
1. Introduction
The wavelet transform is a relatively new tool to be taken up by 
the engineering community. Particular strengths lie in its noise 
and data reduction abilities, which have been exploited in a 
number of practical applications(10 and 11). These, and many other 

aspects of the wavelet transform have led to growing interest in 
the technique by engineers involved in non-destructive testing 
(NDT). NDT applications are varied, ranging from de-noising(12) 
to the measurement of dispersion curves for multimode Lamb
waves(13 and 14). These rely on the ability of the wavelet transform to 
decompose a signal into spatially distributed frequency components 
that can then be selectively filtered according to the requirements 
of the application. 

Lamb wave propagation in plates is generally found to be a 
depth-related phenomenon, the depth affecting the dispersion 
properties of the waves. Neithammer and Jacobs(13) have 
demonstrated that the use of wavelets for crack detection in plates 
produces superior results to the more commonly used short-time-
Fourier-transform (STFT). A similar technique has been applied to 
the analysis of dynamic strain data(15), where the decomposition of 
signals taken from beams allowed identification of phase velocities 
and hence improved accuracy in the determination of crack lengths 
and location. Wavelets are particularly good in the analysis of 
noisy data through decomposition of the frequency components 
contained within a signal. Many applications exist where the 
wavelet transform has been used to remove unwanted noise from 
a signal allowing for improved damage identification. Sasi et al(16) 
applied the wavelet transform to analysis of eddy-current data 
taken from stainless steel cladding tubes. In this instance a discrete 
version of the wavelet transform was used to improve the signal-
to-noise ratio.

Common applications of the discrete versions of the wavelet 
transform are in data reduction and feature extraction. Due to the 
physical significance of the wavelet transform in the analysis of 
oscillating signals, feature extraction and data reduction can often 
be considered as being the same thing. A wavelet packet approach 
was adopted by Yang(17) to improve classification of damage in 
structures. This work found that wavelet packets were particularly 
good at identifying characteristics relating to damage. For a number 
of damage scenarios, wavelets provided very high detection rates.

Wavelets are simply mathematical functions exhibiting some 
kind of oscillatory behaviour. Unlike sinusoidal functions, where 
the oscillation dominates the entire signal, wavelets show only 
localised oscillation. Wavelet analysis involves breaking a signal 
into different frequency components by comparing the signal to a 
number of differently sized wavelet functions. Wavelets are closely 
allied to Fourier analysis, but have the advantage of being able 
to overcome some of their commonly associated constraints. To 
understand how this is achieved, a review of the issues follows. 

Signal processing is the term given to the process of 
extracting, analysing and modifying information contained 
within signals. Signal processing, or digital signal processing 
(DSP), is an extremely important engineering technology 
spanning many disciplines including image processing, condition 
monitoring, instrumentation and control, telecommunications and 
biomedicine(18). Signals generally carry time-varying information 
such as acceleration, force, temperature and strain. Simple analysis 
of such data has enabled engineers and scientists to determine 
derived properties relating to the physical process/system under 
consideration (for example derivation of Young’s modulus from 
stress/satran data). 
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In the analysis of vibration data, time-related changes to a 
physical variable may not be sufficient to characterise fully the 
dynamic behaviour of a system. Often the most valuable data in 
such areas relates to how a system reacts to changes in frequency. 
In the determination of this frequency response data two options 
are available. Either the system’s response to direct sinusoidal 
excitation can be analysed or, more commonly, the time response 
can be transformed via mathematical methods to the frequency 
domain. Fourier showed how simple periodic functions could 
be represented by an infinite series of sinusoidal functions. His 
work eventually led to the development of the Fourier transform 
named after him. The Fourier transform is an extension of the 
simpler Fourier series, which allows non-periodic signals (such as 
those of interest in DSP) to be broken down into a finite number 
of sinusoidal functions of differing amplitude and frequency. The 
Fourier transform reveals both the frequency components present 
in the time signal and the magnitude of the oscillations (in other 
words the frequency response). For a review of the key concepts 
refer to the literature(18-23). Despite the continued dominance of the 
Fourier transform, the technique has a number of well-established 
constraints. The Fourier transform is defined over infinite time. 
This means that the effect of transforming a time signal, having 
finite duration, to the frequency domain is to convolve1 (*) the 
Fourier transform of the signal with the Fourier transform of the 
window function, Figure 1. The frequency spectra of the window 
function can often prove detrimental to the time signal’s frequency 
representation, reducing the power and introducing additional 
components in an effect known as leakage. Further frequency 
components can be introduced due to edge effects where the 
window function causes discontinuities in the time signal. 

An additional limitation on the use of the Fourier transform 
is the lack of time information in the resulting transform. Fourier 
techniques were designed for use with stationary signals. A signal 
is stationary if its statistical properties, for example average and 
variance, do not change with time. However, most practical signals 
contain time-varying frequency data and so cannot be classified in 
this manner. An attempt to solve this time resolution problem has 
been made through the development of the STFT. STFT uses small 
time-shifted windows to approximate time/frequency information, 
giving bands of frequencies over time increments. The accuracy 
of the STFT in terms of time and frequency resolution is highly 
dependent on the size of the window selected for the transform. 
Large windows offer good frequency resolution but poor time 
resolution while short windows offer good time resolution but poor 
frequency resolution. 

The resolution problem associated with the STFT has been 
found to be a result of Heisenberg’s uncertainty principle(18), which 
states that time and frequency cannot be resolved simultaneously, 
in other words it is impossible to achieve accuracy in both 
quantities at the same time. One possible solution to this problem 
is to adopt a flexible windowing strategy and selectively transform 
the signal according to the time/frequency requirements. This is the 
method used in wavelet analysis, a technique formally presented in 
the 1980s(24), and fast gaining popularity within DSP and in many 
industrial applications.

Undertaking an analysis using wavelets is a relatively 
straightforward process. Complications are introduced through the 
differing approaches adopted and the conditions required to satisfy 
each implementation. The two most commonly used forms of the 
wavelet transforms are the continuous wavelet transform (CWT) 
and the discrete wavelet transform (DWT). Section 2 reviews the 
CWT providing a simple illustration of how the transformation 
process is achieved. Having gained a fundamental knowledge of 

the CWT, the DWT is then explained in section 3. Examples are 
used throughout this and an attempt is made to relate the transform 
of the CWT to that of the DWT. To conclude these two sections 
a note on the selection of appropriate transforms (CWT or DWT) 
and their corresponding wavelet functions is given in section 4. 
A review of the relevant mathematics associated with the CWT 
and DWT, including further recommended reading, is given in 
Appendices I and II.

2. Overview of the continuous wavelet 
transform

Of the wavelet transforms available, the CWT is possibly the 
simplest to visualise, providing a convenient introduction to the 
subject as a whole. The CWT is similar to the Fourier transform 
where an arbitrary function of time can be represented by an 
infinite summation of sinusoidal functions and their multiplicative 
coefficients. In wavelet analysis sinusoidal functions are replaced 
with wavelet functions. The essence of the calculation is then to 
determine the coefficients necessary to accurately portray the time 
function. (See Appendix I).

The wavelet is a mathematical function usually of time. The 
terms wavelet and wavelet function are used interchangeably 
herein. A wavelet is a small wave: it must be oscillatory and have a 
limited duration. The use of functions localised in time removes the 
windowing requirements commonly found in Fourier techniques. 
However, the term windowing or tiling is still common in wavelet 
analysis. The leakage effects suffered by the Fourier transform (see 
section 1 above) caused through windowing are not present in the 
wavelet transform and therefore signal information is retained. 
Wavelets must meet a number of mathematical conditions which 
limit the types of functions that may be used in the analysis. The 
discrete transform must satisfy a greater number of conditions 
than the CWT. The reasons for this are given in the following 
two sections. Three examples of wavelet functions are shown in 
Figure 2. 

1 Convolution is a special kind of ‘product’ of functions. Convolution 
has the property that the Fourier (or Laplace) transform of f(x) *g(x) is 
the Fourier transform of f(x) multiplied by the Fourier transform of g(x). 
Reference(22) provides further details of convolution theory.

Figure 1. Fourier transform windowing and leakage
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The definition of a wavelet requires an understanding of the 
process of scaling and translation. To scale a wavelet means to 
stretch or dilate: this ensures that the energy contained within 
the scaled wavelets is the same as the original ‘mother’ wavelet. 
As the wavelet is stretched in the horizontal x-axis direction it is 
squashed in the vertical y-axis direction. Translation moves the 
wavelet, usually in the positive direction, along the x-axis. In most 
cases the x-axis will represent time, while the y-axis is amplitude. 
In practice, the horizontal axis is not always ‘time’ but will always 
contain time-varying information. The transform process is 
achieved through continued scaling and translation of the mother 
wavelet along the length of a signal. 

Before a transform can be performed, a wavelet function must 
be selected. For the current discussion a generic function will be 
assumed; for information on wavelet selection see section 4. The 
term scale is often used in relation to the frequency of the wavelet 
function. Scale is inversely proportional to frequency, so low scale 
relates to the most tightly packed (high frequency) wavelets. A 
consequence of this is that typical wavelet decompositions are 
a function of time and scale as opposed to time and frequency. 
Wavelet transforms generally begin using low scale (high 
frequency) wavelet functions progressing to high scales (low 
frequency) where the wavelet is at its most dilated. The analysing 
wavelet is set at the beginning of the signal, t = 0. The product of 
the wavelet and signal are then integrated over all time. The results 
are then normalised giving the wavelet coefficient for that scale and 
translation. The wavelet is then moved by some small increment 

in the positive time direction and a new coefficient calculated, this 
process being continued until the end of the signal is reached. At 
this point the scale is increased, the wavelet being stretched and 
dilated, and the analysing signal returned to the starting point,
ie t = 0, allowing calculation of the wavelet coefficients at the next 
scale. The transformation is complete once the signal has been 
analysed for all scales, Figure 3. 

The wavelet transform performs a comparison of wavelet 
to signal. A high degree of similarity exists between the two 
functions when the coefficients at that translation and scale are 
large. If the two are dissimilar the coefficients are small. In this 
way the transform process gives an indication of the frequency 
content of the signal. As an approximate relationship exists 
between scale and frequency, a large coefficient at a particular 
scale implies the presence of a particular frequency. The ability 
of the wavelet transform to give accurate time and frequency 
information is constrained by the uncertainty principle in the same 
way as Fourier transforms. Stated simply, this means that it is not 
possible to achieve both good time and good frequency resolution 
simultaneously. This is clearly demonstrated with the Fourier 
transform where there exists no time information at all due to the 
infinite window implicit in the technique. The STFT achieves time 
resolution through the reduction of this window: as the window 
is reduced, time resolution improves at the expense of frequency 
resolution. 

Analysis of differing scales in the wavelet transform provides 
flexible windowing. The resulting transform will have varying 
time/frequency resolution as demonstrated in Figure 4. It is clear 
from the wavelet transform process that the lower scales (higher 
frequencies) occupy small windows where the wavelet is highly 
compacted. As the window size is reduced, time resolution 
improves at the expense of frequency resolution (as in STFT). 
Figure 4 illustrates this by the tall thin tiles located at the top of 
the diagram. The higher scale (lower frequency) components are 
stretched and occupy a larger window, thus having poorer time 
resolution and better frequency resolution (again this is similar to 
STFT with large windows). The flexible tiling scheme adopted by 
the wavelet transform provides a trade-off between frequency and 
time resolution. This usually proves advantageous in the analysis 
of most signals. Real signals tend to exhibit high frequency 
components for short durations and low frequency components for 
long durations. 

Having briefly examined the CWT transform process the 
obvious question that remains is what does a signal look like in the 
time-frequency/time-scale domain? Consider a simple sinusoidal 
signal of finite duration having a frequency of 50 Hz: the frequency 
domain representation is a single vertical line (neglecting leakage), 
see Figure 5. At any point within the duration of the signal the 
frequency will be 50 Hz, hence in this instance the time-frequency 
graph of this function can be constructed by projecting the single 
component of Figure 5 throughout the signal’s time duration, 
Figure 6. Time-frequency and time-scale plots can be displayed in 

Figure 2. Examples of wavelets – (a) Morlet; (b) Mexican hat;
(c) Gaussian

Figure 3. Wavelet analysis overview

Figure 4. Wavelet analysis flexible windowing scheme
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either three-dimensions (time, frequency and amplitude) or two-
dimensions (time and frequency). The above example is plotted in 
two-dimensions, Figure 7. In this instance the axes are time and 
frequency due to the use of a STFT. For a wavelet decomposition 
the axes will be time and scale. In Figure 7, high amplitude 
components are shown in white and zero amplitude in black, 
grey shading providing intermediate levels. The visualization 
of a sinusoidal signal with multiple harmonics (sinusoids with 
frequencies of integer factors greater than the fundamental 
frequency) can be represented in the same manner as the above 
example. Each horizontal band relates directly to the frequency 
and duration of the individual harmonics. Time-scale plots using 

wavelet analysis are generally quite similar to those produced by 
using time-frequency methods; there are, however, a number of 
notable differences as demonstrated in the following example. In 
this instance the signal to be analysed consists of a low frequency 
sine wave (50 Hz) of duration 1 second, followed by a high 
frequency sine wave (150 Hz). For the STFT and the continuous 
wavelet transforms the time-frequency/time-scale plots are shown 
in Figure 8(a) and 8(b). The two figures are inverted as scale is 
inversely proportional to frequency. The effect of the resolution 
trade-off discussed previously is also quite clear from the wavelet 
transform of Figure 8(b). The low frequency components derived 
from dilated wavelets offer greater frequency resolution (poorer 
time resolution) than the high frequency components. The first 
harmonic covers a frequency range of approximately 20 Hz 
while the second covers about 70 Hz; this scale to frequency was 
approximated using the following relationship:

                                             
s F

f
c= ◊ D

where f is the frequency, s the scale, D is the sample period and 
Fc the centre frequency defined as an approximate measure of 
the oscillatory nature of the basis function at its centre. Looking 
at the STFT of Figure 8(a) there appears to be an anomaly in the 
diagram, a vertical line separating the two dominant harmonics. 
This anomaly is a direct result of the time-frequency resolution 
problem associated with fixed windowing (selection of smaller 
time windows can go some way to reduce this problem but at 
the cost of frequency information). Clearly, the solution to the 
resolution problem offered by the wavelet transform produces 
additional complexities in the interpretation of the coefficients. The 
overall effect, however, is beneficial. 

3. Overview of the discrete wavelet transform
The above review considered the continuous wavelet transform. 
This provided a demonstration of some of the key concepts 
involved in wavelet analysis. The CWT is a computationally 
demanding algorithm so, as with Fourier techniques, the discrete 
wavelet transform (DWT) has been developed. The DWT differs 
from the CWT in that the method of computation utilises subband 
coding (an alternative technique for computation of the DWT 
using pyramidal coding can be found in(19)). As there is a great deal 
of redundancy in the data contained within the CWT, the DWT 
utilises sampling of both scale and time data, thereby producing 
a substantially faster algorithm. Scale and time are sampled in 
powers of two (21, 22… etc); in most texts this is commonly termed 

Figure 5. Fourier transform of a 50 Hz sinusoidal function

Figure 6. Discrete frequency components with common 
frequency

Figure 7. Time-frequency representation of a 50 Hz sinusoid

Figure 8. Comparison of STFT and CWT – (a) STFT;
(b) Continuous wavelet transform using Morlet basis
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dyadic sampling. DWT data is generally displayed as a series of 
plots where each plot represents a specific scale. Using the notion 
of dyadic sampling these will be scales 2, 4, 8, etc. The data above 
(Figure 8) reanalysed using a DWT algorithm is shown in Figures 9 
and 10, where Figure 10 shows the left-hand-side of Figure 9. The 
analysing wavelet in this instance was developed by Daubechies(25), 
known as the ‘db7’, see Figure 11. (See Appendix II).

Figure 9 demonstrates how the DWT diagrams relate to the CWT 
diagram (Figure 8). Examining the two diagrams simultaneously it 
can be seen that the high amplitude parts of the signals relate to 
the light areas in the CWT. The essential information displayed in 
the CWT can be fully represented in the six plots of the DWT. The 

Y-axis notation is ‘A’ for an approximation and ‘D’ for a detail; 
D1 is low scale with increasing numbers for higher scales. The 
approximation usually shows the underlying trend of the data: 
the low frequency components. In this instance it is more or less 
a straight line. The remaining detail levels show how the signal 
changes between time samples. The DWT contains the same 
essential information as the CWT (see the lower four graphs of 
Figure 10, particularly ‘D2’ and ‘D4’ which relate to scales of 4 
and 16 respectively). As a point of interest, the ‘D3’ level found in 
Figure 10 is not present in the CWT of Figure 8 (scale) due to the 
adoption of a different wavelet function.  

Because the DWT uses dyadic sampling it is easy to relate the 
levels ‘D1’ to D5’ of Figure 10 to the scales shown in Figure 8. The 
CWT of Figure 8 is analysed over 32 scales, hence the DWT must 
be analysed over 5 levels: 21, 22…25 giving the samples scales 2, 
4…32. These five levels represent the detail diagrams displayed in 

Figure 9. CWT and DWT using Daubechies db7 basis

Figure 10. Example of DWT using Daubechies db7 basis Figure 11. Daubechies db7 wavelet function
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Figure 10 where level D1 corresponds to scale 2 (21), D2 to scale 
4 (22), D3 to scale 8 (23), etc. The DWT differs from the CWT in 
that it makes use of a scaling function in addition to the wavelet 
function previously discussed; this is the reason for the additional 
diagram in Figure 10. In DWT analysis, the wavelet function is 
used to determine the detail coefficients while the scaling function 
determines the approximation coefficients. The nature of the 
approximation coefficients depends on the level of decomposition 
that is undertaken. Each level of decomposition removes more high 
frequency data from the approximation coefficients. In the case 
of Figure 10 only a small amount of low frequency data has been 
retained, leaving the general trend of the signal.

In the frequency domain the wavelet function has band-pass 
properties as shown in Figure 12. Scaling (stretching) of the wavelet 
function acts to compress the frequency band-pass window, due to 
a reduction in the wavelet’s sampling time, and reduces the band-
pass frequencies. Time compression of the wavelet by a factor of 2 
will stretch the frequency spectrum of the wavelet by a factor of 2 
and also shift all frequency components up by a factor of 2; this is 
shown diagrammatically in Figure 13 where the wavelet function is 
represented by the Greek letter y. From Figure 13 it is clear that the 
wavelet transform can be calculated through the dyadic sampling 
and filtering of the wavelet function. The problem with this is that 
in order to cover the entire frequency spectra from zero to the upper 
bounds, an infinite number of scaled wavelet functions would be 
required. The solution is to produce a function having low-pass 
properties using the scaling function mentioned previously, see 
Figure 14. The DWT is therefore calculated by passing the signal 
through a filter-bank consisting of a high- and low-pass filter: 
the wavelet function and scaling function respectively. On each 
pass through the filter bank the scaling function captures the low 
frequency data from the previous approximation. The effect of 
dyadic sampling of the scaling function is to progressively reduce 
the low frequency components contained in each subsequent 
approximation. The filtering process as a whole is shown in 
Figures 15 and 16, which demonstrate the actions of both the 
wavelet and scaling function in the process of decomposition.

4. A note on transform and wavelet selection
The foundations of wavelet analysis lie in linear algebra and as 
such some of the terminology is common to both. The wavelet 
functions are commonly referred to as bases (basis in singular). 
A basis or basis set essentially describes a coordinate system 
which is linearly independent, allowing a signal or a function to be 
written as a linear combination of the basis set. A simple example 
of a commonly used basis set are the unit vectors i, j and k used 
in three-dimensional Euclidean space. Fourier analysis uses the 
same principles of linear independence in the construction of an 
infinite summation of sinusoids, themselves being basis functions. 
For clarity, the idea of linear independence with reference to the 
Fourier series means that none of the bases can be constructed 
from a summation of any of the other bases. Choice of a wavelet 
can often appear quite arbitrary(27), but should be guided by the 
following:

Orthogonal or Nonorthogonal – The orthogonality of a wavelet 
has a significant impact on the type of decomposition that can be 
performed on a signal. Orthogonality implies that vectors are at 
right angles to one another. The general definition of the scalar 
product of two vectors A and B is A.B = ABcosf, where f is the 
angle between the vectors. If the vectors A and B are orthogonal (in 
other words at right angles to one another) this product is zero as 
the angle f will be 90º. Strictly speaking, the use of the CWT does 
not require an orthogonal basis, although most are at least partially 
orthogonal. With reference to Figure 8, 9 and 10 it is easy to see 
that the CWT contains a great deal of information as compared to 
the DWT, which requires an orthogonal basis (note that despite the 
additional information in the CWT representation all the essential 
detail is fully captured in the DWT). A lot of redundant information 
exists in the CWT and subsequently the transform and its inverse 
are computationally demanding. Through the use of orthogonal 
bases (DWT) it is possible to reduce the information required for 
decomposition and reconstruction of the signal and hence provide 
opportunities for data reduction. This is the approach adopted in 
image compression and has been successfully used in (28) and (29) 
to replace the more commonly used cosine transform. Calculation 
of the CWT can use either orthogonal or nonorthogonal bases. 
Despite its computational requirement, this algorithm can give a 
good overview of a signal’s features where smooth, continuous 
variations in wavelet amplitude are expected(27).

Complex or Real – As with Fourier techniques, wavelet bases can 
be found in real and complex forms. Complex functions provide the 
opportunity of determining both magnitude and phase information 

Figure 12. Daubechies db4 wavelet basis and its Fourier 
transform showing the band-pass nature of the wavelet 
function

Figure 13. Wavelet spectra resulting from dilation of the mother 
wavelet (after Ref 25)

Figure 14. Daubechies db4 scaling function and its Fourier 
transform showing the low-pass nature of the function
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from a signal; this has been suggested to be useful in the analysis 
of oscillating signals(27). More recently, complex wavelet functions 
have found application in signal processing where the difficulty 
of applying the DWT to consistently process time-shifted signals 
(fundamentally the same signal captured at a different point in 
time) has prevented the use of pattern recognition techniques(29).

Width – Remembering the windowing problems of the STFT, 
the width of the wavelet basis has a similar impact on the time-
frequency resolution. For a wide basis function, time resolution 
will be sacrificed at lower scales whereas a short basis function will 
sacrifice frequency resolution at high scales.

Shape – The shape of the wavelet is one of the most important 
considerations in the selection of a basis. Generally, the shape of 
the function should show similar characteristics to the signal being 
analysed. In some cases a basis can be selected on the function 
it is to perform, for example the Haar function (see Figure 17) is 
particularly good at detecting discontinuities in a signal due its own 
discontinuous nature.

5. Discussion
The wavelet transform (CWT and DWT) is essentially a time/
frequency analysis tool which goes some way to solving the 
resolution problems of Heisenberg’s uncertainty principle. There 
are clearly some notable differences in the two representations 
highlighted by this review. The CWT offers maximum detail 

and time/frequency data but is difficult to use practically due to 
its computational demands. Where real-time analysis is required, 
the CWT is unsuitable despite being the more stable of the two 
algorithms in terms of shift invariance. 

The DWT has been suggested for use in data reduction 
applications and it is clear that in real-time analysis this is the more 
logical of the two algorithms to use. The shift invariance problem of 
the algorithm is an area of current research and solutions have been 
suggested through the use of complex bases(30). A further difference 
is clearly evident in the type of basis that can be used with each 
of the algorithms. The CWT makes use of a single wavelet basis, 
whereas the DWT requires both wavelet and scaling functions; the 
DWT also requires that both functions are orthonormal. A further 
extension to the DWT algorithm is available with wavelet packet 
analysis. This enables each of the detail coefficients to be filtered 
in the same way as the approximation coefficients, hence providing 
flexibility in signal representation with respect to the design 
objectives.

There are a number of time/frequency algorithms available, 
complementing the wavelet transforms. The STFT is possibly one 
of the most well-known time/frequency techniques. STFT can be 
extremely useful in the analysis of certain signals providing an 
appropriate balance can be made between time and frequency 
resolution. The wavelet transform and STFT are both linear 
transforms obeying superposition; an extremely useful nonlinear 
algorithm exists in the Wigner-Ville transform(31) which gives 
instantaneous energy information between time samples. Cohen(32) 
presents a good review of time/frequency distributions including a 
discussion of the relative merits of each.

6. Conclusion
An overview of the continuous and discrete wavelet transforms 
has been given in the above text including where applicable 
examples of their use in the analysis of signals. A number of 
references have been given for additional study, in particular 
detailing the supporting mathematics. This paper attempts to 
develop and explain some of the key terms attached to wavelet 
analysis providing a good introductory level text for those new to 
the subject. (See Appendix I and II).
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Introduction to Wavelets: http://www.amara.com/IEEEwave/
IEEEwavelet.html 

3. Wavelet Digest: http://www.wavelet.org/wavelet/index.html 
4. Polikar R. 1999, The Wavelet Tutorial: http://

engineering.rowan.edu/~polikar/WAVELETS/WTtutorial.html
5. Lewalle J. 1995, Tutorial on Continuous Wavelet Analysis of 

Experimental Data: http://www.ecs.syr.edu/faculty/lewalle/
tutor/tutor.html 

6. Altmann J. 1996, Surfing the Wavelets: http://www.wavelet.org/
wavelet/tutorial/wavelet.htm 

7. Wavelet Forum: http://www.ondelette.com/servlets/com.
o n d e l e t t e . s e r v l e t . w e b f o r u m . We b F o r u m S e r v l e t ? _
FORUMFILE_=forumWavelet.properties 

8. Mathsoft’s Wavelet Resource Page: http://www.mathsoft.com/
wavelets.html

NB: All web links were known to be active on August 2002.
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Appendix I – Continuous Wavelet Transform
The bases used in the CWT and DWT, whilst sharing some 
similarities, demonstrate a number of differences as will be shown 
below. The CWT’s forward transform is defined by the inner 
product of the signal with the wavelet basis. The inner product, 
also known as the scalar or dot product, maps the projection of the 
basis function onto the signal. Equation [1] defines a measure of 
similarity between the signal and the basis function:

                  W s f t s f t s dt, ( ), , ( ) ( , )t y t y t( ) = ( ) = *Ú .............[1]

where f(t) is some function of time (the signal), W(s, t) are the 
wavelet coefficients, y(s, t) is the wavelet basis, s and t are 
the scale and translation (time) parameters respectively and * 
represents complex conjugation. As described in section 2 the 
wavelet transform is calculated through scaling and translation 
of the wavelet basis. To achieve scaling of the wavelet function 
it is divided by the scale parameter s. However, using this alone 
is insufficient to produce appropriately proportioned energy in 
the wavelet coefficients. The scaling is therefore normalised 
producing:

                                         y ys
s

,∑( ) = 1
....................................[2]

Equation [2] restricts the type of basis that can be used for 
this type of analysis to those which are square integrable. In other 
words:

                                           y Œ ¬( )L n2 .......................................[3]
and

                                        y 2 x dx( ) < •Ú ....................................[4]

In fact due to the energy normalisation implied in Equation [2], 
Equation [4] can be restated as:

                                         y 2 1x dx( ) =Ú  ....................................[5]

The translation parameter shown in Equation [1] can now 
be introduced to Equation [2]; to ensure that each successive 
translation occurs at the unit time as opposed to unit scale the 
scale parameter is also included giving the scaled and translated 
wavelet:

                                  y t y ts
s

t
s

,( ) = -Ê
Ë

ˆ
¯

1  ............................[6]

Hence [1] can be expressed as,

             W s f t s
s

f t t
s

dt, ( ), , ( )t y t y t( ) = ( ) = -Ê
Ë

ˆ
¯

*Ú
1  .....[7]

In order to reconstruct the function f(t) from its wavelet 
coefficients the inverse CWT is defined:

                   f t
C

W s
s

t
s

d ds
s

( ) = ( ) -Ê
Ë

ˆ
¯ÚÚ

1 1
2

y

t y t t,  .............[8]

where:

                                        C dy
y w
w

w= Ú
( )

 .................................[9]

Note that in equation [9] above that y(w) is the frequency 
domain representation of the wavelet basis. Equation [8] leads to 
one of the most important conditions of the CWT wavelet basis; 
that of admissibility:

                                        

y w
w

w
( )

Ú < •d

It is clear from Equations [8] and [9] that in order to recover 
a signal from its wavelet coefficients Cy must be convergent 

(admissibility); this also implies that the Fourier transform, y(w) 
evaluated at zero frequency must be zero:

                                          y w
w

( )
=
=

0
0  ..................................[10]

Using knowledge of Fourier techniques it is clear that the frequency 
domain representation of the wavelet is a band pass function 
localised in frequency. Transformation of a band pass function 
from the frequency domain to the time domain will always produce 
a signal with an oscillatory nature. It can therefore be stated from 
Equations [9] and [10] that the wavelet basis must be oscillatory in 
order that a signal can be reconstructed using the inverse function 
defined in Equation [7]. A further condition ensuring the wave-like 
behaviour of the wavelet function is that it should have a zero 
mean, in other words:

                                          y ( )t dt =
-•

•
Ú 0  .................................[11]

In order that the CWT avoids the windowing problems inherent 
in Fourier techniques it must be localised in time. This way 
information is not lost through transformation due to leakage. 
Combining this with the results of Equations [9], [10] and [11] 
leads to the definition of a wavelet namely: a function localised in 
time with zero mean and having band pass characteristics.

A review of the relevant mathematics relating to the CWT 
has been given above including the wavelet requirements needed 
to satisfy decomposition and reconstruction of a signal. The 
reader wishing to find out more about the CWT is referred to key 
papers (25, 27, 32), while additional detail of the CWT can be found in 
books(30, 33, 34).

Appendix II – Discrete Wavelet Transform
The CWT, while being extremely useful for performing exploratory 
analysis, is a very slow algorithm. From a practical stance there 
is a need to produce a fast decomposition tool akin to the fast 
Fourier transform (FFT) which then provides real-time application 
opportunities. The main problem that exists in the discretization of 
the CWT is the reconstruction of the signal from the wavelet bases. 
The DWT forces some additional requirements on the type of basis 
that can be used in the transform process. The CWT is highly 
redundant; this redundancy occurs because the CWT analyses 
a signal at all scales and translations also requiring an infinite 
number of analysing wavelets. Appropriate sampling of scale and 
translation and a reduction in the number of wavelets used for 
decomposition produces a substantially faster algorithm, the DWT. 
The first step in the generation of the DWT is the discretization of 
the wavelet bases. Recalling Equation [6], a wavelet is expressed 
by:

                                  y t y ts
s

t
s

,( ) = -Ê
Ë

ˆ
¯

1

To create a discrete version of Equation [6], both scale and 
translation are sampled giving:

                            y y tj k
s

t k s
sj

j

j,( ) = -Ê
ËÁ

ˆ
¯̃

1

0

0 0

0

 .................... [12]

where j and k are integers, s0 is a fixed dilation step and t0 is a 
translation factor; t in this instance gives the time steps over which 
the wavelet is defined. It is clear from Equation [12] that t0 is a 
function of the dilation parameter s0. Typically s0 is selected as 
2 (dyadic) and t0 as 1; in this way both scale and translation are 
dyadic.

Using dyadic sampling of scale and time means that only 
special types of bases can be used to reconstruct the signal. To this 
end Daubechies(25) presents an equivalent admissibility condition 
for the discrete version of the wavelet transform vis:
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                           A f f B fj k
2 2 2£ £Â , ,y  ....................[13]

Equation [13] defines a frame with bounds A and B. These 
can be calculated from s0 and t0 and describe the accuracy of 
the reconstruction. Equation [13] produces a trade-off between 
accuracy of the reconstruction and the constraints on the basis 
function: as A and B come closer the reconstruction becomes 
more accurate and further constrains the selection of the basis. For 
the discrete case (A = B) the wavelet coefficients behave like an 
orthonormal basis. In this case, for reconstruction to take place the 
wavelet bases must also be orthonormal. 

The practical implementation of the DWT makes use of the 
subband components (section 2). Decomposition is achieved 
through filtering of the signal using high pass and low pass filters. 
This filtering technique is known as multiresolution analysis (MRA) 
because the signal is broken down into discrete frequency bands of 
varying resolution (recall the time/frequency resolution issue from 
section 2). The DWT introduces the scaling function providing the 
low pass filter part of the filter bank. The scaling function f(t), is 
not quite as strictly defined as the wavelet function as it does not 
need to satisfy admissibility nor need it be oscillatory. However, it 
must satisfy the condition of orthonormality. Hence, for the scaling 
function and the wavelet function the following applies:

 f f f fj k l m j k l mt t t t dt
for j l and k m
for j l and k m, , ,

*
,( ), ( ) ( ), ( )= =

= =
π π

Ï
Ì
Ó

Ú
1
0

 ..[14]

 y y y yj k l m j k l mt t t t dt
for j l and k m
for j l and k m, , ,

*
,( ), ( ) ( ), ( )= =

= =
π π

Ï
Ì
Ó

Ú
1
0

..[15]

The wavelet and scaling function are sampled and translated in 
a dyadic manner as shown in Equation [12]. For implementation 
these can now be expressed as:

                               f fj k j
jt

s
t k, ( ) = ◊ -( )-1 2

0

.......................[16]

                               y yj k j
jt

s
t k, ( ) = ◊ -( )-1 2

0

......................[17]

Let us define the wavelet coefficients produced through low 
and high-pass filtering as cn and dn, where n represents the level 
of decomposition. The signal is passed through the scaling and 
wavelet filters giving the first set of decomposition coefficients c1 
and d1, these are low and high frequency respectively. The second 
iteration filters c1 into c2 and d2, the third c2 into c3 and d3 etc. until 
the appropriate level of decomposition is achieved ie to level n. 
Using equations [16] and [17] and taking the inner product the 
wavelet coefficients are defined as:

                              c
s

cj j k j n j
n

= - -Â1

0
2 1 1f f, ,,  ......................[18]

                             d
s

dj j k j n j
n

= - -Â1

0
2 1 1y y, ,,  .......................[19]

Using equations [18] and [19] the reconstruction of the signal 
can be written:

          f t
s

c t k
s

d t kM
M

i
i

i

M
( ) = -( ) + -( )- -

=
Â ÂÂ1 2 1 2

0
2

0
21

f f  ..[20]

Equation [20] is the discrete wavelet series decomposition and 
enables practical implementation of the reconstruction formula. 
Equations [18] to [20] are the essence of decomposition and 
reconstruction and result in a transform that is more efficient than 
the FFT. 

A brief overview of the mathematics required for the DWT has 
been given. For readers wishing to study this area further, reference 
can be made to the following(25, 27, 33, 35 and 36 ) which provide detailed 
studies and proofs.

Nomenclature
Notation
ci Discrete wavelet coefficients for ith level 

decomposition.
di Discrete scaling coefficients of ith level decomposition.
D Sampling period.
Fc Centre frequency.
f(t) Continuous valued time function representing a signal.
f(∑) Scaling function.
j Level (index) for scale in discrete form.
k Index for time in discrete form.
L2 Vector space of all square integrable functions.
¬n Space of real-valued n dimensional vectors.
s Scale.
y(∑) Wavelet function – both continuous and discrete forms.
t Actual time – continuous.
t Constant for time-shifting of wavelet functions.
W(∑) Wavelet coefficients.
w Frequency.
x Dummy function variable.

Operations

∑ ∑,  Inner product
∑ Used to represent an arbitrary functional variable.
* Convolution
n  Modulus or absolute value of n.

 Norm or length of a vector.
Œ Contained in.
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