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Abstract 
This paper introduces monitoring applications, 
which we will show differ substantially from 
conventional business data processing. The fact that 
a software system must process and react to 
continual inputs from many sources (e.g., sensors) 
rather than from human operators requires one to 
rethink the fundamental architecture of a DBMS for 
this application area. In this paper, we present 
Aurora, a new DBMS that is currently under 
construction at Brandeis University, Brown 
University, and M.I.T. We describe the basic 
system architecture, a stream-oriented set of 
operators, optimization tactics, and support for real-
time operation. 

1 Introduction 
Traditional DBMSs have been oriented toward business 
data processing, and consequently are designed to address 
the needs of these applications. First, they have assumed 
that the DBMS is a passive repository storing a large 
collection of data elements and that humans initiate queries 
and transactions on this repository. We call this a Human-
Active, DBMS-Passive (HADP) model. Second, they have 
assumed that the current state of the data is the only thing 
that is important. Hence, current values of data elements 
are easy to obtain, while previous values can only be found 
torturously by decoding the DBMS log. The third 
assumption is that triggers and alerters are second-class 
citizens. These constructs have been added as an after 
thought to current systems, and none have an 
implementation that scales to a large number of triggers. 
Fourth, DBMSs assume that data elements are 
synchronized and that queries have exact answers. In many 
stream-oriented applications, data arrives asynchronously 

and answers must be computed with incomplete 
information. Lastly, DBMSs assume that applications 
require no real-time services. 

There is a substantial class of applications where all five 
assumptions are problematic. Monitoring applications are 
applications that monitor continuous streams of data. This 
class of applications includes military applications that 
monitor readings from sensors worn by soldiers (e.g., blood 
pressure, heart rate, position), financial analysis 
applications that monitor streams of stock data reported 
from various stock exchanges, and tracking applications 
that monitor the locations of large numbers of objects for 
which they are responsible (e.g., audio-visual departments 
that must monitor the location of borrowed equipment). 
Because of the high volume of monitored data and the 
query requirements for these applications, monitoring 
applications would benefit from DBMS support. Existing 
DBMS systems, however, are ill suited for such 
applications since they target business applications. 

First, monitoring applications get their data from 
external sources (e.g., sensors) rather than from humans 
issuing transactions. The role of the DBMS in this context 
is to alert humans when abnormal activity is detected. This 
is a DBMS-Active, Human-Passive (DAHP) model.   

Second, monitoring applications require data 
management that extends over some history of values 
reported in a stream, and not just over the most recently 
reported values. Consider a monitoring application that 
tracks the location of items of interest, such as overhead 
transparency projectors and laptop computers, using 
electronic property stickers attached to the objects. Ceiling-
mounted sensors inside a building and the GPS system in 
the open air generate large volumes of location data. If a 
reserved overhead projector is not in its proper location, 
then one might want to know the geographic position of the 
missing projector. In this case, the last value of the 
monitored object is required. However, an administrator 
might also want to know the duty cycle of the projector, 
thereby requiring access to the entire historical time series.   † This work was supported by the National Science Foundation under 

NSF Grant number IIS00-86057 and a gift from Sun Microsystems. Third, most monitoring applications are trigger-oriented. 
If one is monitoring a chemical plant, then one wants to 
alert an operator if a sensor value gets too high or if another 
sensor value has recorded a value out of range more than 
twice in the last 24 hours. Every application could 
potentially monitor multiple streams of data, requesting 
alerts if complicated conditions are met. Thus, the scale of 
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trigger processing required in this environment far exceeds 
that found in traditional DBMS applications. 
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Figure 1: Aurora system model 

Fourth, stream data is often lost, stale, or intentionally 
omitted for processing reasons. An object being monitored 
may move out of range of a sensor system, thereby 
resulting in lost data. The most recent report on the location 
of the object becomes more and more inaccurate over time. 
Moreover, in managing data streams with high input rates, 
it might be necessary to shed load by dropping less 
important input data. All of this, by necessity, leads to 
approximate answers. 

Lastly, many monitoring applications have real-time 
requirements. Applications that monitor mobile sensors 
(e.g., military applications monitoring soldier locations) 
often have a low tolerance for stale data, making these 
applications effectively real time. The added stress on a 
DBMS that must serve real-time applications makes it 
imperative that the DBMS employ intelligent resource 
management (e.g., scheduling) and graceful degradation 
strategies (e.g., load shedding) during periods of high load. 
We expect that applications will supply Quality of Service 
(QoS) specifications that will be used by the running 
system to make these dynamic resource allocation 
decisions. 

Monitoring applications are very difficult to implement 
in traditional DBMSs. First, the basic computation model is 
wrong: DBMSs have a HADP model while monitoring 
applications often require a DAHP model. In addition, to 
store time-series information one has only two choices. 
First, he can encode the time series as current data in 
normal tables. In this case, assembling the historical time 
series is very expensive because the required data is spread 
over many tuples, thereby dramatically slowing 
performance. Alternately, he can encode time series 
information in binary large objects to achieve physical 
locality, at the expense of making queries to individual 
values in the time series very difficult. One system that 
tries to do something more intelligent with time series data 
is the Informix Universal Server, which implemented a 
time-series data type and associated methods that speed 
retrieval of values in a time series [2]; however, this system 
does not address the concerns raised above. 

If a monitoring application had a very large number of 
triggers or alerters, then current DBMSs would fail because 
they do not scale past a few triggers per table. The only 
alternative is to encode triggers in some middleware 
application. Using this implementation, the system cannot 
reason about the triggers (e.g., optimization), because they 
are outside the DBMS. Moreover, performance is typically 
poor because middleware must poll for data values that 
triggers and alerters depend on. 

Lastly, no DBMS that we are aware of has built-in 
facilities for approximate query answering. The same 
comment applies to real-time capabilities. Again, the user 
must build custom code into his application.   

For these reasons, monitoring applications are difficult 
to implement using traditional DBMS technology. To do 
better, all the basic mechanisms in current DBMSs must be 

rethought. In this paper, we describe a prototype system, 
Aurora, which is designed to better support monitoring 
applications. We use Aurora to illustrate design issues that 
would arise in any system of this kind. 

Monitoring applications are applications for which 
streams of information, triggers, imprecise data, and real-
time requirements are prevalent. We expect that there will 
be a large class of such applications. For example, we 
expect the class of monitoring applications for physical 
facilities (e.g., monitoring unusual events at nuclear power 
plants) to grow in response to growing needs for security. 
In addition, as GPS-style devices are attached to a broader 
and broader class of objects, monitoring applications will 
expand in scope. Currently such monitoring is expensive 
and is restricted to costly items like automobiles (e.g., 
Lojack technology). In the future, it will be available for 
most objects whose position is of interest. 

In Section 2, we begin by describing the basic Aurora 
architecture and fundamental building blocks. In Section 3, 
we show why traditional query optimization fails in our 
environment, and present our alternate strategies for 
optimizing Aurora applications. Section 4 describes the 
run-time architecture and behavior of Aurora, concentrating 
on storage organization, scheduling, introspection, and load 
shedding. In Section 5, we discuss the myriad of related 
work that has preceded our effort. We describe the status of 
our prototype implementation in Section 6, and conclude in 
Section 7. 

2 Aurora System Model 
Aurora data is assumed to come from a variety of data 
sources such as computer programs that generate values at 
regular or irregular intervals or hardware sensors. We will 
use the term data source for either case. In addition, a data 
stream is the term we will use for the collection of data 
values that are presented by a data source. Each data source 
is assumed to have a unique source identifier and Aurora 
timestamps every incoming tuple to monitor the quality of 
service being provided.   

The basic job of Aurora is to process incoming streams 
in the way defined by an application administrator. Aurora 
is fundamentally a data-flow system and uses the popular 
boxes and arrows paradigm found in most process flow and 
workflow systems. Hence, tuples flow through a loop-free, 
directed graph of processing operations (i.e., boxes). 
Ultimately, output streams are presented to applications, 
which must be programmed to deal with the asynchronous 

 



tuples in an output stream. Aurora can also maintain 
historical storage, primarily in order to support ad-hoc 
queries. Figure 1 illustrates the high-level system model. b1
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Figure 2: Aurora query model 

2.1 Operators 
Aurora contains built-in support for eight primitive 
operations for expressing its stream processing 
requirements. Included among these are windowed 
operators that operate on sets of consecutive tuples from a 
stream ("windows") at a time. Every windowed operator 
applies an input (user-defined) function to a window and 
then advances the window to capture a new set of tuples 
before repeating the processing cycle. Slide advances a 
window by "sliding" it downstream by some number of 
tuples. This operator could be used to perform rolling 
computations, as in a query that continuously determines 
the average value of IBM stock over the most recent three 
hours. Tumble resembles Slide except that consecutive 
windows have no tuples in common. Rather, Tumble 
effectively partitions a stream into disjoint windows. This 
is useful, for example, when calculating daily stock 
indexes, where every stock quote is used in exactly one 
index calculation. Latch resembles Tumble but can 
maintain internal state between window calculations. This 
is useful for "infinite window" calculations, such as one 
that maintains the maximum or average value of every 
stock, maintained over its lifetime. Finally, Resample 
produces a partially synthetic stream by interpolating tuples 
between actual tuples of an input stream. 

Aside from Aurora's windowed operations are operators 
that act on a single tuple at a time. The Filter operator 
screens tuples in a stream for those that satisfy some input 
predicate. A special case of Filter is Drop, which drops 
random tuples at some rate specified as an operator input.  
Map applies an input function to every tuple in a stream. 
GroupBy partitions tuples across multiple streams into new 
streams whose tuples contain the same values over some 
input set of attributes. Finally, Join pairs tuples from input 
streams whose "distance" (e.g., difference in timestamps) 
falls within some given upper bound. For example, this 
distance might be set to 30 minutes if one wanted to pair 
stocks whose prices coincide within a half-hour of each 
other.  

Other desirable idioms for stream processing can be 
expressed as compositions of Aurora's built-in primitives. 
For example, while Aurora has no built-in "CASE 
statement" operator, one can be simulated by first applying 
a Map operator to a stream (that assigns a value to a new 
attribute that is dependent on which case predicate is 
satisfied) and then using GroupBy to partition tuples 
according to values assigned to this attribute. Additionally, 
there is no explicit Split box; instead a query can connect 
the output of one box to the inputs of several others. 

A full treatment of these operators is beyond the scope 
of this paper. 
2.2 Query Model 
Aurora supports continual queries (real-time processing), 
views, and ad-hoc queries all using substantially the same 

mechanisms. All three modes of operation use the same 
conceptual building blocks. Each mode processes flows 
based on QoS specificationseach output in Aurora is 
associated with two-dimensional QoS graphs that specify 
the utility of the output in terms of several performance and 
quality related attributes (see Section 4.1). The diagram in 
Figure 2 illustrates the processing modes supported by 
Aurora. 

The topmost path represents a continuous query. In 
isolation, data elements flow into boxes, are processed, and 
flow further downstream. In this scenario, there is no need 
to store any data elements once they are processed. Once an 
input has worked its way through all reachable paths, that 
data item is drained from the network. The QoS 
specification at the end of the path controls how resources 
are allocated to the processing elements along the path. One 
can also view an Aurora network (along with some of its 
applications) as a large collection of triggers. Each path 
from a sensor input to an output can be viewed as 
computing the condition part of a complex trigger. An 
output tuple is delivered to an application, which can take 
the appropriate action. 

The dark circles on the input arcs to boxes b1 and b2 
represent connection points. A connection point is an arc 
that will support dynamic modification to the network. 
New boxes can be added to or deleted from a connection 
point. When a new application connects to the network, it 
will often require access to the recent past. As such, a 
connection point has the potential for persistent storage (see 
Section 4.2). Persistent storage retains data items beyond 
their processing by a particular box. In other words, as 
items flow past a connection point, they are cached in a 
persistent store for some period of time. They are not 
drained from the network by applications. Instead, a 
persistence specification indicates exactly how long the 
items are kept. In the figure, the left-most connection point 
is specified to be available for two hours. This indicates 
that the beginning of time for newly connected applications 
will be two hours in the past. 

The middle path in Figure 2 represents a view. In this 
case, a path is defined with no connected application. It is 
allowed to have a QoS specification as an indication of the 
importance of the view. Applications can connect to the 
end of this path whenever there is a need. Before this 

 



3.1 Dynamic Continuous Query Optimization  happens, the system can propagate some, all, or none of the 
values stored at the connection point in order to reduce 
latency for applications that connect later. Moreover, it can 
store these partial results at any point along a view path. 
This is analogous to a materialized or partially materialized 
view. View materialization is under the control of the 
scheduler. 

We begin execution of an unoptimized Aurora network; 
i.e., the one that the user constructed. During execution, we 
gather run time statistics, such as the average cost of box 
execution and box selectivity. Our goal is to perform run-
time optimization of a network, without having to quiesce 
it. Hence, combining all the boxes into a massive query and 
then applying conventional query optimization is not a 
workable approach. Besides being NP-complete [23], it 
would require quiescing the whole network. Instead, the 
optimizer will select a portion of the network for 
optimization. Then, it will find all connection points that 
surround the subnetwork to be optimized. It will hold all 
input messages at upstream connection points and drain the 
subnetwork of messages through all downstream 
connection points. The optimizer will then apply the 
following local tactics to the identified subnetwork. 

The bottom path represents an ad-hoc query. An ad-hoc 
query can be attached to a connection point at any time. 
The semantics of an ad-hoc query is that the system will 
process data items and deliver answers from the earliest 
time T (persistence specification) stored in the connection 
point until the query branch is explicitly disconnected. 
Thus, the semantics for an Aurora ad-hoc query is the same 
as a continuous query that starts executing at tnow− T and 
continues until explicit termination. 
2.3 Graphical User Interface 

• Inserting Projections. It is unlikely that the application 
administrator will have inserted map operators to project 
out all unneeded attributes. Examination of an Aurora 
network allows us to insert or move such map operations to 
the earliest possible points in the network, thereby 
shrinking the size of the tuples that must be subsequently 
processed. Note that this kind of optimization requires that 
the system be provided with operator signatures that 
describe the attributes that are used and produced by the 
operators.    

The Aurora user interface cannot be covered in detail 
because of space limitations. Here, we mention only a few 
salient features. To facilitate designing large networks, 
Aurora will support a hierarchical collection of groups of 
boxes. A designer can begin near the top of the hierarchy 
where only a few superboxes are visible on the screen. A 
zoom capability is provided to allow him to move into 
specific portions of the network, by replacing a group with 
its constituent boxes and groups. In this way, a browsing 
capability is provided for the Aurora diagram. 

• Combining Boxes. As a next step, Aurora diagrams 
will be processed to combine boxes where possible. A pair-
wise examination of the operators suggests that, in general, 
map and filter can be combined with almost all of the 
operators whereas windowed or binary operators cannot. 

Boxes and groups have a tag, an argument list, a 
description of the functionality and ultimately a manual 
page. Users can teleport to specific places in an Aurora 
network by querying these attributes. Additionally, a user 
can place bookmarks in a network to allow him to return to 
places of interest.   It is desirable to combine two boxes into a single box 

when this leads to some cost reduction. As an example, a 
map operator that only projects out attributes can be 
combined easily with any adjacent operator, thereby saving 
the box execution overhead for a very cheap operator. In 
addition, two filtering operations can be combined into a 
single, more complex filter that can be more efficiently 
executed than the two boxes it replaces. Not only is the 
overhead of a second box activation avoided, but also 
standard relational optimization on one-table predicates can 
be applied in the larger box. In general, combining boxes at 
least saves the box execution overhead and reduces the 
total number of boxes, leading to a simpler diagram. 

These capabilities give an Aurora user a mechanism to 
query the Aurora diagram. The user interface also allows 
monitors for arcs in the network to facilitate debugging, as 
well as facilities for “single stepping” through a sequence 
of Aurora boxes. We plan a graphical performance monitor, 
as well as more sophisticated query capabilities.   

3 Aurora Optimization 
In traditional relational query optimization, one of the 
primary objectives is to minimize the number of iterations 
over large data sets. Stream-oriented operators that 
constitute the Aurora network, on the other hand, are 
designed to operate in a data flow mode in which data 
elements are processed as they appear on the input. 
Although the amount of computation required by an 
operator to process a new element is usually quite small, 
we expect to have a large number of boxes. Furthermore, 
high data rates add another dimension to the problem. 
Lastly, we expect many changes to be made to an Aurora 
network over time, and it seems unreasonable to take the 
network off line to perform a compile time optimization. 
We now present our strategies to optimize an Aurora 
network. 

• Reordering Boxes. Reordering the operations in a 
conventional relational DBMS to an equivalent but more 
efficient form is a common technique in query 
optimization. For example, filter operations can sometimes 
be pushed down the query tree through joins. In Aurora, we 
can apply the same technique when two operations 
commute.  

To decide when to interchange two commutative 
operators, we make use of the following performance 
model. Each Aurora box, b, has a cost, c(b), defined as the 
expected execution time for b to process one input tuple. 
Additionally, each box has a selectivity, s(b), which is the 

 



expected number of output tuples per input tuple. Consider 
two boxes, bi and bj, with bj following bi. In this case, for 
each input tuple for bi, we can compute the amount of 
processing as c(bi) + c(bj) × s(bi). Reversing the operators 
gives a like calculation. Hence, we can compute the 
condition used to decide whether the boxes should be 
switched as: 
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Figure 3: Aurora run-time architecture 
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It is straightforward to generalize the above calculation 

to deal with cases that involve fan-in or fan-out situations. 
Moreover, it is easy to see that we can obtain an optimal 
ordering by sorting all the boxes according to their 
corresponding ratios in decreasing order. We use this result 
in a heuristic algorithm that iteratively reorders boxes (to 
the extent allowed by their commutativity properties) until 
no more reorderings are possible. 

When the optimizer has found all productive 
transformations using the above tactics, it constructs a new 
sub-network, binds it into the composite Aurora network 
that is running, and then instructs the scheduler to stop 
holding messages at the input connection points. Of course, 
outputs affected by the sub-network will see a blip in 
response time; however the remainder of the network can 
proceed unimpeded.  

An Aurora network is broken naturally into a collection 
of k sub-networks by the connection points that are inserted 
by the application administrator. Each of these sub-
networks can be optimized individually, because it is a 
violation of Aurora semantics to optimize across a 
connection point. The Aurora optimizer is expected to 
cycle periodically through all k sub-networks and run as a 
background task. 
3.2 Ad-Hoc Query Optimization 
One last issue that must be dealt with is ad-hoc query 
optimization. Recall that the semantics of an ad-hoc query 
is that it must run on all the historical information saved at 
the connection point(s) to which it is connected. 
Subsequently, it becomes a normal portion of an Aurora 
network, until it is discarded. Aurora processes ad-hoc 
queries in two steps by constructing two separate 
subnetworks. Each is attached to a connection point, so the 
optimizer can be run before the scheduler lets messages 
flow through the newly added subnetworks. 

Aurora semantics require the historical subnetwork to be 
run first. Since historical information is organized as a B-
tree, the Aurora optimizer begins at each connection point 
and examines the successor box(es). If the box is a filter, 
then Aurora examines the condition to see if it is 
compatible with the storage key associated with the 
connection point. If so, it switches the implementation of 
the filter box to perform an indexed lookup in the B-tree. 
Similarly, if the successor box is a join, then the Aurora 
optimizer costs performing a merge-sort or indexed lookup, 
chooses the cheapest one, and changes the join 
implementation appropriately. Other boxes cannot 
effectively use the indexed structure, so only these two 
need be considered. Moreover, once the initial box 

performs its work on the historical tuples, the index 
structure is lost, and all subsequent boxes will work in the 
normal way. Hence, the optimizer converts the historical 
subnetwork into an optimized one, which is then executed. 

When it is finished, the subnetwork used for continuing 
operation can be run to produce subsequent output. Since 
this is merely one of the sub-networks, it can be optimized 
in the normal way suggested above. 

In summary, the initial boxes in an ad-hoc query can pull 
information from the B-tree associated with the 
corresponding connection point(s). When the historical 
operation is finished, Aurora switches the implementation 
to the standard push-based data structures, and continues 
processing in the conventional fashion.   

4 Run-Time Operation 
The basic purpose of Aurora run-time network is to process 
data flows through a potentially large workflow diagram. 
Figure 3 illustrates the basic Aurora architecture. Here, 
inputs  from data sources and outputs from boxes are fed to 
the router, which forwards them either to external 
applications or to the storage manager to be placed on the 
proper queue.  The storage manager is responsible for 
maintaining the box queues and managing the buffer. 
Conceptually, the scheduler picks a box for execution, 
ascertains what processing is required, and passes a pointer 
to the box description (together with a pointer to the box 
state) to the multi-threaded box processor. The box 
processor executes the appropriate operation and then 
forwards the output tuples to the router.  The scheduler then 
ascertains the next processing step and the cycle repeats. 
The QoS monitor continually monitors system performance 
and activates the load shedder when it detects an overload 
situation and poor system performance. The load shedder 
then sheds load till the performance of the system reaches 
an acceptable level. The catalog in Figure 3 contains 
information regarding the network topology, inputs, 
outputs, QoS information, and relevant statistics (e.g., 
selectivity, average box processing costs), and is essentially 
used by all components.  
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Figure 4: QoS graph types 

We now describe Aurora’s primary run-time architecture 
in more detail, focusing primarily on the storage manager, 
scheduler, QoS monitor, and load shedder. 
4.1 QoS Data Structures 
Aurora attempts to maximize the perceived QoS for the 
outputs it produces. QoS, in general, is a multidimensional 
function of several attributes of an Aurora system.  These 
include: 
• Response times─output tuples should be produced in a 

timely fashion; as otherwise QoS will degrade as 
delays get longer; 

• Tuple drops─if tuples are dropped to shed load, then 
the QoS of the affected outputs will deteriorate;  

• Values produced─QoS clearly depends on whether 
important values are being produced or not. 

Asking the application administrator to specify a 
multidimensional QoS function seems impractical. Instead, 
Aurora relies on a simpler tactic, which is much easier for 
humans to deal with: for each output stream, we expect the 
application administrator to give Aurora a two-dimensional 
QoS graph based on the processing delay of output tuples 
produced (as illustrated in Figure 4a). Here, the QoS of the 
output is maximized if delay is less than the threshold, δ, in 
the graph. Beyond δ, QoS degrades with additional delay. 

Optionally, the application administrator can give 
Aurora two additional QoS graphs for all outputs in an 
Aurora system. The first, illustrated in Figure 4b, shows the 
percentage of tuples delivered. In this case, the application 
administrator indicates that high QoS is achieved when 
tuple delivery is near 100% and that QoS degrades as tuples 
are dropped. The second optional QoS graph for outputs is 
shown in Figure 4c. The possible values produced as 
outputs appear on the horizontal axis, and the QoS graph 
indicates the importance of each one. This value-based QoS 
graph captures the fact that some outputs are more 
important than others. For example, in a plant monitoring 
application, outputs near a critical region are much more 
important than ones well away from it. Again, if the 
application administrator has value-based QoS information, 
then Aurora will use it to shed load more intelligently than 
would occur otherwise. 

Aurora makes several assumptions about the QoS 
graphs. First, it assumes that all QoS graphs are 
normalized, so that QoS for different outputs can be 
quantitatively compared. Second, Aurora assumes that the 
value chosen for δ is feasible, i.e., that a properly sized 

Aurora network will operate with all outputs in the good 
zone to the left of δ in steady state. This will require the 
delay introduced by the total computational cost along the 
longest path from a data source to this output not to exceed 
δ. If the application administrator does not present Aurora 
with feasible QoS graphs, then the algorithms in the 
subsequent sections may not produce good results. Third, 
unless otherwise stated, Aurora assumes that all its QoS 
graphs are convex (the value-based graph illustrated in 
Figure 4c is an exception). This assumption is not only 
reasonable but also necessary for the applicability of 
gradient walking techniques used by Aurora for scheduling 
and load shedding. 

Note that Aurora’s notion of QoS is general and is not 
restricted to the types of graphs presented here. Aurora can 
work with other individual attributes (e.g., throughput) or 
composite attributes (e.g., a weighted, linear combination 
of throughput and latency) provided that they satisfy the 
basic assumptions discussed above. In the rest of this paper, 
however, we restrict our attention to the graph types 
presented here.   

The last item of information required from the 
application administrator is H, the headroom for the 
system, defined as the percentage of the computing 
resources that can be used in steady state. The remainder is 
reserved for the expected ad-hoc queries, which are added 
dynamically. 
4.2 Storage Management 
The job of the Aurora Storage Manager (ASM) is to store 
all tuples required by an Aurora network. There are two 
kinds of requirements. First, ASM must manage storage for 
the tuples that are being passed through an Aurora network, 
and secondly, it must maintain extra tuple storage that may 
be required at connection points. 

Queue Management. Each windowed operation 
requires a historical collection of tuples to be stored, equal 
to the size of the window. Moreover, if the network is 
currently saturated, then additional tuples may accumulate 
at various places in the network. As such, ASM must 
manage a collection of variable length queues of tuples. 
There is one queue at the output of each box, which is 
shared by all successor boxes. Each such successor box 
maintains two pointers into this queue. The head indicates 
the oldest tuple that this box has not processed. The tail, in 
contrast, indicates the oldest tuple that the box needs. The 
head and tail indicate box’s current window, which slides 
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as new tuples are processed. ASM will keep track of these 
collections of pointers, and can normally discard tuples in a 
queue that are older than the oldest tail pointing into the 
queue. In summary, when a box produces a new tuple, it is 
added to the front of the queue. Eventually, all successor 
boxes process this tuple and it falls out of all of their 
windows and can be discarded. Figure 5 illustrates this 
model by depicting a two-way branch scenario where two 
boxes, b1 and b2, share the same queue (‘w’s refer to 
window sizes). 

Normally, queues of this sort are stored as main memory 
data structures. However, ASM must be able to scale 
arbitrarily, and has chosen a different approach. Disk 
storage is divided into fixed length blocks, of a tunable 
size, block_size. We expect typical environment will use 
128KB or larger blocks. Each queue is allocated one block, 
and queue management proceeds as above. As long as the 
queue does not overflow, the single block is used as a 
circular buffer. If an overflow occurs, ASM looks for a 
collection of two blocks (contiguous if possible), and 
expands the queue dynamically to 2 × block_size. Circular 
management continues in this larger space. Of course, 
queue underflow can be treated in an analogous manner. 

At start up time, ASM is allocated a buffer pool for 
queue storage. It pages queue blocks into and out of main 
memory using a novel replacement policy. The scheduler 
and ASM share a tabular data structure that contains a row 
for each box in the network containing the current 
scheduling priority of the box and the percentage of its 
queue that is currently in main memory. The scheduler 
periodically adjusts the priority of each box, while the 
ASM does likewise for the main memory residency of the 
queue. This latter piece of information is used by the 
scheduler for guiding scheduling decisions (see Section 
4.3). The data structure also contains a flag to indicate that 
a box is currently running. Figure 6 illustrates this 
interaction. 

When space is needed for a disk block, ASM evicts the 
lowest priority main memory resident block. In addition, 
whenever, ASM discovers a block for a queue that does not 
correspond to a running block, it will attempt to “upgrade” 
the block by evicting it in favor of a block for the queue 
corresponding to a higher priority box. In this way, ASM is 
continually trying to keep all the required blocks in main 
memory that correspond to the top priority queues. ASM is 
also aware of the size of each queue and whether it is 
contiguous on disk. Using this information, it can schedule 
multi-block reads and writes and garner added efficiency. 

Of course, as blocks move through the system and 
conditions change, the scheduler will adjust the priority of 
boxes, and ASM will react by adjusting the buffer pool. 
Naturally, we must be careful to avoid the well-known 
hysteresis effect, whereby ASM and the scheduler start 
working at cross purposes, and performance degrades 
sharply. 

Connection Point Management. As noted earlier, the 
Aurora application designer indicates a collection of 
connection points, to which collections of boxes can be 
subsequently connected. This satisfies the Aurora 
requirement to support ad-hoc queries. Associated with 
each connection point is a history requirement and an 
optional storage key. The history requirement indicates the 
amount of historical information that must be retained. 
Sometimes, the amount of retained history is less than the 
maximum window size of the successor boxes. In this case, 
no extra storage need be allocated. The usual case is that 
additional history is requested. 

In this case, ASM will organize the historical tuples in a 
B-tree organized on the storage key. If one is not specified, 
then a B-tree will be built on the timestamp field in the 
tuple. When tuples fall off the end of a queue that is 
associated with a connection point, then ASM will gather 
up batches of such tuples and insert them into the 
corresponding B-tree. Periodically, it will make a pass 
through the B-tree and delete all the tuples, which are older 
than the history requirement. Obviously, it is more efficient 
to process insertions and deletions in batches, than one by 
one. 

Since we expect B-tree blocks to be smaller than 
block_size, we anticipate splitting one or more of the buffer 
pool blocks into smaller pieces, and paging historical 
blocks into this space. The scheduler will simply add the 
boxes corresponding to ad-hoc queries to the data structure 
mentioned above, and give these new boxes a priority. 
ASM will react by prefetching index blocks, but not data 
blocks, for worthy indexed structures. In turn, it will retain 
index blocks, as long as there are not higher priority buffer 
requirements. No attempt will be made to retain data blocks 
in main memory.   
4.3 Real-Time Scheduling 
Scheduling in Aurora is a complex problem due to the need 
to simultaneously address several issues including large 
system scale, real-time performance requirements, and 
dependencies between box executions. Furthermore, tuple 
processing in Aurora spans many scheduling and execution 

 



steps (i.e., an input tuple typically needs to go through 
many boxes before potentially contributing to an output 
stream) and may involve multiple accesses to secondary 
storage. Basing scheduling decisions solely on QoS 
requirements, thereby failing to address end-to-end tuple 
processing costs, might lead to drastic performance 
degradation especially under resource constraints. To this 
end, Aurora not only aims to maximize overall QoS but 
also makes an explicit attempt to reduce overall tuple 
execution costs. We now describe how Aurora addresses 
these two issues.  

Train Scheduling. In order to reduce overall processing 
costs, Aurora observes and exploits two basic non-
linearities when processing tuples: 
• Inter-box non-linearity: End-to-end tuple processing 
costs may drastically increase if buffer space is not 
sufficient and tuples need to be shuttled back and forth 
between memory and disk several times throughout their 
lifetime. One important goal of Aurora scheduling is, thus, 
to minimize tuple trashing. Another form of inter-box non-
linearity occurs when passing tuples between box queues. 
If the scheduler can decide in advance that, say, box b2 is 
going to be scheduled right after box b1 (whose outputs 
feed b2), then the storage manager can be bypassed 
(assuming there is sufficient buffer space) and its overhead 
avoided while transferring b1’s outputs to b2’s queue. 
• Intra-box non-linearity: The cost of tuple processing 
may decrease as the number of tuples that are available for 
processing at a given box increases. This reduction in unit 
tuple processing costs may arise due to two reasons. First, 
the total number of box calls that need to be made to 
process a given number of tuples decreases, cutting down 
low-level overheads such as calls to the box code and 
context switch. Second, a box, depending on its semantics, 
may optimize its execution better with larger number of 
tuples available in its queue. For instance, a box can 
materialize intermediate results and reuse them in the case 
of windowed operations, or use merge-join instead of 
nested loops in the case of joins. 

Aurora exploits the benefits of non-linearity in both 
inter-box and intra-box tuple processing primarily through 
train scheduling, a set of scheduling heuristics that attempt 
to (1) have boxes queue as many tuples as possible without 
processingthereby generating long tuple trains; (2) 
process complete trains at oncethereby exploiting intra-
box non-linearity; and (3) pass them to subsequent boxes 
without having to go to diskthereby exploiting inter-box 
non-linearity. To summarize, train scheduling has two 
goals: its primary goal is to minimize the number of I/O 
operations performed per tuple. A secondary goal is to 
minimize the number of box calls made per tuple. 

One important implication of train scheduling is that, 
unlike traditional blocking operators that wake up and 
process new input tuples as they arrive, Aurora scheduler 
tells each box when to execute and how many queued 
tuples to process. This somewhat complicates the 
implementation and increases the load of the scheduler, but 

is necessary for creating and processing tuple trains, which 
will significantly decrease overall execution costs. 

Priority Assignment. The latency of each output tuple 
is the sum of the tuple’s processing delay and its waiting 
delay. Unlike the processing delay, which is a function of 
input tuple rates and box costs, the waiting delay is 
primarily a function of scheduling. Aurora’s goal is to 
assign priorities to outputs so as to achieve the per-output 
waiting delays that maximize the overall QoS.  

The priority of an output is an indication of its urgency. 
Aurora currently considers two approaches for priority 
assignment. The first one, a state-based approach, assigns 
priorities to outputs based on their expected utility under 
the current system state, and then picks for execution, at 
each scheduling instance, the output with the highest utility. 
In this approach, the utility of an output can be determined 
by computing how much QoS will be sacrificed if the 
execution of the output is deferred. A second, feedback-
based approach continuously observes the performance of 
the system and dynamically reassigns priorities to outputs, 
properly increasing the priorities of those that are not doing 
well and decreasing priorities of the applications that are 
already in their good zones.  

Putting It All Together. Because of the large scale, 
highly dynamic nature of the system, and the granularity of 
scheduling, searching for optimal scheduling solutions is 
clearly infeasible. Aurora therefore uses heuristics to 
simultaneously address real-time requirements and cost 
reduction by first assigning priorities to select individual 
outputs and then exploring opportunities for constructing 
and processing tuple trains. 

We now describe one such heuristic used by Aurora. 
Once an output is selected for execution, Aurora will find 
the first downstream box whose queue is in memory (note 
that for a box to be schedulable, its queue must at least 
contain its window’s worth of tuples). Going upstream, 
Aurora will then consider other boxes, until either it 
considers a box whose queue is not in memory or it runs 
out of boxes. At this point, there is a sequence of boxes 
(i.e., a superbox) that can be scheduled one after another. 

In order to execute a box, Aurora contacts the storage 
manager and asks that the queue of the box be pinned to the 
buffer throughout box’s execution. It then passes the 
location of the input queue to the appropriate box processor 
code, specifies how many tuples the box should process, 
and assigns it to an available worker thread.  
4.4 Introspection 
Aurora employs static and run-time introspection 
techniques to predict and detect overload situations. 

Static Analysis. The goal of static analysis is to 
determine if the hardware running the Aurora network is 
sized correctly. If insufficient computational resources are 
present to handle the steady state requirements of an 
Aurora network, then queue lengths will increase without 
bound and response times will become arbitrarily large. 

As described before, each box b in an Aurora network 
has an expected tuple processing cost, c(b), and a 

 



Load Shedding by Dropping Tuples. The first 
approach addresses the former problem mentioned above: it 
attempts to minimize the degradation (or maximize the 
improvement) in the overall system QoS; i.e., the QoS 
values aggregated over all the outputs. This is 
accomplished by dropping tuples on network branches that 
terminate in more tolerant outputs. 

selectivity, s(b). If we also know the expected rate of tuple 
production r(d) from each data source d, then we can use 
the following static analysis to ascertain if Aurora is sized 
correctly. 

From each data source, we begin by examining the 
immediate downstream boxes: if box bi is directly 
downstream from data source di, then, for the system to be 
stable, the throughput of bi should be at least as large as the 
input data rate; i.e.,  

If load shedding is triggered as a result of static analysis, 
then we cannot expect to use delay-based or value-based 
QoS information (without assuming the availability of a 
priori knowledge of the tuple delays or frequency 
distribution of values). On the other hand, if load shedding 
is triggered as a result of dynamic analysis, we can also use 
delay-based QoS graphs. 

1/ ( ) ( )i ic b r d≥  
We can then calculate the output data rate from bi as: 

(1/ ( ), ( )) ( )i imin c b r d s b× i  
Proceeding iteratively, we can compute the output data 

rate and computational requirements for each box in an 
Aurora network. We can then calculate the minimum 
aggregate computational resources required per unit time, 
min_cap, for stable steady-state operation. Clearly, the 
Aurora system with a capacity C cannot handle the 
expected steady state load if C is smaller than min_cap. 
Furthermore, the response times will assuredly suffer under 
the expected load of ad-hoc queries if  

We use a greedy algorithm to perform load shedding. 
Let us initially describe the static load shedding algorithm 
driven by drop-based QoS graphs. We first identify the 
output with the smallest negative slope for the 
corresponding QoS graph. We move horizontally along this 
curve until there is another output whose QoS curve has a 
smaller negative slope at that point. This horizontal 
difference gives us an indication of the output tuples to 
drop (i.e., the selectivity of the drop box to be inserted) that 
would result in the minimum decrease in the overall QoS. 
We then move the corresponding drop box as far upstream 
as possible until we find a box that affects other outputs 
(i.e., a split point), and place the drop box at this point. 
Meanwhile, we can calculate the amount of recovered 
resources. If the system resources are still not sufficient, 
then we repeat the process. 

_C H min cap× <  
Clearly, this is an undesirable situation and can be 

corrected by redesigning applications to change their 
resource requirements, by supplying more resources to 
increase system capacity, or by load shedding. 

Dynamic Analysis. Even if the system has sufficient 
resources to execute a given Aurora network under 
expected conditions, unpredictable, long-duration spikes in 
input rates may deteriorate performance to a level that 
renders the system useless. We now describe two run-time 
techniques to detect such cases.  

For the run-time case, the algorithm is similar except 
that we can use delay-based QoS graphs to identify the 
problematic outputs, i.e., the ones that are beyond their 
delay thresholds, and we repeat the load shedding process 
until the latency goals are met.  

Our technique for detecting an overload relies on the use 
of delay-based QoS information. Aurora timestamps all 
tuples from data sources as they arrive. Furthermore, all 
Aurora operators preserve the tuple timestamps as they 
produce output tuples (if an operator has multiple input 
tuples, then the earlier timestamp is preserved). When 
Aurora delivers an output tuple to an application, it checks 
the corresponding delay-based QoS graph (Figure 4a) for 
that output to ascertain that the delay is at an acceptable 
level (i.e., the output is in the good zone). 

In general, there are two subtleties in dynamic load 
shedding. First, drop boxes inserted by the load shedder 
should be among the ones that are given higher priority by 
the scheduler. Otherwise, load shedding will be ineffective 
in reducing the load of the system. Therefore, the load 
shedder simply does not consider the inactive (i.e., low 
priority) outputs, which are indicated by the scheduler. 
Secondly, the algorithm tries to move the drop boxes as 
close to the sources as possible to discard tuples before they 
redundantly consume any resources. On the other hand, if 
there is a box with a large existing queue, it makes sense to 
temporarily insert the drop box at that point rather than 
trying to move it upstream closer towards the data sources. 

4.5 Load Shedding 
When an overload is detected as a result of static or 
dynamic analysis, Aurora attempts to reduce the volume of 
Aurora tuple processing via load shedding. The naïve 
approach to load shedding involves dropping tuples at 
random points in the network in an entirely uncontrolled 
manner. This is similar to dropping overflow packets in 
packet-switching networks [27], and has two potential 
problems: (1) overall system utility might be degraded 
more than necessary; and (2) application semantics might 
be arbitrarily affected. In order to alleviate these problems, 
Aurora relies on QoS information to guide the load 
shedding process. We now describe two load-shedding 
techniques that differ in the way they exploit QoS. 

Presumably, the application is coded so that it can 
tolerate missing tuples from a data source caused by 
communication failures or other problems.  Hence, load 
shedding simply artificially introduces additional missing 
tuples. Although the semantics of the application are 
somewhat different, the harm should not be too damaging.  

Semantic Load Shedding by Filtering Tuples. The 
load shedding scheme described above effectively reduces 
the amount of Aurora processing by dropping randomly 
selected tuples at strategic points in the network. While this 

 



approach attempts to minimize the loss in overall system 
utility, it fails to control the impact of the dropped tuples on 
application semantics. Semantic load shedding addresses 
this limitation by using value-based QoS information, if 
available. Specifically, semantic load shedding drops tuples 
in a more controlled way; i.e., it drops less important 
tuples, rather than random ones, using filters. 

If value-based QoS information is available, then Aurora 
can watch each output and build up a histogram containing 
the frequency with which value ranges have been observed. 
In addition, Aurora can calculate the expected utility of a 
range of outputs by multiplying the QoS values with the 
corresponding frequency values for every interval and then 
summing these values. To shed load, Aurora identifies the 
output with the lowest utility interval; converts this interval 
to a filter predicate; and then, as before, attempts to 
propagate the corresponding filter box as far upstream as 
possible to a split point. This strategy, which we refer to as 
backward interval propagation, admittedly has limited 
scope because it requires the application of the inverse 
function for each operator passed upstream (Aurora boxes 
do not necessarily have inverses). In an alternative strategy, 
forward interval propagation, Aurora starts from an output 
and goes upstream until it encounters a split point (or 
reaches the source). It then estimates a proper filter 
predicate and propagates it in downstream direction to see 
what results at the output. By trial-and-error, Aurora can 
converge on a desired filter predicate. Note that a 
combination of these two strategies can also be utilized. 
First, Aurora can apply backward propagation until a box, 
say b, whose operator’s inverse is difficult to compute. 
Aurora can then apply forward propagation between the 
insertion location of the filter box and b. This algorithm can 
be applied iteratively until sufficient load is shed. 

5 Related Work 
A special case of Aurora processing is as a continuous 
query system. A system like Niagara [7] is concerned with 
combining multiple data sources in a wide area setting, 
while we are initially focusing on the construction of a 
general stream processor that can process very large 
numbers of streams. 

Query indexing [3] is an important technique for 
enhancing the performance of large-scale filtering 
applications. In Aurora, this would correspond to a merge 
of some inputs followed by a fanout to a large number of 
filter boxes. Query indexing would be useful here, but it 
represents only one Aurora processing idiom. 

As in Aurora, active databases [21, 22] are concerned 
with monitoring conditions. These conditions can be a 
result of any arbitrary update on the stored database state. 
In our setting, updates are append-only, thus requiring 
different processing strategies for detecting monitored 
conditions. Triggers evaluate conditions that are either true 
or false. Our framework is general enough to support 
queries over streams or the conversion of these queries into 
monitored conditions. There has also been extensive work 
on making active databases highly scalable (e.g., [11]). 

Similar to continuous query research, these efforts have 
focused on query indexing, while Aurora is constructing a 
more general system. 

Adaptive query processing techniques (e.g., [4, 13, 26]) 
address efficient query execution in unpredictable and 
dynamic environments by revising the query execution plan 
as the characteristics of incoming data changes. Of 
particular relevance is the Eddies work [4]. Unlike 
traditional query processing where every tuple from a given 
data source gets processed in the same way, each tuple 
processed by an Eddy is dynamically routed to operator 
threads for partial processing, with the responsibility falling 
upon the tuple to carry with it its processing state. Recent 
work [17] extended Eddies to support the processing of 
queries over streams, mainly by permitting Eddies systems 
to process multiple queries simultaneously and for 
unbounded lengths of time. The Aurora architecture bears 
some similarity to that of Eddies in its division of a single 
query’s processing into multiple threads of control (one per 
query operator). However, queries processed by Eddies are 
expected to be processed in their entirety; there is neither 
the notion of load shedding, nor QoS. 

Previous work on stream data query processing 
architectures shares many of the goals and target 
application domains with Aurora. The Streams project [5] 
attempts to provide complete DBMS functionality along 
with support for continuous queries over streaming data. 
The Fjords architecture [16] combines querying of push-
based sensor sources with pull-based traditional sources by 
embedding the pull/push semantics into queues between 
query operators. It is fundamentally different from Aurora 
in that operator scheduling is governed by a combination of 
schedulers specific to query threads and operator-queue 
interactions. Tribeca [25] is an extensible, stream-oriented 
data processor designed specifically for supporting network 
traffic analysis. While Tribeca incorporates some of the 
stream operators and compile-time optimizations Aurora 
supports, it does not address scheduling or load shedding 
issues, and does not have the concept of ad-hoc queries. 

Work in sequence databases [24] defined sequence 
definition and manipulation languages over discrete data 
sequences. The Chronicle data model [14] defined a 
restricted view definition and manipulation language over 
append-only sequences. Aurora’s algebra extends the 
capabilities of previous proposals by supporting a wider 
range of window processing (i.e., Tumble, Slide, Latch), 
classification (i.e., GroupBy), and interpolation (i.e., 
Resample) techniques. 

Our work is also relevant to materialized views [10], 
which are essentially stored continuous queries that are re-
executed (or incrementally updated) as their base data are 
modified. However, Aurora’s notion of continuous queries 
differs from materialized views primarily in that Aurora 
updates are append-only, thus, making it much easier to 
incrementally materialize the view. Also, query results are 
streamed (rather than stored); and high stream data rates 
may require load shedding or other approximate query 

 



processing techniques that trade off efficiency for result 
accuracy. 

Our work is likely to benefit from and contribute to the 
considerable research on temporal databases [20], main-
memory databases [8], and real-time databases [15, 20]. 
These studies commonly assume an HADP model, whereas 
Aurora proposes a DAHP model that builds streams as 
fundamental Aurora objects. In a real-time database 
system, transactions are assigned timing constraints and the 
system attempts to ensure a degree of confidence in 
meeting these timing requirements. The Aurora notion of 
QoS extends the soft and hard deadlines used in real-time 
databases to general utility functions. Furthermore, real-
time databases associate deadlines with individual 
transactions, whereas Aurora associates QoS curves with 
outputs from stream processing and, thus, has to support 
continuous timing requirements. Relevant research in 
workflow systems (e.g., [18]) primarily focused on 
organizing long-running interdependent activities but did 
not consider real-time processing issues. 

There has been extensive research on scheduling tasks in 
real-time and multimedia systems and databases [19, 20]. 
The proposed approaches are commonly deadline driven; 
i.e., at each scheduling point, the task that has the earliest 
deadline or one that is expected to provide the highest QoS 
(e.g., throughput) is identified and scheduled. In Aurora, 
such an approach is not only impractical because of the 
sheer number of potentially schedulable tasks (i.e., tuples), 
but is also inefficient because of the implicit assumption 
that all tasks are memory-resident and are scheduled and 
executed in their entirety. To the best of our knowledge, 
however, our train scheduling approach is unique in its 
ability to reduce overall execution costs by exploiting intra- 
and inter-box non-linearities described here. 

The work of [26] takes a scheduling-based approach to 
query processing; however, they do not address continuous 
queries, are primarily concerned with data rates that are too 
slow (we also consider rates that are too high), and they 
only address query plans that are trees with single outputs. 

The congestion control problem in data networks [27] is 
relevant to Aurora and its load shedding mechanism. Load 
shedding in networks typically involves dropping 
individual packets randomly, based on timestamps, or using 
(application-specified) priority bits. Despite conceptual 
similarities, there are also some fundamental differences 
between network load shedding and Aurora load shedding. 
First, unlike network load shedding which is inherently 
distributed, Aurora is aware of the entire system state and 
can potentially make more intelligent shedding decisions. 
Second, Aurora uses QoS information provided by the 
external applications to trigger and guide load shedding. 
Third, Aurora’s semantic load shedding approach not only 
attempts to minimize the degradation in overall system 
utility, but also quantifies the imprecision due to dropped 
tuples. 

Aurora load shedding is also related to approximate 
query answering (e.g., [12]), data reduction, and summary 
techniques [6, 9], where result accuracy is traded for 

efficiency. By throwing away data, Aurora bases its 
computations on sampled data, effectively producing 
approximate answers using data sampling. The unique 
aspect of our approach is that our sampling is driven by 
QoS specifications. 

6 Implementation Status 
As of June 2002, we have a prototype Aurora 
implementation. The prototype has a Java-based GUI that 
allows construction and execution of Aurora networks. The 
interface is currently primitive, but will be extended over 
the next few months to support specification of QoS 
graphs, connection points, and zoom. The run-time system 
contains a primitive scheduler, a rudimentary storage 
manager, and code to execute most of the boxes. Aurora 
metadata is stored in a schema, which is stored in a 
Berkeley DB [1] database. Hence, Aurora is functionally 
complete, and multi-box networks can be constructed and 
run. However, there is currently no optimizer and load 
shedding. We expect to implement Aurora functionality in 
these areas over the course of the summer. 

7 Conclusions and Future Work 
Monitoring applications are those where streams of 
information, triggers, real-time requirements, and imprecise 
data are prevalent. Traditional DBMSs are based on the 
HADP model, and thus cannot provide adequate support 
for such applications. In this paper, we have described the 
architecture of Aurora, a DAHP system oriented towards 
monitoring applications. We argued that providing efficient 
support for these demanding applications not only require 
critically revisiting many existing aspects of database 
design and implementation, but also require developing 
novel proactive data storage and processing concepts and 
techniques.  

In this paper, we first presented the basic Aurora 
architecture, along with the primitive building blocks for 
workflow processing. We followed with several heuristics 
for optimizing a large Aurora network. We then focused on 
run-time data storage and processing issues, discussing 
storage organization, real-time scheduling, introspection, 
and load shedding, and proposed novel solutions in all 
these areas.  

We are currently implementing an Aurora prototype 
system, which we will use to investigate the practicality 
and efficiency of our proposed solutions. We are also 
investigating two important research directions. While the 
bulk of the discussion in this paper describes how Aurora 
works on a single computer, many stream-based 
applications demand support for distributed processing. To 
this end, we are working on a distributed architecture, 
Aurora*, which will enable operators to be pushed closer to 
the data sources, potentially yielding significantly 
improved scalability, energy use, and bandwidth efficiency. 
Aurora* will provide support for distribution by running a 
full Aurora system on each of a collection of 
communicating nodes. In particular, Aurora* will manage 
load by replicating boxes along a path and migrating a copy 

 



 

of this sub-network to another more lightly loaded node. A 
subset of the stream inputs to the replicated network would 
move along with the copy. We are also extending our basic 
data and processing model to cope with missing and 
imprecise data values, which are common in applications 
involving sensor-generated data streams.  
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