
Monitoring Streams – A New Class of Data Management Applications

Don Carney
Brown University
dpc@cs.brown.edu

Uğur Çetintemel
Brown University

ugur@cs.brown.edu

Mitch Cherniack
Brandeis University

mfc@cs.brandeis.edu

Christian Convey
Brown University
cjc@cs.brown.edu

Sangdon Lee

Brown University
sdlee@cs.brown.edu

Greg Seidman
Brown University
gss@cs.brown.edu

Michael Stonebraker

M.I.T.
stonebraker@lcs.mit.edu

Nesime Tatbul
Brown University

tatbul@cs.brown.edu

Stan Zdonik

Brown University
sbz@cs.brown.edu

Abstract
This paper introduces monitoring applications,
which we will show differ substantially from
conventional business data processing. The fact that
a software system must process and react to
continual inputs from many sources (e.g., sensors)
rather than from human operators requires one to
rethink the fundamental architecture of a DBMS for
this application area. In this paper, we present
Aurora, a new DBMS that is currently under
construction at Brandeis University, Brown
University, and M.I.T. We describe the basic
system architecture, a stream-oriented set of
operators, optimization tactics, and support for real-
time operation.

1 Introduction
Traditional DBMSs have been oriented toward business
data processing, and consequently are designed to address
the needs of these applications. First, they have assumed
that the DBMS is a passive repository storing a large
collection of data elements and that humans initiate queries
and transactions on this repository. We call this a Human-
Active, DBMS-Passive (HADP) model. Second, they have
assumed that the current state of the data is the only thing
that is important. Hence, current values of data elements
are easy to obtain, while previous values can only be found
torturously by decoding the DBMS log. The third
assumption is that triggers and alerters are second-class
citizens. These constructs have been added as an after
thought to current systems, and none have an
implementation that scales to a large number of triggers.
Fourth, DBMSs assume that data elements are
synchronized and that queries have exact answers. In many
stream-oriented applications, data arrives asynchronously

and answers must be computed with incomplete
information. Lastly, DBMSs assume that applications
require no real-time services.

There is a substantial class of applications where all five
assumptions are problematic. Monitoring applications are
applications that monitor continuous streams of data. This
class of applications includes military applications that
monitor readings from sensors worn by soldiers (e.g., blood
pressure, heart rate, position), financial analysis
applications that monitor streams of stock data reported
from various stock exchanges, and tracking applications
that monitor the locations of large numbers of objects for
which they are responsible (e.g., audio-visual departments
that must monitor the location of borrowed equipment).
Because of the high volume of monitored data and the
query requirements for these applications, monitoring
applications would benefit from DBMS support. Existing
DBMS systems, however, are ill suited for such
applications since they target business applications.

First, monitoring applications get their data from
external sources (e.g., sensors) rather than from humans
issuing transactions. The role of the DBMS in this context
is to alert humans when abnormal activity is detected. This
is a DBMS-Active, Human-Passive (DAHP) model.

Second, monitoring applications require data
management that extends over some history of values
reported in a stream, and not just over the most recently
reported values. Consider a monitoring application that
tracks the location of items of interest, such as overhead
transparency projectors and laptop computers, using
electronic property stickers attached to the objects. Ceiling-
mounted sensors inside a building and the GPS system in
the open air generate large volumes of location data. If a
reserved overhead projector is not in its proper location,
then one might want to know the geographic position of the
missing projector. In this case, the last value of the
monitored object is required. However, an administrator
might also want to know the duty cycle of the projector,
thereby requiring access to the entire historical time series. † This work was supported by the National Science Foundation under

NSF Grant number IIS00-86057 and a gift from Sun Microsystems. Third, most monitoring applications are trigger-oriented.
If one is monitoring a chemical plant, then one wants to
alert an operator if a sensor value gets too high or if another
sensor value has recorded a value out of range more than
twice in the last 24 hours. Every application could
potentially monitor multiple streams of data, requesting
alerts if complicated conditions are met. Thus, the scale of

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

trigger processing required in this environment far exceeds
that found in traditional DBMS applications.

Input data
streams

Output to
applications

Continuous & ad hoc
queries

Operator boxes Historical
Storage

Figure 1: Aurora system model

Fourth, stream data is often lost, stale, or intentionally
omitted for processing reasons. An object being monitored
may move out of range of a sensor system, thereby
resulting in lost data. The most recent report on the location
of the object becomes more and more inaccurate over time.
Moreover, in managing data streams with high input rates,
it might be necessary to shed load by dropping less
important input data. All of this, by necessity, leads to
approximate answers.

Lastly, many monitoring applications have real-time
requirements. Applications that monitor mobile sensors
(e.g., military applications monitoring soldier locations)
often have a low tolerance for stale data, making these
applications effectively real time. The added stress on a
DBMS that must serve real-time applications makes it
imperative that the DBMS employ intelligent resource
management (e.g., scheduling) and graceful degradation
strategies (e.g., load shedding) during periods of high load.
We expect that applications will supply Quality of Service
(QoS) specifications that will be used by the running
system to make these dynamic resource allocation
decisions.

Monitoring applications are very difficult to implement
in traditional DBMSs. First, the basic computation model is
wrong: DBMSs have a HADP model while monitoring
applications often require a DAHP model. In addition, to
store time-series information one has only two choices.
First, he can encode the time series as current data in
normal tables. In this case, assembling the historical time
series is very expensive because the required data is spread
over many tuples, thereby dramatically slowing
performance. Alternately, he can encode time series
information in binary large objects to achieve physical
locality, at the expense of making queries to individual
values in the time series very difficult. One system that
tries to do something more intelligent with time series data
is the Informix Universal Server, which implemented a
time-series data type and associated methods that speed
retrieval of values in a time series [2]; however, this system
does not address the concerns raised above.

If a monitoring application had a very large number of
triggers or alerters, then current DBMSs would fail because
they do not scale past a few triggers per table. The only
alternative is to encode triggers in some middleware
application. Using this implementation, the system cannot
reason about the triggers (e.g., optimization), because they
are outside the DBMS. Moreover, performance is typically
poor because middleware must poll for data values that
triggers and alerters depend on.

Lastly, no DBMS that we are aware of has built-in
facilities for approximate query answering. The same
comment applies to real-time capabilities. Again, the user
must build custom code into his application.

For these reasons, monitoring applications are difficult
to implement using traditional DBMS technology. To do
better, all the basic mechanisms in current DBMSs must be

rethought. In this paper, we describe a prototype system,
Aurora, which is designed to better support monitoring
applications. We use Aurora to illustrate design issues that
would arise in any system of this kind.

Monitoring applications are applications for which
streams of information, triggers, imprecise data, and real-
time requirements are prevalent. We expect that there will
be a large class of such applications. For example, we
expect the class of monitoring applications for physical
facilities (e.g., monitoring unusual events at nuclear power
plants) to grow in response to growing needs for security.
In addition, as GPS-style devices are attached to a broader
and broader class of objects, monitoring applications will
expand in scope. Currently such monitoring is expensive
and is restricted to costly items like automobiles (e.g.,
Lojack technology). In the future, it will be available for
most objects whose position is of interest.

In Section 2, we begin by describing the basic Aurora
architecture and fundamental building blocks. In Section 3,
we show why traditional query optimization fails in our
environment, and present our alternate strategies for
optimizing Aurora applications. Section 4 describes the
run-time architecture and behavior of Aurora, concentrating
on storage organization, scheduling, introspection, and load
shedding. In Section 5, we discuss the myriad of related
work that has preceded our effort. We describe the status of
our prototype implementation in Section 6, and conclude in
Section 7.

2 Aurora System Model
Aurora data is assumed to come from a variety of data
sources such as computer programs that generate values at
regular or irregular intervals or hardware sensors. We will
use the term data source for either case. In addition, a data
stream is the term we will use for the collection of data
values that are presented by a data source. Each data source
is assumed to have a unique source identifier and Aurora
timestamps every incoming tuple to monitor the quality of
service being provided.

The basic job of Aurora is to process incoming streams
in the way defined by an application administrator. Aurora
is fundamentally a data-flow system and uses the popular
boxes and arrows paradigm found in most process flow and
workflow systems. Hence, tuples flow through a loop-free,
directed graph of processing operations (i.e., boxes).
Ultimately, output streams are presented to applications,
which must be programmed to deal with the asynchronous

tuples in an output stream. Aurora can also maintain
historical storage, primarily in order to support ad-hoc
queries. Figure 1 illustrates the high-level system model. b1

b4

b3b2

b5 b6

continuous query
view

QOS spec

Persistence spec:
“Keep 1 hr”

app
storage

b7 b8 b9

Connection
point

ad-hoc query

storage

app

Persistence spec:
“Keep 2 hr”

S1 S2

S3

QOS spec

QOS spec

Figure 2: Aurora query model

2.1 Operators
Aurora contains built-in support for eight primitive
operations for expressing its stream processing
requirements. Included among these are windowed
operators that operate on sets of consecutive tuples from a
stream ("windows") at a time. Every windowed operator
applies an input (user-defined) function to a window and
then advances the window to capture a new set of tuples
before repeating the processing cycle. Slide advances a
window by "sliding" it downstream by some number of
tuples. This operator could be used to perform rolling
computations, as in a query that continuously determines
the average value of IBM stock over the most recent three
hours. Tumble resembles Slide except that consecutive
windows have no tuples in common. Rather, Tumble
effectively partitions a stream into disjoint windows. This
is useful, for example, when calculating daily stock
indexes, where every stock quote is used in exactly one
index calculation. Latch resembles Tumble but can
maintain internal state between window calculations. This
is useful for "infinite window" calculations, such as one
that maintains the maximum or average value of every
stock, maintained over its lifetime. Finally, Resample
produces a partially synthetic stream by interpolating tuples
between actual tuples of an input stream.

Aside from Aurora's windowed operations are operators
that act on a single tuple at a time. The Filter operator
screens tuples in a stream for those that satisfy some input
predicate. A special case of Filter is Drop, which drops
random tuples at some rate specified as an operator input.
Map applies an input function to every tuple in a stream.
GroupBy partitions tuples across multiple streams into new
streams whose tuples contain the same values over some
input set of attributes. Finally, Join pairs tuples from input
streams whose "distance" (e.g., difference in timestamps)
falls within some given upper bound. For example, this
distance might be set to 30 minutes if one wanted to pair
stocks whose prices coincide within a half-hour of each
other.

Other desirable idioms for stream processing can be
expressed as compositions of Aurora's built-in primitives.
For example, while Aurora has no built-in "CASE
statement" operator, one can be simulated by first applying
a Map operator to a stream (that assigns a value to a new
attribute that is dependent on which case predicate is
satisfied) and then using GroupBy to partition tuples
according to values assigned to this attribute. Additionally,
there is no explicit Split box; instead a query can connect
the output of one box to the inputs of several others.

A full treatment of these operators is beyond the scope
of this paper.
2.2 Query Model
Aurora supports continual queries (real-time processing),
views, and ad-hoc queries all using substantially the same

mechanisms. All three modes of operation use the same
conceptual building blocks. Each mode processes flows
based on QoS specificationseach output in Aurora is
associated with two-dimensional QoS graphs that specify
the utility of the output in terms of several performance and
quality related attributes (see Section 4.1). The diagram in
Figure 2 illustrates the processing modes supported by
Aurora.

The topmost path represents a continuous query. In
isolation, data elements flow into boxes, are processed, and
flow further downstream. In this scenario, there is no need
to store any data elements once they are processed. Once an
input has worked its way through all reachable paths, that
data item is drained from the network. The QoS
specification at the end of the path controls how resources
are allocated to the processing elements along the path. One
can also view an Aurora network (along with some of its
applications) as a large collection of triggers. Each path
from a sensor input to an output can be viewed as
computing the condition part of a complex trigger. An
output tuple is delivered to an application, which can take
the appropriate action.

The dark circles on the input arcs to boxes b1 and b2
represent connection points. A connection point is an arc
that will support dynamic modification to the network.
New boxes can be added to or deleted from a connection
point. When a new application connects to the network, it
will often require access to the recent past. As such, a
connection point has the potential for persistent storage (see
Section 4.2). Persistent storage retains data items beyond
their processing by a particular box. In other words, as
items flow past a connection point, they are cached in a
persistent store for some period of time. They are not
drained from the network by applications. Instead, a
persistence specification indicates exactly how long the
items are kept. In the figure, the left-most connection point
is specified to be available for two hours. This indicates
that the beginning of time for newly connected applications
will be two hours in the past.

The middle path in Figure 2 represents a view. In this
case, a path is defined with no connected application. It is
allowed to have a QoS specification as an indication of the
importance of the view. Applications can connect to the
end of this path whenever there is a need. Before this

3.1 Dynamic Continuous Query Optimization happens, the system can propagate some, all, or none of the
values stored at the connection point in order to reduce
latency for applications that connect later. Moreover, it can
store these partial results at any point along a view path.
This is analogous to a materialized or partially materialized
view. View materialization is under the control of the
scheduler.

We begin execution of an unoptimized Aurora network;
i.e., the one that the user constructed. During execution, we
gather run time statistics, such as the average cost of box
execution and box selectivity. Our goal is to perform run-
time optimization of a network, without having to quiesce
it. Hence, combining all the boxes into a massive query and
then applying conventional query optimization is not a
workable approach. Besides being NP-complete [23], it
would require quiescing the whole network. Instead, the
optimizer will select a portion of the network for
optimization. Then, it will find all connection points that
surround the subnetwork to be optimized. It will hold all
input messages at upstream connection points and drain the
subnetwork of messages through all downstream
connection points. The optimizer will then apply the
following local tactics to the identified subnetwork.

The bottom path represents an ad-hoc query. An ad-hoc
query can be attached to a connection point at any time.
The semantics of an ad-hoc query is that the system will
process data items and deliver answers from the earliest
time T (persistence specification) stored in the connection
point until the query branch is explicitly disconnected.
Thus, the semantics for an Aurora ad-hoc query is the same
as a continuous query that starts executing at tnow− T and
continues until explicit termination.
2.3 Graphical User Interface

• Inserting Projections. It is unlikely that the application
administrator will have inserted map operators to project
out all unneeded attributes. Examination of an Aurora
network allows us to insert or move such map operations to
the earliest possible points in the network, thereby
shrinking the size of the tuples that must be subsequently
processed. Note that this kind of optimization requires that
the system be provided with operator signatures that
describe the attributes that are used and produced by the
operators.

The Aurora user interface cannot be covered in detail
because of space limitations. Here, we mention only a few
salient features. To facilitate designing large networks,
Aurora will support a hierarchical collection of groups of
boxes. A designer can begin near the top of the hierarchy
where only a few superboxes are visible on the screen. A
zoom capability is provided to allow him to move into
specific portions of the network, by replacing a group with
its constituent boxes and groups. In this way, a browsing
capability is provided for the Aurora diagram.

• Combining Boxes. As a next step, Aurora diagrams
will be processed to combine boxes where possible. A pair-
wise examination of the operators suggests that, in general,
map and filter can be combined with almost all of the
operators whereas windowed or binary operators cannot.

Boxes and groups have a tag, an argument list, a
description of the functionality and ultimately a manual
page. Users can teleport to specific places in an Aurora
network by querying these attributes. Additionally, a user
can place bookmarks in a network to allow him to return to
places of interest. It is desirable to combine two boxes into a single box

when this leads to some cost reduction. As an example, a
map operator that only projects out attributes can be
combined easily with any adjacent operator, thereby saving
the box execution overhead for a very cheap operator. In
addition, two filtering operations can be combined into a
single, more complex filter that can be more efficiently
executed than the two boxes it replaces. Not only is the
overhead of a second box activation avoided, but also
standard relational optimization on one-table predicates can
be applied in the larger box. In general, combining boxes at
least saves the box execution overhead and reduces the
total number of boxes, leading to a simpler diagram.

These capabilities give an Aurora user a mechanism to
query the Aurora diagram. The user interface also allows
monitors for arcs in the network to facilitate debugging, as
well as facilities for “single stepping” through a sequence
of Aurora boxes. We plan a graphical performance monitor,
as well as more sophisticated query capabilities.

3 Aurora Optimization
In traditional relational query optimization, one of the
primary objectives is to minimize the number of iterations
over large data sets. Stream-oriented operators that
constitute the Aurora network, on the other hand, are
designed to operate in a data flow mode in which data
elements are processed as they appear on the input.
Although the amount of computation required by an
operator to process a new element is usually quite small,
we expect to have a large number of boxes. Furthermore,
high data rates add another dimension to the problem.
Lastly, we expect many changes to be made to an Aurora
network over time, and it seems unreasonable to take the
network off line to perform a compile time optimization.
We now present our strategies to optimize an Aurora
network.

• Reordering Boxes. Reordering the operations in a
conventional relational DBMS to an equivalent but more
efficient form is a common technique in query
optimization. For example, filter operations can sometimes
be pushed down the query tree through joins. In Aurora, we
can apply the same technique when two operations
commute.

To decide when to interchange two commutative
operators, we make use of the following performance
model. Each Aurora box, b, has a cost, c(b), defined as the
expected execution time for b to process one input tuple.
Additionally, each box has a selectivity, s(b), which is the

expected number of output tuples per input tuple. Consider
two boxes, bi and bj, with bj following bi. In this case, for
each input tuple for bi, we can compute the amount of
processing as c(bi) + c(bj) × s(bi). Reversing the operators
gives a like calculation. Hence, we can compute the
condition used to decide whether the boxes should be
switched as:

…Q1

…Q2
.
.
.

…Qi

Buffer manager

…Qj

…Qn

.

.

.

Storage
Manager

Persistent Store

Scheduler

Router

Catalogs

σ

µ
.
.
.

Box Processors

inputs outputs

Load
Shedder

QoS
Monitor

><

Figure 3: Aurora run-time architecture

1 () / () 1 () / (ij j i)s b c b s b c b− > −
It is straightforward to generalize the above calculation

to deal with cases that involve fan-in or fan-out situations.
Moreover, it is easy to see that we can obtain an optimal
ordering by sorting all the boxes according to their
corresponding ratios in decreasing order. We use this result
in a heuristic algorithm that iteratively reorders boxes (to
the extent allowed by their commutativity properties) until
no more reorderings are possible.

When the optimizer has found all productive
transformations using the above tactics, it constructs a new
sub-network, binds it into the composite Aurora network
that is running, and then instructs the scheduler to stop
holding messages at the input connection points. Of course,
outputs affected by the sub-network will see a blip in
response time; however the remainder of the network can
proceed unimpeded.

An Aurora network is broken naturally into a collection
of k sub-networks by the connection points that are inserted
by the application administrator. Each of these sub-
networks can be optimized individually, because it is a
violation of Aurora semantics to optimize across a
connection point. The Aurora optimizer is expected to
cycle periodically through all k sub-networks and run as a
background task.
3.2 Ad-Hoc Query Optimization
One last issue that must be dealt with is ad-hoc query
optimization. Recall that the semantics of an ad-hoc query
is that it must run on all the historical information saved at
the connection point(s) to which it is connected.
Subsequently, it becomes a normal portion of an Aurora
network, until it is discarded. Aurora processes ad-hoc
queries in two steps by constructing two separate
subnetworks. Each is attached to a connection point, so the
optimizer can be run before the scheduler lets messages
flow through the newly added subnetworks.

Aurora semantics require the historical subnetwork to be
run first. Since historical information is organized as a B-
tree, the Aurora optimizer begins at each connection point
and examines the successor box(es). If the box is a filter,
then Aurora examines the condition to see if it is
compatible with the storage key associated with the
connection point. If so, it switches the implementation of
the filter box to perform an indexed lookup in the B-tree.
Similarly, if the successor box is a join, then the Aurora
optimizer costs performing a merge-sort or indexed lookup,
chooses the cheapest one, and changes the join
implementation appropriately. Other boxes cannot
effectively use the indexed structure, so only these two
need be considered. Moreover, once the initial box

performs its work on the historical tuples, the index
structure is lost, and all subsequent boxes will work in the
normal way. Hence, the optimizer converts the historical
subnetwork into an optimized one, which is then executed.

When it is finished, the subnetwork used for continuing
operation can be run to produce subsequent output. Since
this is merely one of the sub-networks, it can be optimized
in the normal way suggested above.

In summary, the initial boxes in an ad-hoc query can pull
information from the B-tree associated with the
corresponding connection point(s). When the historical
operation is finished, Aurora switches the implementation
to the standard push-based data structures, and continues
processing in the conventional fashion.

4 Run-Time Operation
The basic purpose of Aurora run-time network is to process
data flows through a potentially large workflow diagram.
Figure 3 illustrates the basic Aurora architecture. Here,
inputs from data sources and outputs from boxes are fed to
the router, which forwards them either to external
applications or to the storage manager to be placed on the
proper queue. The storage manager is responsible for
maintaining the box queues and managing the buffer.
Conceptually, the scheduler picks a box for execution,
ascertains what processing is required, and passes a pointer
to the box description (together with a pointer to the box
state) to the multi-threaded box processor. The box
processor executes the appropriate operation and then
forwards the output tuples to the router. The scheduler then
ascertains the next processing step and the cycle repeats.
The QoS monitor continually monitors system performance
and activates the load shedder when it detects an overload
situation and poor system performance. The load shedder
then sheds load till the performance of the system reaches
an acceptable level. The catalog in Figure 3 contains
information regarding the network topology, inputs,
outputs, QoS information, and relevant statistics (e.g.,
selectivity, average box processing costs), and is essentially
used by all components.

QoS

delay

1

0

δ

good zone

QoS

% tuples delivered

1

0

100 0

QoS

Output value

1

0

(a) Delay-based (b) Drop-based (c) Value-based

Figure 4: QoS graph types

We now describe Aurora’s primary run-time architecture
in more detail, focusing primarily on the storage manager,
scheduler, QoS monitor, and load shedder.
4.1 QoS Data Structures
Aurora attempts to maximize the perceived QoS for the
outputs it produces. QoS, in general, is a multidimensional
function of several attributes of an Aurora system. These
include:
• Response times─output tuples should be produced in a

timely fashion; as otherwise QoS will degrade as
delays get longer;

• Tuple drops─if tuples are dropped to shed load, then
the QoS of the affected outputs will deteriorate;

• Values produced─QoS clearly depends on whether
important values are being produced or not.

Asking the application administrator to specify a
multidimensional QoS function seems impractical. Instead,
Aurora relies on a simpler tactic, which is much easier for
humans to deal with: for each output stream, we expect the
application administrator to give Aurora a two-dimensional
QoS graph based on the processing delay of output tuples
produced (as illustrated in Figure 4a). Here, the QoS of the
output is maximized if delay is less than the threshold, δ, in
the graph. Beyond δ, QoS degrades with additional delay.

Optionally, the application administrator can give
Aurora two additional QoS graphs for all outputs in an
Aurora system. The first, illustrated in Figure 4b, shows the
percentage of tuples delivered. In this case, the application
administrator indicates that high QoS is achieved when
tuple delivery is near 100% and that QoS degrades as tuples
are dropped. The second optional QoS graph for outputs is
shown in Figure 4c. The possible values produced as
outputs appear on the horizontal axis, and the QoS graph
indicates the importance of each one. This value-based QoS
graph captures the fact that some outputs are more
important than others. For example, in a plant monitoring
application, outputs near a critical region are much more
important than ones well away from it. Again, if the
application administrator has value-based QoS information,
then Aurora will use it to shed load more intelligently than
would occur otherwise.

Aurora makes several assumptions about the QoS
graphs. First, it assumes that all QoS graphs are
normalized, so that QoS for different outputs can be
quantitatively compared. Second, Aurora assumes that the
value chosen for δ is feasible, i.e., that a properly sized

Aurora network will operate with all outputs in the good
zone to the left of δ in steady state. This will require the
delay introduced by the total computational cost along the
longest path from a data source to this output not to exceed
δ. If the application administrator does not present Aurora
with feasible QoS graphs, then the algorithms in the
subsequent sections may not produce good results. Third,
unless otherwise stated, Aurora assumes that all its QoS
graphs are convex (the value-based graph illustrated in
Figure 4c is an exception). This assumption is not only
reasonable but also necessary for the applicability of
gradient walking techniques used by Aurora for scheduling
and load shedding.

Note that Aurora’s notion of QoS is general and is not
restricted to the types of graphs presented here. Aurora can
work with other individual attributes (e.g., throughput) or
composite attributes (e.g., a weighted, linear combination
of throughput and latency) provided that they satisfy the
basic assumptions discussed above. In the rest of this paper,
however, we restrict our attention to the graph types
presented here.

The last item of information required from the
application administrator is H, the headroom for the
system, defined as the percentage of the computing
resources that can be used in steady state. The remainder is
reserved for the expected ad-hoc queries, which are added
dynamically.
4.2 Storage Management
The job of the Aurora Storage Manager (ASM) is to store
all tuples required by an Aurora network. There are two
kinds of requirements. First, ASM must manage storage for
the tuples that are being passed through an Aurora network,
and secondly, it must maintain extra tuple storage that may
be required at connection points.

Queue Management. Each windowed operation
requires a historical collection of tuples to be stored, equal
to the size of the window. Moreover, if the network is
currently saturated, then additional tuples may accumulate
at various places in the network. As such, ASM must
manage a collection of variable length queues of tuples.
There is one queue at the output of each box, which is
shared by all successor boxes. Each such successor box
maintains two pointers into this queue. The head indicates
the oldest tuple that this box has not processed. The tail, in
contrast, indicates the oldest tuple that the box needs. The
head and tail indicate box’s current window, which slides

Storage Manager

QoS-based priority information

Buffer-state information

Scheduler

Figure 6: Scheduler-storage manager interaction

time

b1

w1= 5

tail head

w2= 9

b2tail head

youngest
tuple

oldest
tuple

can be
discarded

Figure 5: Queue organization

as new tuples are processed. ASM will keep track of these
collections of pointers, and can normally discard tuples in a
queue that are older than the oldest tail pointing into the
queue. In summary, when a box produces a new tuple, it is
added to the front of the queue. Eventually, all successor
boxes process this tuple and it falls out of all of their
windows and can be discarded. Figure 5 illustrates this
model by depicting a two-way branch scenario where two
boxes, b1 and b2, share the same queue (‘w’s refer to
window sizes).

Normally, queues of this sort are stored as main memory
data structures. However, ASM must be able to scale
arbitrarily, and has chosen a different approach. Disk
storage is divided into fixed length blocks, of a tunable
size, block_size. We expect typical environment will use
128KB or larger blocks. Each queue is allocated one block,
and queue management proceeds as above. As long as the
queue does not overflow, the single block is used as a
circular buffer. If an overflow occurs, ASM looks for a
collection of two blocks (contiguous if possible), and
expands the queue dynamically to 2 × block_size. Circular
management continues in this larger space. Of course,
queue underflow can be treated in an analogous manner.

At start up time, ASM is allocated a buffer pool for
queue storage. It pages queue blocks into and out of main
memory using a novel replacement policy. The scheduler
and ASM share a tabular data structure that contains a row
for each box in the network containing the current
scheduling priority of the box and the percentage of its
queue that is currently in main memory. The scheduler
periodically adjusts the priority of each box, while the
ASM does likewise for the main memory residency of the
queue. This latter piece of information is used by the
scheduler for guiding scheduling decisions (see Section
4.3). The data structure also contains a flag to indicate that
a box is currently running. Figure 6 illustrates this
interaction.

When space is needed for a disk block, ASM evicts the
lowest priority main memory resident block. In addition,
whenever, ASM discovers a block for a queue that does not
correspond to a running block, it will attempt to “upgrade”
the block by evicting it in favor of a block for the queue
corresponding to a higher priority box. In this way, ASM is
continually trying to keep all the required blocks in main
memory that correspond to the top priority queues. ASM is
also aware of the size of each queue and whether it is
contiguous on disk. Using this information, it can schedule
multi-block reads and writes and garner added efficiency.

Of course, as blocks move through the system and
conditions change, the scheduler will adjust the priority of
boxes, and ASM will react by adjusting the buffer pool.
Naturally, we must be careful to avoid the well-known
hysteresis effect, whereby ASM and the scheduler start
working at cross purposes, and performance degrades
sharply.

Connection Point Management. As noted earlier, the
Aurora application designer indicates a collection of
connection points, to which collections of boxes can be
subsequently connected. This satisfies the Aurora
requirement to support ad-hoc queries. Associated with
each connection point is a history requirement and an
optional storage key. The history requirement indicates the
amount of historical information that must be retained.
Sometimes, the amount of retained history is less than the
maximum window size of the successor boxes. In this case,
no extra storage need be allocated. The usual case is that
additional history is requested.

In this case, ASM will organize the historical tuples in a
B-tree organized on the storage key. If one is not specified,
then a B-tree will be built on the timestamp field in the
tuple. When tuples fall off the end of a queue that is
associated with a connection point, then ASM will gather
up batches of such tuples and insert them into the
corresponding B-tree. Periodically, it will make a pass
through the B-tree and delete all the tuples, which are older
than the history requirement. Obviously, it is more efficient
to process insertions and deletions in batches, than one by
one.

Since we expect B-tree blocks to be smaller than
block_size, we anticipate splitting one or more of the buffer
pool blocks into smaller pieces, and paging historical
blocks into this space. The scheduler will simply add the
boxes corresponding to ad-hoc queries to the data structure
mentioned above, and give these new boxes a priority.
ASM will react by prefetching index blocks, but not data
blocks, for worthy indexed structures. In turn, it will retain
index blocks, as long as there are not higher priority buffer
requirements. No attempt will be made to retain data blocks
in main memory.
4.3 Real-Time Scheduling
Scheduling in Aurora is a complex problem due to the need
to simultaneously address several issues including large
system scale, real-time performance requirements, and
dependencies between box executions. Furthermore, tuple
processing in Aurora spans many scheduling and execution

steps (i.e., an input tuple typically needs to go through
many boxes before potentially contributing to an output
stream) and may involve multiple accesses to secondary
storage. Basing scheduling decisions solely on QoS
requirements, thereby failing to address end-to-end tuple
processing costs, might lead to drastic performance
degradation especially under resource constraints. To this
end, Aurora not only aims to maximize overall QoS but
also makes an explicit attempt to reduce overall tuple
execution costs. We now describe how Aurora addresses
these two issues.

Train Scheduling. In order to reduce overall processing
costs, Aurora observes and exploits two basic non-
linearities when processing tuples:
• Inter-box non-linearity: End-to-end tuple processing
costs may drastically increase if buffer space is not
sufficient and tuples need to be shuttled back and forth
between memory and disk several times throughout their
lifetime. One important goal of Aurora scheduling is, thus,
to minimize tuple trashing. Another form of inter-box non-
linearity occurs when passing tuples between box queues.
If the scheduler can decide in advance that, say, box b2 is
going to be scheduled right after box b1 (whose outputs
feed b2), then the storage manager can be bypassed
(assuming there is sufficient buffer space) and its overhead
avoided while transferring b1’s outputs to b2’s queue.
• Intra-box non-linearity: The cost of tuple processing
may decrease as the number of tuples that are available for
processing at a given box increases. This reduction in unit
tuple processing costs may arise due to two reasons. First,
the total number of box calls that need to be made to
process a given number of tuples decreases, cutting down
low-level overheads such as calls to the box code and
context switch. Second, a box, depending on its semantics,
may optimize its execution better with larger number of
tuples available in its queue. For instance, a box can
materialize intermediate results and reuse them in the case
of windowed operations, or use merge-join instead of
nested loops in the case of joins.

Aurora exploits the benefits of non-linearity in both
inter-box and intra-box tuple processing primarily through
train scheduling, a set of scheduling heuristics that attempt
to (1) have boxes queue as many tuples as possible without
processingthereby generating long tuple trains; (2)
process complete trains at oncethereby exploiting intra-
box non-linearity; and (3) pass them to subsequent boxes
without having to go to diskthereby exploiting inter-box
non-linearity. To summarize, train scheduling has two
goals: its primary goal is to minimize the number of I/O
operations performed per tuple. A secondary goal is to
minimize the number of box calls made per tuple.

One important implication of train scheduling is that,
unlike traditional blocking operators that wake up and
process new input tuples as they arrive, Aurora scheduler
tells each box when to execute and how many queued
tuples to process. This somewhat complicates the
implementation and increases the load of the scheduler, but

is necessary for creating and processing tuple trains, which
will significantly decrease overall execution costs.

Priority Assignment. The latency of each output tuple
is the sum of the tuple’s processing delay and its waiting
delay. Unlike the processing delay, which is a function of
input tuple rates and box costs, the waiting delay is
primarily a function of scheduling. Aurora’s goal is to
assign priorities to outputs so as to achieve the per-output
waiting delays that maximize the overall QoS.

The priority of an output is an indication of its urgency.
Aurora currently considers two approaches for priority
assignment. The first one, a state-based approach, assigns
priorities to outputs based on their expected utility under
the current system state, and then picks for execution, at
each scheduling instance, the output with the highest utility.
In this approach, the utility of an output can be determined
by computing how much QoS will be sacrificed if the
execution of the output is deferred. A second, feedback-
based approach continuously observes the performance of
the system and dynamically reassigns priorities to outputs,
properly increasing the priorities of those that are not doing
well and decreasing priorities of the applications that are
already in their good zones.

Putting It All Together. Because of the large scale,
highly dynamic nature of the system, and the granularity of
scheduling, searching for optimal scheduling solutions is
clearly infeasible. Aurora therefore uses heuristics to
simultaneously address real-time requirements and cost
reduction by first assigning priorities to select individual
outputs and then exploring opportunities for constructing
and processing tuple trains.

We now describe one such heuristic used by Aurora.
Once an output is selected for execution, Aurora will find
the first downstream box whose queue is in memory (note
that for a box to be schedulable, its queue must at least
contain its window’s worth of tuples). Going upstream,
Aurora will then consider other boxes, until either it
considers a box whose queue is not in memory or it runs
out of boxes. At this point, there is a sequence of boxes
(i.e., a superbox) that can be scheduled one after another.

In order to execute a box, Aurora contacts the storage
manager and asks that the queue of the box be pinned to the
buffer throughout box’s execution. It then passes the
location of the input queue to the appropriate box processor
code, specifies how many tuples the box should process,
and assigns it to an available worker thread.
4.4 Introspection
Aurora employs static and run-time introspection
techniques to predict and detect overload situations.

Static Analysis. The goal of static analysis is to
determine if the hardware running the Aurora network is
sized correctly. If insufficient computational resources are
present to handle the steady state requirements of an
Aurora network, then queue lengths will increase without
bound and response times will become arbitrarily large.

As described before, each box b in an Aurora network
has an expected tuple processing cost, c(b), and a

Load Shedding by Dropping Tuples. The first
approach addresses the former problem mentioned above: it
attempts to minimize the degradation (or maximize the
improvement) in the overall system QoS; i.e., the QoS
values aggregated over all the outputs. This is
accomplished by dropping tuples on network branches that
terminate in more tolerant outputs.

selectivity, s(b). If we also know the expected rate of tuple
production r(d) from each data source d, then we can use
the following static analysis to ascertain if Aurora is sized
correctly.

From each data source, we begin by examining the
immediate downstream boxes: if box bi is directly
downstream from data source di, then, for the system to be
stable, the throughput of bi should be at least as large as the
input data rate; i.e.,

If load shedding is triggered as a result of static analysis,
then we cannot expect to use delay-based or value-based
QoS information (without assuming the availability of a
priori knowledge of the tuple delays or frequency
distribution of values). On the other hand, if load shedding
is triggered as a result of dynamic analysis, we can also use
delay-based QoS graphs.

1/ () ()i ic b r d≥
We can then calculate the output data rate from bi as:

(1/ (), ()) ()i imin c b r d s b× i
Proceeding iteratively, we can compute the output data

rate and computational requirements for each box in an
Aurora network. We can then calculate the minimum
aggregate computational resources required per unit time,
min_cap, for stable steady-state operation. Clearly, the
Aurora system with a capacity C cannot handle the
expected steady state load if C is smaller than min_cap.
Furthermore, the response times will assuredly suffer under
the expected load of ad-hoc queries if

We use a greedy algorithm to perform load shedding.
Let us initially describe the static load shedding algorithm
driven by drop-based QoS graphs. We first identify the
output with the smallest negative slope for the
corresponding QoS graph. We move horizontally along this
curve until there is another output whose QoS curve has a
smaller negative slope at that point. This horizontal
difference gives us an indication of the output tuples to
drop (i.e., the selectivity of the drop box to be inserted) that
would result in the minimum decrease in the overall QoS.
We then move the corresponding drop box as far upstream
as possible until we find a box that affects other outputs
(i.e., a split point), and place the drop box at this point.
Meanwhile, we can calculate the amount of recovered
resources. If the system resources are still not sufficient,
then we repeat the process.

_C H min cap× <
Clearly, this is an undesirable situation and can be

corrected by redesigning applications to change their
resource requirements, by supplying more resources to
increase system capacity, or by load shedding.

Dynamic Analysis. Even if the system has sufficient
resources to execute a given Aurora network under
expected conditions, unpredictable, long-duration spikes in
input rates may deteriorate performance to a level that
renders the system useless. We now describe two run-time
techniques to detect such cases.

For the run-time case, the algorithm is similar except
that we can use delay-based QoS graphs to identify the
problematic outputs, i.e., the ones that are beyond their
delay thresholds, and we repeat the load shedding process
until the latency goals are met.

Our technique for detecting an overload relies on the use
of delay-based QoS information. Aurora timestamps all
tuples from data sources as they arrive. Furthermore, all
Aurora operators preserve the tuple timestamps as they
produce output tuples (if an operator has multiple input
tuples, then the earlier timestamp is preserved). When
Aurora delivers an output tuple to an application, it checks
the corresponding delay-based QoS graph (Figure 4a) for
that output to ascertain that the delay is at an acceptable
level (i.e., the output is in the good zone).

In general, there are two subtleties in dynamic load
shedding. First, drop boxes inserted by the load shedder
should be among the ones that are given higher priority by
the scheduler. Otherwise, load shedding will be ineffective
in reducing the load of the system. Therefore, the load
shedder simply does not consider the inactive (i.e., low
priority) outputs, which are indicated by the scheduler.
Secondly, the algorithm tries to move the drop boxes as
close to the sources as possible to discard tuples before they
redundantly consume any resources. On the other hand, if
there is a box with a large existing queue, it makes sense to
temporarily insert the drop box at that point rather than
trying to move it upstream closer towards the data sources.

4.5 Load Shedding
When an overload is detected as a result of static or
dynamic analysis, Aurora attempts to reduce the volume of
Aurora tuple processing via load shedding. The naïve
approach to load shedding involves dropping tuples at
random points in the network in an entirely uncontrolled
manner. This is similar to dropping overflow packets in
packet-switching networks [27], and has two potential
problems: (1) overall system utility might be degraded
more than necessary; and (2) application semantics might
be arbitrarily affected. In order to alleviate these problems,
Aurora relies on QoS information to guide the load
shedding process. We now describe two load-shedding
techniques that differ in the way they exploit QoS.

Presumably, the application is coded so that it can
tolerate missing tuples from a data source caused by
communication failures or other problems. Hence, load
shedding simply artificially introduces additional missing
tuples. Although the semantics of the application are
somewhat different, the harm should not be too damaging.

Semantic Load Shedding by Filtering Tuples. The
load shedding scheme described above effectively reduces
the amount of Aurora processing by dropping randomly
selected tuples at strategic points in the network. While this

approach attempts to minimize the loss in overall system
utility, it fails to control the impact of the dropped tuples on
application semantics. Semantic load shedding addresses
this limitation by using value-based QoS information, if
available. Specifically, semantic load shedding drops tuples
in a more controlled way; i.e., it drops less important
tuples, rather than random ones, using filters.

If value-based QoS information is available, then Aurora
can watch each output and build up a histogram containing
the frequency with which value ranges have been observed.
In addition, Aurora can calculate the expected utility of a
range of outputs by multiplying the QoS values with the
corresponding frequency values for every interval and then
summing these values. To shed load, Aurora identifies the
output with the lowest utility interval; converts this interval
to a filter predicate; and then, as before, attempts to
propagate the corresponding filter box as far upstream as
possible to a split point. This strategy, which we refer to as
backward interval propagation, admittedly has limited
scope because it requires the application of the inverse
function for each operator passed upstream (Aurora boxes
do not necessarily have inverses). In an alternative strategy,
forward interval propagation, Aurora starts from an output
and goes upstream until it encounters a split point (or
reaches the source). It then estimates a proper filter
predicate and propagates it in downstream direction to see
what results at the output. By trial-and-error, Aurora can
converge on a desired filter predicate. Note that a
combination of these two strategies can also be utilized.
First, Aurora can apply backward propagation until a box,
say b, whose operator’s inverse is difficult to compute.
Aurora can then apply forward propagation between the
insertion location of the filter box and b. This algorithm can
be applied iteratively until sufficient load is shed.

5 Related Work
A special case of Aurora processing is as a continuous
query system. A system like Niagara [7] is concerned with
combining multiple data sources in a wide area setting,
while we are initially focusing on the construction of a
general stream processor that can process very large
numbers of streams.

Query indexing [3] is an important technique for
enhancing the performance of large-scale filtering
applications. In Aurora, this would correspond to a merge
of some inputs followed by a fanout to a large number of
filter boxes. Query indexing would be useful here, but it
represents only one Aurora processing idiom.

As in Aurora, active databases [21, 22] are concerned
with monitoring conditions. These conditions can be a
result of any arbitrary update on the stored database state.
In our setting, updates are append-only, thus requiring
different processing strategies for detecting monitored
conditions. Triggers evaluate conditions that are either true
or false. Our framework is general enough to support
queries over streams or the conversion of these queries into
monitored conditions. There has also been extensive work
on making active databases highly scalable (e.g., [11]).

Similar to continuous query research, these efforts have
focused on query indexing, while Aurora is constructing a
more general system.

Adaptive query processing techniques (e.g., [4, 13, 26])
address efficient query execution in unpredictable and
dynamic environments by revising the query execution plan
as the characteristics of incoming data changes. Of
particular relevance is the Eddies work [4]. Unlike
traditional query processing where every tuple from a given
data source gets processed in the same way, each tuple
processed by an Eddy is dynamically routed to operator
threads for partial processing, with the responsibility falling
upon the tuple to carry with it its processing state. Recent
work [17] extended Eddies to support the processing of
queries over streams, mainly by permitting Eddies systems
to process multiple queries simultaneously and for
unbounded lengths of time. The Aurora architecture bears
some similarity to that of Eddies in its division of a single
query’s processing into multiple threads of control (one per
query operator). However, queries processed by Eddies are
expected to be processed in their entirety; there is neither
the notion of load shedding, nor QoS.

Previous work on stream data query processing
architectures shares many of the goals and target
application domains with Aurora. The Streams project [5]
attempts to provide complete DBMS functionality along
with support for continuous queries over streaming data.
The Fjords architecture [16] combines querying of push-
based sensor sources with pull-based traditional sources by
embedding the pull/push semantics into queues between
query operators. It is fundamentally different from Aurora
in that operator scheduling is governed by a combination of
schedulers specific to query threads and operator-queue
interactions. Tribeca [25] is an extensible, stream-oriented
data processor designed specifically for supporting network
traffic analysis. While Tribeca incorporates some of the
stream operators and compile-time optimizations Aurora
supports, it does not address scheduling or load shedding
issues, and does not have the concept of ad-hoc queries.

Work in sequence databases [24] defined sequence
definition and manipulation languages over discrete data
sequences. The Chronicle data model [14] defined a
restricted view definition and manipulation language over
append-only sequences. Aurora’s algebra extends the
capabilities of previous proposals by supporting a wider
range of window processing (i.e., Tumble, Slide, Latch),
classification (i.e., GroupBy), and interpolation (i.e.,
Resample) techniques.

Our work is also relevant to materialized views [10],
which are essentially stored continuous queries that are re-
executed (or incrementally updated) as their base data are
modified. However, Aurora’s notion of continuous queries
differs from materialized views primarily in that Aurora
updates are append-only, thus, making it much easier to
incrementally materialize the view. Also, query results are
streamed (rather than stored); and high stream data rates
may require load shedding or other approximate query

processing techniques that trade off efficiency for result
accuracy.

Our work is likely to benefit from and contribute to the
considerable research on temporal databases [20], main-
memory databases [8], and real-time databases [15, 20].
These studies commonly assume an HADP model, whereas
Aurora proposes a DAHP model that builds streams as
fundamental Aurora objects. In a real-time database
system, transactions are assigned timing constraints and the
system attempts to ensure a degree of confidence in
meeting these timing requirements. The Aurora notion of
QoS extends the soft and hard deadlines used in real-time
databases to general utility functions. Furthermore, real-
time databases associate deadlines with individual
transactions, whereas Aurora associates QoS curves with
outputs from stream processing and, thus, has to support
continuous timing requirements. Relevant research in
workflow systems (e.g., [18]) primarily focused on
organizing long-running interdependent activities but did
not consider real-time processing issues.

There has been extensive research on scheduling tasks in
real-time and multimedia systems and databases [19, 20].
The proposed approaches are commonly deadline driven;
i.e., at each scheduling point, the task that has the earliest
deadline or one that is expected to provide the highest QoS
(e.g., throughput) is identified and scheduled. In Aurora,
such an approach is not only impractical because of the
sheer number of potentially schedulable tasks (i.e., tuples),
but is also inefficient because of the implicit assumption
that all tasks are memory-resident and are scheduled and
executed in their entirety. To the best of our knowledge,
however, our train scheduling approach is unique in its
ability to reduce overall execution costs by exploiting intra-
and inter-box non-linearities described here.

The work of [26] takes a scheduling-based approach to
query processing; however, they do not address continuous
queries, are primarily concerned with data rates that are too
slow (we also consider rates that are too high), and they
only address query plans that are trees with single outputs.

The congestion control problem in data networks [27] is
relevant to Aurora and its load shedding mechanism. Load
shedding in networks typically involves dropping
individual packets randomly, based on timestamps, or using
(application-specified) priority bits. Despite conceptual
similarities, there are also some fundamental differences
between network load shedding and Aurora load shedding.
First, unlike network load shedding which is inherently
distributed, Aurora is aware of the entire system state and
can potentially make more intelligent shedding decisions.
Second, Aurora uses QoS information provided by the
external applications to trigger and guide load shedding.
Third, Aurora’s semantic load shedding approach not only
attempts to minimize the degradation in overall system
utility, but also quantifies the imprecision due to dropped
tuples.

Aurora load shedding is also related to approximate
query answering (e.g., [12]), data reduction, and summary
techniques [6, 9], where result accuracy is traded for

efficiency. By throwing away data, Aurora bases its
computations on sampled data, effectively producing
approximate answers using data sampling. The unique
aspect of our approach is that our sampling is driven by
QoS specifications.

6 Implementation Status
As of June 2002, we have a prototype Aurora
implementation. The prototype has a Java-based GUI that
allows construction and execution of Aurora networks. The
interface is currently primitive, but will be extended over
the next few months to support specification of QoS
graphs, connection points, and zoom. The run-time system
contains a primitive scheduler, a rudimentary storage
manager, and code to execute most of the boxes. Aurora
metadata is stored in a schema, which is stored in a
Berkeley DB [1] database. Hence, Aurora is functionally
complete, and multi-box networks can be constructed and
run. However, there is currently no optimizer and load
shedding. We expect to implement Aurora functionality in
these areas over the course of the summer.

7 Conclusions and Future Work
Monitoring applications are those where streams of
information, triggers, real-time requirements, and imprecise
data are prevalent. Traditional DBMSs are based on the
HADP model, and thus cannot provide adequate support
for such applications. In this paper, we have described the
architecture of Aurora, a DAHP system oriented towards
monitoring applications. We argued that providing efficient
support for these demanding applications not only require
critically revisiting many existing aspects of database
design and implementation, but also require developing
novel proactive data storage and processing concepts and
techniques.

In this paper, we first presented the basic Aurora
architecture, along with the primitive building blocks for
workflow processing. We followed with several heuristics
for optimizing a large Aurora network. We then focused on
run-time data storage and processing issues, discussing
storage organization, real-time scheduling, introspection,
and load shedding, and proposed novel solutions in all
these areas.

We are currently implementing an Aurora prototype
system, which we will use to investigate the practicality
and efficiency of our proposed solutions. We are also
investigating two important research directions. While the
bulk of the discussion in this paper describes how Aurora
works on a single computer, many stream-based
applications demand support for distributed processing. To
this end, we are working on a distributed architecture,
Aurora*, which will enable operators to be pushed closer to
the data sources, potentially yielding significantly
improved scalability, energy use, and bandwidth efficiency.
Aurora* will provide support for distribution by running a
full Aurora system on each of a collection of
communicating nodes. In particular, Aurora* will manage
load by replicating boxes along a path and migrating a copy

of this sub-network to another more lightly loaded node. A
subset of the stream inputs to the replicated network would
move along with the copy. We are also extending our basic
data and processing model to cope with missing and
imprecise data values, which are common in applications
involving sensor-generated data streams.

References
[1] Berkeley DB. Sleepycat Software,

http://www.sleepycat.com/.�
[2] Informix White Paper. Time Series: The Next Step for

Telecommunications Data Management.
[3] M. Altinel and M. J. Franklin. Efficient Filtering of

XML Documents for Selective Dissemination of
Information. In Proc. of the 26th Intl. Conf. on Very
Large Data Bases, Cairo, Egypt, 2000.

[4] R. Avnur and J. Hellerstein. Eddies: Continuously
Adaptive Query Processing. In Proc. of the 2000 ACM
SIGMOD Intl. Conf. on Management of Data, Dallas,
TX, 2000.

[5] S. Babu and J. Widom. Continuous Queries over Data
Streams. SIGMOD Record, 30(3):109-120, 2001.

[6] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas,
J. M. Hellerstein, Y. E. Ioannidis, H. V. Jagadish, T.
Johnson, R. T. Ng, V. Poosala, K. A. Ross, and K. C.
Sevcik. The New Jersey Data Reduction Report. IEEE
Data Engineering Bulletin, 20(4):3-45, 1997.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A Scalable Continuous Query System for
Internet Databases. In Proc. of the 2000 ACM
SIGMOD Intl. Conf. on Management of Data, Dallas,
TX, 2000.

[8] H. Garcia-Molina and K. Salem. Main Memory
Database Systems: An Overview. IEEE Transactions
on Knowledge and Data Engineering, 4(6):509-516,
1992.

[9] J. Gehrke, F. Korn, and D. Srivastava. On Computing
Correlated Aggregates over Continual Data Streams.
In Proc. of the 2001 ACM SIGMOD Intl. Conf. on
Management of Data, Santa Barbara, CA, 2001.

[10] A. Gupta and I. S. Mumick. Maintenance of
Materialized Views: Problems, Techniques, and
Applications. IEEE Data Engineering Bulletin,
18(2):3-18, 1995.

[11] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L.
Noronha, S. Parthasarathy, J. B. Park, and A. Vernon.
Scalable Trigger Processing. In Proc. of the 15th Intl.
Conf. on Data Engineering, Sydney, Austrialia, 1999.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. In Proc. of the 1997 ACM SIGMOD Intl.
Conf. on Management of Data, Tucson, 1997.

[13] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D.
S. Weld. An Adaptive Query Execution System for
Data Integration. In Proc. of the 1999 ACM SIGMOD
Intl. Conf. on Management of Data, Philadelphia, PA,
1999.

[14] H. V. Jagadish, I. S. Mumick, and A. Silberschatz.
View Maintenance Issues for the Chronicle Data
Model. In Proc. of the 14th Symposium on Principles
of Database Systems, San Jose, CA, 1995.

[15] B. Kao and H. Garcia-Molina. An Overview of
Realtime Database Systems. In Real Time Computing,
W. A. Halang and A. D. Stoyenko, Eds.: Springer-
Verlag, 1994.

[16] S. Madden and M. J. Franklin. Fjording the Stream:
An Architecture for Queries over Streaming Sensor
Data. In Proc. of the 18th Intl. Conf. on Data
Engineering, San Jose, CA, 2002.

[17] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V.
Raman. Continuously Adaptive Continuous Queries
Over Streams. In Proc. of the 2002 ACM SIGMOD
Intl. Conf. on Management of Data, Wisconsin, USA,
2002.

[18] C. Mohan, D. Agrawal, G. Alonso, A. E. Abbadi, R.
Gunther, and M. Kamath. Exotica: A Project on
Advanced Transaction Management and Workflow
Systems. SIGOIS Bulletin, 16(1):45-50, 1995.

[19] J. Nieh and M. S. Lam. The Design, Implementation
and Evaluation of SMART: A Scheduler for
Multimedia Applications. In Proc. of the 16th Intl.
ACM Symposium on Operating Systems Principles,
1997.

[20] G. Ozsoyoglu and R. T. Snodgrass. Temporal and
Real-Time Databases: A Survey. IEEE Transactions
on Knowledge and Data Engineering, 7(4):513-532,
1995.

[21] N. Paton and O. Diaz. Active Database Systems. ACM
Computing Surveys, 31(1):63-103, 1999.

[22] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mohan.
Alert: An Architecture for Transforming a Passive
DBMS into an Active DBMS. In Proc. of the 17th
Intl. Conf. on Very Large Data Bases, Barcelona,
Spain, 1991.

[23] T. K. Sellis and S. Ghosh. On the Multiple-Query
Optimization Problem. IEEE Transactions on
Knowledge and Data Engineering, 2(2):262-266,
1990.

[24] P. Seshadri, M. Livny, and R. Ramakrishnan. The
Design and Implementation of a Sequence Database
System. In Proc. of the 22nd Intl. Conf. on Very Large
Data Bases, Bombay, India, 1996.

[25] M. Sullivan and A. Heybey. Tribeca: A System for
Managing Large Databases of Network Traffic. In
Proc. of the USENIX Annual Technical Conf., New
Orleans, LA, 1998.

[26] T. Urhan and M. J. Franklin. Dynamic Pipeline
Scheduling for Improving Interactive Query
Performance. In Proc. of the 27th Intl. Conf. on Very
Large Data Bases, Rome, Italy, 2001.

[27] C. Yang and A. V. S. Reddy. A Taxonomy for
Congestion Control Algorithms in Packet Switching
Networks. IEEE Network, 9(5):34-44, 1995.

http://www.sleepycat.com/

	Introduction
	Aurora System Model
	Operators
	Query Model
	Graphical User Interface

	Aurora Optimization
	Dynamic Continuous Query Optimization
	Ad-Hoc Query Optimization

	Run-Time Operation
	QoS Data Structures
	Storage Management
	Real-Time Scheduling
	Introspection
	Load Shedding

	Related Work
	Implementation Status
	Conclusions and Future Work
	References

