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ABSTRACT 

We have implemented a high performance Prolog engine by 
directly executing in microcode the constructs of Warren’s 
Abstract Machine. The imulemention vehicle is the VAX 8600 
computer. The VAX 8600 is a general purpose processor 
containing 8K words of writable control store. In our system, 
each of the Warren Abstract Machine instructions is implemented 
as a VAX 8600 machine level instruction. Other Prolog built-ins 
are either implemented directly in microcode or executed by the 
general VAX instruction set. Initial results indicate that. our 
system is the fastest implementation of Prolog on a commercrally 
available general purpose processor. 

1. Introduction 

Various models of execution have been investigated to attain 
the high performance execution of Prolog programs. Usually, 
this involves compiling the Prolog program first into an 
intermediate form referred to as the Warren Abstract Machine 
(WAM) instruction set [l]. Execution of WAM instructions 
often follow one of two methods: they are executed directly by a 
special purpose processor, or they are software emulated via the 
machine language of a general purpose computer. 

In the case of software emulation by a general purpose 
machine, three levels of translation are required. Prolog code 
must first be transformed to WAMcode, then translated to host 
machine code, and finally interpreted by host microcode. We can 
enhance performance by bypassing one or more of these levels. 

The approach taken in this paper is to eliminate the host 
machine code level by adding microcode which interprets 
directly the Warren instruction set. We chose the VAX 8600 
general purpose processor as the implementation vehicle. 

This naner is divided into six sections. Section 2 describes 
the hardv%e and software elements of our system. Section 3 
describes the Warren Abstract Machine. Section 4 describes our 
implementation of the Warren machine in the VAX 8600. 
Section 5 contains our performance results and compares these 
measurements with those of alternative schemes. Section 6 
offers some concluding remarks. 

2. Operating Environment 

2.1 8600 System Architecture 

We have implemented the Warren Abstract Machine on a 
VAX 8600 computer operating under 4.3 BSD UNIX. The 

VAX 8600 is a 32 bit computer designed with ECL macrocell 
arrays. Figure 1 shows a simplified block diagram of the 8600. 
The cycle time of the 8600 is 80 nanoseconds. 

Vimal Address 
I 

Figure 1. Simplified Block Diagram of the VAX 8600 

The 8600 consists of six subprocessors: the EBOX. IBOX, 
FBOX. MBOX, Console. and UO adamer. Each of the seuarate 
boxes perform fairly independent operations, thus we need not 
modifv all 8600 subsvstems for our Proloz irnnlementation. 
The EBOX executes &e VAX instruction set &rd generally 
supervises the entire sytsem. The IBOX is responsible for 
prefetching instructions and operands. Because the EBOX and 
IBOX operate simultaneously, the IBOX can decode and fetch 
operands for instructions before the previous instruction 
completes execution in the EBOX.. The FBOX is a floating point 
accelerator, containing special hardware to achieve a high 
performance computing capability. The MBOX performs 
memory accesses requested by the IBOX and EBOX. 

Sixteen general purpose registers are available to the 
programmer. Four copies of these registers are maintained to 
guarantee fast and flexible access to the data. Any modification 
updates, by means of special hardware, all copies of the 
registers. 

Buses interconnect the various boxes. All memory and I/O 
accesses occur via the Memory Data Bus which connects the 
MBOX to the IBOX. Memory operands are passed from the 
IBOX to the EBOX across the Operand Bus. Operands in the 
general purpose registers are represented as GPR numbers 
passed across the IBGPR bus. Results from the EBOX or 
FBOX destined for memory are returned to the IBGX via the 
Write Bus. Any modifications to the general purpose registers 
are also broadcast across the Write Bus to UDdate: all other 
copies. The IBOX passes memory results to the=MBGX via the 
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Memory Data Bus. The EBOX and IBOX supply virtual 32 bit 
addresses to the MBOX. 

2.2 8600 Microarchitecture 

All of the boxes are microprogrammed independently. Most 
of the microcode, including all instruction specific microcode, is 
contained in the EBOX. To implement the Warren instruction 
set, we modified only the EBOX microcode and the DRAM 
entries described in sections 2.3 and 4.5. Our additional 
microcode performs the operations required for each of the 
WAM constructs and for several of the Prolog built in functions 
which are normally re 
The IBOX and MB 8 

resented as Warren escape sequences. 
X perform the duties of instruction 

prefetching, operand prefetching, and memory accesses. No 
IBOX modifications were necessary other than the DRAM 
entries which are needed by the EBOX, since we use normal 
VAX addressing modes and the extended VAX opcodes 
(FD xy) to represent a WAM program. 

The EBOX contains 8K x 92 bits of w&able control store. 
The horizontal microinstruction format facilitates the 
implementation of a simple, but flexible data path. This 
flexibility accounts for much of the power of this machine. 

The EBOX data path consists of a dual-ported 256 x 32 bit 
scratchpad register file, an ALU, and a barrel shift network. The 
scratchpad contains Internal processor registers, temporary 
registers, constants, and architecturally defined general purpose 
lt?giSttXS. 

The 8600 microcycle is 80 nanoseconds. In one microcycle, 
the machine can perform an ALU or shifter operation on two 
scratchpad elements and store the result back in the scratchpad. 
The barrel shifter works in parallel with the ALU and can select 
any 32 consecutive bits from a 64 bit value. Two scratchpad 
registers or one register concatenated with a memory operand 
supply this 64 bit value. 

The MBOX contains a 16 Kbyte data cache to speed up 
memory accesses. A memory read takes two microcycles if the 
data is found in the cache, and seven cycles in the event of a 
cache miss. 

2.3 Microcode F’low 

Both EBOX and IBOX microcode share in the execution of 
an instruction. The IBOX microcode Drefetches and decodes the 
instruction. Decoding is facilitated by’s decode RAM containing 
opcode specific information. Based on the decode information, 
a microcode fork address is passed from the IBOX to the 
EBOX, directing the EBOX to the entry point of a 
microsequence which performs the execution phase of the 
particular instruction. If operands are required, the IBOX 
delivers a fork address causing the EBOX to loop until the 
MBOX can fetch the operands from memory. As the operands 
become available, the IBOX directs the EBOX to microcode 
which operates on the data. After the EBOX completes the 
execution phase, it may transfer results back to the IBOX. The 
IBOX delivers any memory result to the MBOX. Otherwise, the 
EBOX has already stored the result into a general purpose 
register, with all copies of the general registers updated via the 
Write Bus. 

The fork addresses sent to the EBOX by the IBOX are 
stored in the decode RAM. The RAM contains up to eight fork 

entries for each instruction. As a result of each fork, the EBOX 
reads data, operates on data, or both. An optimization OCCUTS 

when one operand is in memory and another is in a general 
purpose register. The IBOX delivers the memory data on the 
Operand Bus and the register number on the IBGPR bus. 

The EBOX fork addresses are operand specific. The 
particular microsequence which is executed depends on the 
location of the data, its data type, and whether or not it is a 
special case handled by optimization microcode. The IBOX 
decodes the operand specifiers and generates the EBOX fork 
addresses appropriately. 

2.4 Compilation and Assembly of Prolog Programs 

Three levels of translation are required to transform Prolog 
programs into an executable VAX 8600 object file. First, the 
Prolog program is compiled into its equivalent Warren Abstract 
Machine form. An intermediate assembler then takes the output 
of the compiler and generates a VAX assembly language file. 
This file is then assembled into a VAX executable file. 

The Prolog compiler was developed at Berkeley as a 
Master’s Thesis by Peter Van Roy [3]. The compiler is written 
in Prolog, and is invoked from a Cprolog intepreter running 
under 4.3 BSD Unix. Input to the compiler is a set of Prolog 
clauses and a query. The output is the equivalent translation into 
the Warren instruction set. 

The intermediate assembler transforms the code generated 
by the compiler into a VAX assembly language file. It is written 
in C, and performs a one to one translation of Warren code to 
VAX code. Each WAM instruction corresponds to a single VAX 
mstruction. An extended VAX opcode is defined to represent 
each of the Warren constructs. The operands of the Warren 
instructions are represented as normal VAX operand specifiers. 
The intermediate assembler is responsible for parsing the WAM 
file and generating the appropriate VAX code. The assembler 
also creates symbol and string tables which represent Prolog 
atoms, lists, and structures. 

The VAX/UNIX assembler as generates executable VAX 
object code from the output of our WAM assembler. 

In addition, our implementation supports several built-in 
Prolog functions which are represented as escape sequences in 
the Warren Abstract Machine. These include the output functions 
write(X) and nI, the is function, the in@) function, and the 
binary relational operators ==, =<, >=, <, and 7. 

The escape functions are implemented either directly in 
microcode or via the standard VAX instruction set. The 
relational operators and the int(X) function are implemented in 
microcode, each corresponding to a newly defined VAX 
instruction. Write(X) and nl make useof the standard C library. 
These escapes are represented as VAX subroutine Calls to C 
routines compiled to the VAX instruction set. These routines 
are compiled separately from the Warren code, and the two files 
are later linked mto a single VAX 8600 executable image. 

The is escape function is more complicated. The arithmetic 
expression to be evaluated may require multiplication or 
division, and may contain nested expressions. Currently we 

69 



evaluate non-nested expressions requiring only addition or 
subtmion directly in microcode. More complicated expressions 
are evaluated by C routines. 

3.2 Registers 

The entire compilation and assembly process is shown in 
figure 2. 

The Warren Abstract Machine architecture contains 18 
special purpcse registers: 

Al - A8: the Argument reglstcrs, containing the 

P: 

WStTCll 
Compiler 

intermediate 
assembly 

C 
Compilef 

VAX object 
code 

cp: 

E: 

B: 

+ _ 
VAX assembly 
code 

VAX/UNIX 
assembler 

TR: 

H: 

I 

VAX object 
code 

+f- 

FIB: 

VAX 
Iinkel 

s: 

+ 
VAX executable image 

PDL: 

Figure 2. Prolog Compilation Process N: 

3.3 Data Memory Allocation 
3. Details of the Warren Abstract Machine 

3.1 Data Types 
The data memory is partitioned into four spaces: the Stack, 

Heap, Trail, and Push Down List (PDL). 

Prolog manipulates four types of data: constants, variables, 
lists, and structures. The data type is determined by a tag field 
in the uppermost two bits of a 32 bit data word. 

The stack is used to store control information necessary for 
the correct execution of a Prolog program. Choice points and 
environments are placed on the stack by special instructions 
which save data needed for backtracking. 

Constants can be integers, atoms, floating point values, and 
the special constant NIL. Integers are stored in the data word 
itself, atoms are represented as pointers to the item in the symbol 
table, and floating point values are represented as pointers to the 
value on the heap. 

Variables can be bound or unbound. The contents of a 
variable point to the element to which it is bound. Unbound 
variables contain pointers to themselves. 

Lists are represented as a data word containing a pointer to 
the first element of the list. Lists are &-coded. The car of the 
list is the first element; the cdr points to the remainder of the list. 
To im rove memory efficiency, the c& cell is not included if.the 

P rest 0 the list directly follows the car in memory. Otherwrse, 
the cdr cell directly follows the car. A cdr bit in the data word 
detects this condition. If the cell following the car has its cdr bit 
set, it points to the rest of the list. Otherwise, it is the first 
element of the mmainder.of the list. 

An environment contains the saved state of a Prolog clause. 
It contains register values and “permanent variables” which must 
be retained lktween goals in ii multi-goal clause. Permanent 
variables are variables whose use is not restricted to the first goal 
in a clause. Thus, if kept in argument registers, these variables 
may be overwritten during execution of a subsequent clause 
goal. These variables are stored on the stack and retrieved when 
the appro riate goal is invoked. In addition, an enviroment 
contams tf: e CP, E, N, and B registers which are necessary to 
continue computation when the last goal in a clause succeeds. 

A choice point contains the information necessary to restore 
the nrocess state when a goal faiIs. Choice points are placed on 
the &ack whenever a r&dure contains more than one clause 
which can unify with tfl e current goal. Choice points contain the 
following register values: 

Structures are lists with principal functors. The fist element 
of the list is the principal functor of the structure. 

Au: the contents of the argument registers 

E: the location of the last environment 

CP : address to continue if the current goal succeeds 

arguments of a Prolog goal. 

the Program counter, addressing the next 
instruction to execute. 

the Continuation pointer, where execution 
continues should the current goal succeed. 

the Environment pointer, refetences the last 
environment pushed onto the stack. 

the Backtrack pointer, contains the address 
of the last choice point placed on the stack. 

the Trail pointer, pointing to the top of the trail. 

the Heap pointer, pointing to the top of 
the heap. 

the Heap Backtrack Pointer, the value of 
the heap pointer when the last choice point 
was placed on the stack. 

the Structure pointer, pointing to the 
current element of a list or structure 
being unified. 

the Push Down List pointer, pointing to 
the last element placed on the push down ‘list. 

the number of permanent variables in 
the current environment. 
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B: location of previous choice point 

TR value of the trail pointer 

H: top of the heap 

N: number of permanent variables in the current 
environment 

L: address to continue should the current goal fail 

The heap is used to store lists and structures. These data 
items are difficult to store on the stack. Instead, pointers to the 
lists and structures are stored on the stack. In addition, the heap 
is used to globalize variables on the stack which may become 
dangling references when an environment is deallocated [4]. 

The trail is used to store addresses of bindings which must 
be undone upon goal failure. When the current goal fails, the 
trail value saved in the current choice point is retrieved. All 
addresses in trail locations between this saved value and the 
current trail pointer are reset to unbound variables. 

Finally, the PDL is a small stack used to unify nested 
structures and lists. Dangling references occur when unifying 
nested lists. During the depth fit traversal of a nested list, we 
lose pointers to the remainder of the higher levels of the list, 
This occurs if the address of the cdr is not saved when a nested 
list is encountered. The Push Down List contains pointers to the 
remainder of a nested list. Unification resumes at the topmost 
PDL location during a depth first traversal. When the PDL is 
empty, the list has been traversed. 

3.4 Instruction Set 

The Warren Constructs are usually grouped into the 
following six classes. Details on the functions of each 
instruction are available in [ 1,4]. 

Indexing 

switch-on-constant 
switch-on-term 
switch-on-structure 

Clause Control 

proceed get-variable 
execute get-value 
Cdl get-constant 
escape get-nil 
allocate 
deallocate 

get-structure 
get-list 

Put 

put-variable 
put-value 
put_unsafe_value 
put-constant 
put_saucture 
putJist 

Procedure Control 

try 
rev trust 
try-me-else 
retry-me-else 
trust~me~else 
fail 
cut 
cutd 

Get 

Unify 

unify-void 
unify-value 
unify-variable 
unify_constant 
IlnifyJxir 
unify-nil 

The available escape sequences include: 

escape write 
escape integer 
escape < 
escape >= 
escape is 

escape nl 
escape > 
escape = 
escape =< 

4. bgementation of the Warren Architecture on the 

i.1 Data Tags 

Our method for implementing data tags is shown in figure 3. 
The two high order bits of a 32 bit data word specify the type of 
the data. The third bit supports the &-coding of lists. Another 

Reference 

Constant 

11 C G XX identifier 
I 

xx = 00 - small integer 
01 - other numeric value 
10 - atom 

Structure 
11 -NIL 

01 C G pointer 
I 

List 

cm C G pointer 
I 

c = 0-noncdr 
l-cdl 

G = garbage collect 

Figure 3. Data Types 

bit is allocated for garbage collection, which is not yet 
implemented in our current system. (Our plans are, however, to 
handle garbage collection by means of a separate sequence of 
microinstructions.) Constants require two secondary tag bits 
which determine the type of constant. 

4.2 Register Allocation 

The architectural registers of the Warren Abstract Machine 
are mapped onto the sixteen VAX general purpose registers and 
two of the four VAX stack Pointers. The argument registers, 
program counter, heap pomter, environment pointer, and 
backtrack pointer each were assigned a VAX general purpose 
register. VAX general purpose registers were also allocated for 
the CP, N, and S registers. The last available GPR is shared 
among the TR and PDL registers, since 16 bits of address space 
is sufficient for both the trail and PDL. The HB register is 
stored in the Executive Mode Stack Pointer. The Supervisor 
Stack Pointer is used for collecting performance data of the 
executing Prolog program; i.e.. it contains the number of logical 
inferences made. A logical inference is defined as the total 
number of calls, executes, and escapes executed. 

Several WAM instructions perform different functions 
depending on the state of two mode bits. The cut bit 
determines the proper number of choice points to discard when 
the Prolog cut (!) operator is executed. Normally, all choice 
points above the B register value saved in the current 
environment are discarded. However, if the current procedure 
has placed a choice point on the stack, then one more choice 
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point must be discarded. The cut bit is set when a choice point 
is placed on the stack and cleared by a call, execute, or proceed 
instruction. The read/write bit determines the mode for the 
unify instructions. In write mode, a list or structure is unified 
with an unbound variable, and a copy of the data is written on 
the heap. In read mode, two lists or structures are unified, and 
their elements on the heap are compared. The mode bit is set to 
read when the argument dereferences to a list or structure, and is 
set to write if the argument dereferences to a variable. 

The read/write and cut bits are stored directly in the VAX 
Processor Status Longword (PSL). The PSL negative flag 
implements the read/write bit, and the the PSL overflow flag 
implements the cut bit. 

Our register allocation scheme is shown in figure 4. 

RO 

Rl 

R2 

R3 

R4 

RS 

R6 

RI 

R8 

R9 

AX1 I RlO CP 1 
AX2 I Rll N I 

[ AX3 I R12 H 1 
AX4 I R13 B 1 

1 AX5 I RI4 E 1 
AX6 I PC P 1 

1 AX7 I ESP 1 HB I 

AX8 J SSP inferences 1 

I S I 
PSL.N m 

1 TR IPDL [ PSL.V I 

Figure 4. VAX 8600 Register Assignments 

4.3 Memory Allocation 

The VAX 8600 has 31 bits of process address space. Our 
Prolog implementation requires only 28 bits, due to the four bit 
tag in the data word. The virtual address space is allocated 
according to figure 5. 

The code space corresponds to the size of the individual 
Prolog program. The heap space begins where the code space 
ends and grows towards high memory. The stack grows in the 
opposite direction. No space is allocated for the Push Down 
List. Instead, the PDL is stored on top of the stack, as no choice 
points or enviromnents will be placed on the stack while 
unifying two lists. 

Two memory locations (7FFF 0004 and 7FFF 0008) are 
reserved for UNIX control data. A Prolog program is invoked 
by a C function call to procedure main, which initializes the 
heap pointer, saves the current frame pointer in location 7FFF 
0008, and jumps to procedure doplm. Doplm stores the return 
address to main in location 7FFF 0004 and executes the Pro10 
program After execution completes, doplm returns the resu t P 
of the query to main. Main prints the result, restores the frame 
pointer from the reserved location, and returns to the calling C 
Program. 

4.4 Process Control 

It is intended that our Prolog system will execute within a 
multiprogramming environment. Thus the entire Prolog process 

Virtual Address 

0000 0000 

VAX Memory Space 

b+- FQSpace 

07FF FFFF 
0800 0000 
3FFF FFFF 
4000 0000 

77FF FFFF 
7800 0000 

7FFF 0003 
7FFF 0004 

7FFF 0006 
7FFF OOOC 

7FFF FFFF 1 t - 

Figure 5. Memory Allocation 

state is stored in the sixteen VAX general purpose registers and 
two of the four VAX stack pointers, all of which are saved in the 
process control block. Note: we were able to use the Executive 
Mode and Supervisor Mode stack pointers as if they were 
additional general. purpose registers because the UNIX: operating 
system does not require the two corresponding levds of 
privilege. However,, the VMS operating system has four 
privilege modes and requires the use of all four stack pointers. 
Slight changes in register allocation will be necessary to port our 
implementation to VAX/VMS. Possible candidates. for these 
two registers are as follows: the logical inference count in the 
Supervisor Stack Pointer exists only for statistical purposes, and 
may be omitted. Values in the N register stored in rll cannot 
exceed 256, and these 8 bits can be stored in the Processor 
Status Longword. The contents of the HB register in the 
Executive Stack Pointer can then be stored in general register 
rll. 

Interrupts are handled between instruction boundaries. All 
process information is safely stored in the process control block 
when interrupts are executed. Many of the WAM instructions 
execute in non-determinate time due to the usage of the 
dereference, unify, bind, fail, and trail routines. When the 
machine unifies long lists or traces through Iong dereference 
chains, any interrupt must wait for the operations to complete, 
which may cause unacceptable latency for certain real-time 
applications. Eventually, our implementation will check for 
interrupts within an instruction usmg the VAX first part done 
mechanism. The process state will be preserved and execution 
will resume after the interrupt is processed. 

Machine exceptions, such as page faults, are processed 
immediately. The instruction is restarted after the exception is 
processed. The processor registers are restored to their values 
before the instruction began execution, However, modifications 
to memory are not backed up. The microcode is designed to 
insure that multiple writes are atomic or to order the writes such 
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that if a fault occurs before the instruction completes, it can 
restart without error. 

4.5 Microcoding the 8600 

Each of the Warren constructs plus many of the;:;!: 
sequences are implemented as VAX instructions. 
extended VAX opcodes to represent each construct, with its 
associated microcode resident along with the host microcode. 
The decode RAM has been modified to provide correct fork 
address generation when the IBOX encounters one of the newly 
defined opcodes. 

The operands of Warren instructions can be partitioned into 
four types: argument registers (Xi), permanent variables (Yi), 
labels (L), and constant literals (N). Operands are encoded 
using VAX addressing modes and conveniently evaluated by the 
IBOX. Argument registers are specified with register mode; 
permanent variables in the current environment are specified via 
displacement mode from the current environment pointer; labels 
and constants form 32 bit literals in the instruction stream. 

Two instructions were added to the instruction set to 
facilitate execution of certain escape is sequences. Plus and 
minus are three operand instructions which dereference the first 
two operands, perform addition or subtraction, and store the 
result in the third operand. The get-value instruction completes 
the escape is sequence by unifying this result with the desired 
variable. Currently these instructions are hand-coded into the 
output of the Warren compiler. This produces faster execution 
times since the structure form of the arithmetic expression need 
not be created before the expression is evaluated. Plus and 
minus work only when arithmetic expressions are not nested. 
We plan to modify the compiler to generate these instructions 
automatically. 

Several basic Prolog functions used by many of the Warren 
Constructs are also implemented in microcode. These include 
the dereference. de&. unifv. and fail routines. Onlv the fail 
routine is dire& accessible-to the user to initiate bacl&racking. 
The dereference routine follows a chain of variables until a 
structure, list, constant, or unbound variable is encountered. 
The decdr routine supports the &-coding of lists, and insures 
that a list is traversed correctly. 

Over 500 lines of microcode were added to the VAX 8600 
to implement the Warren Abstract Machine. 

5. Performance Measurements 

We have measured the performance of our initial 
implementation on two sets of benchmarks. Although our initial 
results indicate that our system is the fastest Prolog 

Prolog Performance on Warren Benchmarks 
Prolog VAX NCR PLM Classic 

Benchmark 8600 32 (Warren) 
clock cycle 80 ns 150 ns 100 ns 

nrev 116k 25k 115k 9k 
qs4 98k 35k 174k 11.2k 

palin 67k 21k 134k 10.5k 
times10 48k 13k 63k 7.7k 

divl0 42k Ilk 55k 7.8k 
log1 0 56k 15k 79k 7.8k 
ops8 65k 2lk 106k 11.2k 
query 20k 89k 367k 31.9k 

Table 1 

implementation on a commercially available general purpose 
computer, much remains to be done. The results reported here 
reflect the performance of a Fist-pass, unoptimized system. We 
believe that signficant performance gains will be achieved when 
the microcode is optimized, and when the remaining escape is 
sequences are moved into microcode. 

Table 1 summarizes our results on the Warren Benchmark 
Set with those of three other systems: a Warren implementation 
on the NCR/32 general purpose processor; the Berkeley PLM, a 
special purpose processor which directly interprets the Warren 
instruction set; and Warren’s compiled Prolog, software 
emulating the WAM instruction set on a DEC-2060 corn uter. 
We have not normalized the results to the cycle time o P each 
machine. 

Table 2 summarizes our results on the Berkeley Benchmark 
Set. 

r 

t 
t 

Prolog Performance on Berkeley Benchmarks 
Proloa VAX NCR PLM Classic 

Benchm>rk 8600 32 (Warren) 
clock cycle 80 ns 150 ns 100 ns 

con1 95k 53k 305k 43k 
con6 
hanoi 

mumath 
pri2 

flueens 

38k 1lOk 465k --- 
106k 59k 310k --- 
73k 17k 89k --- 
28k 7k 191k --- 
77k 50k 148k --- 

L 

Table 2 

Several comments on these results are in order. The 
measurements for the Berkeley PLM are simulated results, 
assuming the processor never waits for memory. All other 
results se actua performance figures. The overaliresults are as 
exDected. The simulated snecial nurnose PLM Derforms best. 
foilowed by the horizontally mi&oc&ded 8600,lthe vertically 
microcoded NCR/32, and the Warren software emulator last. 
The 8600 results consistently fell between the NCR/32 and the 
PLM, except on the con6 (non-determinate concat), and query 
benchmarks. We attribute the analmalous con6 results to some 
inefficiencies remaining in the microcode, and the query results 
to a high frequency of escape is sequences requiring 
multiplication and division. 

Finally, we should point out that our performance results 
include the overhead associated with a real system in a real 
environment. That is, the VAX 8600 is a virtual memory 
machine operating in a multiprogramming environment. Thus 
the overhead due to address translation, page fault handling, and 
context switching is included. 

6. Conclusions 

We have described a VAX 8600 direct execution 
implementation of Prolog. We have mapped the Warren 
architecture to the 8600 in a manner which supports a multiuser 
environment, and translated the Warren instruction set into a 
form directly executable by the 8600. To our knowledge, this 
system is the fastest Prolog implementation on a commercially 
available general purpose processor. We should also point out 
that our implementation method produces executable images 
which contain both Prolog constructs and num&i&+ operations. 
As a result, this may prove to be the most effective 
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implementation method for handling computations that have 
substantial symbolic and numeric components. 
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