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Abstract 
The peer-to-peer nature of a wireless sensor net- 

work presents the opportunity for accurate and low- 
configuration sensor location estimation. Range mea- 
surements are made between pairs of sensors, reyard- 
less of their a priori coordinate howledge. This paper 
quantifies via the Cramer-Rao Bound (CRB) vaviance 
limits on location estimators which use measured time- 
of-arrival (TOA) or received signal strength (RSS). 
An eztensiue campaign memures TOA and RSS  in a 
&-device multipoint-to-multipoint indoor network for 
input into "'mum-likelihood estimators (MZEs) of 
location. RMS location errors of 1.2 and 2.2 m are 
demonstrated usiny TOA and RSS, respectively. 

1 Introduction 
Sensor location estimation in wireless sensor net- 

.works is both a requirement and an opportunity. To he 
useful, sensor data must he accompanied by location. 
Location estimation must he enabled in a manner con- 
sistent with the low power, low cost and low configura- 
tion requirements of sensor networks. The low power 
and low cost requirements preclude including GPS in 
each device, and the low configuration requirement 
prevents installation of a dense network of base sta- 
tions. A low transmit power device may only he able 
to communicate with its nearby neighbors. However, 
when all devices in the network measure range to their 
neighbors, and a small proportion of devices, which we 
call reference devices, have a priori information about 
their coordinates, we have the opportunity to enable 
accurate sensor location estimates. We call this rela- 
tive location estimation since it uses range measure- 
ments predominantly between pairs of devices of which 
neither has absolute coordinate knowledge. 

Distributed algorithms [l] Ill] [13] are proposed to 
locate devices in such wireless sensor networks using 
parallel and iterative estimation algorit.hms. If a cen- 
tral processor can be deployed, convex optimization 
[Z] can solve a set of geometric constraints, or MLEs 
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can be employed, as reported for sensors that measure 
angle-of-arrival and TOA [5] or RSS only 181. 

This paper focuses on the sensor location accuracy 
possible in networks of devices capable of peer-to-peer 
RSS or TOA measurements. The radio channel is no- 
torious for its impairments [Si [3], thus accurate RSS 
or TOA measurements are by no means a given. The 
CRBs presented in this article provide an ability to d o  
termine if the location accuracy necessary for a partic- 
ular application is possible using either RSS or TOA. 

First, we state the location estimation problem and 
model assumptions in Section 1.1, and derive the CRB 
and MLEs for the RSS and TOA cases in Sections 2 
and 3. Then, we present an extensive measurement 
campaign in Section 4 ,  which we use to verify the chan- 
nel model assumptions and to test the TOA and RSS 
relative location MLEs. 
1.1 Estimation problem statement 

We assume a wireless sensor network of M ref- 
erence devices and N - A f  devices with -unknown- 
location, which we call blindfolded devices. The 
relative location problem is the estimation of B = 
{q,. . . , Z N - M ,  y,, . . . , Y N - M }  given the known coor- 
dinates, {zN-M+I,.  . . , XN, y~-n r+ l , .  . . , yw} .  In the 
TOA case, Ti>j is the measured TOA between devices i 
and j in (s), and in the RSS case, p'.3 is the measured 
received power between devices i and j in (mw). The 
set H ( k )  c 11,. . . , N} is the set of all devices with 
which device k has measured a range. By symmetry, 
if 1 E H ( k )  then k E H ( I ) ,  and clearly k $$ H ( k ) .  If re- 
ciprocal measurements (from i to j and then from j to 
i )  are made, we assume that they have been averaged 
together and set to Ti,i. For simplicity we consider 
T;.j and Pi,j to he upper triangular. 

We assume that Ti,? is Gaussian distributed, 

Ti,j -N(&, j /c ,&)> di , j  = J(zi - X j ) ' + ( ~ i - ~ j ) '  

where c is the speed of light, and U$ is not a function of 
&. We assume that Pi,j is log-normal, thus the ran- 
dom variable Pi,j(dBm) = 10loglo Pi,j is Gaussian, 

Pt,j(dBm) - N ( % ( d W , d B )  ( 1 )  
Pij(dBm) = Po(dBm) - 10nloglo(di,j/do) 
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where Pi,j is the power received at device i transmitted 
by devicej, q,,(dBm) is the mean power in dBm, and 
Z(,,(dB) is the shadowing gain (loss) which is Gaus- 
sian when expressed in dB. The mean received power 
is a function of Po(dBm), the free-space received power 
in dBm at a reference distance do, the path lo, cs ex- 
ponent n, and the distance di, j .  We assume that the 
model parameters do and n are known or are estimated 
for the environment of interest. For simplicity, we as- 
sume that the data Ti,j (and Pi,j) are independent 
k,j. 

These model assumptions will be shown to be valid 
in Section 4.1, using the literature and the results of 
the measurement campaign. In the next sections, we 
lirst use these model assumptions to derive the CRB 
and MLE for both the RSS and TOA cases. 

2 CRB for coordinate estimation 
The CRB provides a lower bound on the covari- 

ance matrix of any unbiased estimator of 0. The 
CRB is the inverse of the Fisher information matrix, 
F = -E [ V ~ ( V s l ( e ) ) ~ ] ,  where l (0)  = logf,je(P(0) is 
the log of the joint density function conditional on 8. 
Since 0 is a concatenation of x and y vectors, F par- 
titions in both the RSS and TOA cases, 

In the RSS case, 

To see the physical meaning behind the measured 
power, consider that &3 has units of (m) and is actu- 
ally the MLE of range dii3 given Pi,j. Thus, 

where C1 is a term which is constant w.r.t. B. The 
2nd partial derivative of (2) w.r.t. 0, and 0, will be 
a summation of terms if 0, and 0, are coordinates of 
the same device k ,  but will he only one term if 8, and 
0, are coordinates of different devices k and 1 ,  k # 1.  
For example, 

where IH(k)(l) = 1 if 1 E H ( k )  and 0 otherwise. 
All of the Znd partial derivatives depend on a term, 
log(d$..&), which has an expected value of zero. 
The elements of F ~ s s  become 

For the TOA case, the derivation is very similar 
and is omitted for brevity. The elements of the sub- 
matrices of F T ~ A  are given by 

Note F ~ s s  is proportional to n/UdB while F p ~ a  
is proportional to 1/(c2u$). These two signal-to-noise 
ratio quantities directly affect the CFU3. Also, in the 
TOA case, the dependence on the coordinates is in 
unitless distance ratios. These indicate that the size 
of the system can he scaled without changing the CRB 
as long as the geometry is kept the same. However, in 
the RSS case, due to  the d4 terms in the denominator 
of each term of FRss the variance hound must increase 
with to the size of the system even if the geometry is 
kept the same. These scaling characteristics indicate 
that TOA will be preferred for sparse networks, hut at  
some high density, RSS can perform as well as TOA. 
2.1 Existing location system example 

Consider the simple case when device 1 is hlind- 
folded and devices 2. . . N are references. This exam- 
ple is equivalent to many existing location systems in 
the literature, and a bound for the variance of the 
location estimator has been derived in the TOA case 
[12] .  There areonly two unknowns in this case, 5 1  and 
91. The CRB for location estimators in this example 
we denote U:. In the RSS case, 
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Figure 1: UI  (m) for the example system vs. the coor- 
dinates of the single blindfolded device, for (a) RSS with 
adBjn = 1.7, or (h) TOA with CUT = 1. 

where the distance d l ~ i , j  is the shortest distance from 
the point (s1,yl) to the line between device i and de- 
vice j. For the TOA case, 

The ratio ~ ~ ~ , , , d i , , / ( ~ ~ , ~ d ~ , ~ )  has been called the ge- 
ometric conditioning Ai;, of device l with respect to 
references i and j [12]. Ai,, is the area of the parallelo- 
gram formed by the vectors from device 1 to reference 
i and from device 1 to reference j ,  normalized by the 
lengths of the two vectors. Thus the geometric dilu- 
tion of precision (GDOP), defined as u ~ / ( c u T ) ,  is 

m 

GDop = { E 2 * + l  c;=i+, A:, , 

which matches the result in [lZ]. The bound in (3) is 
constant with scale if Ai,, is unchanged Vz,j. 

Contour plots of u1 for the RSS and TOA cases are 
shown in Fig. 1 when there are four reference devices 
located in the corners of a l m  by l m  square. The min- 
imum value in Fig. l (a)  is 0.27. Since the CRB scales 
with size in the RSS case, the standard deviation of 

location estimates in a traditional RSS system with 
udB/n. = 1.7 is limited to about 27% of the distance 
between reference devices. This performance has pre- 
vented use of RSS in many existing location systems 
and motivates the use of relative location information. 
In the TOA case in Fig. l(b), u1 a CUT, thus CUT = 1 
was chosen for ease of calculation. 

3 Relative location MLEs 
A mavinium likelihood estimation algorithm is 

shown in [SI for the twodimensional RSS case. Here, 
we consider a bias-reduced MLE for the RSS case, 

where C = exp [0.5(ude log10)2/(10n)2]. To see the 
bias-reduction, consider the case when M = 1, N = 2. 
With only two devices,-(4) will place the blindfolded 
devicesuchthat $, = dZj/C2 . Since E[&,j]  = C d ; , j ,  
(4) makes the separation of the two devices unbiased. 

The RSS bias-reduced MLE is still a biased esti- 
mator. For' the example in Section 2.1 with M = 4 
and N = 5 ,  the bias is very high near the edges of 
the square area. Shown in Fig. 2 is the estimated bias 
gradient norm of 21, which can he used to find the 
uniform CRB [4]. Intuitively, (4) tries to force the r a  
tio z:,j/(C2d7,j) close to 1. When dt, j  is small, the 
estimator has little freedom to place device 1 with r e  
spect to device j .  In the limit as the actual locations 
of devices 1 and j become equal, the MLE will locate 
device 1 at device j with zero variance. It makes sense 
that the simulated bias gradient norm is close to 1 at 
the corners of Fig. 2. 

For the TOA case, the MLE is given hy 

N - 1  N 
S = arg min (cT,,~ - di,j)'. ( 5 )  

i=l j=i+1 

4 Channel measurement experiment 
In this section, we describe the measurement sys- 

tem and experiment and show why the channel model 
assumptions made in Section 1.1 are valid. The chan- 
nel measurements are conducted in the Motorola fa- 
cility in Plantation, Florida in a 14m by 13m cubicle 
area. The cubicles have 1.8m high walls and are occu- 
pied with desks, bookcases, metal and wooden filing 
cabinets, computers and equipment. There are also 
metal and concrete support beams within and outside 
of the area. Forty-four device locations are identified 
and marked with tape. 

The measurement system uses a wideband direct- 
sequence spread-spectrum (DS-SS) transmitter (TX) 
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Figure 2: Bias gradient norm of the RSS MLE of 21 from 
(4) for the example system of Section 2.1. 

and receiver (Rx) (Sigtek ST-515). They are oper- 
ated synchronously using two Datum ExacTime GPS 
& rubidium-based oscillators. The TX outputs ,an un- 
modulated pseudo-noise (PN) signal with a 40 MHz 
chip rate, code length 1024, center frequency fc of 
2443 MHz, and TX power Pt of 10 mW. The RX takes 
complex samples at 120 MHz, downconverts, and cor- 
relates them with the known P N  signal. Both TX 
and RX use 2.4 GHz sleeve dipole antennas kept at  a 
height of l m  above the floor. The antennas have an 
omni pattern in the horizontal plane and a measured 
gain of 1.1 dBi. Periodic time calibrations are made to 
enable a time base accuracy of 1-2 ns, and power cali- 
brations are done ensure accurate RSS measurement. 

During the campaign, the channel between each 
pair of device locations is measured. First, the TX 
is placed at location 1 while the Rx is moved to lo- 
cations 2 through 44. 'Then the TX is moved to lo- 
cation 2, as the RX ie moved to locations 1 and 3 to 
44. At each combination of TX and Rx locations, the 
Rx records five wideband channel measurements. All 
devices are in range of all other devices, so a total 
of 44*43*5 = 9460 wideband channels are measured. 
Since we expect JeCiPi'Ocity, each link has a total of 10 
measurements that can be averaged. 
4.1 Estimating TOA and RSS 

The wideband radio channel is typically modeled 
as a sum of attenuated, phase-shifted, and time d e  
layed multipath impulses 131 [lo]. The power-delay 
profile (PDP) output of the Sigtek measurement sys- 
tem, due to its finite bandwidth, replaces each impulse 
of the channel impulse response with the autocorrela- 
tion function of the PN signal R P N ( T ) ,  a triangular 
peak 2/Rc wide. The line-of-sight (LOS) component, 
with TOA &/c, can be obscured by non-LOS mul- 
tipath that arrive within 2/& after the LOS TOA. 
If the LOS componeht is attenuated more than the 
early-arriving multipath, it can be difficult to distin- 

quish the LOS TOA. 
We estimate the LOS TOA by templatematching 

[SI, in which samples of the leading edge of the PDP 
are compared to an oversampled template of RPN(T) .  
The TOA estimate i;,j is the delay that minimizes the 
squared-error between the samples of the PDP and the 
template. Due to the fact that the non-LOS multipath 
are delayed in time, f,.j usually has a positive bias. 717e 
estimate the bias to be the average of & j  -di,j/c, V i , j  
which in these measurements is 10.9 ns. Subtracting 
out the bias, we get the unbiased TOA estimator ti,j. 
Finally, the average of the 10 t z , j  measurements for 
the link between i. and j we call Ti,j. The measured 
standard deviation, UT, is 6.1 ns. 

I t  has been shown that a wideband estimate of re- 
ceived power, pi , j ,  is obtained by summing the pow- 
ers of the multipath of the PDP [lo]. This wideband 
method reduces the frequency-selective fading effects. 
The geometric mean of the 10 p;,j measurements for 
the link between i and j ,  called Pi,j, reduces fading 
due to motion of objects in the environment. Shad- 
owingeffects, caused by permanent obstructions in the 
channel, remain predominant in Pi,? since sensors are 
assumed to be stationary. Shadowing loss is often 
reported to be a log-normal random variable [3][10], 
which leads to the log-normal shadowing model in (1).  
The measured Pi,j match the log-normal shadowing 
model in (1) with n = 2.30 and U ~ B  = 3.92 dB, using 
do = lm. The low variance may be due both to the 
wide bandwidth and averaging, and to the homogene- 
ity of the measured cubicle area. 
Pi,j and Ti,j for the link i-j is a random function not 

of time but of place. This is because the obstructions 
between devices i and j that cause shadowing and ob- 
struction of the LOS don't change over time. However 
the two devices placed the same distance apart in a 
different area would have a different realization. Still, 
we can experimentally see the log-normal and Gaus- 
sian distributions of the RSS and TOA measurements 
if we examine Pi,j (dBm) - q,J (dBm) and 4 , j  - &/c. 
Both are demonstrated to have a very close fit to the 
Gaussian distribution using quantile-quantile plots [7]. 

4.2 Experimental results 
The RSS and TOA measurements Pi,j and Ti,, are 

input to the MLEs in (4) and ( 5 ) .  The minimum 
in each case is found via a conjugate gradient alge 
rithm. The estimated device locations are compared 
to the actual locations in Fig. 3(a) and (b). To gen- 
eralize the results, the Rh4S location error of all 40 
unknown-location devices is 2.18m in the RSS case 
and 1.23m in the TOA case. Since shadowing and 
non-LOS errors are not ergodic, calculating the MLE 
variances requires several measurement campaigns in 
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different areas. This was not possible due to time lim- 
itations. But we note that the root mean variance 
bound, (E::, ~ ~ : / 4 0 ) ' / ~ ,  is equal to 0.76111 for the RSS 
case and 0.69 in the TOA case. We also notice that 
the devices close to the center are located more accu- 
rately tha,n the devices on the edges, particularly in 
the RSS case. Devices at the edges have fewer nearby 
neighbors to benefit their location estimate. 

5 Conclusion 
In a measured network in an office area, we show 

location errors in the RSS case about twice those ob- 
served in the TOA case. From the CRB results, we 
know that at  some density, a location system can per- 
form as well using WS as TOA. Since RSS is a less 
costly feature to implement in hardware, the results 
are important to the development of low-cost wireless 
sensor networks. In general, the results in this pa- 
per should allow designers of wireless sensor networks 
to determine if the accuracy possible can meet their 
requirements. Future research may use the CRB to 
evaluate new coordinate estimators. Also, if a model 
of the joint distribution of TOA and RSS can be deter- 
mined, then a CRB can be determined for estimators 
using both TOA and FlSS data. 
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