.

4.4 Process Control

It is intended that our Prolog system will execute within a
multiprogramming environment. Thus the entire Prolog process

Virtual Address

0000 0000

VAX Memory Space

b+- FQSpace

07FF FFFF
0800 0000
3FFF FFFF
4000 0000

77FF FFFF
7800 0000

7FFF 0003
7FFF 0004

7FFF 0006
7FFF OOOC

7FFF FFFF 1 t -

Figure 5. Memory Allocation

state is stored in the sixteen VAX general purpose registers and
two of the four VAX stack pointers, all of which are saved in the
process control block. Note: we were able to use the Executive
Mode and Supervisor Mode stack pointers as if they were
additional general. purpose registers because the UNIX: operating
system does not require the two corresponding levds of
privilege. However,, the VMS operating system has four
privilege modes and requires the use of all four stack pointers.
Slight changes in register allocation will be necessary to port our
implementation to VAX/VMS. Possible candidates. for these
two registers are as follows: the logical inference count in the
Supervisor Stack Pointer exists only for statistical purposes, and
may be omitted. Values in the N register stored in rll cannot
exceed 256, and these 8 bits can be stored in the Processor
Status Longword. The contents of the HB register in the
Executive Stack Pointer can then be stored in general register
rll.

Interrupts are handled between instruction boundaries. All
process information is safely stored in the process control block
when interrupts are executed. Many of the WAM instructions
execute in non-determinate time due to the usage of the
dereference, unify, bind, fail, and trail routines. When the
machine unifies long lists or traces through Iong dereference
chains, any interrupt must wait for the operations to complete,
which may cause unacceptable latency for certain real-time
applications. Eventually, our implementation will check for
interrupts within an instruction usmg the VAX first part done
mechanism. The process state will be preserved and execution
will resume after the interrupt is processed.

Machine exceptions, such as page faults, are processed
immediately. The instruction is restarted after the exception is
processed. The processor registers are restored to their values
before the instruction began execution, However, modifications
to memory are not backed up. The microcode is designed to
insure that multiple writes are atomic or to order the writes such

72

that if a fault occurs before the instruction completes, it can
restart without error.

4.5 Microcoding the 8600

Each of the Warren constructs plus many of the;:;!:
sequences are implemented as VAX instructions.
extended VAX opcodes to represent each construct, with its
associated microcode resident along with the host microcode.
The decode RAM has been modified to provide correct fork
address generation when the IBOX encounters one of the newly
defined opcodes.

The operands of Warren instructions can be partitioned into
four types: argument registers (Xi), permanent variables (Yi),
labels (L), and constant literals (N). Operands are encoded
using VAX addressing modes and conveniently evaluated by the
IBOX. Argument registers are specified with register mode;
permanent variables in the current environment are specified via
displacement mode from the current environment pointer; labels
and constants form 32 bit literals in the instruction stream.

Two instructions were added to the instruction set to
facilitate execution of certain escape is sequences. Plus and
minus are three operand instructions which dereference the first
two operands, perform addition or subtraction, and store the
result in the third operand. The get-value instruction completes
the escape is sequence by unifying this result with the desired
variable. Currently these instructions are hand-coded into the
output of the Warren compiler. This produces faster execution
times since the structure form of the arithmetic expression need
not be created before the expression is evaluated. Plus and
minus work only when arithmetic expressions are not nested.
We plan to modify the compiler to generate these instructions
automatically.

Several basic Prolog functions used by many of the Warren
Constructs are also implemented in microcode. These include
the dereference. de&. unifv. and fail routines. Onlv the fail
routine is dire& accessible-to the user to initiate bacl&racking.
The dereference routine follows a chain of variables until a
structure, list, constant, or unbound variable is encountered.
The decdr routine supports the &-coding of lists, and insures
that a list is traversed correctly.

Over 500 lines of microcode were added to the VAX 8600
to implement the Warren Abstract Machine.

5. Performance Measurements

We have measured the performance of our initial
implementation on two sets of benchmarks. Although our initial
results indicate that our system is the fastest Prolog

Prolog Performance on Warren Benchmarks
Prolog VAX NCR PLM Classic

Benchmark 8600 32 (Warren)
clock cycle 80 ns 150 ns 100 ns

nrev 116k 25k 115k 9k
qs4 98k 35k 174k 11.2k

palin 67k 21k 134k 10.5k
times10 48k 13k 63k 7.7k

divl0 42k Ilk 55k 7.8k
log1 0 56k 15k 79k 7.8k
ops8 65k 2lk 106k 11.2k
query 20k 89k 367k 31.9k

Table 1

implementation on a commercially available general purpose
computer, much remains to be done. The results reported here
reflect the performance of a Fist-pass, unoptimized system. We
believe that signficant performance gains will be achieved when
the microcode is optimized, and when the remaining escape is
sequences are moved into microcode.

Table 1 summarizes our results on the Warren Benchmark
Set with those of three other systems: a Warren implementation
on the NCR/32 general purpose processor; the Berkeley PLM, a
special purpose processor which directly interprets the Warren
instruction set; and Warren’s compiled Prolog, software
emulating the WAM instruction set on a DEC-2060 corn uter.
We have not normalized the results to the cycle time o P each
machine.

Table 2 summarizes our results on the Berkeley Benchmark
Set.

r

t
t

Prolog Performance on Berkeley Benchmarks
Proloa VAX NCR PLM Classic

Benchm>rk 8600 32 (Warren)
clock cycle 80 ns 150 ns 100 ns

con1 95k 53k 305k 43k
con6
hanoi

mumath
pri2

flueens

38k 1lOk 465k ---
106k 59k 310k ---
73k 17k 89k ---
28k 7k 191k ---
77k 50k 148k ---

L

Table 2

Several comments on these results are in order. The
measurements for the Berkeley PLM are simulated results,
assuming the processor never waits for memory. All other
results se actua performance figures. The overaliresults are as
exDected. The simulated snecial nurnose PLM Derforms best.
foilowed by the horizontally mi&oc&ded 8600,lthe vertically
microcoded NCR/32, and the Warren software emulator last.
The 8600 results consistently fell between the NCR/32 and the
PLM, except on the con6 (non-determinate concat), and query
benchmarks. We attribute the analmalous con6 results to some
inefficiencies remaining in the microcode, and the query results
to a high frequency of escape is sequences requiring
multiplication and division.

Finally, we should point out that our performance results
include the overhead associated with a real system in a real
environment. That is, the VAX 8600 is a virtual memory
machine operating in a multiprogramming environment. Thus
the overhead due to address translation, page fault handling, and
context switching is included.

6. Conclusions

We have described a VAX 8600 direct execution
implementation of Prolog. We have mapped the Warren
architecture to the 8600 in a manner which supports a multiuser
environment, and translated the Warren instruction set into a
form directly executable by the 8600. To our knowledge, this
system is the fastest Prolog implementation on a commercially
available general purpose processor. We should also point out
that our implementation method produces executable images
which contain both Prolog constructs and num&i&+ operations.
As a result, this may prove to be the most effective

73

implementation method for handling computations that have
substantial symbolic and numeric components.

7. Acknowledgements

The authors wish to acknowledge the Digital Equipment
Corporation for their generous support of our research, in
partxular Bill Kania for providing us with the VAX 8600 in
order to enhance our ability to do research in microarchitecture
and microprogramming; also, Fernando Colon Osorio, Mario
Troiani, Nii Quaynor, Steve Ching and Harold Hubschman,
from DEC’s High Performance Systems and Clusters group in
Marlboro. Our work in microarchitecture is part of a larger
architectural research effort at Berkeley, the Aquarius Project.
We acknowledge our colleagues in the Aquarius group for the
stimulating environment they provide. Finally, we acknowledge
that part of this work was sponsored by the Defense Advanced
Research Projects Agency (DOD), Arpa Order No, 4871,
monitored by Space and Naval Warfare Systems Command
under Contract No. NOOO39-84-C-0089.

8. References

1. D.H.D. Warren, An Abstract Prolog Inmuction Set, SRI

International, Menlo Park, CA. Technical Report,
(October 1983).

2. Tep Do
7

, A.M. Despain, and Yale N. Patt, “Performance
Studies 0 a Prolog Machine Architecture,” Proceedings of
the 12th Intl. ,&nposium on Computer Architecture, (June
1985).

3. Peter Vf~n R?y, A Prolog Compiler for {he PLM, University
~~8~rnnx, Berkeley CA. Masters Report, (August

4. Barry Fagin and Tep Dobry,
Instruction Set:

“The Berkeley PLM
An Instruction Set for Prolog,” UCB

Research Report, CS Division, University of California,
Berkeley, (September 1985).

5. Tryggve Fossum, Jim McElroy, and Bill English, “New
VAX Squeezes Mainframe Power Into Mini Package,”
Computer Design, (March 1985).

6. Mark T. Shaefer and Yale N. Patt, “Improving the
Performance of UCSD Pascal Via Microprogramming on
the PDP- 1 l/60,” Proceedings of the 16rh Ann&
Microprogramming Workshop, (October 1983).

74

