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Abstract. This note explores the common core of constructive, intuitionistic,
recursive and classical analysis from an axiomatic standpoint. In addition to
clarifying the relation between Kleene’s and Troelstra’s minimal formal theories
of numbers and number-theoretic sequences, we propose some modified choice
principles and other function existence axioms which may be of use in reverse
constructive analysis.

Introduction

Constructive mathematics has been described by Richman as mathematics with
intuitionistic logic. Recursive, classical and a large part of constructive analysis
can all be expressed in the two-sorted language Kleene and Vesley [12] used to
axiomatize a significant part of intuitionistic analysis. Beginning with the minimal
system M in which Kleene formalized the theory of recursive partial functionals, a
rich collection of recursively axiomatizable theories can be identified and explored.

Our choice of M as a neutral base theory for reverse constructive analysis is
motivated by practical and historical considerations. On the one hand, M (like the
theory EL preferred by Troelstra and van Dalen) is strong enough to guarantee
the existence of every provably recursive function without entailing the principle
of full countable choice from numbers to numbers accepted by most, but not all,
constructivists. Theorems which do not depend essentially on countable choice
are thereby distinguished from those which do. And since Troelstra’s original
formal treatment of intuitionistic mathematics over EL depended explicitly on
Kleene’s detailed formal development in M of the theory of recursive functions
and functionals, working directly with M satisfies our sense of the history of the
subject.

On the other hand, M (unlike EL) guarantees that every detachable subset of
the natural numbers has a characteristic function. This feature, which we regard as
constructively justified, simplifies the statement and comparison of e.g. restricted
versions of the fan theorem. In this context we introduce a new axiom schema
CFd which can be used to establish a precise relationship between EL and M.

The abbreviations BISH, INT, RUSS and CLASS respectively represent Bishop
constructivism, Brouwerian intuitionism, Markov’s Russian recursive constructive
mathematics, and classical mathematics. They were introduced by Bridges and
Richman in [4] and have become standard, as has the Venn diagram suggesting
that BISH is contained in each of INT, RUSS and CLASS (no two of which are
compatible). Since Bishop and Brouwer accepted the countable axiom of choice,
and RUSS included a recursive choice principle, M can be interpreted as a proper
part of each of the main varieties of constructive analysis.

Formal reasoning, softened by the use of informal rigor, provides the certainty
demanded by reverse mathematics. Sometimes formalization reveals connections
which are not obvious in informal reasoning, and suggests refinements of recognized

1



2 JOAN RAND MOSCHOVAKIS AND GARYFALLIA VAFEIADOU

axioms. In what follows we attempt to be sufficiently precise so that a reader with
some knowledge of intuitionistic logic could easily fill in the formal details.

1. Intuitionistic logic and the use of formal language

1.1. Remark on formalization. Contrary to some accounts, Brouwer did not
entirely disdain the use of logic as a tool to simplify the communication of math-
ematical arguments. Rather, he delegated the axiomatization and formalization
of intuitionistic logic, arithmetic and analysis to his student Arend Heyting ([8],
[6], [7]), who also contributed significantly to the informal development of intu-
itionistic mathematics. Heyting’s treatment of intuitionistic logic and arithmetic
facilitated comparison with the corresponding classical theories, but the same was
not true of his formalization of intuitionistic analysis.

Following Heyting’s example, Kleene’s [10] presented intuitionistic first-order
logic, and intuitionistic arithmetic IA0 in a language with only the constants
=, 0, ′,+, ·, as subsystems obtained from the corresponding classical theories by
weakening the law of double negation ¬¬A → A to ¬A → (A → B). To further
clarify the relation between intuitionistic and classical mathematics, Kleene and
Vesley [12] formalized Brouwer’s analysis in a two-sorted extension of the lan-
guage of arithmetic, with variables over numbers and one-place number-theoretic
functions, symbols for λ-abstraction and function application, and a finite list of
mathematical constants. When needed, additional constants could be added to
the list, as for the precise formal treatment of recursive functionals in [11].

Troelstra [17] formalized intuitionistic arithmetic HA in a language including a
constant for every primitive recursive number-theoretic function, and elementary
analysis EL in a two-sorted extension of this language, relying explicitly on [11]
for the details of elementary recursion theory.1 Troelstra [17] also gave a formal
language and axioms for Heyting arithmetic in all finite types HAω, extending
HA. We restrict ourselves here to the first two types, which are adequate to express
a significant part of elementary analysis, with Kleene’s finite list of constants for
primitive recursive functiona(al)s enumerated in a footnote.

1.2. A two-sorted formal language and logic for intuitionistic analysis.
By L1 we mean Kleene and Vesley’s two-sorted language, which is suitable for an
intuitionistic theory of choice sequences and recursive functionals. L1 has variables
x,y,z, . . . , intended to range over natural numbers; variables α, β, γ, . . ., intended
to range over one-place number-theoretic functions (choice sequences); finitely
many constants 0,′ ,+, ·, f4, . . . , fp, each representing a primitive recursive function
or functional, where fi has ki places for number arguments and li places for type-1
function arguments; parentheses indicating function application; and Church’s λ.

The terms (of type 0) and functors (of type 1) are defined inductively as follows.
The number variables and 0 are terms. The function variables and each fi with
ki = 1, li = 0 are functors. If t1, . . . , tki

are terms and u1, . . . , uli are functors,
then fi(t1, . . . , tki

,u1, . . . ,uli) is a term. If x is a number variable and t is a term,
then λx.t is a functor. And if u is a functor and t is a term, then (u)(t) is a term.

There is one relation symbol = for equality between terms; equality between
functors u, v is defined extensionally by u = v ≡ ∀x(u(x) = v(x)). The atomic
formulas of L1 are the expressions s = t where s, t are terms. Composite formulas

1HA is essentially a definitional extension of IA0. Pp. 26-27 and 73 of [17] describe the
dependence of EL on [11]; a self-contained treatment is in [19], pp. 152-160.
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are defined inductively, using the connectives &,∨,→,¬, quantifiers ∀,∃ of both
sorts, and parentheses (often omitted under the usual conventions on scope).

Using one-place number-theoretic function variables for the choice sequences
makes intuitionistic analysis expressible in the same language as a portion of clas-
sical analysis, as Kleene observed. But also, according to which mathematical
axioms are present, the sequence variables can be interpreted as ranging over
constructive functions (determined by algorithms) instead of choice sequences,
facilitating the comparison of various branches of constructive analysis.

The logical basis of each of the axiomatic theories T we consider in this language
will be two-sorted intuitionistic predicate logic, as presented e.g. in [12]. In
each case a corresponding classical theory T◦ is obtained by strengthening the
intuitionistic negation axiom schema ¬A → (A → B) to the classical ¬¬A → A.

2. Some essential axioms for intuitionistic analysis

2.1. Axioms for two-sorted intuitionistic arithmetic IA1. The weakest the-
ory considered here is a formal system of two-sorted intuitionistic arithmetic IA1,
a conservative extension (in the language L1) of the first-order intuitionistic arith-
metic IA0 in [10] based on =, 0,′ ,+, ·. The mathematical axioms of IA1 are:

(a) The axiom-schema of mathematical induction (for all formulas of L1):
A(0) & ∀x(A(x) → A(x′)) → A(x).

(b) The axioms of IA0 for =, 0,′ ,+, · (axioms 14-21 on p. 82 of [10]) and
the axioms expressing the primitive recursive definitions of the additional
function constants f4, . . . , f26 given in [12] and [11].2

(c) The open equality axiom: x = y → α(x) = α(y).
(d) The axiom-schema of λ-conversion: (λx.t(x))(s) = t(s), where t(x) is a

term and s is free for x in t(x).
For readers familiar with [12], IA1 is the subsystem of Kleene and Vesley’s “basic
system” obtained by omitting the axiom schemas of countable choice and bar
induction (x2.1 and x26.3, respectively).

2.2. Countable function comprehension AC00!. The minimal system M of
[11] is obtained by adding to IA1 the axiom schema

AC00! ∀x∃!yA(x, y) → ∃α∀xA(x, α(x)),

where α, x are free for y in A(x, y) and the unique existential quantifier ∃!y ex-
presses “there is exactly one y” in L1. We use ∃!yB(y) as an abbreviation for either
∃yB(y) & ∀y∀z(B(y) & B(z) → y = z) or ∃yB(y) & ∀y∀z(B(y) & B(z) → y ≤ z).
Since ∀y(A(x, y) ∨ ¬A(x, y)) & ∃yA(x, y) → ∃!y(A(x, y) & ∀z(z < y → ¬A(x, z)))
and ∃!yA(x, y) → ∀y(A(x, y) ∨ ¬A(x, y)) are provable in IA1, the schema AC00!
(called “non-choice” by Myhill and “unique choice” by many) expresses countable
numerical choice for decidable predicates.

AC00! also guarantees that every decidable predicate of natural numbers has a
characteristic function, since IA1 proves (B(x) ∨ ¬B(x)) ↔ ∃!y ≤ 1(y = 0 ↔ B(x)).
This feature of M makes it possible to avoid explicit decidability hypotheses

2f0 − f3 are 0,′ , +, · respectively. f4(a, b) = ab (exponentiation), and f5, . . . , f20 represent the
primitive recursive function(al)s a!, a−̇b, pd(a), min(a, b), max(a, b), sg(a), sg(a), |a−b|, rm(a, b),
[a/b], Σy<bα(y), Πy<bα(y), miny≤bα(y), maxy≤bα(y), pa (the ath prime, with p0 = 2), and (a)i

(the exponent of pi in the prime factorization of a) respectively. f21(a) = lh(a) represents the
number of positive exponents in the prime factorization of a. The remaining function constants
will be described as needed.
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by introducing sequence variables appropriately; sometimes this device reduces
a schema to a single formula.

If E and F are two schemas, we may say “F is a constructive consequence of
E” if every instance of F is derivable in M from instances of E, and “E and F are
constructively equivalent” if each is a constructive consequence of the other.

2.3. Digression on “at most one”. Because principles with uniqueness play a
fundamental role in constructive mathematics, it is important to be clear about
the formal treatment of statements like “A(x) holds for at most one x.” The most
straightforward choice seems to be (a) ∀x∀y(A(x) & A(y) → x = y). However,
recent work of the Bishop school (e.g. [2]) renders “A(x) holds for at most one x”
formally by (b) ∀x∀y(x 6= y → ¬A(x) ∨ ¬A(y)). Although M proves (b) → (a),
the two interpretations are not constructively equivalent, as the following example
shows.

Example. Consider the formula

A(x) ≡ (x = 0 & P) ∨ (x = 1 & ¬P),

where P is any formula and x any variable not occurring free in P. We can easily
see that for this A(x), condition (a) holds in M; however, condition (b) entails
¬A(0) ∨ ¬A(1) and hence ¬P ∨ ¬¬P, which is unprovable in M in general.3

Observe however that under either of the assumptions ∀x(¬A(x) ∨ ¬¬A(x)) or
∃xA(x), we have (a) ↔ (b). Thus either interpretation of “at most one” could be
used to unabbreviate the ∃! in AC00!.

2.4. Two equivalent reformulations of AC00!. The minimal formal theory M
entails the countable sequence comprehension schema AC01!:

∀x∃!βA(x, β) → ∃α∀xA(x, λt.α((x, t))),

where α, x are free for β in A(x, β), (x, t) abbreviates 2x · 3t, and ∃!βB(β) ab-
breviates ∃βB(β) & ∀β∀γ(B(β) & B(γ) → β = γ) where β = γ ≡ ∀xβ(x) = γ(x).4

Since IA1 + AC01! entails AC00!, it follows that M = IA1 + AC01!.
Another equivalent version of AC00! is a least number comprehension principle

ACµ
00, efficiently formulated with the help of a modified existential quantifier. Let

∃µyB(y) abbreviate ∃y(B(y) & ∀x < y¬B(x)). Then ACµ
00 is the schema

∀x∃µyA(x, y) → ∃α∀xA(x, α(x)).

Because IA1 proves ∃µyB(y) → ∃!y(B(y) & ∀x < y¬B(x)), obviously M = IA1 +
ACµ

00.
5

3If we add to M a continuity principle, say WC!, and take as P the formula ∃x α(x) 6= 0, we
can prove ¬∀α[¬∃x α(x) 6= 0 ∨ ¬¬∃x α(x) 6= 0] (for a similar result see [12] p. 84).

4We observed that the unique existential number quantifier has the property
IA1 ` ∃!yB(y) → ∀y(B(y) ∨ ¬B(y)) so over IA1 it makes no difference whether the “∃!y” in
AC00! is defined using (a) or (b) (see paragraphs 2.2, 2.3 above). The corresponding property for
∃!β fails constructively since ∃!βA(β) → ¬∀β[A(β) ∨ ¬A(β)] is provable in intuitionistic analysis.
Thus it matters how “at most one β” is expressed in the formal language.

5However, note that M 6` ∃µyB(y) → ∀y(B(y) ∨ ¬B(y)). For a counterexample let B(y) be
y = 0 ∨ (y = 1 & P) where M 6` P ∨ ¬P and y is not free in P; cf. §2.3.
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2.5. A characteristic function principle CFd. Consider the following schema,
which asserts that every decidable predicate of natural numbers has a character-
istic function and is an immediate consequence of AC00! over IA1:

CFd ∀x(B(x) ∨ ¬B(x)) → ∃β∀x [β(x) ≤ 1 & (β(x) = 0 ↔ B(x))].
Replacing AC00! by CFd leads to a proper subsystem IA1 + CFd of M.

Theorem 1. IA1 + CFd does not prove AC00!.
Proof. For a classical model of IA1 + CFd which fails to satisfy AC00!, let the

sequence variables range over the subclass Pb of ωω consisting of all sequences
which are bounded by primitive recursive functions. That is, β ∈ Pb if and only
if there is a primitive recursive α such that β ≤ α (i.e. ∀x[β(x) ≤ α(x)]). Using
the observation that every primitive recursive functional Φ(α, x) = y is bounded
by a primitive recursive functional (with the same arguments) which is monotone
nondecreasing in each argument separately, one can show that Pb is closed under
composition and primitive recursion, so under the interpretation each functor u
represents a sequence in Pb. The axioms for the function constants, and the axiom
schemas for ∀α and ∃α, all hold for this reason. The rules of inference and other
axioms pose no problem.

The model evidently satisfies CFd. However, there is an arithmetical formula
A(x, y) (numeralwise) representing the graph of the Ackermann function, such
that ∀x∃!yA(x, y) is provable even in IA0; but the Ackermann function has no
primitive recursive bound. So the model fails to satisfy AC00!.

Proposition 2. Over IA1 + CFd, the axiom schema AC00! is interderivable with
the axiom ∀ρ[∀x∃!yρ((x, y)) = 0 → ∃α∀xρ((x, α(x))) = 0], where (x, y) = 2x · 3y.

2.6. Quantifier-free countable choice QF-AC00. The quantifier-free axiom of
countable choice is the schema QF-AC00:

∀x∃yA(x, y) → ∃α∀xA(x, α(x)),

where A(x, y) is quantifier-free. Predicates with only bounded numerical quanti-
fiers can be reduced to quantifier-free form over IA1 + QF-AC00 using f15 and
f16. Since all quantifier-free formulas are decidable in IA1, evidently M proves
QF-AC00. The next two results show that M = IA1 + CFd + QF-AC00, while
IA1 + QF-AC00 (like IA1 + CFd) is a proper subsystem of M.

Proposition 3. Over IA1 + CFd, QF-AC00 entails AC00!.
Proof. Assume (∗)∀x∃!yA(x, y). Then ∀x∀y[A(x, y) ∨ ¬A(x, y)] by the decid-

ability of number-theoretic equality, and so ∀w[A((w)0, (w)1) ∨ ¬A((w)0, (w)1)].
Applying CFd to this gives ∃β∀w[β(w) ≤ 1 & (β(w) = 0 ↔ A((w)0, (w)1))], from
which (without ∃β, towards ∃-elimination) and (∗): ∀x∃yβ((x, y)) = 0. Hence by
QF-AC00: ∃α∀xβ((x, α(x))) = 0 and finally ∃α∀xA(x, α(x)).

Theorem 4. IA1 + QF-AC00 does not prove CFd.
Proof. There is a classical model of IA1 in which the sequence variables are

interpreted as ranging over all general recursive functions of one variable, in which
QF-AC00 is true. But this is not a model of M, since AC00! with classical logic
gives the existence of nonrecursive sequences.

2.7. Comparison with Troelstra’s EL. EL is the basic theory for elementary
analysis defined in [19] (p. 144) and [17] (p. 72). One difference between Kleene’s
minimal system M and Troelstra’s EL is that M assumes the function existence
principle AC00! while EL has instead QF-AC00. It turns out that this is their
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only essential difference. Here we announce some results by the second author,
establishing that EL is essentially weaker than M, while EL + CFd is essentially
equivalent to M.

The formal theory EL, like M, is based on two-sorted intuitionistic predicate
logic, with variables for natural numbers and for one-place number-theoretic func-
tions, a constant denoting function application, Church’s λ, and = for equality
of numbers. But, unlike M, EL has as a basis a different system of two-sorted
intuitionistic arithmetic HA1, a conservative extension of first-order intuitionis-
tic arithmetic HA (“Heyting arithmetic”); the language of HA differs from that
of IA0 in that it has infinitely many function constants, one for each primitive
recursive derivation of a number-theoretic function. In addition, HA1 has a con-
stant rec which represents the functional corresponding to definition by primitive
recursion. Terms and functors are defined as usual, with an additional clause for
rec: if t, t′ are terms and φ a functor then rec(t, φ, t′) is a term. The open equality
axiom x = y → α(x) = α(y) is treated as part of the logic, and equality between
functors is defined extensionally.

The mathematical axioms of HA1 are the axioms of HA, with the schema of
mathematical induction for all formulas of the language of HA1, the axiom-schema
of λ-conversion, and axioms for the recursor constant rec:

REC
{

rec(t, φ, 0) = t,
rec(t, φ, S(t′)) = φ((rec(t, φ, t′), t′)),

with t,t′ terms and φ a functor (where S is the successor).
EL is obtained by adding QF-AC00 to HA1.

Proposition 5. EL + CFd proves AC00!.
Proposition 6. EL does not prove CFd.
In order to express in an exact way the relationship between the two systems

EL and M we consider particular corresponding extensions EL+ and M+; we can
then prove that EL++ CFd and M+ coincide modulo trivial notational differences.

Theorem 7. (a) EL++ CFd is a conservative extension of M.
(b) M+ is a conservative extension of EL + CFd.
(c) Every theorem of EL++ CFd is equivalent (in EL++ CFd) to a theorem of M,
by a translation, and similarly for M+ and EL + CFd.

Troelstra ([18] p. 585) mentions (and uses) a result of N. Goodman stating that
EL1 is conservative over HA, where EL1 is EL + AC01. It follows a fortiori that
EL + CFd is conservative over HA.

Proposition 8. M+ is a conservative extension of HA.
Proposition 9. M is a conservative extension of IA0.
Remark. Although EL (or even its subsystem ELELEM, in [9]) is often taken

as basis for constructive reverse mathematics, most results have been obtained in
systems essentially equivalent to M such as WKV ([13]) and EL + AC00!, or even
stronger ones such as EL + AC00. The formal system BIM proposed by Veldman
[20] as a basis for intuitionistic reverse mathematics avoids assuming CFd as an
axiom schema by defining “decidable set” as “set with a characteristic function.”6

6For detailed comparisons of all these formal systems we refer to the second author’s PhD
Thesis, in preparation.
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3. Variations on countable choice

Brouwer, Heyting, Bishop and Kleene-Vesley all represented real numbers by
Cauchy sequences of (primitive recursive codes for) rational numbers, sometimes
specifying a particular rate of convergence. Troelstra and van Dalen ([19] p. 253)
require that each Cauchy real be given together with a Cauchy modulus for it.
Adding the axiom schema AC00 of countable numerical choice (like AC00! but
without the !) would guarantee the existence of a Cauchy modulus for each Cauchy
sequence of rationals, but either of the apparently weaker schemas ACm

00 and AB00

described below would have the same effect.7

3.1. Monotone countable choice. To state the new axiom schema efficiently in
a form which makes clear its relation to AC00! we introduce a monotone existential
quantifier ∃m, where ∃myB(y) abbreviates ∃yB(y) & ∀y∀z(B(y) & y ≤ z → B(z)).
Then ACm

00 is the schema

∀x∃myA(x, y) → ∃α∀xA(x, α(x)).

The corresponding principle ACm
01 is

∀x∃mβA(x, β) → ∃α∀xA(x, λt.α((x, t))),

where ∃mβB(β) abbreviates ∃βB(β) & ∀β∀γ(B(β) & β ≤ γ → B(γ)), where β ≤ γ
abbreviates ∀xβ(x) ≤ γ(x).

Following Vesley’s Chapter III of [12], let α ∈ R abbreviate

∀k∃x∀p 2k|2pα(x)− α(x + p)| < 2x+p,

expressing ∀k∃x∀p |α(x)
2x − α(x+p)

2x+p | < 1
2k . The condition following ∀k∃x is not

monotone in x, but α ∈ R is easily seen to be equivalent in M to the formula

∀k∃x∀p∀q 2k|2pα(x + q)− 2qα(x + p)| < 2x+p+q

which Vesley abbreviates by α ∈ R1. Then

M + ACm
00 ` α ∈ R1 → ∃β∀k∀p∀q2k|2pα(β(k) + q)− 2qα(β(k) + p)| < 2β(k)+p+q

since the hypothesis satisfies the monotonicity condition on x.
This example suggests that ACm

00 is not provable in M. Certainly M does not
prove ∃myB(y) → ∀y(B(y) ∨ ¬B(y)) in general, as the following example shows.

Example. Consider the formula A(x) ≡ (x = 0 & P) ∨ (x > 0), where P is any
formula not containing x free. Clearly ∃xA(x) and ∀x∀y(A(x) & x ≤ y → A(y)).
Assuming that M entails the above schema, we get ∀x(A(x) ∨ ¬A(x)) and spe-
cializing for x=0 we have A(0) ∨ ¬A(0), from which follows P ∨ ¬P; but then M
would prove P ∨ ¬P for any P, which is impossible.

The reader might wonder why we require monotonicity above every instantiation
y, in order for ∃myB(y) to hold. One reason is that if B(y) is decidable then
∃myB(y) will be formally ∆0

2 rather than just Σ0
2. Observe also that with our

definition of ∃m, assuming the hypothesis of ACm
00, the conclusion of ACm

00 is
equivalent to ∃α∀x∀y ≥ α(x)A(x, y).

7A canonical real number generator is a sequence α such that ∀x|2α(x) − α(x + 1)| ≤ 1,
representing the sequence {α(n)/2n} of dyadic rationals. Canonical real number generators form
a particularly nice spread in which each node but the root has just two or three immediate
successors, and Cauchy moduli are needed to show that every real number generator coincides
with a canonical one.
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3.2. Bounded countable choice and a bounding axiom. Countable choice
can be weakened either by strengthening the hypothesis by bounding the search,
as in the schema BC00 with β free:

∀x∃y ≤ β(x)A(x, y) → ∃α∀xA(x, α(x)),

or by weakening the conclusion to provide a bound, rather than an exact choice.
The second alternative is expressed by the schema AB00:

∀x∃yA(x, y) → ∃β∀x∃y ≤ β(x)A(x, y).

Evidently, AC00 is constructively equivalent to AB00 + BC00, while M + AB00

proves that every Cauchy sequence of reals has a Cauchy modulus.
Proposition 10. IA1 + BC00 proves CFd, so M ⊆ IA1 + QF-AC00 + BC00.
Proposition 11. IA1 + BC00 does not prove AB00 or QF-AC00.
Proof. The model used to prove Theorem 1 also establishes this result.
Proposition 12. IA1 + AB00 proves QF-AC00, so M ⊆ IA1 + CFd + AB00.
Proof. Assume ∀x∃yA(x, y) where A(x, y) is quantifier-free. A term t(x, y) with

exactly the same free variables as A(x, y) can be constructed (cf. [12] p. 30)
such that IA1 ` ∀x∀y[t(x, y) ≤ 1 & (A(x, y) ↔ t(x, y) = 0)]. Moreover, by AB00:
∃β∀x∃y ≤ β(x)A(x, y). Given such a β, the functor

u = λx.Σz≤β(x)Πy≤zt(x, y)

satisfies ∀xA(x,u(x)), and so ∃α∀xA(x, α(x)).
Proposition 13. Over IA1 (and hence over M), ACm

00 and AB00 are equivalent.
Proof. Evidently IA1 ` ∀x∃yA(x, y) → ∀x∃y∃z ≤ yA(x, z) where ∃z ≤ yA(x, z)

is monotone in y; hence IA1 + ACm
00 ` AB00. And if A(x, y) is monotone in y

then (in IA1) the conclusion of AB00 entails the conclusion of ACm
00.

Theorem 14. M does not prove BC00, so M is a proper subtheory of IA1 +
QF-AC00 + BC00.

Proof. One of the many results in S. Weinstein’s ingenious investigation [21] of
Kripke models for intuitionistic analysis is that AC00 is stronger than AC00! over
a minimal two-sorted intuitionistic theory.8 His proof actually showed that AC00!
is insufficient to prove a particular closed formula of the form

∀x(A(x) ∨ B(x)) → ∃α∀x(α(x) ≤ 1 & (α(x) = 1 → A(x)) & (α(x) = 0 → B(x))),

where A(x) is ¬∃yP(x, y), B(x) is ¬∃yQ(x, y), and P(x, y),Q(x, y) are quantifier-
free formulas numeralwise expressing (in M) recursive relations P (x, y), Q(x, y)
such that the sets {n ∈ ω | ∃m ∈ ω P (n, m)} and {n ∈ ω | ∃m ∈ ω Q(n, m)} are
nonempty, disjoint and recursively inseparable. By essentially the same argument,
M does not prove BC00.

Using his version of Lifschitz’ realizability ([15]), Jaap van Oosten has shown
that M + AB00 does not prove BC00, strengthening our Theorem 14. The question
whether M + BC00 proves AB00 is still open.

The arguments in this section have obvious consequences for EL, for example
the proof of Proposition 12 establishes that EL ⊆ HA1 + AB00.

8Note however that M does prove ∀x ≤ n∃yA(x, y) → ∃α∀x ≤ nA(x, α(x)), so finite choice is
not an issue.
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4. Variations on the bar theorem

Brouwer’s bar theorem, whose axiomatic character was established in [12], can
be stated in various ways, depending on the condition the bar predicate is required
to satisfy. Before discussing the constructive versions, it is useful to consider the
classical bar theorem BI◦:

∀α∃xR(α(x)) & ∀w(R(w) → A(w)) & ∀w(∀sA(w ∗ 〈s〉) → A(w)) → A(〈 〉),

where u, v,w,u0, v0, . . . range over (primitive recursive) codes for finite sequences,
α(x + 1) represents the code for α(0), . . . , α(x), 〈s〉 represents the code for a one-
element sequence with s as its element, α(0) = 〈 〉 the code 1 for the empty se-
quence, and ∗ the concatenation operation on sequence codes.

In [12] Kleene provided an example showing that the classical bar theorem en-
tails ∀β(∀xβ(x) = 0 ∨ ¬∀xβ(x) = 0) so cannot be an axiom schema of intuitionistic
analysis. In its place he proposed four alternate, constructively acceptable forms
of bar induction which are interderivable over M and consistent with continuous
and countable choice.

4.1. The bar theorem with a decidable, thin or efficient bar. As an axiom
schema for FIM interpreting Brouwer’s “Bar Theorem” Kleene chose the schema
BId of bar induction with a decidable (detachable) bar:

∀α∃xR(α(x)) & ∀w(R(w) ∨ ¬R(w))

& ∀w(R(w) → A(w)) & ∀w(∀sA(w ∗ 〈s〉) → A(w)) → A(〈 〉).

He considered three other versions, which we denote by BI!, BIµ and BIf . The
first two of these, each equivalent to BId over IA1, are obtained from BId by
replacing the hypotheses ∀α∃xR(α(x)) & ∀w(R(w) ∨ ¬R(w)) by ∀α∃!xR(α(x)) or
∀α∃µxR(α(x)) respectively. The third version BIf is

∀α∃xρ(α(x)) = 0 & ∀w(ρ(w) = 0 → A(w)) & ∀w(∀sA(w ∗ 〈s〉) → A(w)) → A(〈 〉),

which is equivalent to BId over M or IA1 + CFd.

4.2. The monotone bar theorem. Requiring only that the predicate R(α(x))
be monotone in x increases the strength of the bar theorem over M. Let BImon be

∀α∃mxR(α(x)) & ∀w(R(w) → A(w)) & ∀w(∀sA(w ∗ 〈s〉) → A(w)) → A(〈 〉).

This schema entails BI! over M (cf. [12] p. 79), but in order to derive BImon from
BI! a weak continuous choice principle is often used. Certainly “Brouwer’s Prin-
ciple for Numbers” (x27.2 in [12]) suffices, so BImon is provable in FIM although
FIM + BI◦ is inconsistent.

The use of continuous choice is obviously not essential, since BImon is classically
correct. Alternatively, consider the following monotone choice schema ACm

1/2,0:

∀α∃myR(α(y)) → ∃σ∀α[∃!xσ(α(x)) = 0 & ∀x(σ(α(x)) = 0 → R(α(x)))].

Proposition 15. ACm
1/2,0 is interderivable with BImon over M + AC01 + BIf ,

where AC01 is the strong countable choice axiom schema included in FIM, like
AC01! but without the !.

Thus ACm
1/2,0, which guarantees that every continuous function has a Cauchy

modulus, is correct both classically and intuitionistically. Monotonicity is essen-
tial, as we now show.
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4.3. Two essentially nonconstructive, classically correct axiom schemas.
The constructive failure of BI◦ places restrictions on constructive choice. Consider
the schema AC◦

1/2,0:

∀α∃yR(α(y)) → ∃σ[∀α∃!xσ(α(x)) = 0 & ∀u ∈ N∗(σ(u) = 0 → R(u))].

The classical bar theorem BI◦ follows constructively from BI! + AC◦
1/2,0, so this

choice principle is constructively unacceptable. However, as we see in the next
section, the corresponding schema for fans holds in intuitionistic analysis.

Now consider the bounding schema AB◦
1/2,0:

∀α∃yR(α(y)) → ∃σ∀α[∃!xσ(α(x)) = 0 & ∀x(σ(α(x)) = 0 → ∃y ≤ xR(α(y)))].

The classical bar theorem BI◦ follows constructively from BImon + AB◦
1/2,0 so this

principle is also constructively unacceptable, although the corresponding schema
for fans holds in intuitionistic analysis.

There is, however, a classically and intuitionistically correct choice axiom with
the same hypothesis, the schema AC1/2,0:

∀α∃yR(α(y)) → ∃σ∀α[∃!xσ(α(x)) > 0 & ∀x∀y(σ(α(x)) = y + 1 → R(α(y)))].

This is an immediate consequence of Brouwer’s Principle for Numbers (∗27.2 in
[12]) and is classically equivalent to AC◦

1/2,0. Should it be acceptable to a Bishop
constructivist who accepts AC00 and AC01? Bishop’s insistence that every exis-
tential assertion should be backed up by an algorithm seems to dictate a positive
answer.

5. Variations on the fan theorem

A fan is a spread in which only finite branching is allowed. The canonical
example is the binary fan, on which this section focuses, just as the preceding
section concentrated on the universal spread. The most general classically correct
version of Brouwer’s Fan Theorem for the binary fan (sometimes called the full
fan theorem) is expressed by the schema FT:

∀α ∈ 2N∃xA(α(x)) → ∃y∀α ∈ 2N∃x ≤ yA(α(x)).

FT is a constructive consequence of BI◦, and is interderivable classically (but not
constructively) with the schema KL:

∀y∃α ∈ 2N∀x ≤ yA(α(x)) → ∃α ∈ 2N∀xA(α(x))

expressing König’s Lemma for the binary fan.
Adding the hypothesis ∀w[w ∈ 2∗ & A(w) → A(w ∗ 〈0〉) & A(w ∗ 〈1〉)] to FT

gives a schema FTmon constructively equivalent to FT, because the conclusion
of the fan theorem is monotone and M proves ∀α ∈ 2N[∃xA(α(x)) ↔ ∃yB(α(y))]
where B(w) is ∃u ≤ w∃v ≤ w(A(u) & w = u ∗ v). Since FTmon is a constructive
consequence of BImon it follows that, unlike BI◦, FT is consistent with continuous
choice; in fact, FT is provable in FIM.

Proposition 16. IA1 + BC00 + FT does not prove QF-AC00.
Proof. The classical model used to prove Theorem 1 and Proposition 8 satisfies

FT.
It follows that M is not a subtheory of IA1 + BC00 + FT, and EL is not a

subtheory of HA1 + BC00 + FT.
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5.1. The decidable fan theorem. The decidable fan theorem FTd for the bi-
nary fan is the schema

∀α ∈ 2N∃xR(α(x)) & ∀w[w ∈ 2∗ → (R(w) ∨ ¬R(w))]

→ ∃y∀α ∈ 2N∃x ≤ yR(α(x)),

which is constructively equivalent to the single axiom FTf :

∀α ∈ 2N∃xρ(α(x)) = 0 → ∃y∀α ∈ 2N∃x ≤ yρ(α(x)) = 0

as well as to the schema FT!:

∀α ∈ 2N∃!xR(α(x)) → ∃y∀α ∈ 2N∃x ≤ yR(α(x))

and the schema FTµ:

∀α ∈ 2N∃µxR(α(x)) → ∃µy∀α ∈ 2N∃x ≤ yR(α(x)).

FTd is a constructive consequence of BId, but not conversely since the arith-
metical functions form a realizability model of M + FTd but not of M + BId (cf.
[12], Theorem 9.13c).

5.2. Restricted monotone fan theorems and a bounding axiom schema.
Recently, Bishop constructivists have explored the reverse mathematics of two
additional versions of the fan theorem FTc and FTΠ0

1
. Each comes by replacing the

decidability hypothesis in FTd by a monotone hypothesis of a restricted kind, and
each has interesting mathematical equivalents. FTd is a constructive consequence
of FTc, which is a constructive consequence of FTΠ0

1
. Bridges [3] and Diener and

Loeb [5] asked which of these consequence relations are strict. Berger [1] showed
indirectly that EL + FTd does not prove FTc, but the question whether M +
FTd entails FTc remains open.

Over M we can state each of their new versions as a single axiom with a free
sequence variable. Thus FTc can be expressed by

∀α ∈ 2N∃y∀u ∈ 2∗ρ(α(y) ∗ u) = 0 → ∃y∀α ∈ 2N∀zρ(α(y + z)) = 0.

Using the convention that ρ(w,n) abbreviates ρ((w,n)) where (w,n) = 2w · 3n, the
schema FTΠ0

1
is equivalent over M to

∀α ∈ 2N∃y∀n ρ(α(y),n) = 0

& ∀w ∈ 2∗∀m[ρ(w,n) = 0 → ρ(w ∗ 〈0〉,m) = 0 & ρ(w ∗ 〈1〉,m) = 0]

→ ∃y∀α ∈ 2N∀nρ(α(y),n) = 0.

Now consider the schema AB2N

1/2,0:

∀α ∈ 2N∃yR(α(y))

→ ∃σ∀α ∈ 2N[∃!xσ(α(x)) = 0 & ∀x(σ(α(x)) = 0 → ∃y ≤ xR(α(y)))].

Over M, FT is constructively equivalent to FTd + AB2N

1/2,0. This equivalence holds
locally as well as globally:

Theorem 17. Given any predicate R(w), if FT[R(w)] and AB2N

1/2,0[R(w)] are

the corresponding instances of FT and AB2N

1/2,0 respectively, then FT[R(w)] is

constructively equivalent to FTd + AB2N

1/2,0[R(w)].
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The local result suggests an indirect way to investigate the possible existence
of a hierarchy of Fan Theorems over M, by interpreting e.g. FTc and FTΠ0

1
as

function existence axioms over M + FTd. The global result can be sharpened.

5.3. A choice axiom for the binary fan. Consider the schema AC2N

1/2,0:

∀α ∈ 2N∃yR(α(y)) → ∃σ[∀α ∈ 2N∃!xσ(α(x)) = 0 & ∀v ∈ 2∗(σ(v) = 0 → R(v))].

Proposition 18. M + FT proves AC2N

1/2,0.

Proof. The full fan theorem justifies the following principle of fan induction:

∀α ∈ 2N∃yR(α(y)) & ∀u ∈ 2∗(R(u) → A(u))

& ∀u ∈ 2∗(A(u ∗ 〈0〉) & A(u ∗ 〈1〉) → A(u)) → A(〈〉).

Apply this with ∃σ[∀α ∈ 2N∃!xσ(u ∗ α(x)) = 0 & ∀v ∈ 2∗(σ(u ∗ v) = 0 → R(u ∗ v))]
as the A(u) to get the result.

It follows immediately that FT and AC2N

1/2,0 are interderivable over M + FTd.

5.4. Weak König’s Lemma WKL and two variations. WKL or “Weak
König’s Lemma,” which plays a significant role in reverse constructive mathemat-
ics, is the restriction of König’s Lemma KL to detachable subtrees of the binary
fan. Formally, WKL is obtained from KL by adding a decidability hypothesis so
WKL is constructively equivalent to

∀y∃α ∈ 2N∀x ≤ yρ(α(x)) = 0 → ∃α ∈ 2N∀xρ(α(x)) = 0.

Adding a strong uniqueness hypothesis of the form

& ∀α ∈ 2N∀β ∈ 2N[∃xα(x) 6= β(x) → ∃xρ(α(x)) 6= 0 ∨ ∃xρ(β(x)) 6= 0]

gives a principle WKL! constructively equivalent to FTd; cf. [16].9

A third version of Weak König’s Lemma is strictly intermediate in strength
between WKL! and WKL from the constructive standpoint. Let WKL!! be the
schema

∀y∃α ∈ 2N∀x ≤ yρ(α(x)) = 0

& ∀α ∈ 2N∀β ∈ 2N[∀xρ(α(x)) = 0 & ∀xρ(β(x)) = 0 → ∀xα(x) = β(x)]

→ ∃α ∈ 2N∀xρ(α(x)) = 0].

Evidently WKL constructively entails WKL!!, and WKL!! constructively entails
WKL!. Hence WKL!! constructively entails FTd, but the converse fails.

Proposition 19. M + FTd does not prove WKL!!.
Proof. WKL!! can be shown to be constructively equivalent to the conjunction

of the principles MP∨ and ¬¬WKL. Every theorem of M + FTd is Grealizable,
but MP∨ is not (cf. [14]).

The method of proof of Proposition 19 actually shows that M + BId does
not prove WKL!!, and an analogous argument using Kleene function realizability

9For consistency with our definition of “∃!β” we would like to use double exclamation points
here, reserving “WKL!” for the principle with the weaker interpretation of “at most one.” But
since Bishop constructivists have consistently referred to the principle with the strong uniqueness
hypothesis as “WKL!,” we use double exclamation points to denote the stronger principle WKL!!
with the weaker hypothesis.



SOME AXIOMS FOR CONSTRUCTIVE ANALYSIS 13

shows that M + BId + WKL!! does not prove WKL. Complete proofs of these
results are part of a note in preparation by the first author.

All the results in Sections 2.6 and 2.7 are part of the second author’s PhD
dissertation, in preparation. A further investigation of principles with uniqueness
is being undertaken by the second author.

6. Conclusion

We have tried to suggest one way of organizing reverse constructive analysis,
using a formal framework in which the theory of recursive partial functionals and
the intuitionistic theory of real numbers have already been developed in detail.
We have also tried to show how this framework relates to the one preferred by
Troelstra and used by some practitioners of constructive reverse mathematics.
Our aim is to simplify comparison of results among the three main constructive
traditions, and also to facilitate comparison with classical reverse mathematics.
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