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Abstract

In recent years, security researchers have well established the fact that technical security

solutions alone will not result in a robust cyberspace due to several issues jointly related

to the economics and technology of computer security. In this regard some of them pro-

posed cyber-insurance as a suitable risk management technique that has the potential to

jointly align with the various incentives of security vendors (e.g., Symantec, Microsoft,

etc.), cyber-insurers (e.g., security vendors, ISPs, cloud providers, etc.), regulatory agen-

cies (e.g., government), and network users (individuals and organizations), in turn paving

the way for robust cyber-security. In this work, we theoretically investigate the follow-

ing important question: can cyber-insurance really improve the security in a network? To

answer our question we adopt a market-based approach. We analyze regulated monopolis-

tic and competitive cyber-insurance markets in our work, where the market elements consist

of risk-averse cyber-insurers, risk-averse network users, a regulatory agency, and security

vendors (SVs). Our analysis proves that technical solutions will alone not result in optimal

network security, and leads to two important results: (i) without contract discrimination

amongst users, there always exists a unique market equilibrium for both market types, but

the equilibrium is inefficient and does not improve network security, and (ii) in monopoly

markets, contract discrimination amongst users results in a unique market equilibrium that

is efficient and results in improvement of network security - however, the cyber-insurer can

make zero expected profit. The latter fact is often sufficient to de-incentivize the formation

xi



or practical realization of successful and stable cyber-insurance markets.

To alleviate the insurers problem of potentially making zero profits, we suggest two

mechanisms: (a) the SV could enter into a business relationship with the insurer and lock

the latters clients in using security products manufactured by the SV. In return for the

increased sale of its products, the SV could split the average profit per consumer with the

insurer, and (b) the SV could itself be the insurer and account for logical/social network

information of its clients to price them. In this regard, we study homogenous, heteroge-

neous, and binary pricing mechanisms designed via a common Stackelberg pricing game

framework. The binary pricing game turns out to be NP-hard, for which we develop an

efficient randomized approximation algorithm that achieves insurer profits up to 0.878 of

the optimal solution. Our game analysis combined with simulation results on practical

networking topologies illustrate increased maximum profits for the insurer (SV) at market

equilibrium and always generate strictly positive profits for the latter, when compared to

current SV pricing mechanisms in practice. In addition, the state of improved network

security remains intact.
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Chapter 1

Introduction

1.1 Chapter Introduction

The infrastructure, the users, and the services offered on computer networks today are all

subject to a wide variety of risks posed by threats that include distributed denial of service

attacks, intrusions of various kinds, eavesdropping, hacking, phishing, worms, viruses,

spams, etc. In order to counter the risk posed by these threats, network users have tradi-

tionally resorted to antivirus and anti-spam software, firewalls, intrusion-detection systems

(IDSs), and other add-ons to reduce the likelihood of being affected by threats. In practice,

a large industry (companies like Symantec, McAfee, etc.) as well as considerable research

efforts are currently centered around developing and deploying tools and techniques to

detect threats and anomalies in order to protect the cyber infrastructure and its users from

the resulting negative impact of the anomalies.

Inspite of improvements in risk protection techniques over the last decade due to hard-

ware, software and cryptographic methodologies, it is impossible to achieve perfect/near-

perfect cyber-security protection [4][24]. The impossibility arises due to a number of rea-

sons: (i) scarce existence of sound technical solutions, (ii) difficulty in designing solutions

catered to varied intentions behind network attacks, (iii) misaligned incentives between

network users, security product vendors, and regulatory authorities regarding protecting

the network, (iv) network users taking advantage of the positive security effects generated

by other users’ investments in security, in turn themselves not investing in security and

resulting in the free-riding problem, (v) customer lock-in and first mover effects of vul-
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nerable security products, (vi) difficulty to measure risks resulting in challenges to design-

ing pertinent risk removal solutions, (vii) the problem of a lemons market [2], whereby

security vendors have no incentive to release robust products in the market, (viii) liability

shell games played by product vendors, and (ix) user naiveness in optimally exploiting fea-

ture benefits of technical solutions. In view of the above mentioned inevitable barriers to

near 100% risk mitigation, the need arises for alternative methods for risk management in

cyberspace 1. In this regard, some security researchers in the recent past have identified

cyber-insurance as a potential tool for effective risk management.

Cyber-insurance is a risk management technique via which network user risks are trans-

ferred to an insurance company, in return for a fee, i.e., the insurance premium. Examples

of potential cyber-insurers might include ISP, cloud provider, traditional insurance orga-

nizations. Proponents of cyber-insurance believe that cyber-insurance would lead to the

design of insurance contracts that would shift appropriate amounts of self-defense liability

to the clients, thereby making the cyberspace more robust. Here the term ‘self-defense’

implies the efforts by a network user to secure their system through technical solutions

such as anti-virus and anti-spam software, firewalls, using secure operating systems, etc.

Cyber-insurance has also the potential to be a market solution that can align with economic

incentives of cyber-insurers, users (individuals/organizations), policy makers, and security

software vendors. i.e., the cyber-insurers will earn profit from appropriately pricing pre-

miums, network users will seek to hedge potential losses by jointly buying insurance and

investing in self-defense mechanisms, policy makers would ensure the increase in overall

network security, and the security software vendors could experience an increase in their

product sales via forming alliances with cyber-insurers.

1To highlight the importance of improving the current state of cyber-security, US President Barack Obama
has passed a security bill in 2013 that emphasizes the need to reduce cyber-threats and be resilient to them.
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1.2 Research Motivation

Despite all promises, current cyber-insurance markets are moderately competitive and spe-

cialized. As of 2010, there are approximately 18 insurance organizations in the United

states insuring $800 million worth of organizational IT resources [6], and there is little

information as to whether the current cyber-insurance market improves network security

by incentivizing organizations to invest aptly in security solutions. The inability of cyber-

insurance to become a common reality (i.e., to form a successful market) amongst non-

organizational individual users is due to a number of unresolved research challenges as

well as practical considerations. The most prominent amongst them is information asym-

metry (see Section 1.3) between the insurer and the insured, and the interdependent and

correlated nature of cyber-risks [8].

In this dissertation, we investigate the following two important questions, given the

above mentioned challenges: (i) can cyber-insurance solutions induce efficient markets

(See 6.2) that improve the security of a network?, and (ii) how can cyber-insurance mar-

kets be realized in practice? Before we state our research contributions, we review some

basic economics concepts used throughout the dissertation. In the process of studying

improvement of network security, we are interested in analyzing the welfare of elements

(stakeholders) that form a cyber-insurance market (if one exists).

1.3 Basic Economics Concepts

In this section we briefly review some basic economics concepts as applicable to this work

in order to establish terminology for the remainder of the dissertation. Additional details

could be found in a standard economics textbooks such as [25].

externality: An externality is an effect (positive or negative) of a purchase of self-

defense investments by a set of users (individuals or organizations) on other users whose
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interests were not taken into account while making the investments. In this work, the effects

are improvements in individual security of network users who are connected to the users

investing in self-defense.

risk probability: It is the probability of a network user being successfully attacked by

a cyber-threat.

initial wealth: It is the initial amount of wealth a network user possesses before

expending in any self-defense mechanisms and/or insurance solutions.

user risk propensity: A risk-neutral investor (either the insurer or the insured) is more

concerned about the expected return on their investment, not the risk he may be taking

on. A classic experiment to distinguish between risk-taking appetites involves an investor

faced with a choice between receiving, say, either $100 with 100% certainty, or a 50%

chance of getting $200, and 50% of receiving nothing. A risk-neutral investor in this case

would have no preference either way, since the expected value of $100 is the same for both

outcomes. In contrast, a risk-averse investor would generally settle for the ”sure thing” or

100% certain $100, while the risk-seeking investor will opt for the 50% chance of getting

$200.

market: In the cyber-insurance context, it is a platform where cyber-insurance prod-

ucts are traded with insurance clients, i.e., the network users. A market may be perfectly

competitive, oligopolistic, or monopolistic. In a perfectly competitive market there exists

a large number of buyers (those insured) and sellers (insurers) that are small relative to the

size of the overall market. The exact number of buyers and sellers required for a competi-

tive market is not specified, but a competitive market has enough buyers and sellers that no

one buyer or seller can exert any significant influence on premium pricing in the market.

On the contrary, in monopolistic and oligopolistic markets, the insurers have the power to

set client premiums to a certain liking.

equilibrium: An equilibrium refers to a market situation when both, buyers and sell-
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ers are satisfied with their net utilities and no one has any incentive to deviate from their

strategies.

stakeholders: The stakeholders in a cyber-insurance market are entities whose inter-

ests are affected by the dynamics of market operation. In our work we assume that the enti-

ties are cyber-insurers (e.g., ISPs, cloud providers, security vendors, traditional insurance

companies), the network users, a regulatory agency such as the government, and security

vendors such as Symantec and Microsoft.

market efficiency: A cyber-insurance market is called efficient if the social welfare of

all network users is maximized at the market equilibrium. The market is inefficient if it

fails to achieve this condition. Here, ‘social welfare’ refers to the sum of the net utilities of

network users after investing in self-defense and/or cyber-insurance.

information asymmetry: Information asymmetry has a significant negative effect on

most insurance environments, where typical considerations include inability to distinguish

between users of different (high and low risk) types, i.e., the so called adverse selection

problem, as well as users undertaking actions that adversely affect loss probabilities after

the insurance contract is signed, i.e., the so called moral hazard problem. The challenge due

to the interdependent and correlated nature of cyber-risks is particular to cyber-insurance

and differentiates traditional insurance scenarios (e.g., car or health insurance) from the

former. In a large distributed system such as the Internet, risks span a large set of nodes

and are correlated. Thus, user investments in security to counter risks generate positive

externalities for other users in the network. The aim of cyber-insurance here is to enable

individual users to internalize the externalities in the network so that each user optimally

invests in security solutions, thereby alleviating moral hazard and improving network secu-

rity. In traditional insurance scenarios, the risk span is quite small (sometimes it spans only

one or two entities) and uncorrelated, thus internalizing the externalities generated by user

investments in safety, is much easier.
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safety capital: A safety capital is the additional amount over the expected aggregate

loss in a period such that the probability of an insurer incurring a loss of value greater

than the sum of the capital and expected aggregate loss in that period does not exceed a

particular threshold. The threshold value is defined by a regulator.

1.4 Research Contributions

We make the following primary research contributions in this dissertation.

• We propose a supply-demand model of regulated cyber-insurance markets that

accounts for inter-dependent risks in a networked environment as well as the exter-

nalities generated by user security investments. (See Sections 3.2 and 3.3.)

• We first show that purely technical solutions alone will not result in optimal network

security. We then show using an insurance framework for risk management that

even a monopoly cyber-insurer providing full coverage to its clients without contract

discrimination cannot enable the existence of an efficient cyber-insurance market,

thereby not improving network security. In addition we also show that perfectly

competitive and oligopolistic cyber-insurance settings, leads to inefficient insurance

markets that does not improve network security. (See Sections 3.4 and 3.6.)

• We show that with client contract discrimination, the cyber-insurer is successful in

enabling an efficient cyber-insurance market that alleviates the moral hazard prob-

lem and improves network security. In the process the insurer makes non-negative

expected profits. As a result, we derive unregulated premium discriminating con-

tracts in a monopoly scenario that allow a risk-averse cyber-insurer to make a certain

amount of expected profit, and at the same time maximize social welfare at market

equilibrium. In this regard, we also study contracts that completely internalize all
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network externalities caused by user investments, and at the same time maximize

social welfare at market equilibrium. (See Section 3.7.)

• The important question that thus arises from previous chapters is is there a practical

way for a cyber-insurer to make strictly positive profits at all times, under regula-

tion, and at the same time ensure optimal network robustness? A positive answer to

this question would imply cyber-insurance market success on a larger than moder-

ate scale. In addition, in a correlated risk environment such as the Internet, insurers

cannot afford to be risk-neutral as there are chances it might go bankrupt due to

expected aggregate losses in a period being more than what it could afford to com-

pensate. As a result it might hold a safety capital for a certain cost in order to prevent

itself from going bankrupt [8]. The question that arises here is how can the cyber-

insurers recover costs of buying safety capital from the consumers of their products?

The above two questions motivate us to investigate a way in which cyber-insurers

can always make profits and recover their costs (includes safety capital) to provide

insurance coverage to clients, and at the same time ensure optimal network robust-

ness.

In this regard, we model risk-averse security vendors as cyber-insurers and propose

a one-period static and heterogenous product pricing scheme for their consumers

based on the consumers’ logical network and their security investment amounts. Our

proposed approach (i) potentially increases the current profit margins of SVs upto

approximately 25% (relative to our model) and allows an SV to make strictly posi-

tive profits at all times, solely as an insurer, (ii) ensures the state of optimal network

robustness, and (iii) allows risk-averse SV insurers to recover costs such as ones

related to buying safety capital. Our proposed static pricing mechanism also incor-

porates the case of uniform and binary pricing, when the SV might be constrained

from adopting heterogenous pricing schemes. (See Chapter 4.)
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• We conduct an extensive numerical evaluation highlighting the effects of consumer

overlay network on SV heterogenous pricing outcomes. Specifically, for practical

real world topologies like scale free graphs and trees, we show that (i) the per-unit

product price charged by an SV to consumers is proportional to the Bonacich cen-

trality of consumers in their overlay network, and (ii) the total cost incurred by a

consumer ( network user) in security investments is nearly a constant, and is inde-

pendent of the underlying network topology. The latter point implies consumer fair-

ness because no matter how a consumer is placed in an overlay network, he pays

the same total amount in security investments as any other consumer in the network,

even though his per-unit security investment price charged by an SV is proportional

to the amount of positive externalities he generates via his investments, which in turn

is a function of his network centrality. (See Section 4.11 .)

• In reality, an Internet user faces risks due to security attacks as well as risks due to

non-security related failures (e.g., reliability faults in the form of hardware crash,

buffer overflow, etc.). These risk types are often indistinguishable by a naive user.

However, a cyber-insurance agency would most likely insure risks only due to secu-

rity attacks. In this case, it becomes a challenge for an Internet user to choose the

right type of cyber-insurance contract as traditional optimal contracts, i.e., contracts

for security attacks only, might prove to be sub-optimal for himself.

In this regard we propose an alternative and novel2 model of cyber-insurance, Aegis,

in which Internet users need not transfer the total loss recovery liability to a cyber-

2Our cyber-insurance model is novel because we model partial insurance, whereas existing works related
to traditional cyber-insurance model full and partial insurance coverage but not partial insurance. The notion
of partial insurance can be explained as follows: in traditional cyber-insurance models, only the cyber-insurer
has the say on the amount of coverage it would provide to its clients and in turn the premiums it would
charge, whereas in the Aegis model, the clients get to decide on the fraction of the total amount of advertised
insurance coverage it wants and in turn the proportional premiums it would pay, given an advertised contract.
Thus, in traditional cyber-insurance, it is mandatory for users to accept the insurance policy in full, whereas
in the Aegis model users have the option of accepting the insurance policy in partial.
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insurer, and may keep some liability to themselves, i.e., an Internet user may not

transfer the entire risk to an insurance company. Thus, as an example, an Internet

user may rest 80% of his loss recovery liability to a cyber-insurer and may want to

bear the remaining 20% on his own. Our model captures the realistic scenario that

Internet users could face risks from security attacks as well as from non-security

related failures. It is based on the concept of co-insurance in the traditional insurance

domain.

We mathematically show that when Internet users are risk-averse, Aegis contracts

are always the user preferred policies when compared to traditional cyber-insurance

contracts. In this regard, the latter result de-establishes a market for traditional cyber-

insurance. The availability of Aegis contracts also incentivizes risk-averse Internet

users to rest some loss coverage liability upon themselves rather than shifting it all

to a cyber-insurer, but does not achieve market efficiency. In addition we show that

a risk-averse Internet user would prefer cyber-insurance of some type (Aegis or tra-

ditional) only if it is mandatory for him to buy some kind of insurance, given that

he faces risks due to both, security as well as non-security failures. We also mathe-

matically show the following counterintuitive results: (i) an increase in the premium

of an Aegis contract may not always lead to a decrease in its user demand and (ii)

a decrease in the premium of an Aegis contract may not always lead to an increase

in its user demand. In the process, we also state the conditions under which these

trends emerge. The conditions give a guideline to cyber-insurers on how to increase

or decrease their premiums in order to increase user demands for cyber-insurance.

(See Sections 6.2, 5.3, and 5.4)

• Under full insurance coverage, we perform a mathematical comparative study to

show that co-operation amongst Internet users results in optimal self-defense invest-

ments that maximizes social welfare, when the risks faced by the users in the Internet
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are inter-dependent (see Section 6.4). We use basic concepts from both, co-operative

and non-co-operative game theory to support the claims we make in Sections 6.3 and

6.4. Our results are applicable to co-operative (e.g., distributed file sharing) and non-

cooperative Internet applications where a user has the option to be either co-operative

or non-cooperative with respect to security parameters.
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Chapter 2

Literature Survey

In this section, we give an overview of related work on cyber-insurance as applicable to

this paper. We first state existing work and its drawbacks, which is then followed by stating

our contributions in this dissertation.

2.1 Existing Work and its Drawbacks

The field of cyber-insurance in networked environments has been triggered by recent results

on the amount of self-defense investments users should expend in the presence of net-

work externalities in order to ensure a robust cyber-space. The authors in [14][20][22]

[23][27][29] mathematically show that Internet users invest too little in self-defense mech-

anisms relative to the socially efficient level, due to the presence of network externalities.

These works highlight the role of positive externalities in preventing users from investing

optimally in self-defense investments. Thus, the challenge to improving overall network

security lies in incentivizing end-users to invest in sufficient amount of self-defense invest-

ments inspite of the positive externalities they experience from other users investing in the

network.

In response to the challenge, the works in [22][23] modeled network externalities and

showed that a tipping phenomenon is possible, i.e., in a situation of low level of self-

defense, if a certain fraction of population decides to invest in self-defense mechanisms,

it could trigger a large cascade of adoption in security features, thereby strengthening the

overall Internet security. However, the authors state that the tipping phenomenon is pos-
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sible only when the quality of security protection manufactured by a monopolist is weak,

and also does not result in market efficiency. In addition, the authors did not state how

the tipping phenomenon could be realized in practice from selling high quality protection

techniques.

In another set of recent works [21][24], Lelarge and Bolot have stated that under condi-

tions of no information asymmetry [1] between the insurer and the insured, cyber-insurance

incentivizes Internet user investments in self-defense mechanisms, thereby paving the path

to trigger a cascade of adoption. They also show that investments in both self-defense

mechanisms and insurance schemes are quite inter-related in maintaining a socially effi-

cient level of security on the Internet. The authors in [44] follow up on the framework

of Lelarge et.al and mathematically show that insurance is an incentive to self-defense

investments only if the quality of self-defense is not very good, and the initial security

level of a user is poor. In a recent work [31], the authors show that in a cyber-insurance

framework similar to the one proposed by Lelarge and Bolot, cooperation amongst net-

work users results in the latter making better (more) self-defense investments than the

case in which they would not cooperate. Thus, the authors’ results reflect that cooper-

ation amongst network users will result in a more robust cyberspace. However, not all

applications in cyberspace can be cooperative and as a result we consider the general case

of non-cooperative application environments and to ensure optimal insurance-driven self-

defense amongst users in such environments.

In another recent work [33], the authors derive Aegis, a novel optimal insurance con-

tract type based on the traditional cyber-insurance model, in order to address the realistic

scenario when both, insurable and non-insurable risks co-exist in practice. They mathemat-

ically show that (i) for any type of single-insurer cyber-insurance market (whether offering

Aegis type or traditional type contracts) to exist, a necessary condition is to make insurance

mandatory for all risk-averse network users, (ii) Aegis contracts mandatorily shift more lia-
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bility on to network users to self-defend their own computing systems, when compared to

traditional cyber-insurance contracts, and (iii) it is rational to prefer Aegis contracts to tra-

ditional cyber-insurance contracts when an option is available. However, the authors do

not analyze markets for cyber-insurance, where one needs to consider as important goals,

maximizing social welfare, and satisfying multiple stake-holders. Without such considera-

tions, simply shifting liability on users to invest more may not be enough for a successful

cyber-insurance market.

Drawbacks: All of the above mentioned works conduct analysis under the assumption

of ideal insurance environments, i.e., when there is no information asymmetry between

the insurer and the insured. These works also do not address the problem of ways for

cyber-insurers to always make strictly expected positive profits, without which the cyber-

insurance business would not survive in the long run. In addition the above works assume a

risk-neutral cyber-insurer. As mentioned previously, in a correlated risk environment such

as the Internet, the assumption of insurers being risk-neutral is not a good one as the latter

could become bankrupt. Thus, modeling the insurer as being risk-averse is appropriate.

2.2 Alleviating Existing Drawbacks

In this dissertation, we overcome the drawbacks of the mentioned existing works through

our works in [35][34]. We propose ways to form efficient monopolisitc cyber-insurance

markets by satisfying market stakeholders including a risk-averse cyber-insurer, in envi-

ronments of interdependent risk. We also account for information asymmetry and corre-

lated risks in a partial manner. In doing so we also extend and strengthen our own works

in [32] and [36] that account for market stakeholders and information asymmetry respec-

tively, in a weak manner. However, a drawback of the work in [35] is that there is no strict

guarantee provided to the monopolistic cyber-insurer that it would always make positive
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profits. This is strong enough a disincentive for the cyber-insurer to opt out of the market

in the long run. To alleviate this issue we extend our work in [35] to design premium dis-

criminating contracts that enable the monopolistic insurer to make strictly positive profits

of its choice and at the same time maximize social welfare. Through our work, we also

contradict the results cited in [21][24] that cyber-insurance will enable network users to

optimally invest in network security via a cascading effect. In fact, we show that only under

specific monopoly scenarios can an efficient cyber-insurance market exist that satisfies all

market stakeholders. This also justifies the specialized cyber-insurance markets that exists

in practice today. The authors in [7] use Student t-copulas in statistics to model global and

local correlation for information and communications technology (ICT) organizations and

show through simulations that a cyber-insurance market exists for risks with high internal

and low global correlation. However, their work does not consider interdependent risks.

To the best of our knowledge, existing research on how the structure of application

networks affects the computation of cyber-insurance elements that leads to market success

is scarce and non-significant. We study the network effect problem in significant detail

and highlight the role of consumer overlay (application) networks on security product and

cyber-insurance element pricing, and their discriminative allocation amongst consumers.

Our proposed discriminative pricing mechanism in turn enables the formation of efficient

cyber-insurance markets with the cyber-insurer making strictly positive profits. The term

‘cyber-insurance elements’ mentioned above include fines, rebates, and safety capital. In

our work we vouch for the idea that these elements be allocated amongst clients based on

their network centrality and security investment amounts in order to achieve efficient cyber-

insurance markets. Throughout the rest of this dissertation we use the terms, ‘client’, and

‘consumer’, and ‘network user’ interchangeably to imply entities buying security products.

We will also use the terms ‘investment’ ‘self-defense investment’ and ‘security’ investment

interchangeably to denote the number of units of security product purchased by each client.
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Chapter 3

Analyzing Cyber-Insurance Markets

3.1 Chapter Introduction

In this chapter we analyze cyber-insurance markets. We deal with perfectly competitive

markets, oligopolistic markets, and monopoly markets. For each of these markets we study

equilibrium existence, uniqueness, and efficiency. We now briefly describe each market

type.

3.1.1 Perfectly Competitive Markets

In economic theory, perfect competition (sometimes called pure competition) describes

markets such that no participants are large enough to have the market power to set the price

of a homogeneous product. Because the conditions for perfect competition are strict, there

are few if any perfectly competitive markets. Generally, a perfectly competitive market

exists when every participant is a ”price taker”, and no participant influences the price of

the product it buys or sells. Specific characteristics may include:

• A large number buyers and sellers: A large number of consumers with the willing-

ness and ability to buy the product at a certain price, and a large number of producers

with the willingness and ability to supply the product at a certain price.

• No barriers of entry and exit: No entry and exit barriers makes it extremely easy to

enter or exit a perfectly competitive market.
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• Perfect factor mobility: In the long run factors of production are perfectly mobile,

allowing free long term adjustments to changing market conditions.

• Perfect information: All consumers and producers are assumed to have perfect

knowledge of price, utility, quality and production methods of products.

• Zero transaction costs: Buyers and sellers do not incur costs in making an exchange

of goods in a perfectly competitive market.

• Profit maximization: Firms are assumed to sell where marginal costs meet marginal

revenue, where the most profit is generated.

• Homogenous products: The qualities and characteristics of a market good or service

do not vary between different suppliers.

• Non-increasing returns to scale: The lack of increasing returns to scale (or

economies of scale) ensures that there will always be a sufficient number of firms

in the industry.

• Rational buyers: buyers capable of making rational purchases based on information

given

• No externalities: costs or benefits of an activity do not affect third parties.

3.1.2 Oligopolistic Markets

An oligopoly is a market form in which a market or industry is dominated by a small

number of sellers (oligopolists). Oligopolies can result from various forms of collusion

which reduce competition and lead to higher prices for consumers. With few sellers, each
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oligopolist is likely to be aware of the actions of the others. The decisions of one firm there-

fore influence and are influenced by the decisions of other firms. Specific characteristics of

oligopolistic markets include:

• Profit maximization conditions: An oligopoly maximizes profits.

• Ability to set price: Oligopolies are price setters rather than price takers.

• Entry and exit: Barriers to entry are high. The most important barriers are economies

of scale, patents, access to expensive and complex technology, and strategic actions

by incumbent firms designed to discourage or destroy nascent firms. Additional

sources of barriers to entry often result from government regulation favoring existing

firms making it difficult for new firms to enter the market.

• Number of firms: ”Few” - a ”handful” of sellers. There are so few firms that the

actions of one firm can influence the actions of the other firms.

• Long run profits: Oligopolies can retain long run abnormal profits. High barriers of

entry prevent sideline firms from entering market to capture excess profits.

• Product differentiation: Product may be homogeneous (steel) or differentiated (auto-

mobiles).

• Perfect knowledge: Assumptions about perfect knowledge vary but the knowledge

of various economic factors can be generally described as selective. Oligopolies

have perfect knowledge of their own cost and demand functions but their inter-firm

information may be incomplete. Buyers have only imperfect knowledge as to price,

cost and product quality.

• Interdependence: The distinctive feature of an oligopoly is interdependence.

Oligopolies are typically composed of a few large firms. Each firm is so large that its
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actions affect market conditions. Therefore the competing firms will be aware of a

firm’s market actions and will respond appropriately. This means that in contemplat-

ing a market action, a firm must take into consideration the possible reactions of all

competing firms and the firm’s countermoves. It is very much like a game of chess or

pool in which a player must anticipate a whole sequence of moves and countermoves

in determining how to achieve his or her objectives. For example, an oligopoly con-

sidering a price reduction may wish to estimate the likelihood that competing firms

would also lower their prices and possibly trigger a ruinous price war. Or if the firm

is considering a price increase, it may want to know whether other firms will also

increase prices or hold existing prices constant. This high degree of interdependence

and need to be aware of what other firms are doing or might do is to be contrasted

with lack of interdependence in other market structures. In a perfectly competitive

(PC) market there is zero interdependence because no firm is large enough to affect

market price. All firms in a PC market are price takers, as current market selling price

can be followed predictably to maximize short-term profits. In a monopoly, there are

no competitors to be concerned about. In a monopolistically-competitive market,

each firm’s effects on market conditions is so negligible as to be safely ignored by

competitors.

• Non-Price Competition: Oligopolies tend to compete on terms other than price. Loy-

alty schemes, advertisement, and product differentiation are all examples of non-

price competition.

3.1.3 Monopoly Markets

A monopoly market exists when a specific person or enterprise is the only supplier of a par-

ticular commodity. Monopolies are thus characterized by a lack of economic competition
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to produce the good or service and a lack of viable substitute goods. The verb ”monopo-

lize” refers to the process by which a company gains the ability to raise prices or exclude

competitors. In economics, a monopoly is a single seller. Although monopolies may be big

businesses, size is not a characteristic of a monopoly. A small business may still have the

power to raise prices in a small industry (or market). Specific characteristics of monopoly

markets include:

• Profit Maximizer: Maximizes profits.

• Price Maker: Decides the price of the good or product to be sold, but does so by

determining the quantity in order to demand the price desired by the firm.

• High Barriers to Entry: Other sellers are unable to enter the market of the monopoly.

• Single Seller: In a monopoly, there is one seller of the good that produces all the

output. Therefore, the whole market is being served by a single company, and for

practical purposes, the company is the same as the industry.

• Price Discrimination: A monopolist can change the price and quality of the product.

He or She sells more quantities charging less price for the product in a very elastic

market and sells less quantities charging high price in a less elastic market.

The rest of the chapter has two parts: in the first part we describe our model from

a demand (network user) perspective, in the second part we describe our model from a

supply (cyber-insurer) perspective. Important notation used in the chapter is summarized

in Table 1.

3.2 Model from a Demand Perspective

We consider a communication network comprised of a continuum of risk-averse users.

Here we use the notion of ‘users’ as defined in [8], where users are considered as atomic
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nodes (individuals, organizations, enterprise, data center elements, etc.) in the network,

each controlling a possible collection of devices. The links between the nodes need not

necessarily be physical connections and could also represent logical or social ties amongst

the nodes. For example, social engineering attacks are conducted on overlay networks.

Each user i has initial wealth w0 and faces a risk of size r < w0 with probability pri . Here

pri is a function of i’s efforts in self-protection, and the proportion of users not investing

in security measures. Each risk-averse user has the standard von Neumann-Morgenstern

(VNM) utility, U(·)[25]. VNM utilities are a function of a user’s final wealth, and is twice

continuously differentiable, increasing, and strictly concave. For a particular risk of size r,

each user i also incurs a cost xri to invest in self-defense mechanisms, which is an instance

of a random variable Xr having distribution function Fr and density function fr, each

defined over the support [0, r]. As a practical example, we can think of xri as the sum of

the cost of buying anti-virus software and the cost of expending efforts in keeping one’s

computer secure. Thus, users are heterogenous in their cost of self-defense investments.

We define xmr (a particular instantiation of Xr) to be the marginal cost of investing in self-

defense mechanisms, i.e., it is the cost to a user who is indifferent between investing and

not investing in self-defense. Such a user’s net utility on investment is the same as his net

utility on non-investment. In the remainder of the dissertatio, we assume that such a user

always invests in self-defense. All other risk-averse users either decide to invest or not

invest in self-defense mechanisms, depending on whether their cost of investment is lower

or higher than xmr . Throughout the chapter we let r and xri ’s have the same units.

We assume that a user does not completely avoid loss on self-protection, i.e., self-

protection is not perfect, and is subject to two types of losses: direct and indirect. A direct

loss to a user is caused when it is directly attacked by a malicious entity (threat). An

indirect loss to a user is caused when it is indirectly affected by direct threats to other users

in the network. A brief description of examples of direct and indirect threats is given in
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Section VII. Let pi,rd denote the probability of a direct loss to a user, where pi,rd is a function

of xri , i.e., pi,rd = prd if user i invests an amount xri in self-protection, and zero if it does

not. Let piind(l) denote the probability of a user getting indirectly affected by other network

users, where l is the proportion of users in the network not adopting self-defense (self-

protection) mechanisms, which in turn is a function of xmr , i.e., the marginal cost to a user

indifferent to investing in self-defense investments. xmr is a function of the vector of user

investments, the network topology, and the number of users who are affected by a threat.

Thus, prind(l) = prind(l(x
m
r )). We have the following relationship between l and xmr :

l = l(X = xmr ) =

∫ r

xmr

f(θ)dθ = 1− F (xmr ). (3.1)

Thus, it is obvious that dl(xmr )
dxmr

= −f(xmr ) < 0, implying the proportion of individuals

without self-defense investments is strictly decreasing in xmr as more users find it preferable

to invest in self-defense with increasing marginal costs.

Regarding the connection between prind and l(xmr ), the higher the value of l(xmr ), the

greater is the value of prind. Therefore, prind(l(x
m
r )) > 0, and 0 ≤ prind(l(x

m
r )) ≤ pmaxind .

Here pmaxind is the maximum value of the function prind taken at an argument value of 1, and

we assume that prind(0) = 0. The interpretation behind prind is that if nobody invests in

self-defense, a user gets indirectly affected with probability pmaxind , and if everyone invests

in self-defense, the probability of indirect loss to a user is zero. Note that xmr is dependent

on the investment of one’s neighbors in the connectivity graph (our work assumes a general

connectivity graph), which in turn is dependent on the investment of neighbor’s neighbors

and so on. The events where a user incurs a direct loss and an indirect loss are assumed

to be statistically independent. In the case when a user does not completely avoid loss on

self-defense, we assume that he has no direct loss on investing in self-protection but incurs

an indirect loss. In this case, his probability of facing a loss on investing in self-protection
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Symbol Meaning
U VNM user utility function
U i,jdef user j utility (defense adopted, Scenario i)
U i,jndef user j utility (no defense, Scenario i)
w0 Initial wealth of a user

R = r Risk r.v. taking a value of r
xri cost to a user to invest in self-defense
xmr marginal cost of investing in self-defense (risk size r)
xmir marginal investment cost in Scenario i
xeqir equilibrium investment cost in Scenario i
xsoptir welfare maximizing investment cost in Scenario i
SWi() social welfare of users in Scenario i
l(xmir ) proportion of non-investing network users (Scenario i)
pri probability of a user facing a risk (Scenario i)
pd probability of a user facing direct risk

piind(l(x
mi
r )) probability of a user facing indirect risk (Scenario i)

P 2
jk user premium for Case jk of Scenario 2

Case jk Case j in Scenario 2 with investment scenario k
P 3
k user premium in Scenario 3, k ε {1, 2}
λ loading factor of a cyber-insurance contract

Πmonopoly expected profit by a monopolistic cyber-insurer

Table 3.1: Summary of Important Symbols in Chapter 3

is given as

pri = prind(l(x
m
r )).

The probability of a user i facing a loss when he does not invest in self-defense mechanisms

is given as

pri = prd + (1− prd)prind(l(xmr )).

We note that one particular way of computing the value of pri as a function of parameters

pi,rd and prind in a network graph, is using Local Mean Field Analysis (LMFA) [22][23].
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3.3 Model from a Supply Perspective

In this chapter we consider regulated monopolistic and competitive (both perfect and

oligopolistic) cyber-insurance markets. A cyber-insurer could be any combination of an

ISP, security product vendor, traditional insurance companies, and security third parties.

We assume that insurers are risk-averse and provide full coverage to their clients (users),

who must buy cyber-insurance in the monopolistic case (not necessarily in the competitive

case). Mandatory insurance is considered as a regulator’s tool to improve cyber-security1.

Another reason why compulsory insurance could be mandated is to prevent high-risk users

from adopting unsafe protection measures. In a non-compulsory system, high risk users

might opt out of buying cyber-insurance knowing that they would have to pay high premi-

ums. This would imply that these users could adopt unsafe security measures that nega-

tively affect cyber-security. With insurance being made compulsory, high risk users would

take steps to protect their systems more in order to pay lesser premiums, and hence pos-

itively affect cyber-security. We ensure full coverage from the insurer side in return for

clients committing to buying cyber-insurance.

In a correlated and interdependent risk environment such as the Internet, a cyber-insurer

cannot afford to be risk-neutral as it could become bankrupt if the expected aggregate loss

in a period is greater than what it could afford to cover. We assume the risk-averse behavior

of the insurer by requiring it to hold safety capital. The cost of holding safety capital is

distributed across the clients through the premiums charged to them. We assume that the

share of safety capital cost per client is less than his expected risk value. Each client is

charged a premium of (1 + λ)E(R), where λ ≥ 0 is the loading factor per contract, and

1As a matter of fact, in [33], the authors show that when insurable and non-insurable risks (for example
those caused by hardware/software reliability faults) co-exist together, even under conditions of no informa-
tion asymmetry between the monopolistic insurer and the insured, cyber-insurance needs to be made manda-
tory for a market to exist. From a policy viewpoint, this seems tough to implement, but as mentioned above,
in the interest of cyber-security, such measures might be adopted in the near future.
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E(R) is the expected loss value of the client. The loading factor represents the amount of

profit per contract the cyber-insurer is keen on making and/or the share of the safety capital

cost of each user. A premium is said to be fair if its value equals E(R), and is unfair if its

value is greater than E(R).

3.4 Scenario 1: No Insurance Case

In this section we analyze the case when network users do not have access to insurance cov-

erage. This case is useful for comparison of optimal user investments in security between

scenarios of no insurance coverage and those with coverage.

Let U1,i
ndef (l(x

m1
r )) be the utility to a user i in Scenario 1 when he does not invest in

self-defense. xm1
r is the marginal cost of self-defense in Scenario 1. The expected utility of

a user i in Scenario 1 who does not invest in self-defense mechanisms is thus given as

E[U1,i
ndef (l(x

m1
r ))] = prdU(w0 − r) + (1− prd)Q1,

where Q1 is the probability of the user facing indirect loss in Scenario 1 and is given as

Q1 = prind(l(x
m1
r ))U(w0 − r) + (1− prind(l(xm1

r ))U(w0),

In order to have more condensed equations, we somewhat abuse notation and useQ1 instead

directly using the expression denoting Q1. Similarly, the expected utility of a user who

invests in self-defense mechanisms is given as

E[U1,i
def ] = E[U1,i

def (l(x
m1
r ), xri )]
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or

E[U1,i
def ] = prind(l(x

m1
r ))U(w0 − xri − r) + (1− prind(l(xm1

r ))U(w0 − xri ).

A user i would want to invest in loss prevention only if E[U1,i
def ] ≥ E[U1,i

ndef ].

Define Ψ1(l(xm1
r ), X = x) to be the difference in utilities for user i when he decides to

invest or goes against investing in self-protection, and it is given by

Ψ1(l(xm1
r ), xri ) = E[U1,i

def (l(x
m1
r ), xri )]− E[U1,i

ndef (lr(x
m1
r )]. (3.2)

As special case, when xri = r, we have

Ψ1(l(xm1
r ), r) = (1− prd){U(w0 − r)− U(w0)} < 0, (3.3)

and at xri = 0 we have

Ψ1(l(xm1
r ), 0) = prd(1− pmaxind ){U(w0)− U(w0 − r)} > 0. (3.4)

In most practical cases, Equations 3.3 and 3.4 jointly indicate the monotonicity of Ψ1(·)

(due to Ψ being often strictly decreasing) and imply that (i) if no user invests in self-

defense and the risk of loss is very high, it is worth to undertake defense measures to

reduce expected loss, when cost to invest in self-defense is zero, (ii) if every user invests

in self defense and the risk is zero, an investment is not worth being undertaken, and (iii)

there exists an interior solution xeq1r , where 0 < xeq1r < r, such that

Ψ1(l(xm1
r ), xeq1r ) = E[U1,i

def (l(x
m1
r ), xeq1)]− E[U1,i

ndef (l(x
eq1
r ))] = 0. (3.5)

Basically, the implications of ?? and ?? indicate that there exists a state where some net-

work users invest in self-defense and others do not.
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Market Equilibrium: The solution to E[U1,i
def ] = E[U1,i

ndef (l(x
m1
r ))] gives us the invest-

ment cost to a user who is indifferent between investing and not investing in self-defense.

Thus xeq1r = xm1
r , the marginal cost of making self-defense investments in Scenario 1. The

interior solution, xeq1r , in Equation 3.5 is the competitive market equilibrium (CME) cost

of protection investment. It implies that users whose cost of self-defense is less than xeq1r

invest in self-defense as their expected utilities of investing would be greater than that with-

out it, whereas the others do not invest in any protection mechanisms as it would not be

profitable for them to do so. Mathematically, the expression for the CME can be derived

from the following equation in [40].

U(w0 − xeq1r − prind(l(xeq1r )) · r − π[prind(l(x
eq1
r )]) = U(w0 − pri · r − π[pri ]),

The CME value given by

xeq1 = pd(1− q(l(xeq1r )) · r − π[q(xeq1r )] + π[p(xeq1r )].

Here π[pri ] is the risk premium.

Social Welfare Maximization: We define the social welfare of a network of users in the no

insurance case as the sum of the expected utility of all the users. We denote social welfare

in Scenario 1 as SW1(xm1
r ) and express it as

SW1(xm1
r ) =

∫ x
m1
r

0

E[U1
def (l(x

m1
r , x)]f(x)dx+ E[U1

ndef (l(x
m1
r )]l(xm1

r ).

The first term in SW1(xm1
r ) denotes the sum of the expected utility of all agents with adopt-

ing self-defense; the second term denotes the sum of the expected utilities of all users not

investing in self-defense. Equating the first order condition for SW1(xm1
r ) results in find-

ing xsopt1r , the cost of investment that maximizes social welfare. The first order condition
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(FOC) for an interior maximum is

dSW1(xm1
r )

dxm1
r

= A1 +B1 + C1 +D1, (3.6)

where

A1 = E[U1
def (l(x

m1
r ), xm1

r )]f(xm1
r ),

B1 = E[U1
ndef (l(x

m1
r ))]

dlr(x
m1
r )

dxm1
r

,

C1 =
dE[U1

ndef (l(x
m1
r ))]

dxm1
r

l(xm1
r ),

and

D1 =

∫ x
m1
r

0

δE[U1
def (l(x

m1
r , x)]

δxm1
r

f(x)dx.

Using Equation 3.1, Equation 3.6 can be written as

dSW1(xm1
r )

dxm1
= F + C1 +D1, (3.7)

where

F = {E[U1
def (l(x

m1
r ), xm1

r )]− E[U1
ndef (l(x

m1
r ))]}f(xm1

r ).

The term inside brackets of F is the excess of expected utility, Ψ1(l(xm1
r ), xm1

r ). C1 and D1

are non-negative and non-decreasing in x. Since the excess of expected utility is positive

at x = 0 and negative at x = r, there exists xsopt1r such dSW1(x
m1
r )

dx
m1
r

is zero, and the social

welfare in the network is maximized. We represent this mathematically as

xsopt1r = argmaxxm1
r
SW1(xm1

r ). (3.8)
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Substituting xeq1r in Equation 3.7, and using Equation 3.5 we get

dSW1(xm1
r )

dxm1
r

|xm1
r =x

eq1
r

> 0. (3.9)

The first derivate of SW1 being positive at xeq1r clearly indicates that xsopt1r > xeq1r , thus

implying l(xsopt1r ) < l(xeq1r ). i.e., the proportion of users not resorting to self-defense

mechanisms is higher in the market equilibrium than in the welfare optimum. The analysis

above proves the following theorem.

Theorem 1. In the case of imperfect prevention, when network users do not have cyber-

insurance protection, there exists a unique market equilibrium cost to invest in self-defense,

xeq1r . Users facing protection costs below xeq1r invest in self-defense mechanisms, whereas

other users do not. This CME cost of self-defense does not result in maximizing user social

welfare in the network, i.e., the proportion of users not resorting to self-defense mechanisms

is higher in the market equilibrium than in the welfare optimum.

Theorem Intuition and Practical Implications: The intuition behind Theorem 1 is

based on the first fundamental theorem in welfare economics [25] which states that the

network externalities generated by user investments are not internalized (i.e., users do not

pay for externality benefits), by the users for public goods such as security measures, and

results in the free-riding problem. Thus, risk -averse users do not end up putting in optimal

self-defense efforts, and this results in sub-optimal network security, i.e., the average of

user risk probabilities (denoted as p(xm)), is not minimized. With respect to the welfare

of users, the ones who face a cost of investment above the CME cost do not buy security

products and face a loss on being attacked. The ones who do invest in security measures

are better off but are still susceptible to indirect risks. The case of no insurance is currently

the situation in Internet security, apart from a few organizations that are insured.
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3.5 Scenario 2: Monopoly Markets

In this section we analyze a regulated monopolistic cyber-insurance market under condi-

tions of imperfect prevention (self-protection does not guarantee risk removal) and pre-

mium indiscrimination amongst the insured. Here the term ‘regulated’ implies the role of

the government to (i) ensure Internet users buy compulsory cyber-insurance, (ii) enable

insurers to adopt premium discrimination amongst clients based on the user risk types, and

(iii) allow basic user security behavior monitoring by insurance agencies.

The expected utility of a user iwho does not invest is self-defense in Scenario 2 is given

as

E[U2,i
ndef (l(x

m2
r ))] = pdU(w0 − r + r − P ) + (1− pd)Q2,

where Q2 is the probability of the user facing indirect loss in Scenario 2, and is given as

Q2 = q(l(xm2
r ))U(w0 − r + r − (1 + λ)pri · r) + (1− prind(l(xm2

r ))U(w0 − P 2
11).

Here P 2
11 = (1 + λ)pri · r) is the insurance premium that a user in Scenario 2, Case 1 (no

contract discrimination)2and not investing in security (hence denoted as P 2
11), pays to his

cyber-insurer in return for full coverage of his loss (hence the ‘−r + r’ term in U ). xm2
r is

the marginal cost of investment in Scenario 2.

The expected utility of the same user when he invests in self-defense mechanisms is

given as

E[U2,i
def (l(x

m2
r ), xri )] = U(w0 − xri − P 2

12),

where P 2
12 = P (prind(l(x

m
r )) = (1 + λ)prind(l(x

m
r )) · r is the insurance premium a user in

Scenario 2, Case 1, and investing in security pays to his insurer. A user would want to

2Case 2 is the setting where the monopoly insurer premium discriminates its clients, and will be discussed
in chapter 3.7.
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invest in loss prevention only if E[U2,i
def ] ≥ E[U2,i

ndef ].

Define Ψ2(l(xm2
r ), xri ) to be the difference in utilities for user i when he decides to invest

or goes against investing in self-protection, and it is given by

Ψ2(l(xm2
r ), xri ) = E[U2,i

def (l(x
m2
r ), xri )]− E[U2,i

ndef (l(x
m2
r ))]. (3.10)

When xri = 0, we have

Ψ2((xm2
r ), 0) = U(w0 − P 2

12)− U(w0 − P 2
11) > 0, (3.11)

and at xri = r we have

Ψ2(l(xm2
r ), r) = U(w0 − r)− U(w0 − pdr) < 0. (3.12)

In most practical cases, Equations 3.11 and 3.12 jointly indicate the monotonicity of Ψ2(·)

and imply that Ψ2(·) is decreasing in xri and there exists xeq2r ε (0, r), such that

Ψ2(l(xm2
r ), xeq2r ) = E[U2,i

def (l(x
m2
r ), xeq2r )]− E[U2,i

ndef (l(x
eq2
r ))] = 0. (3.13)

Market Equilibrium: The solution, xeq2r , to E[U2,i
def ] ≥ E[U2,i

ndef ] is the monopoly market

equilibrium (MME) cost of protection investment, and equals xm2
r , the marginal cost of

making self-defense investments in Scenario 2. This implies that users whose cost of self-

defense is less than xeq2r find it profitable to invest in self-defense and cyber-insurance,

whereas the others invest only in cyber-insurance.

Mathematically, the expression for the Nash equilibrium can be derived from the following

equation in [40].

U(w0 − xeq2r ) = U(w0 − pri (xeq2r ) · r), (3.14)
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which leads to a MME value given by

xeq2 = pri (x
eq2
r ) · r. (3.15)

Social Welfare Maximization: We define the social welfare of a network of users as the

sum of the expected utility of all the users. We denote social welfare in Scenario 2 as

SW2(xm2
r ), which evaluates to

∫ ∞
0

∫ x
m2
r

0

E[U2
def (l(x

m2
r , x)]f(x)dxdλ+ E[U2

ndef (x
m2
r )]l(xm2

r ).

The first term of SW2(xm2
r ) denotes the sum of the expected utility of all agents adopting

self-defense, the second term denotes the sum of the expected utilities of all agents not

investing in self-defense and buying only cyber-insurance. Equating the first order condi-

tion for SW2(xm2
r ) results in finding xsopt2r , the cost of investment that maximizes social

welfare.

The first order condition (FOC) for an interior maximum is

dSW2(xm2
r )

dx
= A21 +B21 + C21 +D21, (3.16)

where

A21 =

∫ ∞
0

E[U2
def (l(x

m2
r ), xm2

r )]f(xm2
r )dλ,

B21 = E[U2
ndef (l(x

m2
r ))]

dl(xm2
r )

dxm2
r

,

C21 =
dE[U2

ndef (l(x
m2
r ))]

dxm2
r

l(xm2
r ),

and

D21 =

∫ ∞
0

∫ x
m2
r

0

dE[U2
def (x

m2
r )]

dxm2
r

f(x)dxdλ.
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In the light of Equation 3.1, Equation 3.16 can be written as

dSW2(xm2
r )

dxm2
r

= G+ C21 +D21, (3.17)

where

G = {E[U2
def (l(x

m2
r ), xm2

r )]− EU2
ndef (l(x

m2
r ))}f(xm2

r )

Here, the first term of G in brackets is the excess of expected utility, Ψ2(lr(x
m2
r ), xm2

r ), C21

and D21 are non-negative and non-decreasing in xri . Since the excess of expected utility is

positive at x = 0 and negative at xri = r, there exists xri = xsopt2r such dSW2(x)
dx

is zero, and

the social welfare in the network is maximized. We represent this mathematically as

xsopt2r = argmaxxriSW2(xri ). (3.18)

Substituting xeq2r for xm2
r in Equation 3.17, and using Equation 3.13 we get

dSW2(xm2
r )

dx
|x=x

eq2
r

> 0. (3.19)

This implies that xsopt2r > xeq2r and l(xsopt2r ) < l(xeq2r ). i.e., the proportion of users not

resorting to self-defense mechanisms is higher in the market equilibrium than in the welfare

optimum. The analysis above proves the following theorem for Scenario 2, Case 1.

Theorem 2. Under compulsory monopolistic cyber-insurance, there exists a unique

monopoly market equilibrium (MME) cost to invest in self-defense, xeq2r . Users facing pro-

tection costs below xeq2r invest in self-defense mechanisms, whereas other users only buy

cyber-insurance. This MME cost of self-defense does not result in maximizing user social

welfare in the network (i.e., the proportion of users not resorting to self-defense mechanisms

is higher in the Nash equilibrium than in the welfare optimum.), and cyber-insurance does

not incentivize users to invest in self-defense mechanisms.
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Theorem Intuition and Practical Implications: The intuition behind Theorem 2 is that

externalities caused due to individual user investment in security mechanisms are not inter-

nalized by the users, and as a result social welfare is not maximized at market equilibrium.

The implications of the theorem are (i) cyber-insurance does not incentivize network

users to invest in self-defense mechanisms3, (ii) cyber-insurance exacerbates the moral haz-

ard problem, i.e., once users buy insurance they do not spend as much in self-defense as

they would without it. This makes sense from an economic viewpoint as users would loath

to bear excessive cost in self-defense if there is an alternative to canceling out risk albeit

at an unfair premium, i.e., premium greater than the fair amount, and (iii) cyber-insurance

might increase individual user utilities (as users get full coverage of their losses) but does

not positively contribute to the increase of overall network security. As a result a regulator

interested in improving network security is not satisfied. These implications are also men-

tioned by the authors in [28] for a competitive market setting. Also note that since λ ≥ 0,

the cyber-insurer makes non-negative expected profits. A security vendor does not satisfy

its interests from an existing cyber-insurance market, i.e., compared to Scenario 1, as the

sales of its products are going to go down.

Central Point: In the monopolistic cyber-insurance scenario with no client contract dis-

crimination, there exists an inefficient market, i.e., the social welfare of users is not maxi-

mized at MME. This does not help satisfy the interests of all the market stakeholders.

3As an exception, cyber-insurance incentivizes self-defense investments of users in the case when insur-
able and non-insurable risk co-exist together and it is not easy for a user to distinguish between the two [33].
For example, a hardware failure can be caused due to either a security lapse, or hardware defect, and it is
difficult for a naive user to figure out the right reason for the failure.
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3.6 Scenario 3: Competitive Markets

We assume a perfectly competitive cyber-insurance market4 where multiple cyber-insurers

provide their clients with full coverage at fair premiums5. Due to imperfect prevention,

we also assume that a risk-averse user resorts to insurance solutions whenever he invests in

self-defense mechanisms. The expected utility of a user who does not invest in self-defense

mechanisms in Scenario 3 and only buys insurance is given as

E[U3,i
ndef ] = E[U3,i

ndef (l(x
m3
r )] = pdU(w0 − r + r − P 3

1 ) + (1− pd)Q3,

where Q3 is the probability of the user facing indirect loss in Scenario 3 and is given as

Q3 = prind(l(x
m3
r )U(w0 − r + r − P 3

1 ) + (1− prind(l(xm3
r ))U(w0 − P 3

1 ),

where prind = prind(l(x
m3
r )). P 3

1 = P (pri 6= prind, r) = pri · r is the actuarially fair insurance

premium that a user in Scenario 3 not investing in self-defense, pays to his cyber-insurer in

return for full coverage of his loss. Here xm3
r is the marginal cost of investment in Scenario

3.

The expected utility of the same user when he invests in self-defense mechanisms is

given as

E[U3,r
def (l(x

m3
r ), xri )] = U(w0 − xri − P 3

2 ),

where P 3
2 = prind · r is the actuarially fair insurance premium that a user in Scenario 3

not investing in self-defense, pays to his cyber-insurer in return for full coverage of his

loss. We note that P 3
2 < P 3

1 . A user i would want to invest in loss prevention only if

4Later in this section, we will comment on contract pricing in non-perfect competitive (oligopolistic)
markets.

5Note that under perfect competition, the equilibrium strategy for all firms in a market is to charge fair
premiums [25]. Charging unfair premiums will result in a firm having zero demand.
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E[U3,i
def ] ≥ E[U3,i

ndef ].

Ψ3(l(xm3
r ), xri ) = E[Udef (l(x

m3
r ), xri )]− E[Undef (lr(x

m3
r ))]. (3.20)

When xri = P 3
1 , we have

Ψ3(lr(x
m3
r ), P 3

1 ) = U(w0 − (P 3
1 + P 3

2 )− U(w0 − P 3
1 ) < 0, (3.21)

and at xri = 0 we have

Ψ3(lr(x
m3
r ), 0) = p{U(w0 − P 3

2 )− U(w0 − P 3
1 )} > 0. (3.22)

In most practical cases, Equations 3.21 and 3.22 jointly indicate the monotonicity of Ψ3(·)

and imply that there exists an interior solution xeq3r , where 0 < xeq3 < P 3
1 , such that

Ψ3(l(xm3
r ), xeq3r ) = E[U3,r

def (l(x
eq3
r ), xeq3r )]− E[U3,r

ndef (l(x
eq3
r ))] = 0. (3.23)

Walrasian Equilibrium: The interior solutions, xeq3r , to E[U3,r
def ] = E[U3,r

ndef ] is the compet-

itive market equilibrium (also named as Walrasian equilibrium [25] for perfectly compet-

itive markets) cost of protection investment, and equals xm3
r , the marginal cost of making

self-defense investments in Scenario 3, i.e., the cost of investment to a user indifferent

between making and not making self-defense investments. This implies the fact that users

whose cost of self-defense is less than xeq3r find it profitable to invest in self-defense and

cyber-insurance, whereas the others invest only in cyber-insurance. Mathematically, the

expression for the Walrasian equilibrium can be derived from the following equation aris-

ing due to [40].

U(w0 − xeq3r ) = U(w0 − pri (xeq3r · r),
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which leads to a Walrasian equilibrium value given by

xeq3 = pri (x
eq3
r ) · r.

Social Welfare Maximization: We define the social welfare of a network of users as the

sum of the expected utility of all the users. Mathematically, we denote social welfare in

Scenario 3 as SW3(xm3
r ) and it is evaluated to

∫ x
m3
r

0

E[U3,r
def (l(x

m3
r ), x)]f(x)dx+ E[U3,r

ndef (x
m3
r )] · l(xm3

r ).

The first term of SW3(xm3
r ) denotes the sum of the expected utility of all agents with

adopting self-defense, the second term denotes the sum of the expected utilities of all agents

not investing in self-defense and buying cyber-insurance. Equating the first order condition

for SW3(xm3
r ) results in finding xsopt3r , the cost of investment that maximizes social welfare.

The first order condition (FOC) for an interior maximum is

dSW3(xm3
r )

dx
= A3 +B3 + C3 +D3, (3.24)

where

A3 = E[U3,r
def (l(x

m3
r ), xm3

r )]f(xm3
r ),

B3 = E[U3,r
ndef (l(x

m3
r ))]

dl(xm3
r )

dxm3
r

,

C3 =
dE[U3,r

ndef (l(x
m3
r ))]

dxm3
r

l(xm3
r ),

and

D3 =

∫ x

0

δE[U3
def (l(x

m3
r ), x)

δxm3
r

f(x)dx.
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In light of Equation 3.1, Equation 3.24 can be written as

dSW3(xm3
r )

dxm3
r

= N + C3 +D3, (3.25)

where

N = {E[U3
def (l(x

m3
r ), xm3

r )]− E[U3,r
ndef (x

m3
r )]}f(xm3

r ).

Here, the first term in brackets in N is the excess of expected utility, Ψ3,r(l(x
m3
r ), xm3

r ),

C3 and D3 are non-negative and non-decreasing in xri . Since excess of expected utility is

positive at xri = 0 and negative at xri = P 3
1 , there exists xri = xsopt3r such dSW3(xri )

dxri
is zero,

and the social welfare in the network is maximized. We represent this mathematically as

xsopt3r = argmaxxmr SW3(xm3
r ). (3.26)

Substituting xeq3r in Equation 3.26, and using Equation 3.23 we get

dSW3(x)

dx
|x=x

eq3
r

> 0. (3.27)

This implies that xsopt3r > xeq3r and l(xsopt3r ) < l(xeq3r ). i.e., the proportion of users not

resorting to self-defense mechanisms is higher in the Nash equilibrium than in the welfare

optimum. The analysis above proves the following theorem on Scenario 3.

Theorem 3. When network users have the option of cyber-insurance protection, there exists

a unique Walrasian equilibrium cost to invest in self-defense, xeq3r . Users facing protec-

tion costs below xeq3r jointly invest in self-defense mechanisms and insurance, whereas

other users only buy cyber-insurance. This Walrasian equilibrium cost of self-defense does

not result in maximizing user social welfare in the network and cyber-insurance does not

incentivize users into making self-defense investments. In addition, the insurers make zero

expected profits.
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Theorem Intuition and Practical Implications: The intuition and implications behind

Theorem 4 are exactly similar to that of Theorem 2. The intuition for a cyber-insurer in the

perfectly competitive setting to charge actuarially fair premiums is that adverse selection

cannot induce users to pay a premium loading as other insurers can undercut the demanded

price by ignoring externalities. Thus, the externalities in a competitive cyber-insurance

market cannot be internalized. So it makes sense that the greater the amount of externali-

ties in a network, the more it makes sense to enforce a monopolistic cyber-insurance market

with client contract discrimination.

Central Point: Like in Scenario 2, in a competitive (perfect or oligopolistic) cyber-

insurance scenario with no client contract discrimination, there exists an inefficient mar-

ket, i.e., the social welfare is not maximized at market equilibrium, and this does not help

satisfy the interests of all the market stakeholders.

A Note on Oligopolistic Markets: Oligopolistic markets resemble imperfect (not per-

fectly competitive) competition between firms in a market. In these markets, for a cyber-

insurance setting, the insurers have market power to set prices unlike in the perfect compe-

tition case, where each insurer is price taking (has no market power to charge actuarially

unfair premiums) and can only charge actuarially fair premiums to its clients. However,

due to Bertrand’s paradox [25], for number of insurers equal to two, the insurers find it

optimal to charge fair premiums to their clients. So does that mean that in competitive

settings, cyber-insurers will always make zero expected profits (due to charging actuarially

fair premiums to clients) ? The answer is no because in reality factors such as firm popu-

larity and customer lock-in will result in some insurers charging unfair premiums to their

clients and making strictly positive expected profits, without having to worry about their

client demands decreasing. In the case when the number of cyber-insurance firms in a mar-

ket are greater than two, the authors in [28] show there exists a market Nash equilibrium

which does not maximize social welfare.
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A comparative study of the three scenarios analyzed in the dissertation is shown in Figure

1.

Scenario Cyber-Insurer/s User Product Vendor Regulatory Agency Network

No Insurance NA no current market
satisfaction no no

Competitive 
Insurance

no 
(zero expected profits)

yes 
(full 

coverage)

no
(decrease in 

sales)

no
(decreased 
robustness)

no
(non-optimal 

SW)

Oligopolistic 
Insurance 

(two firms)
no yes no no no

Oligopolistic 
Insurance 

(#firms >2)
yes yes no no no

Monopoly 
Insurance

only when loading 
factor is positive

yes no no no

Monopoly 
Insurance 
(contract 

discrimination)

yes
(but might incur zero 

expected profits at 
times)

yes 
(full 

coverage)

yes
(no free riding 
problem exists)

yes yes

        Are Stakeholders Satisfied ??

Figure 3.1: Comparative Study of Scenarios

3.7 Achieving Market Efficiency

We saw and investigated why inspite of mandating cyber-insurance on network users, a

social welfare maximum could not be reached. In this chapter we aim to improve upon this

drawback by allowing the insurer to premium discriminate its clients, and keeping all other

factors the same as in the case without premium discrimination6. The rationale for client

discrimination is that users who take (do not take) appropriate self-defense actions reduce

(increase) their chances of getting attacked as well as reduce (increase) other network users’

chances of facing a loss. In order to differentiate between clients, the cyber-insurer imposes

6In a recent paper [31], the authors have proposed cooperation amongst users on their self-defense invest-
ment information, as a way to ensure social welfare maximization of network users under a cyber-insurance
setting. The authors use the well known Coase Bargaining Theorem [41] to arrive at their result. However,
user cooperation can only be sustained only under restricted network settings where all users work towards a
common goal, e.g., system performance maximization in a multicasting scenario.
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a fine of amount a per user of high risk type, and provides a rebate of amount b per user of

low risk type. A user is considered of high risk type if he does not invest in self-defense

mechanisms, and is considered of low risk type when he does invest in the same. A user

decides whether it wants to invest in self-protection depending on the cost of investment

and the provided fine/rebate. The sequence of the protocol between the insurer and the

clients can be seen as follows: Stage 1 - the insurer advertises appropriate contracts to

its clients that include the fine/rebate values. Stage 2 - the users simultaneously decide

whether or not to invest in self-defense based on the cost of investment and their signed

contract information, and Stage 3 - when a coverage claim is filed by clients, the cyber-

insurer examines the claims and charges the suitable rebate/fine to each client based on

whether his investment amounts were above or below a particular threshold. Here we

assume that the cyber-insurer can observe or stochastically learn the investment amounts

of its clients after a claim is made.

Note that the premium differentiation approach is feasible only in the case of monop-

olistic cyber-insurance markets or imperfect competitive markets. In the case of perfectly

competitive markets, price competition will not allow insurers to discriminate amongst

their clients for commercial demand purposes and insurers will have to sell contracts at

absolute fair premiums making zero expected profits. We now proceed with the analysis of

the case when users are premium discriminated in monopoly markets. The analysis can be

structured in two parts: one where the insurer might not make positive expected profit, and

the other where the insurer makes positive expected profit.

3.7.1 Insurer Might not Make Positive Expected Profit

A user not willing to invest in self-defense investments will pay a fine a over his premium.

At equilibrium the following result needs to hold for the cyber-insurer to treat equally

(fairly), a user who invests in self-defense investments, as well as a user who does not
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invest in self-defense investments.

U(w0 − xri − P 2
22) = U(w0 − (P 2

21 + a)), (3.28)

where P 2
21 and P 2

22 are user premiums in the case of investment and no investment respec-

tively in Scenario 2 Case 2, i.e., monopoly scenario with contract discrimination. Our goal

here is to find the optimal self-defense cost xsopt2′r that achieves maximum social welfare.

Let

A22 = U(w0 − P 2
21)− C22,

where

C22 =

∫ ∞
0

U(w0 − xsopt2′r − P 2
22) · f(xsopt2′r )dλ.

Let

B22 =
d(U(w0 − P 2

21)

dx
l(xsopt2′r ) +D22,

where

D22 =

∫ ∞
0

∫ x
sopt2′
r

0

δU(w0 − x− P 2,r
22 )

δx
f(x)dxdλ.

Here P 2,r
21 and P 2,r

22 are the premiums evaluated at xsopt2′r , and A22 and B22 are the expected

utilities of users investing and not investing in self-defense, respectively. The condition for

achieving maximum social welfare is given as A22 = B22. Substituting x = x
sopt2′
r , and

a = a
sopt2′
r in Equation 3.28, we get

U(w0 − xsopt2′r − P 2
22) = U(w0 − (P 2

21 + asopt2′r )), (3.29)

where asopt2′r satisfies E = B22, where

E = U(w0 − P 2
21)−

∫ ∞
0

U(w0 − (P 2
21 + asopt2′r ))f(xsopt2′r )dλ.
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Thus the optimal self-defense investment cost xsopt2′r to achieve social welfare maximiza-

tion is obtained by charging high risk type users a fine of a on top of their premiums.

A user willing to invest in self-defense investments will receive a rebate of b on his

premium. At equilibrium the following result needs to hold for the cyber-insurer to treat

equally (fairly), a user who invests in self-defense investments, as well as a user who does

not invest in self-defense investments:

U(w0 − xri − (P 2
22 − b)) = U(w0 − P 2

21). (3.30)

Our goal here again is to find the optimal self-defense cost xsopt2′r that achieves maximum

social welfare. Substituting x = x
sopt2′
r , and b = b

sopt2′
r in Equation 3.30, we get

U(w0 − xsopt2′r − P 2
22 − bsopt2′r ) = U(w0 − P 2

21), (3.31)

where P 2
12 and P 2,r

22 are evaluated at xsopt2′r . Let

M = U(w0 − xsopt2′r − (P 2
22 − bsopt2′r ))− C22.

Then bsopt2′r is such that it satisfies the following condition (derived by combining Equations

3.28 and 3.30.):

M = B22.

Thus, the optimal self-defense investment cost xsopt2′r to achieve social welfare maximiza-

tion is obtained by providing low risk type users with a rebate of b on their premiums.

The net minimum profit made by a cyber-insurer per contract (without any loading, λ,

with loading the net profit is even more.) in a monopoly market with contract discrimination

is given as

Πmonopoly = a · l(xsopt2′r − b · (1− l(xsopt2′r )) ≥ 0. (3.32)
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The analysis above proves the following theorem on Scenario 2, Case 2.

Theorem 4. Under conditions of compulsory monopolistic cyber-insurance, a cyber-

insurer can help achieve social welfare maximization by premium discriminating clients.

In turn, it makes non-negative expected profits, and also incentivizes users to invest in self-

defense investments.

Theorem Intuition and Practical Implications: By premium discriminating clients in

the form of fines and rebates, cyber-insurers guide risk-averse users to internalize the exter-

nalities (though not completely) caused by user peers, and as a result help users invest in

optimal self-defense amounts that lead to social welfare maximization. The problem of

moral hazard in mitigated and as a result the overall network security is optimal, which

would please security regulatory bodies. Regarding profits, cyber-insurers make non-

negative expected profits7, and security product vendors would see an increase in their

product sales (and subsequently profits) due to users being incentivized to invest appropri-

ate amounts in self-defense mechanisms.

Central Point: In the monopolistic cyber-insurance scenario with client contract discrim-

ination, there may exist an efficient market (always exists if λ > 0) that helps satisfy the

interests of all the market stakeholders.

3.7.2 Insurer Always Makes Positive Expected Profit

We just showed that premium discrimination in a monopoly setting leads to social welfare

maximization, but does not necessarily guarantee a strictly positive expected profits for the

cyber-insurer. This fact in turn is strong enough a disincentive for the cyber-insurer to drop

out of the market. We now aim to alleviate this problem by designing contracts that allow

7Note that in most cases the cyber-insurer would set λ values to be positive, which implies strictly positive
expected profits.
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the monopolistic insurer to make strictly positive profits and at the same time ensure social

welfare maximization. We start off with the concept that marginal users will be indifferent

beween investing in self-defense and not investing if

U(w0 − xm2
r − (P 2,r

22 − b)) = U(w0 − P 2
21 + a)). (3.33)

Thus, for a monopolist cyber-insurer to ensure a profit margin of k, the following relation

needs to hold:

a · l(xm2
r )− b · (1− l(xm2

r ) = k.

Consider λ = 0. In such a case, because premiums are marginally fair, risk-averse users

act as if they were risk neutral [25]. The social welfare expression, SW2(xm2
r ), in the

monopoly scenario (when insurer wants a profit of k) is then given by

∫ x
m2
r

0

(w0 − x− (P 2
22 − b))f(x)dx+ (w0 − (P 2

21 + a))l(xm2
r ) + k.

Now, we know that

∫ x
m2
r

0

bf(x)dx− al(xm2
r ) = b(1− l(xm2

r ))− al(xm2
r ) = −k.

Thus, using Equation (33), SW2(xm2
r ) can be expressed as

SW2(xm2
r ) =

∫ x
m2
r

0

(w0 − x− P 2
22)f(x)dx+ (w0 − (P 2

21)l(xm2
r ).

We also have the participation constraint of the cyber-insurer expressed as

pd(1− piind(l(xm2
r ))r − xm2

r +
a

1− l(xm2
r )
− k

1− l(xm2
r )

= 0. (3.34)
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The Lagrangian function, L(a, xm2
r , L, k) subject to Equation (34) is given by

L(a, xm2
r , L, k) =

∫ x
m2
r

0

(w0 − x− P 2
22)f(x)dx+ L · C, (3.35)

where

C = pd(1− piind(l(xm2
r ))R− xm2

r +
a

1− l(xm2
r )
− k

1− l(xm2
r )

,

and L is the Lagrange multiplier. The necessary first-order condition for a maximum of L

is
δL(a, xm2

r )

δa
= L ·

{
1

1− l(xm2
r )

}
= 0. (3.36)

Since the term inside braces of Equation (36) is positive, we have L = 0. Thus, the optimal

self-defense investmen cost is xsopt2r at market equilibrium. Correspondingly, the values of

a (fine) and b (rebate) for a given k, are given by

a = xsopt2 − pd(1− piind(l(xsopt2r ))r − b,

where

b = {xsopt2r − pd(1− piind(xsopt2r ))r} − k.

Since the rebate, b, does not exceed the fair premium value, we have k ≥ {xsopt2r − pd(1−

l(xsopt2r ))r} − piind(xsopt2r )r.

Practical Implications:The above analysis show that an efficient market equilibrium

can be reached by ensuring a strictly positive profit of k for the cyber-insurer. Note that

we performed our analysis constraining λ = 0. This is useful from both a theory perspec-

tive, as it makes analysis easier (need only deal with utility arguments and not the utilities

themselves), and also from a practical perspective, as it saves the insurance company the

hassle of computing the optimal loading factor. An interesting question that arises out of
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the analysis of a monopoly market with premium discrimination is whether all externali-

ties could be completely internalized. This would happen only if the network users without

self-protection had to be fully responsible for the externalities caused by them. In that case,

the users making self-defense investments should be fully compensated by allowing them

pay a zero premium. In practice, this scenario is hard to achieve (due to it being difficult to

measure exact value of externalities caused by each user), however from a theory perspec-

tive, it is an interesting question to answer whether such an ideal situation can indeed be

achieved.

Without a premium fine, the expected utility of network users who invest in self-defense

is U(w0− x), and U(w0−P 2
21) for users who do not invest in self-defense mechanisms. In

that case we have

Ψ2(l(xm2
r ), xm2

r ) = U(w0 − xm2
r )− U(w0 − P 2

21).

We also have dΨ2

dx
m2
r

evaluate to

−U(w0 − xm2
r ) + U(w0 − pdr − (1− pd)piind(l(xm2

r ))r)(1− pd)
dpiind(l(x

m2
r ))

dxm2
r

r,

which is less than zero, and thus dΨ2

dx
m2
r

is strictly decreasing in xm2
r . Again, Ψ2(l(xm2

r ), 0) >

0, and Ψ2(l(xm2
r ), r) < 0. Thus in most practical cases, there is a unique interior solution

(according to monotonicity properties), xsopt22r such that

Ψ2(l(xm2
r ), xsopt22r ) = U(w0 − xsopt22r )− U(w0 − P 2

21) = 0,

where P 2
21 is evaluated at xsopt22r . Introducing a premium fine of α for users who do not
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invest in self-defense, the following two must hold:

U(w0 − xm2
r ) = U(w0 − P 2

21 + α). (3.37)

and

U(w0 − P 2
21)− U(w0 − xsopt22r ) =

dU(w0 − P 2
21)

dxm2
r

l(xm2
r ), (3.38)

where xm2
r = xsopt22r . In order to attain the optimal self-defense cost value, xsopt22r , Equation

(37) can be written as

U(w0 − xsopt22r ) = U(w0 − P 2
21 + α),

where P 2
21 is evaluated at xsopt22 . Thus, there exists an α that satisfies

U(w0 − P 2
21)− U(w0 − (P 2

21 + α)) =
dU(w0 − P 2

21 − α)

dxm2
r

l(xm2
r ), (3.39)

where xm2
r = xsopt22r . The latter expression is greater than zero and thus the socially optimal

level of self-defense, xsopt22r is achievable by a fine of α, and for the insurer-desired profit

margin, k, the following must hold:

k ≥ α · l(xsopt22r )− (1− l(xsopt22r ))q(l(xsopt22r ))r > 0. (3.40)

Here piind(l(x
sopt22
r )r denotes the expected loss of users whose self-defense investment cost

level is xsopt22 . Equation (39) results because the quantity, piind(x
sopt22
r )r, which must be

indemnified by the cyber-insurer in case of a loss, but for which it has no premium income

from users adopting self-defense, must be gained by the quantity α(piind(x
sopt22
r )) - the pro-

portion of network users who do not invest in self-defense, in order for the insurer to make

strictly positive expected profits. Thus, we have shown that for a given k, network external-
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ities can indeed be completely internalized by designing monopoly contracts, where users

are premium discriminated in a manner such that users investing in self-defense pay a pre-

mium of zero cost, and users not investing in self-defense pay a premium fine of α. However,

we also note that for such contracts, there might be barriers imposed by a regulatory agency

on the cyber-insurer for selling such contracts because the insurer can take advantage of its

monopoly power to generate profits.

3.8 Practical Aspects of Realizing Cyber-Insurance

In this section, we briefly describe practical aspects of realizing cyber-insurance. We divide

this chapter into the following categories: (i) evaluating and metricizing loss, (ii) achieving

efficient market equilibria, (ii) attack types, (iii) tackling information asymmetry, and (iv)

application domains.

3.8.1 Measuring Loss

It is quite a challenge in practice to quantify the loss a user accrues when successfully

attacked by malicious entities [39]. An improper estimate of a loss by the insurer will cause

difficulties in charging the appropriate premium and providing the right amount of cover-

age. Losses can either be tangible or non-tangible. Tangible losses are those that can be

quantified even if not with perfect accuracy, e.g., monetary losses due to credit card fraud,

data loss, etc. Non-tangible losses are those that are hard to or cannot be quantified, e.g.,

loss of organizational reputation, loss of a digital item causing emotional/psychological

low. We believe that it is very important that the cyber-insurer conducts/refers to statistical

estimates of the values of different types of stated per client losses caused due to several

cyber-crime types as cited in [3], and at the same time judge the current loss situation at

hand, in order to get the best estimate of loss. However, in case of certain non-tangible
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losses (e.g., loss of reputation in thr eyes of its customers for a bank on being attacked),

it is very hard to estimate an appropriate loss value. One additional important issue is the

metricizing of different loss types to a common coverage unit. It is easier for any cyber-

insurance company to perform a cost-benefit analysis on a common unit of coverage as

done in this dissertation, and in turn analyze market equilibrium. However, the downside

to this approach in practice is that all losses cannot be quantified to a single metric. On

the other side, if different coverage units are designed for different loss types, the mathe-

matical models may not be that easy to analyze for the existence and uniqueness of market

equilibria.

3.8.2 Efficiency of Market Equilibria

In this dissertation, we mathematically demonstrate efficient cyber-insurance markets sat-

isfying all stakeholders. However, in practice markets may not converge fast to a market

equilibria due to uncertainties and heterogeneity of insurance parameters amongst clients,

or might result in multiple equilibria. In this dissertation we have assumed heterogeneity

of users with respect to investment costs only. In reality heterogeneity amongst users also

arises due to the initial wealth and the type of utility functions. In addition, from an insurer

perspective, there are transaction costs proportional to the premiums or expected losses

for underwriting insurance, which need to be included in the insurer’s profit equation.This

makes the analysis of equilibria very challenging. In reality, given the current state of

cyber-security, it is a big enough leap towards the improvement of global security even if

all stakeholders are happy with their net utility, and not the happiest. Cyber-insurance is

a great tool to achieve this ’happy’ ecosystem state and might even lead to the ’happiest’

ecosystem state in the future.
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3.8.3 Attack Types

The question we ask here is losses from what types of attacks are insurable? Our model in

this dissertation is based on direct and non-direct attack scenarios and this covers the main

features of viruses, worms, social engineering attacks, and botnets. To just highlight how

our model fits these attack categories, we choose botnets as a representative example. A

bot is an end-user machine containing software that allows it to be controlled by a remote

administrator called the bot herder via a command and control network. Bots are generally

created by finding vulnerabilities in computer systems, exploiting these vulnerabilities with

malware and inserting malware into those systems. The bots are then programmed and

instructed by the bot herder to perform a variety of cyber-attacks. Recall that we defined

two types of losses a user faces in a network: direct losses could model the attack of the bot

herder who infects machines when he detects it lacks a security feature and then indirect

losses would model the contagion process taking place without the direct control of the bot

herder. Note that the underlying network would model the propagation mechanism as file

sharing executables or email attachment. In particular it does not necessary correspond to a

physical network but it can also be a social network. Clearly our model is a very simplified

model of threats observed on the Internet. However, they capture the main features, i.e.,

the direct and indirect nature of threats, which are common to many threats.

3.8.4 Tackling Information Asymmetry

Information asymmetry between the insurer and the insured on various insurance parame-

ters is a big barrier to realizing cyber-insurance markets and tackling it is a huge challenge,

specially in networked environments of interdependent and correlated risks. The author in

[30] makes an attempt to resolve the information asymmetry problem but without explic-

itly taking into account the interdependent and correlated risks inherent in networks. Using
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concepts from mechanism design and principal-agent theory in micro-economics, he shows

that partial coverage by a monopoly cyber-insurer is the solution that will enable users to

take more responsibility of their security behavior. In practice, partial insurance cover-

age may not go down well with users for internetworked environments with considerable

externalities floating around, unless all the externalities are precisely internalized - a hard

problem indeed. As a result, users may opt out of buying cyber-insurance (if not made com-

pulsory) and a market might fail to exist. However, in practice, partial coverage is a very

popular solution in insurance environments that do not have much externalities. In another

attempt to resolve the information asymmetry problem, now between network users, the

authors in [36] propose techniques using Bayesian game theory to enable users take appro-

priate investment decisions in equilibrium, even if they have partial knowledge of both the

investments of other users in the network as well as the underlying communication net-

work structure. This in turn would make the cyber-space more secure and lead towards

efficient cyber-insurance markets. However, the dissertation assumes global knowledge of

the distribution of users investments, which in practice might be hard to get hold of. Thus,

it is difficult to have a theoretically sound solution and at the same time that solution being

practically implementable. However, we emphasize that sound theoretical solutions will

give us the all important insight and intuition of how things would behave in practice.

In reality, a way in which the information gap might be bridged or at least shortened to a

considerable extent is via proper regulation and monitoring. As an example, a cyber-insurer

(like an ISP) could have a policy that each client would (a) be required to give and pass a

written test on the adoption of safe Internet practices (like the automobile driving tests) to

demonstrate how educated and aware he is on good security measures, (b) need to sign up

an insurance form before buying Internet connection that consists of questions that would

reflect the client’s security mindset in addition to knowing his protection methodologies

(antivirus, etc.) and Internet environment (related to type and number of social connections,
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etc.,). The answers to the questions (may not be truthfully revealed by the clients) are

recorded, and on the report of a security breach by clients, a team of ISP officials examine

the causes of the loss and decide on the premium and coverage amounts. Reports on a

number of breaches above a certain threshold in a given period would imply a high risk

and careless user and his premiums would rise (irrespective of what the answers are on the

form), and also potentially reduce his coverage. In the worst case, the Internet connection

of a client might be temporarily or permanently withdrawn. On the contrary, good behavior

by users would reward them with reduced premiums and increased coverage. This would

incentivize clients to adopt secure Internet practices, and motivate them to be truthful in

answering ISP questionnaires. However, a strong regulation (e.g., by the government)

is necessary to make buying insurance compulsory, as well as to prevent monopolists to

misuse their power. The monopoly scenario (with premium discrimination) described in

this dissertation could be realized in practice using ideas in this paragraph.

3.8.5 Application Domains

Cyber-insurance is an elastic risk management tool that can be widely applied to various

networking domains such as organizational and enterprise networks, data centers, and to

some extent the Internet and social networks. A major practical challenge to Internet-

scale adoption is tracking down culprits in different geographical regions and in turn them

taking responsibility for malicious behavior. Due to differences in international policies

of various countries, insurance agencies like ISPs may not get the required cooperation

from other country ISPs to track down culprits. Another practical challenge that arises in

cloud and data center networks is figuring out who should buy insurance. Should a network

user who stores data on the cloud buy insurance, and/or the data storage entity buy cyber-

insurance? Such questions should have well-defined answers in order for cyber-insurance

markets becoming more popular. Finally, the cyber-insurer in a correlated environment
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might become bankrupt as well, and either needs to invest in safety capital, or adopt high

levels of risk transfer like cyber-reinusrance and catastrophe bonds [8].

53



Chapter 4

Realizing Efficient Markets in Practice

4.1 Chapter Introduction

Security vendors (SVs) are an important component in the analysis of security ecosystems.

From the cyber-insurance viewpoint, research in the recent past has considered the market

analysis of ecosystems that primarily comprise of cyber-insurer/s, network users1, and the

regulatory agency. However, network users adopt self-protection mechanisms that are man-

ufactured by the SVs, who are inherently doing business with a profit making philosophy.

Unfortunately, the profit mindset of SVs and its corresponding effects on security ecosys-

tem components have not been studied so far with respect to cyber-insurance research. We

now look at three ways in which SV profits fit into an insurance-driven security ecosystem.

• Enhancing Cyber-Insurer profits: In perfectly competitive and monopolistic mar-

kets without premium discrimination, the insurer/s gain zero expected profits by

charging clients fair premiums [24], [35]. Thus, one way for the insurer/s to gain

positive expected profits is to share profits made by SVs, in return for some favors

offered to the SVs to increase current SV profits. Similarly in the case of (i) regu-

lated and imperfectly competitive cyber-insurance markets [28] and (ii) monopolistic

cyber-insurance markets with loading and premium discrimination, the insurers make

non-negative expected profits and could boost their profits even further by sharing

1We use the notion of ‘users’ as mentioned in [8], where users are considered as atomic nodes (individuals
or organizations) in the network, each controlling a possible collection of devices. The links between the
nodes need not necessarily be physical connections and could also represent logical or social ties amongst
the nodes.
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valuable client information with SVs that increase their current profits.

• Covering Insurer Costs of Holding Safety Capital: In a correlated risk environ-

ment such as the Internet, an insurers cannot afford to be risk-neutral as there are

chances it might go bankrupt due to expected aggregate losses in a period being

more than what it could afford to compensate. As a result it might hold a safety cap-

ital for a certain cost in order to prevent itself from going bankrupt. One avenue for

the insurer to recover full/partial costs of holding safety capital is to extract a fraction

of SV profits in return for some benefits provided to the latter.

• Role in Increase of Network Security: In recent works, Pal et.al. [35] and Lelarge

and Bolot [24] have proposed the concept of a cyber-insurer allocating fines and

rebates amongst its clients in order to enable social welfare maximization in a net-

work, with respect to individual user investments in security. Under this notion of

maximum social welfare, users invest in optimal security, moral hazard problem is

resolved, the sum of the utilities of all users in the network is maximized, and network

security is optimal. However, in such scenarios a monopolistic cyber-insurer could

make zero expected profits. Given the latter’s profit making mindset, it would want

to find a source of always making strictly positive profits so that it is incentivized to

sell cyber-insurance contracts with premium discrimination, and contribute to opti-

mal network security. An SV could be the profit-making source that the insurer could

be looking for.

Thus, we observe that a symbiotic give and take relationship between cyber-insurers and

SVs can prove beneficial to both. It is precisely for this reason in the dissertation that we

want to investigate an appropriate way to fruitify the symbiotic relationship.

In this chapter we look to design ways to achieve market efficiency and at the same time

allow insurers to make expected positive profit at all times. We model a security vendor
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(e.g., Symantec) as a cyber-insurer, and propose a novel consumer differentiated pricing

mechanism for a monopoly SV based on its consumers’ logical network locations and

their security investment amounts, with the goal to improve profits. First, we qualitatively

describe the insurance environment under which our proposed SV pricing mechanisms

could operate. We then follow it up with a description of the SV pricing environment.

Finally, we define our system model. A list of important symbols relevant to the chapter is

shown in Table II.

4.2 Issues with Achieving Market Efficiency

Our work here is a thematic extension of our work in the previous chapter. There we had

come to the conclusion that (i) in the presence of a monopoly cyber-insurer performing

price discrimination amongst its clients, market efficiency is achieved but with no guaran-

tee that the cyber-insurer will make strictly positive profits, and (ii) in the presence of no

regulation, the monopoly insurer can premium discriminate in a way so as to make positive

profits at all times. However, none of these conclusions will lead to practically realiz-

able cyber-insurance markets, simply because the cyber-insurer who is profit-motivated,

is not guaranteed to make profits at all times. Even when it does, the process might not

be regulated, which is not a realistic scenario. In this chapter, we propose a method for

cyber-insurers to make strictly positive profits under regulation. The rationale is for the

cyber-insurer to increase profits by gaining additional profits through an entity such as an

ISP, or generating additional profits for itself through a side business. For example, an ISP

can bundle its Internet service packages with compulsory insurance and make a particular

cyber-insurer its official insurer. In this case due to the lock-in effect, a cyber-insurer is

likely to make additional profits due to increases sales. As another example, a security

vendor itself could be a cyber-insurer and can transfer a part of its profits from its security
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product business to the insurance business. In this chapter, we primarily focus on how the

external profit-making process can be realized in practice by a cyber-insurer in a manner

so as to maximize his additional profits, apart from the expected profits it makes from its

cyber-insurance business. Thus, due to the external nature of the profit improvement pro-

cess, we do not model specific cyber-insurance elements like premiums and coverage in

this chapter.

4.3 Insurance Setting (Environment)

We consider a system where a single monopolistic security vendor exists in a market and

offers cyber-insurance solutions to its clients as the vendor’s secondary business. Security

vendors are a good choice as insurance agents because they have data regarding types,

nature, and magnitude of attacks, and as a result can analyze client attack complaints. We

assume that clients are subject to social engineering attacks and form a logical network

between themselves (e.g., via Gmail, Facebook, Twitter, etc.)2. We consider social attack

situations in this chapter because they are currently amongst the most common cyberattack

methods in practice.

Each client is locked with his SV with respect to using security products manufactured

by the SV, i.e., in this chapter each network user is the client of the insuring SV and man-

dated (e.g., by the government for global security improvement) to buy at least a threshold

amount of security product manufactured by the SV. We model a single SV for two reasons:

(i) the work in [35] talks about achieving efficient markets in monopolistic insurance sce-

narios, and (ii) a single SV easens tractable model analysis. However, in practice there will

be multiple SVs, where a client may lock-in with a particular security vendor due to vari-

ous aspects such as reputation, service quality, etc. A brief explanation of how an insurance

2Security vendors could act as insurance agents in enterprise and data center environments as well. How-
ever, corporations and enterprises are often self-insured.
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market could function amongst multiple competitive SVs as insurers in provided in Section

V. In view of recent recommendations made by an FCC advisory committee3, ISPs have

committed to taking steps to combat cyber-security threats (e.g., enforcing antibot conduct

code, executing the ability to monitor, trace, analyse, and block traffic without violating

privacy rules, and educating Internet users to access the web safely. Thus, we envision a

future where SVs can work in collaboration with ISPs to make cyber-space secure. In this

regard, SVs (and or ISPs) can act as cyber-insurers, where clients lock-in with a particu-

lar SV (cyber-insurer) thorough an ISP providing service to the client. This could happen

if while signing an Internet agreement with the ISP, the client is required to buy security

products by a particular vendor. As part of a business relationship, ISPs and SVs can finally

trade incentives (profits, etc.,) with one another.

We assume that each consumer (network user) of security products buys cyber-

insurance from a monopoly SV when he purchases an Internet connection. We emphasize

here that the cyber-insurance purchase by network users is different from and independent

of them buying the security product from the SV. We justify this assumption in the light

of the fact that the government will encourage ISPs to take steps to protect cyber-security

and similar to the case of car insurance, ISPs can potentially make insurance mandatory

for clients buying an Internet connection. If it is identified (e.g., through tracking mech-

anisms conducted by the SV) that a client does not adopt proper security measures, his

premiums would increase (and eventually leading to potential disconnection), and would

drive him towards a direction of safe Internet practice. A consumer buying cyber-insurance

is provided full coverage by his SV on facing a loss and is charged a premium which is

not necessarily fair, i.e., the expected value of the loss. Each SV also premium discrim-

inates its clients in the form of charging fines/rebates atop premiums. Based on works

3FCC chairman Julius Genachowski recently (2012) spoke at the Cybersecurity Bipartisan Policy Center
on the role of ISPs in improving cybersecurity.
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Symbol Meaning
ui(·) utility of user (consumer) i in consumer-seller model
N number of consumers of an SV
hij externality effect of user j on user i
xi amount of self-defense good consumed by user i
G matrix representing externality values between user pairs
−→x−i vector of self-defense amounts of users apart from i
B(·) Bonacich centrality vector of users in a logical network
c constant marginal manufacturing cost to SV
pi price per unit of self-defense good consumed by i

Table 4.1: Summary of Important Symbols in Chapter 4

in [16][24][35], premium discriminating cyber-insurance clients is one way to alleviate the

moral hazard problem, enables the insured’s to optimally invest in self-defense investments,

and maximizes the social welfare of the insured’s in the network. We assume in light of

[35] that the monopoly cyber-insurer in the market wants to maximize social welfare of its

clients as a regulatory constraint imposed upon it by a regulator such as the government,

and therefore premium discriminates its clients.

4.4 Security Vendor Pricing Environment

We consider SVs adopting a heterogenous product pricing mechanism that is based on

the logical/overlay/application network of its consumers and their corresponding security

investments, e.g., Gmail networks, Facebook networks, etc., The purpose of an SV to price

clients in an heterogenous manner way is (i) to make additional profits from its security

products, (ii) to cover up for the costs of providing insurance to clients, and (iii) to make

strictly positive profits at all times as an insurer. We note here that price discrimination in

general will not go down well with consumers. However, in the presence of a regulatory

agency trying to improve global security, there might be incentives provided to a security

vendor to transfer increased profits to its cyber-insurance business, and for consumers to

adopt a differentiated pricing scheme. However, it is best for the security vendor to ensure
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some sort of fairness in its pricing mechanism so that despite government mandates to

impose differentiated pricing, consumers feel satisfied. An important question that arises

here is: apart from regulatory agency interests, is there any incentive for an SV to price

differently based on consumer logical network and his security investment amount when

it could transfer a part of his current profits to the insurance business and always make

strictly positive profits? The answer to this question is an yes and the reason is three fold:

(i) a rational firm would not mind finding a way to make more profits than their current

scenario, and from principles of basic economics, pricing based on increased client infor-

mation results in more profits [25], (ii) the amount of security investments of users results

in unpaid positive externalities for other users in the logical network and these externalities

need to be accounted for in some manner to ensure a certain price fairness amongst con-

sumers4, and (iii) specifically when an SV is the cyber-insurer, our proposed pricing philos-

ophy would allow appropriate contracts (with fines/rebates) to be handed out to consumers

buying insurance. For example, a consumer who generates a high amount of externality

would be priced less for SV products than a consumer generating a low amount of exter-

nality, and as a result the latter might end up paying a fine, whereas the former consumer

might get a rebate on his premium.

4.5 Defining The Pricing Model

We assume that each SV (seller) has a set of clients, N , (consumers) connected via a

logical network and using self-defense products manufactured by the SV. For simplicity

of analysis, we assume that a single SV has monopoly and serves all clients in a logical

4A SV can get investment related information from its insurance clients (and hence estimate externalities)
through disclosure agreements signed between the client and the SV as part of some mandate imposed by the
government [8].
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network. Each consumer i εN has an utility function, ui(·), which is given as

ui(xi,
−→x−i, pi) = αixi − βix2

i + xi ·
∑
j

hijxj − pixi, (4.1)

where xi, a continuous variable, is the amount of self-defense/self-protection features con-

sumed or invested in by user i, −→x−i is the vector of self-defense investments of users other

than i, and pi is the price charged by the SV to user i per unit of self-defense investment

consumed by i. In reality, SV products are bundled in a package which is priced as a single

item. However, every bundled package has a number of features which different users use

differently, and the effectiveness of a user’s security protection would depend on how he

uses those features (personal communication with Symantec employee). In that light, we

assume that xi is continuous. Here pi is the equilibrium market price set by the SV (in

case of a competitive setting, the equilibrium price is set after competing with other SVs

in the security product business.). αi, βi, hij are constants. hij is the amount of externality

user j exerts on user i through his per unit investments. Here hij ≥ 0 and hii = 0,∀i. xi

is assumed to be continuous for analysis tractability reasons. The first and second term in

the utility function denotes the utility to a user solely dependent on his own investments,

the third term is the positive externality effects of investments made by other users in the

network on user i, and the fourth term is the price user i pays for consuming xi units of self-

defense goods manufactured by the SV. We assume here that xi is bounded. The quadratic

nature of the utility function allows for a tractable analysis and a nice second-order approx-

imation of concave payoffs.

The SV accounts for the strategic investment behavior (after it would have set its prices)

of users it provides service to, and decides on an optimal pricing scheme that arises from
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the solution to the following optimization problem.

max−→p
∑
i

pixi − cxi,

where−→p are the vectors of prices charged by the SV to its consumers, and xi is the amount

of self-defense good consumed by consumer i after the SV sets its prices. c is the constant

marginal cost to the SV to manufacture a unit of any of its products. For the analysis

that follows in the dissertation, we will assume for all i, (i) 2βi >
∑

j εN hij and (ii)

αi > c. Assumption (i) implies that the optimal investment level of network users is

bounded and assumption (ii) implies that all network users purchase a positive amount of

security product manufactured by the SV.

4.6 Security Product Pricing Strategies

In this section we describe our two-stage static pricing game between an SV and its con-

sumers and state state the different pricing scenarios we deal in the chapter.

4.6.1 Two-Stage Pricing Game Definition

The game has the following two steps.

1. The SV chooses a price vector −→p so as to maximize its profits via the following

optimization problem.

max−→p
∑
i

pixi − cxi,

where −→p is price vector charged by the SV to its consumers, per unit of investment,

and xi is the amount of self-defense good consumed (invested) by user i after the SV

sets its prices.
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4.6.2 The Different Pricing Scenarios

We consider three types of consumer pricing scenarios in the chapter:

• Scenario 1 - here, the SV does not price discriminate amongst its consumers

and all elements of −→p are identical, i.e., pi = p, ∀i.

• Scenario 2 (binary pricing) - here, the SV charges two types of prices per unit

of user investment: a regular price denoted as preg for each user in a particular

category, and a discounted price, denoted as pdsc for other users, and

• Scenario 3 - here, the SV charges different prices to different consumers and

the elements of −→p are non-identical. c is the constant marginal cost to the SV

to manufacture a unit of any of its products.

2. Consumer i chooses to consume xi units of self-defense products, so as to maximize

his utility ui(xi, ,−→x−i, pi) given the prices chosen by the SV.

Since the game consists of two stages, we will analyze the subgame perfect Nash equilibria

of this game, instead of just focussing on simple Nash equilibria.

4.7 Results for Homogenous and Heterogenous Pricing

Schemes

In this section we state the results related to our static pricing strategy. We first comment on

the equilibrium of the second stage of the two-stage pricing game, given a vector of prices
−→p (not specific to the scenarios mentioned above). Given −→p , the second stage of our

pricing game is a subgame and we denote it as Gsub. We the have the following theorem.
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Theorem 5. Gsub has a unique Nash equilibrium and is represented in closed form as

xi = BR(−→x−i) =
αi − pi

2βi
+

1

2βi

∑
jεN

hijxj, (4.2)

where BR(−→x−i) is the strategic best response of user i when other users in the network

consume −→x−i. In the case when SV does not price discriminate its consumers, the Nash

equilibrium vector of user investments is given by

−→x = (Q−G)−1(−→α − p−→1 ), (4.3)

where p is the optimal uniform per unit investment price charged by the SV to all its con-

sumers, andQ is a matrix that takes values 2βi at location (i, j) if i = j and zero otherwise.

Proof: The proof relies on the results on the following lemmas. We first state and prove

the relevant lemmas required for the proof of Theorem 5 and follow it up with the proof of

the main theorem.

Lemma 1. The game Gsub is supermodular5.

Proof. The payoff/utility functions are continuous, the strategy sets are compact subsets of

real space, and for any two consumers i, j εN , ∂2ui
∂xi∂xj

≥ 0. Hence Gsub is supermodular. �

Lemma 2. The spectral radius of Q−1G is smaller than 1, and the matrix I − Q−1G is

invertible.

Proof. Let −→v be an eigenvector of Q−1G with λ being the corresponding eigenvalue, with

|vi| > |vj| for all j εN . We have the following equation due to the fact that (Q−1G)−→v =

λ−→v .

|λvi| = |(Q−1Gi)
−→v | ≤

∑
j εN

(Q−1G)ij|vj| ≤
1

2βi
|vi|
∑
j εN

hij <
vi
2
. (4.4)

5In supermodular games, the marginal utility of increasing a player’s strategy increases with the increases
in the other players’ strategies.
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Here (Q−1G)i denotes the i − th row of (Q−1G). Since the equation holds for any

eigenvalue-eigenvector pair, the spectral radius of (Q−1G) is strictly smaller than 1. Now

observe that each eigenvalue of I−Q−1G can be written as 1−λ. Since the spectral radius

of Q−1G is strictly smaller than 1, none of the eigenvalues of I−Q1G is zero, and thus the

matrix is invertible. �

Now we continue with the proof of Theorem 5. Since Gsub is a supermodular game, the

equilibrium set has a minimum and a maximum element [43]. Let −→x denote the maximum

of the equilibrium set and let S be such that xi > 0 only if i ε S. If S = φ there cannot be

another equilibrium point, since−→x = 0 is the maximum of the equilibrium set. Assume for

a contradictory purpose that S 6= φ and there is another equilibrium
−→̃
x , of the game. By the

supermodularity property of Gsub, xi ≥ x̃i, ∀i εN . Allow k to equal argmaxi εNxi − x̃i.

Since −→x and
−→̃
x are not equal, we have xk − x̃k > 0. Since at NE no consumer has an

incentive to increase or decrease his consumption, we have

xk − x̃k ≤
1

2βk
Gk(
−→x −−→̃x ) =

1

2βk

∑
j

hkj(xj − x̃j), (4.5)

where Gk is the k − th row of G. But we have

1

2βk

∑
j

hkj(xj − x̃j) ≤
xk − x̃k

2βk

∑
j

hkj < xk − x̃k (4.6)

Thus, we reach a contradiction and Gsub has a unique Nash equilibrium. �

Theorem Intuition and Implications: The intuition behind a unique Nash equilibrium is

the fact that increasing one’s consumption incurs a positive externality on his peers, which

further implies that the game involves strategic complementarities6 [25], and therefore the

equilibria are ordered. This monotonic ordering results in a unique NE. The unique equi-

6In economics and game theory, the decisions of two or more players are called strategic complements if
they mutually reinforce one another.
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librium implies that the SV just needs to be concerned about the single equilibrium vector

of user consumption amounts and base its optimal strategy on that equilibrium vector. If

there would be multiple equilibria toGsub, it would be cumbersome for the SV to decide on

its optimal strategy. Why? because it would be difficult for non-cooperative users to decide

in the first place which equilibrium is the best and then jointly play the best equilibria. As

a result the SV might not be sure that the best equilibrium would be played by the users.

However, if the SV is able to compute the best equilibria, it could base its pricing strategy

on that one irrespective of the equilibria played by the users.

We now discuss the optimal pricing strategy for the SV given that the users self-protect

according to the Nash equilibrium of Gsub. Before going into the details we first define the

concept of a Bonacich centrality in a network of heterogenous users. The Bonacich central-

ity measure [9] is a sociological graph-theoretic measure of network influence. It assigns

relative influence scores to all nodes in the network based on the concept that connections

to high-scoring nodes contribute more to the score of the node in question than equal con-

nections to low-scoring nodes. In our work, the Bonacich measure of a user reflects his

influence on other users of the network via the externalities generated by him through his

self-defense investments7. Formally, let G be a matrix defining the logical network of N

users (consumers), and having in its entries the hij values. Let D be a diagonal matrix, and
−→w be a weight vector. The weighted Bonacich centrality vector is given by

B(G,D,−→w ) = (I −GD)−1−→w , (4.7)

where (I −GD)−1 is well-defined and non-negative.

We now have our first result regarding the optimal prices charged by the SV to its

consumers.

7The use of the concept of Bonacich centrality in externality driven networks is explained in [10]
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Theorem 6. The optimal price vector −→p charged by the SV is given by

−→p =
−→α + c · −→1

2
+GQ−1B(G′, Q−1,

−→
w′)−GTQ−1B(G′, Q−1,

−→
w′), (4.8)

where G′ = G+GT

2
and
−→
w′ =

−→α−c·−→1
2

.

In the case when the SV does not price discriminate its consumers, the optimal price

(same for every consumer) charged per consumer is given by

p =
1

2

−→
1 T (Q−G)−1(−→α + c

−→
1 )

−→
1 T (Q−G)−1

−→
1

. (4.9)

Proof. We have from Lemma 1 that Q−G is non-singular and as a result the following

equation holds.

−→p = −→α − (Q−G)

(
Q−G− GT −G

2

)−1 −→α − c · −→1
2

(4.10)

Equation (4.10) can we rewritten as

−→p = −→α −
(
I − GT −G

2
(Q−G)−1

)−1 −→α − c · −→1
2

(4.11)

By the matrix inversion lemma [26], we have

(
I − GT −G

2
(Q−G)−1

)−1

= I +
GT −G

2

(
Q− GT +G

2

)−1

(4.12)

Thus, from Equation (4.11) it follows that

−→p =
α + c

−→
1

2
− GT −G

2

(
Q− GT +G

2

)−1 −→α − c−→1
2

(4.13)
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Applying Equation(4.13) and using the definition of weighted Bonacich centrality, we get

−→p =
−→α + c · −→1

2
+GQ−1B(G′, Q−1,

−→
w′)−GTQ−1B(G′, Q−1,

−→
w′)

and thus prove Theorem 6. �

Theorem Intuition and Implications: The optimal price vector in the no price discrimi-

nation case is independent of individual node centralities, whereas in the price discrimina-

tion case the optimal price vector depends on the Bonacich centrality of individual users.

The intuition behind the result is the fact that users tend to invest in security mechanisms

proportional to their Bonacich centrality (and in turn generate proportional amount of net-

work externalities) in the Nash Equilibrium [37][38]. Therefore it makes sense for the SV

to charge users based on their Bonacich centralities when price discrimination is possible.

Figure 4.1: 100 Node Profit Ratio Plots for (a) β = 3 (left), (b) β = 2.5 (middle), and (c)
β = 2 (right) [PA Graphs]

Figure 4.2: 500 Node Profit Ratio Plots for (a) β = 3 (left), (b) β = 2.5 (middle), and (c)
β = 2 (right) [PA Graphs]

We now state the following result regarding profit amounts made by a SV from its

cyber-insurance business for pricing scenarios 1 and 3.
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Figure 4.3: 100 Node Profit Ratio Plots for (a) γ = 1 (left), (b) γ = 3 (middle), and (c)
γ = 5 (right) [Tree Topology]

Figure 4.4: 500 Node Profit Ratio Plots for (a) γ = 1 (left), (b) γ = 3 (middle), and (c)
γ = 5 (right) [Tree Topology]

Theorem 7. The profits, P0 and P1, made by an SV from its cyber-insurance business when

the latter does not (does) account for user investment externalities respectively are given

by

P0 =


(−→α − c · −→1

2

)T

(Q−G)−1

(−→α − c · −→1
2

) (4.14)

and

P1 =


(−→α − c · −→1

2

)T

(Q−G′)−1

(−→α − c · −→1
2

) , (4.15)

. Assuming Q − G to be positive definite, the bounds of the ratio of profits in these two

cases is given by

0 ≤ 1

2
+ λmin(K) ≤ P0

P1

≤ 1

2
+ λmax(K) ≤ 1, (4.16)

where R = Q−G and λmin(·), λmax(·) denote the minimum and maximum eigenvalues of

their arguments respectively, and K equals
(
RR−T+RTR−1

4

)
.
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Proof: The optimal price vector of the SV without and with the consideration of exter-

nality effects are given by the following equations.

−→p0 =
−→α + c · −→1

2
. (4.17)

and
−→p1 = −→α − (Q−G)

(
Q− G+GT

2

)−1
α− c · −→1

2
. (4.18)

The corresponding consumption vectors are given by

−→x0 = (Q−G)−1
−→α − c · −→1

2
. (4.19)

and
−→x1 = (Q−G′)−1

−→α − c · −→1
2

. (4.20)

It then follows that

P0 = (−→p0 − c ·
−→
1 )T−→x0 =

−→α − c · −→1
2

(Q−G)−1
−→α − c · −→1

2
. (4.21)

and

P1 = (−→p1 − c ·
−→
1 )T−→x1, (4.22)

P1 can be re-written as

P1 = X − Y,

where

X = 2

(−→α − c · −→1
2

)T (
R +RT

2

)−1
(−→α − c · −→1

2

)
,
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and

Y =

(−→α − c · −→1
2

)T (
R +RT

2

)−1
(−→α − c · −→1

2

)
.

Thus, we have

P1 =


(−→α − c · −→1

2

)T

(Q−G′)−1

(−→α − c · −→1
2

) ,

Now let −→v = α−c·−→1
2

. We have

P1

P0

=
−→v T (Q−G′)−1−→v
−→v T (Q−G)−1−→v

≤ max||−→x=1||

−→x T
(
R+R′

2

)−1−→x
−→x T R−1+R−T

2
−→x

. (4.23)

Since R−T+R−1

2
and RT+R

2
are symmetric positive definite matrices, we have from the

Rayleigh-Ritz Theorem [18] the following.

K = λmax

((
R−1 +R−T

2

)−0.5(
R +RT

2

)−1(
R−1 +R−T

2

)−0.5
)
, (4.24)

where K = max||−→x=1||

−→x T
(
R+R′

2

)−1−→x
−→x T R−1+R−T

2
−→x

. Note that for any real matrix A and invertible matrix

B, the eigenvalues of A and B−1AB are identical. Thus, it follows that

K = λmax

(
2I +RRT +RTR−1

4

)−1

. (4.25)

Now since the eigenvalues ofRR−T+RTR−1 are real and belong to [−2, 2], the eigenvalues

of
(

2I+RRT+RTR−1

4

)
are positive, and we have

λmax

(
2I +RRT +RTR−1

4

)−1

=
1

λmin

(
2I +RRT +RTR−1

4

)
. (4.26)
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Similarly we obtain

max||−→x=1||

−→x T R−1+R−T

2
−→x

−→x T
(
R+R′

2

)−1−→x
= λmax

(
2I +RRT +RTR−1

4

)
. (4.27)

From the above two equations it follows that

1

2
+ λmin

(
2I +RRT +RTR−1

4

)−1

≤ P0

P1

, (4.28)

and
P0

P1

≤ 1

2
+ λmax

(
2I +RRT +RTR−1

4

)−1

. (4.29)

We have thus proved our theorem. �.

Before we explain the theorem intuitions and its implications, we plot the ratio of P0

P1

for preferential attachment (PA) graphs in Figures 4.1 and 4.2 and tree graphs in Figures

4.3 and 4.4, respectively, as they help us understand the theorem implications better. The

following section briefly explains the formation of graphs using the preferential attachment

process and how tree topologies are formed. The theorem intuitions and its implications

will also be explained in the following section.

4.8 Generating Practical Networking Topologies

In this section we briefly describe the process of generating practical networking topologies

for the purposes of simulation. We deal with two graph types: (i) random graphs generated

via the preferential attachment mechanism, and (ii) random trees generated via a Poisson

process.

We choose preferential attachment graphs as they represent real world social/logical

network interactions [5]. A random graph formed by the PA process can have two extremes:

(i) a new born user can influence users born earlier, i.e.,G1
ij > 0 for all i, j and j born after i,
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and (ii) only older users influence new users, i.e.,G1
ij > 0 for all i, j and j born before i. We

can thus form a family of PA graphs parameterized by µ ε [0, 1], which we call the ‘influence

value’, such that Gµ is a linear combination of G1 and G2, i.e., Gµ = µG1 + (1 − µ)G2.

Here µ is a parameter that controls the influencing nature of a user in a PA graph w.r.t. the

positive externality effects of his security investments made on users born before and after

him. A µ value of 1 generates random graph G1, whereas a µ value of 0 generates random

graph G2. For networks of size 100, we generate 50 PA graphs for each different value of

µ ranging from 0 to 1 in steps of 0.1. Each point in a sub-plot in Figure 4.1 is the average

of the 50 P0

P1
values obtained per value of µ (the x-axis). Each sub-plot is the average of 50

graphs for a particular value of γ, the scale-free exponent parameter for PA graphs, β (in

many papers also denoted as γ) is known to generally lie between [2, 3], and for our plots

we choose three values of β: 2, 2.5, and 3. For the purposes of simulation we assume for

all i that βi = 1 and αi − c = 1. We also assume that for each i the hij values are equal

to 1
di

, where di is the number of non-negative entries in row i of G. We repeat the above

process for networks of size 500, and the results are shown in Figure 4.2.

We choose tree topologies as they often represent corporate and enterprise social net-

works. In this work, we consider random trees of specific types. Given a constant λ > 0,

a depth-d Poisson tree T (λ, d) with parameter λ and depth d is constructed as follows: the

root node has degree which is a random variable distributed according to a Poisson dis-

tribution with parameter λ. All the children of the root have outdegrees which are also

random, distributed according to a Poisson λ distribution. We continue this process until

either the process stops at some depth d′ < d, where no nodes in level d′ has any children

or until we reach level d. In this case, all the children of nodes in level d are deleted and

the nodes in level d becomes leaves. In this paper, we fix d =∞. Note that star topologies

are formed as a special case of tree topologies. We generate P0

P1
plots for tree graphs of size

100 and 500 nodes in Figures 4.3 and 4.4 respectively, in the same manner as we generate
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PA graphs in the previous paragraph, i.e., based on influence values. Each point in the

sub-plots is the average of 50 instances for a fixed value of λ. For our work we fix λ to lie

in the set {1, 3, 5}. For the purposes of simulation we assume for all i that βi = |G|
20

and

αi − c = 1. We also assume that for each i the hij values are equal to 1
di

, where di is the

number of non-negative entries in row i of G.

Plot Results: Our plot results from both the preferential attachment and tree topology

graphs show that (i) the provable profit ratio bounds are not reasonably tight enough, and

are less than 18, implying the fact that an SV can do better in terms of profit when it has

full information compared to the case when it is not informed about consumer externality

values and their network location properties, and (ii) the gap between the ratio obtained

from simulations and its lower bound decreases with increase in µ (influence) values. The

reason for the trend in (ii) can be explained as follows: note that the gap between the ratio

obtained by simulations and its lower bound denotes the profit loss of the security vendor

from ignoring the network externalities during the pricing process. This gap will be larger

for lower values of µ as it implies that nodes with higher centrality values are affecting

nodes with low centrality values and the insurer is not taking this externality into account

while charging its clients, thereby reducing profits. When µ values are high, the insurer

does not take into account the externality effects of low centrality users on high centrality

users, which does not affect the profits as much.

Theorem Intuition and Implications: As observed from the plot in Figures 4.1 and 4.2, for

preferential attachment graphs, the profits to the SV are greater when it accounts for exter-

nalities than when it does not, and an SV could make up to approximately 25% extra profits

(relative to our model) with complete information. This is intuitive in the sense that the SV

has more user information when knowing about the externalities and can price optimally to

8Here ‘1’ is the trivial upper bound. However, for the simulations in this work, the non-trivial upper bound
obtained is very close to 1.
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increase its profits. However, in reality it is difficult to measure/observe the externalities.

Thus, in spite of getting topological information from the insurer, an SV might have to price

its products without taking externalities into account. The profits for the non price discrim-

ination scenario is encapsulated as a special case of P1 when G has all entries equal except

the zero diagonal entries. We also emphasize here that even in the absence of complete

information, partial information will boost SV profits in a proportional manner. We also

observe from Figures 4.1 and 4.2 that (i) the plot trends are invariant of the graph topology,

i.e., with different β values, the sub-plots look very nearly the same, and (ii) increasing the

network size does not affect the plot trends as well.

4.9 Plot Results for Profit Ratios

In this section, we describe the plot results for SV profit ratios between the case when

network externalities are accounted for in the pricing mechanism and the case when they

are not.

Our plot results for tree graphs are very similar to those of preferential attachment

graphs and due to the same reasons mentioned in the previous paragraph, except that for

influence values between 0.7 and 1.0, the profit ratio curve increases towards values in the

range [.95 .99] and then decreases. This trend is due to the fact that at an influence value of

around 0.8, the graph topology and investment externalities have little effect on the optimal

prices charged by the SV, and as a result the difference between P0 and P1 is minimal.

Intuitively, this happens because when deciding what price to offer to a user, the monopo-

list considers the trade-off between profit loss due to (potentially) subsidizing the user and

increase in profits due to the user’s externality influence over his peers. The profit loss is

proportional to the security investment of the user, and it increases with the influence of the

network on this user. The profit increase term, on the other hand relates to the influence
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of the agent on the rest of the network. At an influence value of 0.8, the profit loss nearly

equals profit gain and network and externality effects does not affect the profit ratio by a

significant margin. For all other influence values, the effects of the network and investment

externalities are more than non-signifcant. We emphasize here that the rationale proposed

in this paragraph also applies to the trends observed on preferential attachment graphs, but

there the peak point is achieved for an influence value of 1.

Implementation Remarks and Practical Challenges: Here, we discuss a little on how

measuring network externalities is difficult, and why we only model a monopoly SV sce-

nario. In practice, it is really difficult to compute the hij values. One can at best approxi-

mate or stochastically estimate it. Realistically speaking, the entire networking space can

hardly be monopolized by a single SV cyber-insurer. In case of corporate settings, it is

relatively easier to estimate externalities as the corporate network is administered by one

entity. In case of non-corporate settings, it may be really hard to estimate externalities

because of two reasons: (i) there might be users of SV X who may be connected to users of

SV Y and X may not have relevant details of clients of Y to measure externalities, unless X

and Y form an alliance with the same ISP and trade externalities, and (ii) if insurance is not

made compulsory (as the current scenario in the Internet) some users who generate high

amount of externalities may not be held accountable and externalities due to them might

not be estimable. Because of the difficulty to measure network externalities even in the

case of a single SV domain, and the challenges to allocate externality liabilities amongst

consumers of different co-existing SVs with overlapping consumer overlay networks, we

only model a monopoly SV scenario in this work. The Bonacich centrality measure can

however be exactly computed given the logical network structure of consumers. However,

in practice multiple SVs will co-exist in a market, and as mentioned before, even partial

information on consumer investments and related externalities will improve profit margins

for individual SVs. In the case a logical network consists of disjoint large subnetworks or
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sparsely overlapping networks, insurance sellers (SVs) would segment the market at equi-

librium and exercise monopoly pricing power in their respective localities. When networks

are considerably overlapping it would be difficult for any SV to exercise monopoly pricing

of its products. However, in reality there is some heterogeneity between product types of

sellers which leads to one being more popular than others, and as a result sellers could have

a slight pricing power over their consumers.

4.10 The Case for Binary Pricing

In reality, charging multiple different prices to various consumers may not be very practical

to implement. To make things simpler, a SV can opt to charge two types of prices for

two different classes of consumers: (i) a discounted price, pdsc, for consumers who have

significant positive influence on the security of a network based on their network location

and the amount of investments made, (ii) and a regular price, preg for the other consumers.

Thus, the first goal of an SV is to determine the subset of consumers that should be offered

the discounted price so as to maximize its own profits.

Given that preg and pdsc are exogenously specified, the profit optimization problem for

an SV is given by

Maximize (−→p − c−→1 )T (Q−G)−1(−→α −−→p )

s.t. pi ε {preg, pdsc}, ∀i εN.

Note here that the expression, (Q − G)−1(−→α − −→p ), in the objective function is the NE

investment amount of users in self-defense mechanisms. Thus, we have a combinato-

rial optimization problem for maximizing the profits of an SV. In order to investigate the
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tractability of the problem, we formulate it in the following manner:

OPT : Maximize (δ−→y + c′
−→
1 )T (Q−G)−1(

−→
α′ − δ−→y )

s.t. yi ε {−1, 1}, ∀i εN.

Here δ = preg − pT , where pT = preg+pdsc
2

,
−→
a′ = −→a − pT , and c′ = pT − c ≥ δ. Note that

using these variables, the feasible price allocation can be expressed as −→p = δ−→y + pT . Our

next result comments on the intractability of solving OPT. The proof of the result is based

on the reduction of OPT from the well-known MAX-CUT problem [12].

Theorem 8. Given that preg and pdsc are exogenously specified in the binary pricing case,

an SV’s profit optimization problem, OPT, is NP-Hard.

Proof: The well known MAX-CUT problem [12] is as follows:

max
∑

(i,j) εE

Wij(1− xixj)

s.t. xi ε {−1,+1}, ∀i ε V,

where W denotes a matrix of binary weights consisting of 0s and 1s. The solution to this

problem corresponds to a cut as follows: let S be the agents who were assigned value 1

in the optimal solution. Then it is straightforward to see that the value of the objective

function corresponds to the size of the cut defined by S and V − S. The problem can also

be re-wriiten as

P0 : min−→x TW−→x

s.t. xi ε {−1,+1}, ∀i ε V.
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Now consider the following related problem:

P1 : min−→x TW−→x

s.t. xi ε {−1,+1}, ∀i ε V,

where W is a symmetric matrix with rational entries that satisfy 0 < W T = W < 1. In the

proof of Theorem 8, we will first show that P1 is NP-Hard by reducing from MAX-CUT.

We will then reduce P1 to OPT to claim the correctness of our theorem.

Lemma 3. P1 is NP-Hard.

Proof. We prove our claim by reducing P1 from P0. Let W be the weight matrix in an

instance of P0. Let Wε = 1
2
(ε + W ), where ε is a rational number between 0 and 1

2n2 and

|V | = n. Observe that for any feasible −→x in P0 or P1, it follows that

2−→x TWε(
−→x )− n2ε ≤ −→x TW−→x ≤ 2−→x TWε(

−→x ) + n2ε.

Because the objective of P0 is always an integer and n2ε < 1
2
, the cost of P0 for any feasible

vector−→x can be obtained from the cost of P1 by scaling and rounding. Therefore, since P0

is NP-Hard, it follows that P1 is also NP-Hard. �.

Having proved P1 to be NP-Hard, we now prove Theorem 4 by reducing OPT from P1.

We consider special instances of OPT where G = GT , c = 0, and −→α = [α, ....., α], and

α = preg + pdsc. OPT can then be re-casted as

OPT2 : min−→x T (Q−G)−→x

s.t. xi ε {−1,+1}, ∀i εN.
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Now consider an instance of P1 with W > 0. Note that because x2
i = 1, P1 is equivalent to

min−→x T (W + γI)−→x

s.t. xi ε {−1,+1}, ∀i ε V,

where we choose γ as an integer such that

γ > 4 ·max{ρ(W ),
∑
i,j

Wi,j

mini,jWij

}

and ρ(·) is the spectral radius of its argument. The definition of γ implies that the spectral

radius of W
γ

is less than 1. Therefore we have

(W + γI)−1 =
1

γ

(
I − 1

γ
(W − W 2

γ
)− W 2

γ3
(W − W 2

γ
).....

)
. (4.30)

Since all entries of W and
(
W − (W

2

γ
)
)

are positive, the above equality implies that the

off-diagonal entries of (W + γI)−1 are negative. Therefore (W + γI)−1 = (Q − G) for

some diagonal matrix Q and some G ≥ 0. Thus, it follows that

((Q−G)
−→
1 )k =

(
1

γ

(
I − W

γ
+
W 2

γ2
....

)
−→
1

)
k

. (4.31)

Since W > 0, we have

((Q−G)
−→
1 )k ≥

1

γ

(
1 +

(
−W
−→
1

γ
)− W 2−→1

γ2
....

)
k

−→
1

)
.

From the definition of γ it follows that W
−→
1
γ
≤ (

(
∑
i.jWij)

γ
)
−→
1 ≤ 1

4

−→
1 . The above inequality
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implies that

((Q−G)
−→
1 )k ≥

1

γ

(
1− 1

4

(
∞∑
l=0

(
1

4

)l))
=

1

γ

(
2

3

)
> 0. (4.32)

Thus, P1 can be reduced to an instance of OPT2 by defining Q and G according to (W +

γI)−1 = (Q−G). Therefore it follows that OPT2, and hence OPT, are NP-Hard. �.

Theorem Intuitions and Implications: The i, jth entry of (Q−G)−1 gives a measure of

how much the edge between i and j contributes to the centrality of agent i. Therefore, the

MAX-CUT interpretation roughly suggests that the optimal solution of the pricing prob-

lem is achieved when the monopolist tries to price discriminate agents that influence each

other significantly, however, at the same time takes into account the agents’ value of con-

sumption in the absence of network effects. The NP-Hard nature of the pricing problem

implies the impracticality of computing optimal prices in practice and thus drives the need

to design schemes to computing optimal binary prices up to a certain acceptable approxima-

tion. The following theorem states the result of approximating the optimal prices charged in

the binary pricing case. The theorem exploits the relation of OPT to the MAX-CUT prob-

lem, and establishes that there exists an algorithm that provides a solution with a provable

approximation guarantee.

Theorem 9. Let WOPT be the optimal value for problem OPT. Then, there exists a ran-

domized polynomial-time algorithm that outputs a solution with objective value Walg such

that E[Walg] + r > 0.878(WOPT + r), where

r = δ2−→1 TA
−→
1 + δ

−→
1 T |A

−→
a′ − AT c′−→1 | − c′−→1 TA

−→
a′ − 2δ2Trace(A),

and

A = (Q−G)−1
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Proof. First, we describe a semidefinite programming (SDP) relaxation for the follow-

ing optimization problem:

max
1

4

∑
i,j

wij(1− xixj))

subject to

xi ε {−1,+1} ∀i ε V

This optimization problem can be reduced to

max
1

4

∑
i,j

wij(1− νiνj)

subject to

νi ε Sn ∀i ε V

where νi · νj denotes the regular inner product of vectors νi, νj εRn, and Sn denotes the

n-dimensional unit sphere, i.e., Sn = {−→x εRn|−→x · −→x = 1}.. We next show that this

optimization problem leads to a semidefinite program.

Consider the collection of vectors {ν1, ....., νn} such that νi ε Sn. Define a symmetric

matrix Y εRn×n such that Yij = νiνj and Yii = 1. It can be seen that Y = F TF . where

F εRn×n is such that F = [ν1, ......., νn]. This implies that Y ≥ 0. Conversely, consider

a positive semidefinite matrix Y εRn such that Yii = 1. Since Y is positive semidefinite,

there exists F εRn×n (which can be obtained from Cholesky factorization of the original

matrix) such that Y = F TF , it follows that νi · νi = 1. These arguments imply that the

feasible set in

max
1

4

∑
i,j

wij(1− νiνj)

subject to

νi ε Sn ∀i ε V
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can be equivalently written as

max
1

4

∑
i,j

wij(1− νiνj)

subject to

Yi,i = 1∀i ε V, Y ≥ 0

We now show a way to obtain a provable approximation guarantee for binary quadratic

optimization problems of the form:

max−→x TQ−→x + 2
−→
d T−→x + z

subject to

xi ε {−1, 1}, i ε {1, ...., n},

where Q,
−→
d , and −→z have rational entries. We observe that −→x TQ−→x = Trace(Q) +

−→x T Q̃−→x , where Q̃ = Q − diag(Q) and xi ε {−1,+1}. Thus, the diagonal entries of the

Q matrix as part of the constant term, and we can assume that diag(Q) = 0 without any

loss of generality. We can also assume that Q is symmetric. Now consider the following

optimization problem:

max[−→x ; y]TQ′[−→x ; y] + z

subject to

xi ε {−1,+1}, i ε {1, ....., n},

yi ε {−1,+1},
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where Q′ is given by the following matrix:

Q′ =

 Q
−→
d

−→
d T 0

 .

Since [−→x ; y]TQ′[−→x ; y] = −→x TQ−→x + 2y
−→
d T−→x , it follows that the optimal −→x and the opti-

mal objective values of the previous two optimization problems are equal. Relaxing the

previous optimization problem we get

max
∑
ij

νi · νjQ′ij + z

subject to

νi ε Sn+1, i ε {1, ....., n, n+ 1},

and obtain an equivalent semidefinite program (SDP) by defining Yij = νiνj as follows:

max
∑
ij

YijQ
′
ij + z}

subject to

Yii = 1, i ε {1, ....., n, n+ 1},

Y ≥ 0.

Using this semidefinite relaxation one can obtain an approximate solution to the original

problem. We adopt an approach used by the authors in [13] to achieve this goal. We have

the following lemma to characterize the approximate solution to our semi-definite program.

Lemma 4. Let z ≥
∑

i,j |Q′ij|. The solution to the following optimization problem:

max−→x TQ−→x + 2
−→
d T−→x + z
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subject to

xi ε {−1, 1}, i ε {1, ...., n},

using the randomized algorithm in [13] achieves at least 0.878 times the optimal objective

value of the problem.

Proof. Let W denote the objective value of a solution the algorithm provides. WM

denote the optimal solution of the underlying quadratic optimization mentioned in the

lemma, and WP denote the optimal value of the SDP relaxation, then the corresponding

optimal value can be given as

WP =
∑
i,j

Q′ijνi · νj + z.

The solutions of the problem provided by the randomized algorithm in [13] gives

us the expected contribution of given agents i and j to the objective function as

Q′ij

(
1− 2

arccos(νi,νj)

π

)
. Hence, the expected value of a solution is given as

E[W ] =
∑
ij

(
1− 2

arccos(νi, νj)

π

)
Q′i,j + z.

Now since z ≥
∑

i,j |Q′ij|, it follows that both WM and E[W ] are non-negative, also since

WP corresponds to the optimal solution of the relaxation, it follows that WP ≥ WM . Using

these it follows that

WP =
∑

i,j:Q′ij>0

Q′ij(1 + νi · νj) +
∑

i,j:Q′ij<0

|Q′ij(1− νi · νj) + z2

and

E[W ] = W1 +W2.
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where

W1 =
∑

i:jQ′ij>0

Q′ij

(
2− 2

arccos(νi, νj)

π

)

and

W2 =
∑

i,j:Q′ij<0

|Qij|2
arccos(νi, νj)

π
+ z2.

Here z2 = z −
∑

i,j |Q′ij| > 0. Since arccosx
π
≥ α

2
(1− x) and 1− arccosx

π
≥ α

2
(1 + x) for all

x ε [−1,+1], it follows that E[W ] > 0.878WP ≥ 0.878WM , where α = 0.878. �

A corollary of this result is

E[W ] +
∑
ij

|Q′ij| − z > 0.878(WM +
∑
ij

|Q′ij| − z).

Applying this corollary, the solution to the pricing problem of the monopolist leads to

satisfying the claims in Theorem 8. �

Theorem Implications: Clearly, if m ≤ 0, which, for instance, is the case when is δ

is small, this algorithm provides at least an 0.878-optimal solution of the problem. On

the other hand, if m > 0, we obtain 0.878 optimality after a constant (m) addition to

the objective function. This suggests that for small m > 0, the algorithm still provides

near-optimal solutions.

4.11 Performance Evaluation

In the previous sections in this chapter, we looked at how network externalities can affect

the profit ratios of secuity vendors. We performed simulations on practical networking

topologies to validate our theory. In this section, we study how the different pricing method-

ologies are affected by the client location in a network, and how the resulting prices affect

the security investment amounts of the clients, and the fairness of their charged prices. We
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compare the pricing rules developed in the previous chapter and obtain qualitative insights

by applying them to examples generated via simulations. In particular, we consider ran-

dom networks that consist of 50 and 100 nodes, and generated via the same preferential

attachment and Poisson tree mechanisms mentioned in previous chapter post the definition

of Theorem 7.

4.11.1 Questions We Address

Through our simulations we aim to address the following questions.

• In case of the heterogenous pricing scenario , how does the unit price charged by

the SV per client at market equilibrium vary with client centrality in the consumer

logical network ?

• For any given pricing scenario, how does the network location of a consumer relate

with his total security investment amount ?

• For the three pricing scenarios, does the total cost incurred by a client (the prod-

uct of the unit price charged to him by the SV, and his net investment) in security

investments vary from client to client based on their network location?

4.11.2 Simulation Setup

In this section, we describe our simulation setup. The parameters of the problem for our

example networks of 50 and 100 nodes are given as follows: c = 0.5, αi = 2, βi = 2.5

(for the preferential attachment mechanism), and βi = |G|
20

(for random trees), for all i εN .

The parameters αi and βi are chosen to make sure that the utility function of each client is

twice differentiable and strictly increasing. We assume that the influence matrix G is such

that for all i, hij equals 1
di

, where di is the number of non-negative entries in row i of G.

87



0 10 20 30 40 500.8

0.9

1

1.1

1.2

1.3

Network User # (in increasing order of centrality)

Pr
ic

e 
ch

ar
ge

d 
by

 S
V

 

 

Heterogenous Pricing
Uniform Pricing
Binary Pricing

0 10 20 30 40 501

1.2

1.4

1.6

1.8

2

Network User # (in increasing order of centrality)

To
ta

l U
se

r I
nv

es
tm

en
t

 

 

 Heterogenous Pricing
 Uniform Pricing
 Binary Pricing 

Figure 4.5: 50-Node Plots for (a) Per-Unit SV Prices (left) and (b) Total User Investment
when β = 3 (right) (PA Graph Topology)
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Figure 4.6: 50-Node Plots for (a) Per-Unit SV Prices (left) and (b) Total User Investment
when λ = 3 (right) (Tree Topology)

In this setting, we first consider a 50-node scenario for graphs generated using the PA

and random tree approaches. If the monopolist is only allowed to charge a uniform per-

unit price to all its clients, the optimal such price is computed to be p0 = 1 per-unit of

investment, for one instance of a 50-node (user) PA generated network with β = 3. For the

same network instance we plot the heterogenous prices charged to users, in Figure 4.5(a).

We observe that the per-unit prices decrease with the increase in the centrality of nodes.
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Figure 4.7: [Heterogenous Pricing] 100-Node Plots for Per-Unit SV Prices when (a) β = 3
(left) and (b) β = 2.5 (right)
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Figure 4.8: [Heterogenous Pricing] 100-Node Plots for Total User Investment when (a)
β = 3 (left) and (b) β = 2.5 (right)
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Figure 4.9: [Heterogenous Pricing] 50-Node Plots for Per-Unit SV Prices when (a) β = 3
(left) and (b) β = 2.5 (right)

For the two-prices case, we assume that the prices are given exogenously and are equal to

pL = 0.85, and pH = 1.15, i.e., 15 percent deviation from the optimal single price. We

emphasize here that our value of 15% is arbitrarily chosen. We just make sure that pL < pH

and that these prices differ by practical industry margins. Next, we compute the optimal

user investment for that same 50-node network instance, when (i) the monopolist can only

use the binary pricing scheme, and (ii) when it can perfectly price discriminate.
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Figure 4.10: [Heterogenous Pricing] 50-Node Plots for Total User Investment when (a)
β = 3 (left) and (b) β = 2.5 (right)
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Figure 4.11: [Heterogenous Pricing] 50-Node Plots for Per-Unit SV Prices when (a) λ = 3
(left) and (b) λ = 5 (right)
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Figure 4.12: [Heterogenous Pricing] 50-Node Plots for Total User Investment when (a)
λ = 3 (left) and (b) λ = 5 (right)

4.11.3 Results

The corresponding total consumption levels for all users for the three different pricing sce-

narios are given in Figure 4.5(b). We repeat the same process mentioned in this paragraph

for an instance of a 50-node graph formed using the random tree generation process. We

report the results in Figure 4.6. The results suggest that for each of the three pricing scenar-

ios, the resulting consumption (amount in security investments) profiles are very similar.

We observe that the agents who are the most influential, i.e., influence the rest of the agents

more than they are influenced, consume the largest amounts of the good. This observation

supports the result in [37][38]. Moreover, as predicted by our analysis, it is precisely these

agents that are offered the most favorable prices (in the heterogenous pricing case) by the

monopolist (as seen from Figures 4.5(a) and 4.6(a).). Finally, even when the monopolist is
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Figure 4.13: [Heterogenous Pricing] 100-Node Plots for Per-Unit SV Prices when (a) λ = 3
(left) and (b) λ = 5 (right)
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Figure 4.14: [Heterogenous Pricing] 100-Node Plots for Total User Investment when (a)
λ = 3 (left) and (b) λ = 5 (right)

constrained to charging two prices, it tries again to favor those central agents, who end up

getting the discounted price (see Figures 4.5()a and 4.6(a).).

After generating single instances of a 50 node network for both the PA and tree topology

types, we try different sets of 50-node and 100-node networks with different values of β

(for PA graphs) and γ (for random trees) to observe network effects on the per-unit SV

prices and individual total investment amounts. From Figures 4.7.-4.10 (for PA graphs),

and Figures 4.11-4.14 (for random tree graphs), we observe the same trends as in Figures

7.1 and 7.2 for the heterogenous pricing scheme, i.e., the per-unit price charged by the SV

to its clients decreases with user Bonacich centrality, and total user investments per user

increase with the user centralities in the network. Each of the sub-plots in Figures 4.7 to
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4.10 and 4.11 to 4.14 plot results on three network instances for given (number of users,

β), (number of users, γ) pairs.

For the heterogenous pricing case, we note from Figures 4.7- 4.10 that the product

of the price charged per client with his total corresponding security investment is nearly

the same constant for every user. This observation is favorable from a implementation

viewpoint because a user would not prefer to pay a total cost of security investment that

is more than any of the other users in the network, given that different network users are

charged different prices. On the other hand, in the case of uniform and binary pricing,

the product of price charged per client and their corresponding security investment is not a

value that is same for every user. This is because of the fact that the users invest according

to their Bonacich centrality in the network irrespective of the prices charged to them. In

addition, from a psychological viewpoint users would not think too much on the variance

in the net expenditure when SVs advertize at most two prices in the market compared to

the case when the SV charges multiple per-unit prices.

A Note on Model Assumptions and Simulation Output: We made a few important

assumptions for modeling purposes which we relax during our simulation setup to ver-

ify the strength and necessity of the assumptions. For simulation purposes we have not

assumed Q − G to necessarily be positive definite, and still we observe trends of profit

ratio, P0

P1
, to follow results in Theorem 7. This implies that Equation (4.14) does not strictly

requireQ−G to be positive definite for it to hold, even though from an analysis perspective,

positive definiteness of the matrix Q − G ensures closed form expressions of P0

P1
bounds.

We also do not enforce 2βi >
∑

j εN hij for simulation purposes and observe that optimal

user investments are bounded for many random samples of PA and Poisson tree topologies.

Takeaway Message in Relation to Network Effects: We have shown that pricing con-

sumers based on their location and consumption amounts in a consumer overlay network is

fair for each consumer (since the product of the consumption amount and the per unit price
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is nearly a constant for every user), and at the same time allows the SV to make more profits

than it would make in case of uniform pricing (as in the current market scenario). The extra

profits in turn allows the cyber-insurer to make strictly positive profits. In terms of dif-

ferentiating cyber-insurance elements (e.g., fine, rebate, and safety capital amounts) from

client to client, network centrality information is vital to proportion appropriate amounts of

elements amongst clients based on the externality they generate due to their investments.
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Chapter 5

Insurance Amidst Non-Insurable Risks

5.1 Chapter Introduction

The concept of cyber-insurance as proposed in the security literature covers losses only

due to security attacks. However, in reality, security losses are not the only form of losses.

Non-security losses (e.g., reliability losses) form a major loss type, where a user suffers,

either because of hardware malfunction due to a manufacturing defect or a software failure

(e.g., buffer overflow caused by non-malicious programming or operational errors1)[17]. A

naive Internet user would not be able to distinguish between a security or a non-security

failure and might be at a disadvantage w.r.t. buying traditional cyber-insurance contracts.

That is, on facing a risk, the user would not know whether the cause of the risk is a security

attack or a non-security related failure2. The disadvantage is due to the fact that traditional

cyber-insurance would only cover those losses due to security attacks, whereas an Inter-

net user may incur a loss that occurs due to a non-security problem and not get covered

for it3. In such cases, it is an interesting problem to investigate the demand for traditional

cyber-insurance as it seems logical to believe that an Internet user might not be in favor of

1A buffer overflow can also be caused by a malicious attack by hackers. Example of such attacks include
the Morris worm, Slapper worm, and Blaster worm attacks on Windows PCs.

2Irrespective of whether a loss due to a risk is because of a security attack or a non-security failure, the
effects felt by a user are the same in both cases.

3We assume here that the loss covering agency can distinguish between both types of losses and it does
not find it suitable to cover losses due to hardware or software malfunctions, as it feels that they should be the
responsibility of the hardware and software vendors (e.g., some computer service agencies in India employ
experts who could distinguish between the two loss types, and these experts may be hired by the loss recovery
agency also.).
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transferring complete loss recovery liability to a cyber-insurer as the former would would

have to pay the premium and at the same time bear the valuation of the loss on being

affected by non-security related losses. In this chapter, we analyze the situation of Inter-

net users buying cyber-insurance when they face risks that may arise due to non-security

failures or security attacks.

We propose an alternative and novel4 model of cyber-insurance, Aegis, in which Inter-

net users need not transfer the total loss recovery liability to a cyber-insurer, and may keep

some liability to themselves, i.e., an Internet user may not transfer the entire risk to an insur-

ance company. Thus, as an example, an Internet user may rest 80% of his loss recovery

liability to a cyber-insurer and may want to bear the remaining 20% on his own. Our model

captures the realistic scenario that Internet users could face risks from security attacks as

well as from non-security related failures. It is based on the concept of co-insurance in the

traditional insurance domain. We mathematically show that when Internet users are risk-

averse, Aegis contracts are always the user preferred policies when compared to traditional

cyber-insurance contracts. In this regard, the latter result de-establishes a market for tra-

ditional cyber-insurance. The availability of Aegis contracts also incentivizes risk-averse

Internet users to rest some loss coverage liability upon themselves rather than shifting it all

to a cyber-insurer. In addition we show that a risk-averse Internet user would prefer cyber-

insurance of some type (Aegis or traditional) only if it is mandatory for him to buy some

kind of insurance, given that he faces risks due to both, security as well as non-security fail-

ures. We also mathematically show the following counterintuitive results: (i) an increase

4Our cyber-insurance model is novel because we model partial insurance, whereas existing works related
to traditional cyber-insurance model full and partial insurance coverage but not partial insurance. The notion
of partial insurance can be explained as follows: in traditional cyber-insurance models, only the cyber-insurer
has the say on the amount of coverage it would provide to its clients and in turn the premiums it would
charge, whereas in the Aegis model, the clients get to decide on the fraction of the total amount of advertised
insurance coverage it wants and in turn the proportional premiums it would pay, given an advertised contract.
Thus, in traditional cyber-insurance, it is mandatory for users to accept the insurance policy in full, whereas
in the Aegis model users have the option of accepting the insurance policy in partial.
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in the premium of an Aegis contract may not always lead to a decrease in its user demand

and (ii) a decrease in the premium of an Aegis contract may not always lead to an increase

in its user demand. In the process, we also state the conditions under which these trends

emerge. The conditions give a guideline to cyber-insurers on how to increase or decrease

their premiums in order to increase user demands for cyber-insurance.

5.2 The Aegis Cyber-Insurance Model

We consider the scenario where an Internet user faces risks5 that arise due to security attacks

from worms, viruses, etc., as well as due to non-security related failures. One example of

non-security related problems arises due to reliability faults. In a seminal paper [17], the

authors identified operational and programming errors, manufacturing problems of soft-

ware and hardware vendors, and buffer overflow as some examples of system reliability

faults, which have effects on Internet users that are identical to the effects when they are

affected by certain security threats (e.g., buffer overflow due to a malicious attack). On

facing the negative effects, an Internet user in general cannot distinguish between the loss

type. In this paper, we assume that a loss occurs either due to a security attack or a non-

security related failure and not both, i.e., a unit of damage cannot occur simultaneously due

to a security and a non-security failure. For example, a file or a part of it that has been

damaged by a security attack cannot be damaged by a non-security fault at the same time.

We assume that cyber-insurers6 offer Aegis contracts to their clients, Aegis contracts

unlike traditional insurance contracts allow the user to rest some fraction of loss recovery

liability upon itself. For example, if the value7 of a loss incurred by an Internet user equals

5A risk is defined as the chance that a user faces a certain amount of loss.

6A cyber-insurer could be an ISP, a third-party agency, or the government.

7In this paper, like in all of existing cyber-insurance literature, we assume that loss and coverage have the
same scalar unit. In reality, this may not be true. As an example, losing a valuable file may not be compensated
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L, and the insurance coverage advertised by an insurer equals L−d, where d ≥ 0, an Aegis

contract would allow its client to rest a fraction, 1 − θ, of the coverage on itself and the

remaining θ part on the cyber-insurer, whereas a traditional contract would fix the value of

θ to 1. Our concept of Aegis contracts are based on the theory of co-insurance in general

insurance literature. It is logical to believe that a user will not prefer a 1 − θ value that

is large as it would mean that it wants to rest a substantial loss recovery liability on itself,

thereby diminishing the importance of buying cyber-insurance. We assume that the value

of θ is fixed between the user and the cyber-insurer prior to contract operation.

Most of our analysis in the paper will revolve around the final wealth of a risk-averse

Internet user who may be subject to risks due to both security attacks and non-security

related failures. We have the following equation regarding its final wealth according to the

Aegis concept:

W = w0 + v − LS − LNS + θ(I(LS)− P ), (5.1)

where W is a random variable representing the final wealth of a user, w0 + v is his constant

initial wealth, with v8 being the constant total value of the object subject to loss as a result

of a security attack or a non-security attack, LS is a random variable denoting loss due

to security attacks, LNS is the random variable denoting loss due to non security related

failures, andI(LS) is the cyber-insurance function that decides the amount of coverage to

be provided in the event of a security-related loss, where 0 ≤ I(LS) ≤ LS . We assume

that both LS and LNS lie in the interval [0, v]. As mentioned previously, a given amount

of loss can be caused either by a security attack or a by a non-security fault and not by

both. In this sense the loss types are not independent but are negatively correlated. P is the

by replacing the same file. In return, monetary compensation may result. Considering appropriate units of
loss and coverage is an area of future work.

8We divide the fixed initial wealth of a user into two parts for modeling simplicity.
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premium9 charged to users in insurable losses and is defined as P = (1+λ)E(I(LS)). λ is

the loading factor and is zero for fair premiums and greater than zero for unfair premiums.

We define θ ε [0, 1] as the level of cyber-insurance liability opted for by a user. For example,

a value of θ = 0.6, implies that the user transfers 60% of its insurance coverage liability

to the cyber-insurer and keeps the rest 40% of the coverage liability on himself, where

the insurance coverage could be either full or partial. We observe from Equation (1) that

depending on the liability level, a user pays proportional premiums to the cyber-insurer.

We define the expected utility of final wealth10 of an Internet user as

E(W ) = A+B + C +D, (5.2)

where

A =

∫ ∫
0<LS≤v,LNS=0

u(w0 + v − LS − LNS + θ(I(LS)− P )) · g(LS, LNS)dL1 · dLNS,

B =

∫ ∫
0<LNS≤V,LS=0

u(w0 + v − LS − LNS + θ(I(LS)− P )) · g(LS, LNS)dLS · dLNS,

C =

∫ ∫
0<LS ,0<LNS

u(w0 + v − LS − LNS + θ(I(LS)− P )) · g(LS, LNS)dLS · dLNS,

and

D = β · u(w0 + v − θ · P ),

with A, B, C, and D being the components of expected utility of final wealth when there is

a loss due to a security attack only, a non-security related failure only, a security attack as

well as a non-security related failure, and no failure of any kind, respectively. u is a twice

9P is the premium corresponding to a θ value of 1, where θ is the level of cyber-insurance liability opted
by a user.

10In economic and risk analyses, dealing with the expected utility of final wealth is a standard approach
and it arises from the von Neumann-Morgenstern model of expected utility [?].
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continuously differentiable risk-averse concave utility function of wealth of a user.

We define the joint probability density function, g(), of LS and LNS as

g(LS, LNS) =


α · fS(LS) 0 < LS ≤ v, LNS = 0

(1− α− β) · fNS(LNS) 0 < LNS ≤ v, LS = 0,

0 0 < LS ≤ v, 0 < LNS ≤ v

(5.3)

where α is the probability11 of loss occurring due to a security attack, and β is the probabil-

ity of no attack due to either a security or a non security attack. fS(LS) and fNS(LNS) are

the univariate density functions of losses due to a security attack and non security attack

respectively. The joint probability density function has three components: 1) the case where

there is a loss only due to a security attack, 2) the case when there is a loss only due to a

non-security related failure, and 3) the case when a loss occurs due to both types of risks.

Based on g(), Equation (5.1) can be re-written as

E(W ) = A1 +B1 + C1, (5.4)

where

A1 =

∫ v

0

u(w0 + v − LS + θ(I(LS)− P ))α · fS(LS)dLS,

B1 =

∫ v

0

u(v0 + v − LNS − θ(P ))(1− α− β) · fNS(LNS)dLNS,

and

C1 = β · u(w0 + v − θ · P ),

with A1, B1, and C1 being the components of expected utility of final wealth when there

is a loss due to a security attack only, a non-security related failure only, and no failure of

11We plan to estimate α using correlation models.
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any kind, respectively.

5.3 Efficacy of Aegis Contracts

In this section, we investigate whether Aegis contracts are preferred by Internet users over

traditional cyber-insurance contracts, and if yes, then under what conditions. In this regard,

we state the following theorems that establish results regarding the user demand for Aegis

contracts when compared to traditional cyber-insurance contracts.

Theorem 10. Risk-averse Internet users always prefer Aegis contracts to traditional cyber-

insurance contracts when non-insurable losses exist, irrespective of whether the cyber-

insurance premium charged in an Aegis contract is fair (λ = 0) or unfair (λ > 0) 12

Proof. Taking the first derivative of E(W ) w.r.t. θ, and equating it to zero, we get the

first order condition as
dE(W )

dθ
= A2 +B2 + C2 = 0, (5.5)

where

A2 =

∫ v

0

u′(w0 + v − LS + θ(ILS − P ))(I(LS)− P )α · fS(LS)dLS,

B2 =

∫ v

0

u′(w0 + v − LNS − θ(P ))(−P )(1− α− β) · fNS(LNS)dLNS,

and

C2 = β · u′(w0 + v − θ · P )(−P ).

12The comparison is based on equal degrees of fairness or unfairness between an Aegis contract and a
traditional cyber-insurance contract.
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Now substituting I(LS) = LS ( indicating full coverage) and θ = 1 (indicating no co-

insurance) into the first order condition, we get

dE(W )

dθ
= A3 +B3 + C3 = 0, (5.6)

where

A3 =

∫ v

0

u′(w0 + v − P )(LS − P )α · fS(LS)dLS,

B3 =

∫ v

0

u′(w0 + v − LS − P )(−P )(1− α− β) · fNS(LNS)dLNS,

and

C3 = β · u′(w0 + v − P )(−P ).

Re-arranging the integrals we get

A3 = u′(w0 + v − P ) · α
∫ v

0

(LS − P )fS(LS)dLS,

and

B3 = (−P )(1− α− β)

∫ v

0

u′(w0 + v − LNS − P )fNS(LNS)dLNS,

Now using the fact that E(I(LS)) = α ·
∫ v

0
LS · fS(LS)dLS = P (fair premiums), we have

the following equation
dE(W )

dθ
= A4 +B4, (5.7)

where

A4 = u′(w0 + v − P )(1− α− β)P

and

B4 = (−P )(1− α− β)

∫ v

0

u′(w0 + v − LNS − P )fNS(LNS)dLNS.
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Since a user has a risk-averse utility function, we have u′(w0 + v − LNS − P ) > u′(w0 +

v − P )∀LNS > 0. Thus, dE(W )
dθ

< 0 at θ = 1. This indicates that the optimal value of θ

is less than 1 for fair insurance premiums. On the other hand, even if we consider unfair

premiums with a load factor λ > 0, we get dE(W )
dθ

< 0. Therefore in this case also the

optimal value of θ is less than 1. �

Implications of Theorem 10. The theorem implies that risk-averse users would always

choose Aegis cyber-insurance contracts over traditional cyber-insurance contracts, when

given an option.

Intuition Behind Theorem 10. In situations where a risk-averse user cannot distinguish

between losses due to a security attack or a non-security failure, he would be conservative

in his investments in insurance (as he could pay premiums and still not get covered due

to a non-insurable loss) and would prefer to invest more in self-effort for taking care of

his own system so as to minimize the chances of a loss. Thus, in a sense the Aegis model

incentivizes risk-averse Internet users to invest more in taking care of their own systems

than simply rest the entire coverage liability upon a cyber-insurer.

Theorem 11. When risks due to non-insurable losses are increased in a first order stochas-

tic dominant13 sense, the demand for traditional cyber-insurance amongst all risk-averse

Internet users decreases.

Proof. Again consider the first order condition

dE(W )

dθ
= A2 +B2 + C2 = 0, (5.8)

13Let X and Y be two random variables representing risks. Then X is said to be smaller than Y in first
order stochastic dominance, denoted as X ≤ST Y if the inequality V aR[X; p] ≤ V aR[Y ; p] is satisfied for
all p ε [0, 1], where V aR[X; p] is the value at risk and is equal to F−1X (p). First order stochastic dominance
implies dominance of higher orders. We adopt the stochastic dominant approach to comparing risks because a
simple comparison between various moments of two distributions may not be enough for a correct prediction
about the dominance of one distribution over another.
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where

A2 =

∫ v

0

u′(w0 + v − LS + θ(ILS − P ))(I(LS)− P )α · fS(LS)dLS,

B2 =

∫ v

0

u′(w0 + v − LNS − θ(P ))(−P )(1− α− β) · fNS(LNS)dLNS,

and

C2 = β · u′(w0 + v − θ · P )(−P ).

We observe that when LNS is increased in a first order stochastic dominant sense14 and

fS(LS) and β remain unchanged, the premium for insurance does not change. An increase

in LNS in the first order stochastic dominant sense increases the magnitude of
∫ v

0
u′(w0 +

v−LNS − θ(P ))(−P )(1−α− β) · fNS(LNS)dLNS , whenever u′(w0 + v−LNS − θ(P ))

is increasing in LNS . This happens when u(W ) is concave, which is the exactly the case

in our definition of u. Thus, an increase in LNS in a first order stochastic dominant sense

leads to the first order expression, dE(W )
dθ

, to become increasingly negative and results in

reductions in θ, implying the lowering of demand for cyber-insurance. �

Implications of Theorem 11. The theorem simply implies the intuitive fact that an

increase in the risk due to non-insurable losses leads to a decrease in the demand of tradi-

tional cyber-insurance contracts, irrespective of the degree of risk-averseness of a user.

Intuition Behind Theorem 11. The implications of Theorem 11 hold as the user would

think that there are greater chances of it being affected by a loss and not being covered

at the same time. An increase in the risk due to non-insurable losses also decreases the

demand for Aegis contracts. However, according to Theorem 10, for the same amount of

14Let X and Y be two random variables representing risks. Then X is said to be smaller than Y in first
order stochastic dominance, denoted as X ≤ST Y if the inequality V aR[X; p] ≤ V aR[Y ; p] is satisfied for
all p ε [0, 1], where V aR[X; p] is the value at risk and is equal to F−1X (p). First order stochastic dominance
implies dominance of higher orders. We adopt the stochastic dominant approach to comparing risks because a
simple comparison between various moments of two distributions may not be enough for a correct prediction
about the dominance of one distribution over another.
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risk, Aegis contracts are preferred to traditional cyber-insurance contracts.

Theorem 12. When the risk due to non-insurable losses increases in the first order stochas-

tic dominant sense, the expected utility of final wealth for any cyber-insurance contract

(Aegis and traditional) falls when compared to the alternative of no cyber-insurance, for

risk averse Internet users.

Proof. The expected utility of any cyber-insurance contract is given by the following

E(W ) = A1 +B1 + C1, (5.9)

where

A1 =

∫ v

0

u(w0 + v − LS + θ(I(LS)− P ))α · fS(LS)dLS,

B1 =

∫ v

0

u(w0 + v − LNS − θ(P ))(1− α− β) · fNS(LNS)dLNS,

and

C1 = β · u(w0 + v − θ · P ).

When θ = 0 (the case for no cyber-insurance), E(W ) reduces to

E(W ) = A1′ +B1′ + C1′, (5.10)

where

A1′ =

∫ v

0

u(w0 + v − LS)α · fS(LS)dLS,

B1′ =

∫ v

0

u(w0 + v − LNS)(1− α− β) · f2(LNS)dLNS,

and

C1′ = β · u(w0 + v).
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Increases in LNS affect only the second terms in each of these utility expressions. Thus,

we need to consider the change in the second order terms in the two utility expressions

to observe the impact of the increase in LNS . The difference in the second order terms is

given as

R1−R2,

where

R1 =

∫ v

0

u(w0 + v − LNS − θ(P ))(1− α− β) · fNS(LNS)dLNS

and

R2 =

∫ v

0

u(w0 + v − LNS)(1− α− β) · fNS(LNS)dLNS.

Thus, R1−R2 evaluates to

∫ v

0

[u(w0 + v − LNS − θ(P ))− u(w0 + v − LNS)](1− α− β) · fNS(LNS)dLNS,

where [u(w0+v−LNS−θ(P ))−u(w0+v−LNS)] is decreasing in LNS under risk aversion

and concave under user prudence. Thus, increases in LNS in the first order stochastic dom-

inant sense reduces the expected utility of cyber-insurance relative to no cyber-insurance.

�

Implications of Theorem 12. Theorem 12 provides us with an explanation of why risk-

averse Internet users would be reluctant to buy cyber-insurance of any kind given an option

between choosing and not choosing insurance, when risks due to non-security related losses

are present along with risks due to security attacks.

Intuition Behind Theorem 12. Theorem 12 holds because the expected utility to a risk-

averse Internet user opting for a zero level of cyber-insurance liability is greater than that

obtained when he opts for a positive level of cyber-insurance liability.

Combining the results in Theorems 10, 11, and 12, we conclude the following:
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• In the presence of non-insurable losses, the market for traditional cyber-insurance

may not exist.

• When risk-averse Internet users have an option between traditional cyber-insurance,

Aegis contracts, and no cyber-insurance, they may prefer the last option. Thus, Aegis

contracts might be preferred by Internet users over traditional cyber-insurance con-

tracts only if it is mandatory for them to buy some kind of insurance. In general,

Internet service providers (ISPs) or cyber-insurance agencies might force its clients

on regulatory grounds to sign up for some positive amount of cyber-insurance to

ensure a more secure and robust Internet.

5.4 Sensitivity Analysis of User Demands

In this section we conduct a sensitivity analysis of user demands for Aegis contracts.

We investigate whether an increase in the premium charged by a contract results in an

increase/decrease in user demand for the contract. The user demand is reflected in the θ

value, i.e., user demand indicates the fraction of loss coverage liability a risk-averse user

is willing to rest on the cyber-insurance agency. In an Aegis contract, to avoid insurance

costs not related to a security attack, a risk-averse user takes up a fraction of loss coverage

liability on himself as it does not know beforehand whether he is affected by a security or

a non security threat. Thus, intuitively, a decrease in a contract premium may not always

lead to a user increasing his demand and analogously an increase in the premium may not

always lead to a decrease in the user demands. The exact nature of the relationship between

the premiums and user demand in this case depends on the degree of risk averseness of a

user. To make the latter statement clear, consider an Internet user who is very risk averse.

It would not matter to that user if there is a slight decrease in the premium amount because

he might still not transfer additional loss coverage liability to the cyber-insurer, given that
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he is unsure about whether the risk he faces is due to a security attack or a non security

related issue. On the other hand a not so risk averse user may not decrease the amount of

loss coverage liability rested upon a cyber-insurer, even if there is a slight increase in the

cyber-insurance premiums. In this section we study the conditions under which there is an

increase/decrease of user demand for Aegis contracts with change in contract premiums.

We first provide the basic setup for sensitivity analysis, which is then followed by the study

of the analysis results.

5.4.1 Analysis Setup

Let a user’s realized final wealth be represented as

W = w − L+ θ(L− P ). (5.11)

Substituting P = λ′E(L), we get

W = w − L+ θ(L− λ′E(L)), (5.12)

where λ′ equals (1 + λ), w is equal to w0 + v, θ lies in the interval [0, 1], λ ≥ 1 is the gross

loading factor of insurance, L = LS+LNS , and λE(L) = α
∫ v

0
L ·fS(L)dL is the premium

payment for full insurance15 withE being the expectation operator. The user is interested in

maximizing his expected utility of final wealth in the von Neumann-Morgenstern expected

utility sense and chooses a corresponding θ to achieve the purpose. Thus, we have the

following optimization problem.

argmaxθE(U(W )) = E[U(w − L+ θ(L− λ′E(L))],

15By the term ‘full insurance’, we imply a user resting its complete loss liability on the cyber-insurer, i.e.,
θ = 1. Full insurance here does not indicate full insurance coverage.
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where 0 ≤ θ ≤ 1. The first order condition for an optimum θ is given by

E ′θ(U(W )) = E[U ′(W )(L− λ′E(L))] = 0, (5.13)

which occurs at an optimal θ = θ∗. Integrating by parts the LHS of the first order condition

and equating it to zero, we get

M1 +M2 = 0, (5.14)

where

M1 = U ′(W (0))

∫ v

0

(L− λ′E(L))dFS(L)

and

M2 =

∫ v

0

U ′′(W (L))W ′(L)

(∫ v

L

(t− λ′E(L))dFS(t)

)
dL.

Here W (x) is the value of W at L = x and W ′(L) = −(1 − θ) ≤ 0. The second order

condition is given by

E ′′θ (U(W )) = E[U ′′(W )(L− λ′E(L))2] < 0, (5.16)

which is always satisfied for U ′′ < 0. We now consider the following condition C, which

we assume to hold for the rest of the paper.

Condition C - The utility function U for a user is twice continuously differentiable, thrice

piecewise continuously differentiable16 and exhibits U ′ > 0, U ′′ < 0 with the coefficient of

risk aversion, A, being bounded from above.

The condition states the nature of the user utility function U , which is in accordance

with the standard user utility function used in the insurance literature, with the additional

restriction of thrice piecewise continuous differentiability of U to make the coefficient of

16We consider the thrice piecewise continuously differentiable property of U so that A′(W ) becomes
piecewise continuous and is thus defined for all W .
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risk aversion well-defined for all W . We adopt the standard Arrow-Pratt risk aversion

measure [25], according to which the coefficient of risk aversion is expressed as (i) A =

A(W ) = −U ′′(W )
U ′(W )

for an absolute risk averse measure and (ii) R = R(W ) = −WU ′′(W )
U ′(W )

for

a relative risk averse measure.

5.4.2 Sensitivity Analysis Study

In this section we study the change in user demands for Aegis contracts with variations

in cyber-insurance premiums, under two standard risk-averse measures: (1) the decreas-

ing absolute risk averse measure and (2) the decreasing relative risk averse measure. The

term ‘decreasing’ in both the risk measures implies that the risk averse mentality of users

decrease with the increase in their wealth, which is intuitive from a user perspective. We

are interested in investigating the sign of the quantity, dθ∗

dλ′
. The nature of the sign drives

the conditions for an Aegis contract to be either more or less preferred by Internet users

when there is an increase in the premiums, i.e., if dθ∗

dλ′
≤ 0, an increase in cyber-insurance

premium implies decrease in user demand, and dθ∗

dλ′
≥ 0 implies an increase in user demand

with increase in premiums.

We have the following theorem and its corresponding proposition related to the con-

ditions under which Internet users increase or decrease their demands for Aegis contracts,

when the users are risk-averse in an absolute sense.

Theorem 13. For any arbitrary w, λ′, F , and any U satisfying condition C, (i) dθ∗

dλ′
≥ 0 if

and only if there exists ρ εR such that

∫ w

L

[A(W (x))θ∗(x− λ′E(L))− 1]dF (x) ≥ ρ

∫ w

L

θ∗(x− λ′E(L))dF (x), (5.17)
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and (ii) dθ∗

dλ′
< 0 if and only if there exists ρ εR such that

∫ w

L

[A(W (x))θ∗(x− λ′E(L))− 1]dF (x) < ρ

∫ w

L

θ∗(x− λ′E(L))dF (x), (5.18)

where L ε [0, w] and F (·) is the distribution function of loss L.

Proof. We know that dθ∗

dλ′
= −E′

θλ′
E′′θ

. Now dθ∗

dλ
≤ 0 if and only if the following relation-

ship holds because E ′′θ < 0.

E ′θλ′(U(W (L))) = E[−U ′′(W (L))θ∗E(L)(L− λ′E(L))− U ′(W (L))E(L)] ≤ 0 (5.19)

or

E

{(
A(W (L))− 1

θ(L− λ′E(L))

)
U ′(W (L))(L− λ′E(L)

}
≤ 0 (5.20)

The LHS of Equation (5.19) can be expressed via integration by parts as

∫ w

0

[A(W (L))θ∗(L− λ′E(L))− 1]U ′(W (L))dF (L)

which evaluates to

X + Y,

where

X = U ′(W (0))

∫ w

0

[A(W (L))θ∗(L− λ′E(L))− 1]dF (L)

and

Y =

∫ w

0

U ′′(W (L))W ′(L)

{∫ w

L

[A(W (t))θ∗(x− λ′E(L))− 1]dF (x)

}
dL.
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Now X + Y ≥M +N , where

M = U ′(W (0))

∫ w

0

ρ(L− λ′E(L))dF (L)

and

N =

∫ w

0

U ′′(W (L))W ′(L) ·
(
ρ

∫ w

L

(x− λ′E(L))dF (x)

)
dL.

Thus, dθ
∗

dλ′
≥ 0, and the sufficient condition is proved. The proof of the necessary condition

follows from Proposition 1’ in [15]. Reversing Equation (5.16) we get the necessary and

sufficient conditions for dθ∗

dλ′
≤ 0, which is condition (ii) in Theorem 13. �

Proposition 1. There exists a ρ εR − {0} such that Theorem 4 holds if the following two

conditions are satisfied.
(1− θ∗)A′

A
≤ θ∗A (5.21)

and ∫ w

0

A(W (L))

{
L− λ′E(L)− 1

θ∗A(W (L))

}
dF (L) > 0 (5.22)

Proof. We observe the following relation

E1 < E2, (5.23)

where

E1 =

∫ w

0

A(W (L))

{
L− λ′E(L)− 1

θ∗A(W (L))

}
dF (L)

and

E2 =

∫ w

0

A(W (L))(L− λ′E(L))dF (L).
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Thus, from Equation 21 in the theorem statement, we have

∫ w

0

A(W (L))(L− λ′E(L))dF (L) > 0 (5.25)

According to Lemma 2 in [15], there exists ρ∗ εR − {0} such that the following relation

holds for all L ε [0, w].

∫ w

L

A(W (x))(x− λ′E(L))dF (x) ≥ ρ∗
∫ w

L

(x− λ′E(L))dF (x) (5.26)

Now, d[L−λ′E(L)−(θ∗A(W (L)))−1]
dL

≥ 0 if and only if (1 − θ∗A
′

A
≤ θ∗A. Since both L −

λ′E(L))d(F (x) and L − λ′E(L) − (θ∗A(W (L)))−1 are increasing and become negative

when L is sufficiently small, and using arguments presented in Lemma 2 in [15], we can

show that Equations (5.21) and (5.22) imply

∫ w

L

A(W (t))(t− λ′E(L))d(F (t) > 0 (5.27)

and ∫ w

L

A(W (t))[t− λ′E(L)− (θ∗A(W (t)))−1]dF (t) > 0. (5.28)

for all L ε [0, w]. Now choosing a δ > 0 sufficiently small gives

P1 > P2 > 0, (5.29)

where

P1 =

∫ w

L

A(W (t))[t− λ′E(L)− (θ∗A(W (t)))−1]dF (t)

and

P2 = δ

∫ w

L

A(W (t))(t− λ′E(L))d(F (t),
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for all L ε [0, w]. Now, setting ρ = ρ∗δ, we get for all L ε [0, w], the following relation

∫ w

L

A(W (t))[t− λ′E(L)− (θ∗A(W (t)))−1]dF (t) ≥ ρ

∫ w

L

(t− λ′E(L))dF (t) (5.30)

This proves the proposition. �

Notes on Theorem 13 and Proposition 1. Theorem 13 and Proposition 1 are related to

each other in the sense that Theorem 13 provides the necessary and sufficient conditions

under which Internet users increase/decrease demands of Aegis contracts. The intuition

behind the result in Theorem 13 is based on expected utility comparisons. For an increase in

the λ value, the expected utilities of a user are compared with and without a corresponding

increase in θ value. We say that user demands for Aegis contracts increase (decrease) if

there is an increase (decrease) in expected utility with an increase in the θ value, and we

find the conditions for such situations to arise. Proposition 1 states that Theorem 13 always

holds provided certain conditions are met.

We have the following theorem that states the conditions under which Internet users

increase or decrease their demands for Aegis contracts, when the users are risk averse in a

relative sense.

Theorem 14. For any arbitrary w, λ′, F , and any U satisfying condition C, (i) dθ∗

dλ′
≥ 0

only if R(W ) > 1 and (ii) dθ∗

dλ′
< 0 only if R(W ) ≤ 1, where W ε [W (w),W (0)].

Proof. We can rewrite Equation (5.16) as follows

∫ w

L

{θ∗[A(W (x))− ρ](x− λ′E(L))− 1}dF (x) ≥ 0, (5.31)

which can be further rewritten as

∫ w

L

{(R(W (x))− 1)− A(W (x))(w0 − x)− ρ(x− λ′E(L))}dF (x) ≥ 0. (5.32)
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The integral in Equation (5.23) is non-negative for all L ε [0, w] only if R(W ) > 1 for some

W . To see this it suffices to realize that −A(W (L))(w0 − L) < 0 for all L ε [0, w) as

L ≤ w0 and there exists L ε [0, w] at which −
∫ w
L
ρ(L − λ′E(L))dF (x) < 0 as

∫ w
L

(x −

λ′E(L))dF (x)) alternates in sign on (0, w). Now suppose by contradiction thatR(W ) ≤ 1

for all W . Substituting this into Equation (5.23) violates the condition stated in Equation

22 for some L ε [0, w]. Again by Theorem 13, we have that there exists utility function U

satisfying condition C such that dθ∗

dλ′
≥ 0 - a contradiction. Since F is arbitrary, the result

(i) in the theorem follows. By reversing the sign of the condition on R(W ) the result (ii) in

the theorem follows. �

Implications of Theorem 14. The theorem implies that above a certain level of the

degree of relative risk averseness, a user prefers Aegis contracts even if there is an increase

in contract premiums.

Intuition Behind Theorem 14. The coefficient of relative risk aversion is measured

relative to the wealth of a user and thus more his wealth, lesser would be his concerns about

losing money due to paying more cyber-insurance premiums, and not getting coverage on

being affected by a non-security failure. The intuition is similar for the case when below a

certain threshold of relative risk averseness, users reduce their demand for Aegis contracts.
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Chapter 6

Insurance Under User Cooperation

6.1 Chapter Introduction

In none our previous chapters as well as in [24][21][42][28], the authors do not consider

the co-operative and the non-cooperative nature of network users and the effect this has

on the overall level of security and appropriate user self-defense investments. We note

that the case of co-operating users is important for the following reasons: (1) It invites

an opportunity for a user to benefit from the positive externality that its investment poses

on the other users in the network, and (2) Although, the majority of Internet users today

are non co-operative and selfish in nature, i.e., they are primarily interested in maximiz-

ing their own performance without caring for the overall system performance, there exist

Internet applications where co-operation amongst users is encouraged (e.g., distributed file

sharing in peer-to-peer environments, multicasting, and efficient network resource sharing).

Although, in such applications Internet users co-operate to improve performance, it is not

evident that the same users are incentivized to co-operate on their security parameters (e.g.,

self-defense investment) as well.

Hence in this chapter, we investigate the problem of appropriate self-defense invest-

ments under insurance regulation1, given that Internet users are fully or partially covered

by Internet insurance and that Internet users can be both, co-operative and non-co-operative

with respect to their self-defense investment amounts.

1The term ‘insurance regulation’ refers to the act of making sure that insurance contracts are enforced by
concerned parties in a proper and legal manner.
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6.2 Economic Model

In this section, we give a brief description of a representative application, namely for ease

of presentation we focus the discussion on botnet risks. We also give a description of our

proposed model.

6.2.1 Representative applications

There are a number of applications where our model is useful. In this chapter, we describe

‘botnets’ as a representative example of Internet threats. That is, we use botnets here as a

real and useful application; however our approach can be applied to other applications with

direct/indirect risk scenarios (e.g., worms and viruses). A bot is an end-user machine con-

taining code that can be controlled by a remote administrator (bot herder) via a command

and control network. Bots are created by finding vulnerabilities in computer systems. The

vulnerabilities are exploited with malware and the malware is then inserted into the sys-

tems. A bot herder can subsequently program the bots and instruct them to perform various

types of cyber-attacks. A malware infected computing device is susceptible to information

theft from it. The infected device can become part of a botnet and in turn can be used to

scan for vulnerabilities in other computer systems connected to the Internet, thus creating

a cycle that rapidly infects vulnerable computer systems. Hence, bots result in both direct

and indirect losses. Direct losses result when the bot herder infects machines that lack a

security feature, whereas indirect losses result due to the contagion process of one machine

getting infected by its neighbors.

Risks posed by bots are extremely common and spread rapidly. In a recent study,

Symantec corporation observed approximately five million distinct bot-infected comput-

ers within a period of just six months between July, 2007 and December, 2007[24]. We

also assume that Internet users could buy insurance from their Internet service providers
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(ISPs) to cover the risks posed by botnets. For instance, the coverage could be in the form

of money or protection against lost data.

6.2.2 Model

We consider n identical2 rational risk-averse users in a network. The users could be (1)

entirely non co-operative in nature, i.e., the network supports Internet applications where

users are not incentivized to co-operate with other users in any capacity (e.g., web surf-

ing) or (2) co-operative to a variable degree, i.e, the network supports Internet applica-

tions where users co-operate with other users in some capacity to improve overall system

performance but may or may not co-operate entirely. The users could either voluntarily

co-operate by sharing information with other network users about their intentions to invest

in self-defense, or be bound to co-operate due to a network regulation which requires par-

ticipating users to share self-defense investment information. Each user has initial wealth

w0 and is exposed to a substantial risk of size R with a certain probability p0. (Here, risk

represents the negative wealth accumulated by a user when it is affected by botnet threats.)

We also assume there exist markets for self-defense and cyber-insurance.

A user investing in self-defense mechanisms reduces its risk probability. For an amount

x, invested in self-defense, a user faces a risk probability of p(x), which is a continuous

and twice differentiable decreasing function of investment, i.e., p′(x) < 0, p′′(x) > 0,

limx→∞p(x) = 0, and limx→∞p
′(x) = 0.

The investment x is a function of the amount of security software the user buys and

the effort it spends on maintaining security settings on its computing device. In addition to

investing in self-defense mechanisms, a user may also buy full or partial cyber-insurance

coverage at a particular premium to eliminate its residual risk. A user does not buy insur-

2In general, Internet users are not identical. However, our aim in this chapter is to study certain general
investment trends which we show, remain intact even if users are heterogenous.
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ance for high probability low risk events because 1)these events are extremely common

and does not cause sufficient damage to demand insurance solutions and 2) the insurance

company also has reservations in insuring every kind of risk for profit purposes. We assume

that the insurance market is perfectly competitive with no barriers to entry and exit, which

results in actuarially fair premiums. We also account for the fact that the system does not

face the moral hazard problem, i.e., a user insulated from risk does not behave differently

from the way it would behave if it were fully exposed to the risk.

An Internet user apart from being directly affected by threats may be indirectly

infected by the other Internet users. We denote the indirect risk facing probability of

a user i as q(−→x −i, n), where −→x −i = (x1, ......, xi−1, xi+1, ...., xn) is the vector of self-

defense investments of users other than i. An indirect infection spread is either ‘per-

fect’ or ‘imperfect’ in nature. In a perfect spread, infection spreads from a user to other

users in the network with probability 1, whereas in case of imperfect spread, infection

spreads from a user to others with probability less than 1. For a perfect information

spread q(−→x −i, n) = 1 −
∏n

j=1,j 6=i(1 − p(xj)), whereas in the case of imperfect spread,

q(−→x −i, n) < 1 −
∏n

j=1,j 6=i(1 − p(xj)). In this chapter, we consider perfect spread only,

without loss of generality because the probability of getting infected by others in the case

of imperfect spread is less than that in the case of perfect spread, and as a result this case

is subsumed by the results of the perfect spread case. Under perfect spread, the risk proba-

bility of a user i is given as

p(xi) + (1− p(xi))q(−→x −i, n) = 1−
n∏
j=1

(1− p(xj))

and its expected final wealth upon facing risk is denoted as w0−xi−(1−
∏n

j=1(1−p(xj)) ·

IC)−R + IC, where (1−
∏n

j=1(1− p(xj)) · IC is the fair premium and IC denotes the

insurance coverage. In this chapter, we use the terms ‘final wealth’ and ‘expected final
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wealth’ interchangeably. The aim of a network user is to invest in self-defense mechanisms

in such a manner so as to maximize its expected utility of final wealth.

6.3 Framework for Full Insurance Coverage

In this section, we assume full cyber-insurance coverage and propose a general mathemat-

ical framework for deciding on the appropriate self-defense investment of an Internet user.

We model the following risk management scenarios: (1) users do not co-operate and do

not get infected by other users in the network, (2) users co-operate and may get infected

by other users in the network, (3) users do not co-operate but may get infected by other

users in the network, and (4) users co-operate but do not get infected by other users in the

network. We note that Case 4 is a special case of Case 2 and thus is subsumed in the results

of Section 6.3.2.

6.3.1 Case 1: No Co-operation, No Infection Spread

Under full insurance, the risk is equal to the insurance coverage, and users determine their

optimal amount of self-defense investment by maximizing their level of final wealth, which

in turn is equivalent to maximizing their expected utility of wealth [19]. We can determine

the optimal amount of self-defense investment for each user i by solving for the value of p

that maximizes the following constrained optimization problem:

argmaxxiFWi(xi) = w0 − xi − p(xi)R−R + IC

or

argmaxxiFWi(xi) = w0 − xi − p(xi)R
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subject to

0 ≤ p(xi) ≤ p0,

where FWi is the final wealth of user i and p(xi)R is the actuarially fair premium for full

insurance coverage. Taking the first and second derivatives of FWi with respect to xi, we

obtain

FW ′
i (xi) = −1− p′(xi)R

FW ′′
i (xi) = −p′′(xi)R < 0

Thus, our objective function is globally concave. Let xopti be the optimal xi obtained by

equating the first derivative to 0. Thus, we have:

p′(xopti )R = −1. (6.1)

Economic Interpretation: The left hand side (LHS) of Equation (6.1) is the marginal

benefit of investing an additional dollar in self-protection mechanisms, whereas the right

hand side (RHS) denotes the marginal cost of the investment. A user equates the LHS with

the RHS to determine its self-defense investment.

Conditions for Investment: We first investigate the boundary costs. The user will not

consider investing in self-defense if p′(0)R ≥ −1 because its marginal cost of investing

in any defense mechanism, i.e., -1, will be relatively equal to or lower than the marginal

benefit when no investment occurs. In this case, xopti = 0. If the user invests such that it has

no exposure to risk, xopti = ∞. When p′(0)R < −1, the costs do not lie on the boundary,

i.e., 0 < xopti <∞, and the user invests to partially eliminate risk (see Equation (6.1)).
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6.3.2 Case 2: Co-operation, Infection spread

Under full insurance coverage, user i’s expected final wealth is given by

FWi = FW (xi,
−→x −i) = w0 − xi − (1−

n∏
j=1

(1− p(xj)))R

When Internet users co-operate, they jointly determine their optimal self-defense invest-

ments. We assume that co-operation and bargaining costs are nil. In such a case, according

to Coase theorem [41], the optimal investments for users are determined by solving for the

socially optimal investment values that maximize the aggregate final wealth (AFW) of all

users. Thus, we have the following constrained optimization problem:

argmaxxi,−→x −iAFW = nw0 −
n∑
i=1

xi − n(1−
n∏
j=1

(1− p(xj)))R

0 ≤ pi(xi) ≤ p0, ∀i

Taking the first and the second partial derivatives of the aggregate final wealth with respect

to xi, we obtain

∂

∂xi
(AFW ) = −1− np′(xi)

n∏
j=1,j 6=i

(1− p(xj))R

∂2

∂x2
i

(AFW ) = −np′′(xi)
n∏

j=1,j 6=i

(1− p(xj))R < 0

The objective function is globally concave, which implies the existence of a unique solution

xopti (−→x −i), for each −→x −i. Our maximization problem is symmetric for all i, and thus

the optimal solution is given by xopti (
−→
xopt−i ) = xoptj (

−→
xopt−j ) for all j = 2, ...., n. We obtain

the optimal solution by equating the first derivative to zero, which gives us the following
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equation

np′(xopti (−→x −i))
∏

j=1,j 6=i

(1− p(xi))R = −1 (6.2)

Economic Interpretation: The left hand side (LHS) of Equation (6.2) is the marginal

benefit of investing in self-defense. The right hand side (RHS) of Equation (6.2) is

the marginal cost of investing in self-defense, i.e., -1. We obtain the former term of

the marginal benefit by internalizing the positive externality3, i.e., by accounting for

the self-defense investments of other users in the network. The external well-being

posed to other users by user i when it invests an additional dollar in self-defense is

−p′(xi)
∏n

j=1,j 6=i(1 − p(xi)). This is the amount by which the likelihood of each of the

other users getting infected is reduced, when user i invests an additional dollar.

Conditions for Investment: If np′(0)
∏n

j=1,j 6=i(1 − p(xj))R ≥ −1, it is not optimal

to invest any amount in self-defense because the marginal cost of investing in defense

mechanisms is relatively equal to or less than the marginal benefit of the joint reduction in

risks to individuals when no investment occurs. In this case, the optimal value is a boundary

investment, i.e., xopti (−→x −i) = 0. If the user invests such that it has no exposure to risk,

xopti =∞. In cases where np′(0)
∏n

j=1,j 6=i(1− p(xj))R < −1, the optimal probabilities do

not lie on the boundary and the user invests to partially eliminate risk (see Equation (6.2)).

6.3.3 Case 3: No Co-operation, Infection Spread

We assume that users do not co-operate with each other on the level of investment, i.e.,

users are selfish. In such a case, the optimal level of self-defense investment is the pure

strategy Nash equilibria of the normal form game, G = (N,A, ui(s)), played by the users

3Internalizing a positive externality refers to rewarding a user, who contributes positively and without
compensation, to the well-being of other users, through its actions.
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[11]. The game consists of two players, i.e., |N | = n; the action set of G is A =
∏n

i=1×Ai,

where Ai ε [0,∞], and the utility/payoff function ui(s) for each player i is their individual

final wealth, where s ε
∏n

i=1×Ai. The pure strategy Nash equilibria of a normal form game

is the intersection of the best response functions of each user [11].

We define the best response function of user i, xbesti (−→x −i), as

xbesti (−→x −i) ε argmaxxiFWi(xi,
−→x −i),

where

FWi(xi,
−→x −i) = w0 − xi − (1−

n∏
j=1

(1− p(xj)))R

Taking the first and second partial derivative of FWi(xi,
−→x −i)with respect to xi and equat-

ing it to zero, we obtain

∂

∂xi
(FWi(xi,

−→x −i)) = −1− p′(xi)
n∏

j=1,j 6=i

(1− p(xj))R

∂2

∂x2
i

(FWi(xi,
−→x −i)) = −p′′(xi)

n∏
j=1,j 6=i

(1− p(xj))R < 0

Thus, our objective function is globally concave, which implies a unique solution

xbesti (−→x −i) for each −→x −i. We also observe that a particular user i’s strategy complements

user j’s strategy for all j, which implies that only symmetric pure strategy Nash equilibria

exist. The optimal investment for user i is determined by the following equation:

∂

∂xi
(FWi(xi,

−→x −i)) =

−1− p′(xi)
n∏

j=1,j 6=i

(1− p(xj))R = 0 (6.3)

Economic Interpretation: The left hand side (LHS) of Equation (6.3) is the marginal
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benefit of investing in self-defense. The right hand side (RHS) of Equation (6.3) is the

marginal cost of investing in self-defense, i.e., -1. Since the users cannot co-operate on the

level of investment in self-defense mechanisms, it is not possible for them to benefit from

the positive externality that their investments pose to each other.

Conditions for Investment: If p′(0)
∏n

j=1,j 6=i(1 − p(xj))R ≥ −1, it is not optimal to

invest any amount in self-defense because the marginal cost of investing in defense mech-

anisms is greater than the marginal benefit of the joint reduction in risks to individuals

when no investment occurs. In this case, the optimal value is a boundary investment, i.e.,

xbesti (−→x −i) = 0. If the user invests such that it has no exposure to risk, xopti = ∞. In

cases where p′(0)
∏n

j=1,j 6=i(1 − p(xj))R < −1, the optimal probabilities do not lie on the

boundary and the user invests to partially eliminate risk (see Equation (6.3)).

Multiplicity of Nash Equilibria: Due to the symmetry of our pure strategy Nash equilib-

ria and the increasing nature of the best response functions, there always exists an odd num-

ber of pure-strategy Nash equilibria, i.e., xbesti (−→x best
−i ) = xbestj (−→x best

−j ) for all j = 2, . . . , n.

6.4 Comparative Study

In this section, we compare the optimal level of investments in the context of various cases

discussed in the previous section. Our results are applicable to Internet applications where

a user has the option to be either co-operative (e.g., distributed file sharing applications) or

non-cooperative with respect to security parameters.

6.4.1 Case 3 versus Case 1

(6.3) The following lemma gives the result of comparing Case 3 and Case 1.

Lemma 1. If Internet users do not co-operate on their self-defense investments (i.e.,

do not account for the positive externality posed by other Internet users), in any Nash
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equilibrium in Case 3, the users inefficiently under-invest in self-defense as compared to

the case where users do not cooperate and there is no infection spread.

Proof. In Case 1, the condition for any user i not investing in any self-defense is

−p′(0)R ≤ 1. The condition implies that−1−p′(0)
∏n

j=1,j 6=i(1−p(xj))R < 0 for all−→x −i.

The latter expression is the condition for non-investment in Case 3. Thus, for all users i,

xopti = 0 in Case 1 implies xbesti = 0 in Case 3, i.e., xopti (
−→
xopt−i ) = xbesti (

−−→
xbest−i ) = 0,∀i.

The condition for optimal investment of user i in Case 1 is −1 − p′(xi)R = 0. Hence,

−1 − p′(xi)
∏n

j=1,j 6=i(1 − p(xj))R < 0, for all x−i. Thus, in situations of self-investment

for user i, xopti > 0 in Case 1 implies 0 ≤ xbesti < xopti , for all x−i, in Case 3, i.e.,

xopti (
−→
xopt−i ) > xbesti (

−−→
xbest−i ) ≥ 0,∀i. Therefore, under non-cooperative settings, a user always

under-invests in self-defense mechanisms. �

6.4.2 Case 3 versus Case 2

The following lemma gives the result of comparing Case 3 and Case 2.

Lemma 2. Under environments of infection spread, an Internet user co-operating with

other users on its self-defense investment (i.e., accounts for the positive externality posed

by other Internet users), always invests at least as much as in the case when it does not

co-operate.

Proof. In Case 2, the condition for any user i not investing in any self-defense

mechanism is −1 − np′(0)(1 − p(0))n−1R ≤ 0. The condition also implies that

−1 − np′(0)(1 − p(0))n−1R ≤ 0. The latter expression is the condition in Case 3

for an Internet user not investing in any self-defense mechanism. Thus, for all users

i, xopti = 0 in Case 2 implies xbesti = 0, for all Nash equilibrium in Case 3, i.e.,

xopti (
−→
xopt−i ) = xbesti (

−−→
xbest−i ) = 0,∀i. The condition for optimal investment of each user i

in Case 2 is −1− np′(xopti (
−→
xopt−i )(1− p(x

opt
i (
−→
xopt−i ))

n−1R = 0. The latter expression implies

−1 − p′(xopti (
−→
xopt−i )(1 − p(xopti (

−→
xopt−i ))

n−1R < 0. Hence xopti (
−→
xopt−i ) > xbesti (

−−→
xbest−i ) ≥ 0,∀i.
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Therefore, under environments of infection spread, a user in Case 3 always under invests

in self-defense mechanisms when compared to a user in Case 2. �

6.4.3 Case 2 versus Case 1

The following lemma gives the result of comparing Case 2 and Case 1.

Lemma 3. In any n-agent cyber-insurance model, where p(0) < 1 − n−1

√
1
n

, it is

always better for Internet users to invest more in self-defense in a co-operative setting with

infection spread than in a non-co-operative setting with no infection spread.

Proof. In Case 1, the condition for any user i not investing in any self-defense is

−p′(0)R ≤ 1. The condition implies that −1 − np′(0)(1 − p(0))n−1R ≤ 0 for all

p0 < 1 − n−1

√
1
n

. Thus, for all i, xopti (
−→
xopt−i ) = 0 in Case 1 implies xopti (

−→
xopt−i ) ≥ 0 in

Case 3 if and only if p0 < 1− n−1

√
1
n

. In situations of non-zero investment

−1− np′(xi(−→x −i))(1− p(xi(−→x −i))n−1)R >

−1− p′(xi(−→x −i)),∀i, ∀xi(−→x −i),

if and only if p(xi(−→x −i)) < 1− n−1

√
1
n

. Hence,

−1− np′(xopti (
−→
xopt−i )(1− p(x

opt
i (
−→
xopt−i ))

n−1)R >

−1− p′(xopti (
−→
xopt−i )),∀i,

where xopti (
−→
xopt−i ) is the optimal investment in Case 2. Since the expected final wealth of

a user in Case 1 is concave in xi(−→x −i), xopti (
−→
xopt−i ) in Case 2 is greater than xopti (

−→
xopt−i ) in

Case 1. Thus, we infer that investments made by users in Case 2 are always greater than

those made by users in Case 1 when the risk probability is less than a threshold value that

decreases with increase in the number of Internet users. Hence, in the limit as the number
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of users tends towards infinity, the lemma holds for all p0. �

The basic intuition behind the results in the above three lemmas is that internalizing the

positive effects on other Internet users leads to better and appropriate self-defense invest-

ments for users. We also emphasize that our result trends hold true in case of heteroge-

nous network users because irrespective of the type of users, co-operating on investments

always leads to users accounting for the positive externality and investing more efficiently.

The only difference in case of heterogenous network user scenarios could be the value of

probability thresholds i.e., p(0) (this value would be different for each user in the network),

under which the above lemmas hold.

Based on the above three lemmas, we have the following theorem.

Theorem 15. If Internet users cannot contract on the externalities, in any Nash equi-

librium, Internet users inefficiently under-invest in self-defense, that is compared to the

socially optimal level of investment in self-defense. In addition, in any Nash equilibrium,

a user invests less in self-defense than if they did not face the externality. Furthermore, if

p(0) < 1 − n−1

√
1
n

, the socially optimal level of investment in self-defense is higher com-

pared to the level if Internet users did not face the externality.

Proof. The proof follows directly from the results in Lemmas 1, 2, and 3. �
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this dissertation we analyzed the existence and success of potential cyber-insurance mar-

kets. We showed that without client contract discrimination, cyber-insurers offering full

insurance coverage can entail the existence of markets, i.e., existence of a market equilib-

rium, but cannot guarantee themselves of making strictly positive profits. These markets

do not maximize the social welfare in a network, cannot help alleviate the moral hazard

problem, and result in sub-optimal network security. Surely these markets will not be suc-

cessful and stable in the long run as it makes multiple stakeholders unsatisfied. In order

to overcome these issues we proposed client contract discrimination on behalf of monop-

olistic insurers that alleviates the moral hazard problem and entail markets that result in

optimal network security. However, the insurer is still not guaranteed to make strictly pos-

itive profits in these markets. We alleviate this problem by fixing a insurer profit choice of

value k, and designing premium discriminating contracts that ensure a profit of k and at the

same time maximize social welfare.

We addressed the problem of making strictly positive profits using a symbiotic rela-

tionship between a market entity and a cyber-insurer. For example, a security vendor

(e.g., Symantec or Microsoft) can enter the cyber-insurance ecosystem and via a symbi-

otic relationship between the insurer (through exchange of logical/social client topological

information and lock-in privileges for profit shares of the SV) can increase its profits and

subsequently enable the cyber-insurer to always make strictly positive profits keeping the
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social welfare state identical. As a special case, the security vendor could be the cyber-

insurer itself. According to basic micro-economic theory, pricing techniques based on such

additional client information (be it perfect or imperfect) generates extra profits for SVs

compared to their traditional pricing methods. In the process, an SV could also ensure a

lock-in effect amongst its insurance clients (e.g., via an ISP) by enforcing the latter to buy

security products only from their SV, in turn increasing the demand for security products.

One advantage of this approach is that fines and rebates could be fairly split amongst the

network users based on network structure, and the amount of externalities each user gener-

ates in the network via his investments, instead of just charging a fixed fine/rebate for high

and low risk users In addition, the symbiotic approach would also allow a cyber-insurer

to appropriately allocate its safety capital costs amongst clients. In this dissertation we

showed via theory and simulations that (i) price discriminating consumers in proportion

to the Bonacich centrality of individual users results in maximum profits for an SV and

at the same time makes each client incur a constant total cost in self-defense investments,

thus ensuring consumer fairness, (ii) an SV could make up to 25% additional profits (rela-

tive to our model) with perfect client information, (iii) the problem of price discriminating

consumers in order to maximize SV profits when there are only two price categories, i.e.,

regular and discounted, is NP-Hard, and (iv) there exists an an approximation algorithm to

the binary pricing problem that provides an approximation guarantee of 0.878 within the

optimal solution of the total profit made by an SV.

We proposed Aegis, a novel cyber-insurance model in which an Internet user accepts

a fraction (strictly positive) of loss recovery on himself and transfers the rest of the loss

recovery on the cyber-insurance agency. Our model is specifically suited to situations

when a user cannot distinguish between similar types of losses that arise due to either a

security attack or a non-security related failure. We showed that given an option, Inter-

net users would prefer Aegis contracts to traditional cyber-insurance contracts, under all
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premium types. The latter result firmly establishes the non-existence of traditional cyber-

insurance markets when Aegis contracts are offered to users. Furthermore, the Aegis model

incentivizes risk-averse Internet users to invest more in taking care of their own systems

than simply rest the entire coverage liability upon a cyber-insurer. We also derived two

interesting counterintuitive results related to the Aegis framework, i.e., we showed that an

increase (decrease) in the premium of an Aegis contract may not always leads to a decrease

(increase) in its user demand. Finally, through a simple model of cyber-insurance we show

that only under conditions when buying some type of cyber-insurance is made mandatory,

does a market exist, and that too for idealistic situations when information asymmetry is

absent. Thus, it is important that (i) the insuring agency (if it is not the ISP or the govern-

ment) partners with the regulators to make cyber-insurance mandatory for Internet users,

and (ii) information asymmetry be taken into equation to check whether a market for cyber-

insurance can be made to exist in its presence.

We investigated the problem of self-defense investments in the Internet, under the full

insurance and partial insurance coverage models. We showed that co-operation amongst

users results in efficient self-defense investments than those in a non-cooperative setting,

and result in social welfare maximization under a full insurance coverage model.

7.2 Open Challenges

In this section, we look at some important open challenges not addressed in the dissertation.

• One drawback of this dissertation is we assume that an insurer can stochastically

observe user investment amounts and infer their risk type. This partially incorpo-

rates the adverse selection problem in the model. However, as part of future work it

remains to be investigated whether there would exist efficient cyber-insurance mar-

kets when the insurer can make no observations on client investments, or is given
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false information by the clients. We strongly feel that the theory of mechanism

design in economics should be a good starting point in allowing us to address the

information asymmetry problem in network settings an appropriate manner.

• An important problem that remains to be explored is to find ways to satisfy all mar-

ket stakeholders under non-compulsory cyber-insurance in an oligopolistic setting.

Compulsory insurance is still quite a distance from being deployed in practice and

thus designing models to decide whether improvement of network security is possi-

ble under non-compulsory insurance is an important direction of future research. In

addition, there will be multiple insurance companies existing in practice and com-

peting against one another. Therefore, it is an important research challenge to derive

models that ensure market efficiency and jointly satisfy market stakeholders.

• An important research question is to analyze the effect of the presence of multiple

SVs on consumer pricing. In the case when the SV client set are clustered into

sparse pockets for different SVs, each pocket acts as a monopoly zone. However,

in reality SV client sets will be overlapped and in such a scenario it is challenging

to estimate externality effects for each individual SV client set and implement the

pricing mechanisms proposed in this dissertation. One way to approach this problem

is to trade externality information between multiple SVs, under a regulator.

• In this work, we characterize attacks as being exogenous in nature rather than strate-

gic. However, in reality a large share of cyber-attacks is strategic, and research in

this direction appears overdue. With the view of strategic attackers, increased net-

work security may have a positive externality on aggregate network losses, because

with higher security, attacker costs might increase, and gains decrease. Attackers

reacting to changed incentives might hence seek for alternative (and hopefully more
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benign) activities. We suggest modeling attackers as players, with objective func-

tions, information sets, and actions. Our framework naturally extends to include

strategic attackers, but it may be hard to choose reasonable assumptions and parame-

ters for their capability. Attackers could be modeled as an additional class of players

or as a special type of users.

• In interdependent and correlated risk environments such as the Internet, the insurer

is risk-averse and might resort to a higher chain of risk transfers. Thus, an impor-

tant challenge is to model higher-order risk transfers and study market efficiency.

Although barely modeled explicitly in the cyber-insurance literature so far, we can

distinguish two prototype cases:

– Cyber-reinsurance: Most naturally, the idea of reinsurance for dealing with rare

catastrophic events seems applicable to cyber-insurance. Modeling reinsurance

markets is straight-forward with ‘insurers’ taking the role of ‘users’ and reinsur-

ers become ‘insurers’. Obviously, reinsurance is more efficient only if reinsur-

ers can pool risks; this assumes the existence of many insurers with independent

(or at least loosely correlated) risk pools. For conventional insurance branches,

this is usually achieved by regional or international diversification. However,

due to the global homogeneity of cyber-risk, often attributed to the homogene-

ity of installed systems cyber-reinsurance is virtually not existent. In January

2002, reinsurers even excluded cyber-risks explicitly from their contracts with

insurers in fear of global catastrophic events.

– Exploit derivatives: Other financial instruments are tailored more specifically to

cyber-risk and avoid such adverse incentives. The concept of exploit derivatives

links the payout of the financial instrument to the discovery of vulnerabilities

in systems, that is, at a stage before actual losses occur. So even if incentive
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incom- patibilities cannot be ruled out entirely, selfish actions of of individual

players are less likely to cause tremendous social damage. More- over, it is

argued that exploit derivatives can form a kind of prediction market to facil-

itate information sharing about system vulnerabilities, thereby mitigating the

information asymmetries prevalent in cyber-security. However, while exploit

derivatives might work for threats related to undiscovered vulnerabilities, this

type of threat accounts for part of the cyber-risk our society is exposed to.
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