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ABSTRACT

Liu, Yang. Ph.D., Purdue University, December, 2004. Structural Event Detection
for Rich Transcription of Speech. Major Professor: Mary P. Harper.

Although speech recognition technology has significantly improved during the

past few decades, current speech recognition systems output only a stream of words

without providing other useful structural information that could aid a human reader

and downstream language processing modules. This thesis research focuses on the

automatic detection of several helpful structural events in speech, including sentence

boundaries, type of utterance, filled pauses, discourse markers, and edit disfluencies.

The systems evaluated combine prosodic cues and textual information sources in a

variety of ways to support automatic detection of these structural events. Exper-

iments were conducted across corpora (conversational speech and broadcast news

speech) and with different transcription quality (human transcriptions versus recog-

nition output).

The imbalanced data problem is investigated for training the decision tree prosody

model component of our system because structural events are much less frequent than

non-events. A variety of sampling approaches and bagging are used to address this

imbalance. Significant performance improvements are obtained via bagging. Some

of the sampling methods are useful depending on the performance metrics used.

Sentence boundary detection and disfluency detection tasks are impacted differently

by sampling, bagging, and boosting, suggesting the inherent differences between the

two tasks.

A variety of methods for combining knowledge sources are examined: a hidden

Markov model (HMM), the maximum entropy (Maxent) model, and the conditional

random field (CRF). The Maxent and CRF approaches are discriminatively trained
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to model the posterior probabilities and thus correlate with the performance mea-

sures. They also support the use of more correlated features and so enable the

combination of a variety of textual information sources. The HMM and CRF both

model sequence information, unlike the Maxent which explicitly models local infor-

mation. A model that combines these three approaches is superior to any method

alone.

Interactions with other research efforts suggest that the methods developed in

this thesis generalize well to other corpora (e.g., a multimodal corpus, a multiparty

meeting corpus) and to similar tasks (e.g., a gestural model, dialog act segmentation

and classification).



1

1. INTRODUCTION

1.1 Motivation

Speech recognition technology has improved significantly during the past few

decades; for tasks involving read or pre-planned speech, recognition accuracy is often

greater than 90%. However, the word-level transcription accuracy for spontaneous

conversational speech falls far short of this level, generally lower than 80%. The

acoustic properties of spontaneous conversational speech are quite challenging to

model due to phenomena such as coarticulation, word fragments, and filled pauses.

Additionally, disfluencies and ungrammatical utterances pose serious problems for

language models (LMs). These factors combine to affect the performance of speech

recognizers on spontaneous speech. The following is an excerpt of a transcription of

spontaneous conversational speech. Both the human transcription and the recogni-

tion output are shown in the below example. The presence of a word fragment in

the example is represented by a ‘-’ after the partial word. Word recognition errors in

the recognition output have a strikethrough in them, and the corresponding correct

words are shown in bold face inside curly parentheses (corresponding to deletion or

substitution errors).

Human Transcription:

but uh i’m i i i think that you know i mean we always uh i mean i’ve i’ve

had a a lot of good experiences with uh with many many people especially

where they’ve had uh extended family and i and an- i i kind of see that

that you know perhaps you know we may need to like get close to the

family environment and and get down to the values of you know i mean

uh it’s money seems to be too big of an issue wi- with with with with with

what’s going on today
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Recognition Output:

but um that that {uh i’m i i} i think that you know we {i mean} we

always uh i mean i’ve i’ve had it there {a} a lot of good experiences with

the {uh} with many many people especially with have {where they’ve}

had extended family night and i and {an- i} i kind of see that that you

know perhaps you know we may need to like you’re {get} close to the

family environment and in {and} get down to the values of you know i

mean no and {uh it’s} money seems to be too big of an issue we would

{wi- with with with} with with really was we would what’s going on

today

As can be seen from the recognition output example, current automatic speech

recognition (ASR) systems simply output a “stream of words”. Structural informa-

tion (such as the location of punctuation, disfluencies, and speaker turns) is missing,

making it difficult for a human to read or for downstream automatic processors to

deal with. As shown in the example above, even the human transcription, which

contains no word errors, is still hard to read due to the absence of punctuation and

the presence of speech disfluencies and filler words.

The transcriptions can be marked with different types of structural information

to enhance readability or ease downstream processing. In this thesis, the following

types of structural events are considered:

• Sentence boundaries: A sentence ends with ‘./’ for a statement, ‘.../’ for an

incomplete statement, and ‘?/’ for a question in the marked up transcription

examples in this thesis.

• Filler words: These include filled pauses (e.g., ‘uh’ and ‘um’) and discourse

marker words (such as ‘you know’, ‘well’). The tokens ‘〈’ and ‘〉’ are used to

mark the extent of these filler words.
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• Edit disfluencies: Disfluencies are highly prevalent in conversational speech.

In this thesis, the term edit disfluency is used for the “disfluencies”1 with the

following structure (see Chapter 3 for more details):

(reparandum) * 〈editing term〉 correction

The edited portion of a disfluency (i.e., the reparandum) is marked in examples

with parentheses ‘(’ and ‘)’. For example, in ‘a a lot’ in the human transcription

shown above, the first ‘a’ is the reparandum so it should be marked with

parentheses. The interruption point (IP) inside the edit disfluency is marked

by ‘*’. The editing term, which follows the IP and precedes the corrections, is

optional. The edit disfluency structure is embedded in utterances and so may

be preceded and followed by words that are not part of the edit disfluency.

These types of structural information will be described in more detail in Chap-

ter 3. Below is the annotation of our human transcription example.2 All the words

that interrupt the fluency of speech are shown in bold face in this example. Table 1.1

summarizes the meanings of the symbols used in the annotated transcriptions.

but 〈uh〉 (i’m * i * i think that 〈you know〉 〈i mean〉 i’ve) * i’ve

had (a) * a lot of good experiences (with) * 〈uh〉 with (many) * many

people especially where they’ve had 〈uh〉 extended family ./

(and i * and) * an- (i) * i kind of see (that) * that 〈you know〉 perhaps

〈you know〉 we may need to 〈like〉 get close to the family environment

(and) and get down to the values of 〈you know〉 〈i mean〉 .../

(uh it’s) * money seems to be too big of an issue (wi- * with * with

* with * with) * with what’s going on today ./

The transcriptions containing this structural information are called ‘rich tran-

scriptions’ because they contain much richer information than a simple stream of

1These disfluencies are also called “speech repairs” in the literature.
2The human transcription is used here to illustrate the the importance of structural information in
order to factor out the effect of speech recognition errors.
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Table 1.1
Symbols used for the structural events in the example of annotated
transcriptions.

Symbol Meaning

./ or .../ sentence boundaries (complete or incomplete)

〈 〉 filler words

( ) reparandum in an edit disfluency

* interruption point in an edit disfluency

words. Given this structural information (either human annotated or automatically

generated), human transcriptions or recognition output can be “cleaned up” for im-

proved readability. For example, if the disfluencies and fillers are removed from the

previous transcription and each sentence is presented with the appropriate punctu-

ation, the cleaned-up transcription would be as follows:

But i’ve had a lot of good experiences with many people especially where

they’ve had extended family. I kind of see that perhaps we may need to

get close to the family environment and get down to the value of... Money

seems to be too big of an issue with what’s going on today.

Clearly this cleaned-up transcription is more readable, is easier to understand, and

is more appropriate for subsequent language processing modules.

There has been a growing interest recently in the study of the impact of structural

events. Jones et al. [1] have conducted experiments, showing that cleaned-up tran-

scriptions improve human readability compared to the original transcription. Other

recent research has considered whether automatically generated sentence informa-

tion can play a role in parsing. Gregory et al. [2] have found that using sentence-

internal prosodic cues degrades parsing performance; however, the method used for

automatically generating sentence-internal annotations was not state-of-the-art. On
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the other hand, Kahn et al. [3] have achieved significant error reductions in pars-

ing performance when using sentence boundary information from a state-of-the-art

automatic detection system.

1.2 Scope of the Thesis

1.2.1 Structural Event Detection Tasks

Automatic structural event detection is a crucial step for improving the readabil-

ity of speech recognition output and for making spontaneous speech understanding

systems possible. The goal of this thesis is to enrich the recognition output with

multiple levels of structural information, including sentence boundaries, filled pause

and discourse marker words, and edit disfluencies. We will construct and evaluate

algorithms that automatically detect such structural event types.

Note that the problem of sentence boundary detection differs from its analog in

text processing, which is sometimes called “sentence splitting” or “sentence boundary

detection”. The goal of the sentence splitting task is to identify sentence boundaries

in written text where punctuation is available; hence, the problem is effectively

reduced to deciding which symbols that potentially denote sentence boundaries (i.e.,

. ! ?) actually do. The sentence splitting problem is not deterministic since these

punctuation symbols do not always occur at the end of sentences. For example, in

“I watch C. N. N.”, only the final period denotes the end of a sentence. In the

sentence boundary detection task using speech, no punctuation is available, yet the

availability of speech provides additional useful information.

We will investigate structural event detection across corpora, on both broadcast

news and conversational telephone speech. Broadcast news comprises read speech,

formal interviews, man-on-the-street interviews, and some spontaneous speech, al-

though not usually conversational. In contrast, telephone conversational speech is

spontaneous, and much of it is quite informal. Broadcast news usually has fewer

edit disfluencies than spontaneous conversational speech, and many of these may
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be caused by reading errors. Our algorithms will be evaluated on both the human

transcriptions and recognition output to investigate the effect of incorrect words in

ASR output on system performance.

1.2.2 Our Approach to the Problem

The framework of most current speech recognition systems is to find the most

likely word sequence given the speech signal. Because the hidden structure of the

utterance (sentence boundaries and disfluencies) does not have an explicit acoustic

signal,3 it is hard to integrate the problem of structural event detection with word

recognition in current speech recognition systems. Therefore, we will address this

problem by using a post-processing approach that generates the structural informa-

tion after the recognition results are available. Several knowledge sources will be

employed, involving both textual information and prosodic cues to reduce ambiguity

inherent in one knowledge source. Figure 1.1 shows a diagram of our approach, the

final output of which is a rich transcription or cleaned-up transcription. As the figure

shows, prosodic information is obtained from a combination of the speech signal and

recognition output, which is used to provide word and phone alignments.

In our investigations, textual information is obtained from the word strings in

the transcriptions generated either by a human transcriber or by the ASR system.

This type of information is no doubt very important. In many cases, people have

no problem inferring appropriate structural events from word transcriptions. Some

textual cues are quite useful for automatic identification of structural events, for

example, words like “I ” often start a new sentence, and a repeated or revised word

string often signals disfluencies. In addition, the syntactic and semantic information

derived from the words provides valuable cues for structural event detection.

3There are some implicit prosodic cues at the boundary points, which will be described in Chapter 5.
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Fig. 1.1. A flow diagram for the automatic structural event detection task.

In some cases, the use of textual information alone may not completely disam-

biguate structural events. The following example is extracted from the broadcast

news data:

Anne what are the chances we’ll hear uh something of substance again

from the President prior to the vote ?/

And that’s a possible next step ?/
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A purely textual model would not be able to determine whether the second sentence

is a statement or a question. However, the rising tone in the speech signal would

enable the listener to determine that a question is intended.

In the face of high word error rates, word level information may be unreliable and

possibly misleading. In such a case, the lexical, syntactic, and semantic patterns used

for detecting sentence boundaries and disfluencies will be less reliable due to the word

errors. The following example compares ASR output with a human transcription of

the speech:

ASR output:

It’s been a while for the good for the tackle that stuff

Human transcription:

It’s been a while since I’ve uh uh since I’ve tackled that stuff

It will be difficult, if not impossible, for a word-based language model to identify the

repetition or the existing disfluencies using this ASR output.

Prosody, the “rhythm” and “melody” of speech, is important for automating

rich transcription. Past research results [4–14] suggest that speakers use prosody to

impose structure on both spontaneous and read speech. Examples of such prosodic

indicators include pause duration, change in pitch range and amplitude, global pitch

declination, melody and boundary tone distribution, vowel duration lengthening, and

speaking rate variation. Since these features provide information complementary to

the word sequence, they provide an additional potentially valuable source of infor-

mation for structural event detection. Additionally, since they may be more robust

than textual features to word errors, they may provide a more reliable knowledge

source.

Textual and prosodic knowledge sources have been exploited in previous re-

search [12, 13, 15–18], and their combination has proven to be beneficial to the per-

formance for structural event detection. This thesis builds upon this prior work that

combined these knowledge sources using a hidden Markov model (HMM) approach.
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We will focus on developing a richer feature set for these knowledge sources, building

more effective models to capture such information, and integrating various knowledge

sources for structural event detection by using different modeling approaches.

The investigations in this thesis should help to answer several questions with

respect to the automatic detection of structural events: What knowledge sources

are helpful? What is the best modeling approach for combining different knowledge

sources? How is the model performance affected by various factors such as corpora,

transcriptions, and event types?
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2. RELATED WORK

In the past decade, a substantial amount of research has been conducted in the areas

of detecting intonational and linguistic boundaries in conversational speech, as well as

in detecting and correcting speech disfluencies. In this chapter, we introduce research

related to the automatic detection of different structural events, namely, sentence

boundaries, edit disfluencies, and filler words. For each type, related research is

categorized based on what knowledge sources have been used. Additionally, for

completeness, studies from linguistics or psychology are discussed where appropriate.

2.1 Sentence Boundary Detection

For speech recognition, “sentences” are usually defined by acoustic segment

boundaries that correspond to long stretches of silence or a change of conversa-

tional turn.1 In contrast, linguistic segment boundaries mark a unit that represents

a complete idea but may not necessarily represent a grammatical sentence nor begin

or end with a long silence or turn change. Experiments by Meteer and Iyer in [19]

suggest that language model perplexity can be reduced by working with linguistic

segments rather than acoustic segments. Our goal is to automatically find such

linguistic sentence-like units.

Some of the previous research has focused on detecting major sentence bound-

aries;2 others have investigated detecting subtypes of sentences (e.g., questions, state-

ments). Prior research related to sentence and its subtype detection can be divided

1The definition of “turn” varies in the literature. In this thesis, a turn is a portion
of speech uttered by a single speaker and bounded by silence from that speaker. See
http://secure.ldc.upenn.edu/intranet/Annotation/MDE/guidelines/2004/control floor.shtml
for more details.
2The definition of “sentence” varies across these past research efforts. The term used in this thesis
will be defined in Chapter 3.
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into two categories based on the knowledge sources employed: a text-based approach

or an approach using textual and acoustic information. The text-based approach uses

only textual information; hence, it is suitable for both transcribed speech and writ-

ten text. Text-based methods may not be able to resolve some ambiguities using

information found in text, as in the example in Section 1.2.2, for which a question

type is detected based on the rising tone. A combination approach uses both the

acoustic cues and textual information. In most cases, it is difficult to compare the

results of prior research since they often differ on the corpora used for training and

testing, as well as in the information used by their systems.

2.1.1 Text-based Processing for Sentence Boundary Detection

As mentioned in Chapter 1, the sentence boundary detection problem in written

text aims to disambiguate punctuation marks with the goal of identifying sentence

boundaries. Palmer and Hirst [20] developed an efficient automatic sentence bound-

ary labeling algorithm, which uses the part-of-speech (POS) probabilities of the

tokens surrounding a punctuation mark as input to a feed-forward neural network

to obtain the role of the punctuation mark. Because sentence boundaries were not

available to their part-of-speech tagger, they used the prior probabilities of all parts

of speech for a word. They tested their system on a portion of the Wall Street Jour-

nal (WSJ) corpus. Their experiments found that a context of six surrounding tokens

and a hidden layer with two units yielded the best accuracy on the test set. When

training and testing were conducted using texts in lower-case-only format, the net-

work was able to disambiguate 96.2% of the boundaries. Other approaches have also

been used to investigate this problem, for example, Reynar and Ratnaparkhi [21]

used a maximum entropy algorithm, and Schmid [22] employed an unsupervised

learning method. Walker et al. [23] compared three different methods for sentence

boundary detection as a preprocessing step in machine translation. They showed

that the maximum entropy method [21] outperforms the other two systems, i.e.,
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the direct model and the rule-based system. They also argued that high recall is

more important for the application of machine translation: fragmenting sentences is

better than combining two sentences. This insight might be useful if we are going

to use our structural event detection results in the downstream language processing

modules, among which machine translation is one. The sentence boundary problem

in text processing is different from that in speech processing in that punctuation

information is available in text (although it is not deterministic). However, some

knowledge obtained from such a task is useful to our automatic sentence boundary

detection in speech, such as the lexical cues that are most effective for determining

the role of punctuation.

An automatic punctuation system, called Cyberpunc, which is based only on

lexical information, was developed by Beeferman et al. [24]. They counted the oc-

currence of each punctuation mark in the 42 million tokens of the WSJ corpus and

reported that about 10.5% of the tokens in that corpus were punctuation, mostly

commas (4.658%) and periods (4.174%). Cyberpunc generates only commas, as-

suming that sentence boundaries are provided or pre-determined. They extended

a language model to account for punctuation by explicitly including commas in an

N-gram LM and allowing commas to occur at interword boundaries. Commas were

added to the testing word strings by finding the best hypothesis using a Viterbi

algorithm. They evaluated this method for generating commas on 2,317 reference

sentences of the Penn Treebank WSJ corpus that were stripped of punctuation marks.

They obtained a recall rate of 66% and precision of 76% for this comma generation

task. The goal of this research differs from sentence boundary detection in speech

because the task is to find commas assuming that the major sentence boundaries are

known. Beeferman et al. [24] claimed that a punctuation-aware language model can

be applied to rescore speech recognition lattices in general, but they did not evaluate

this.

Stevenson and Gaizauskas [25] also conducted experiments on identifying sen-

tence boundaries in transcriptions of the WSJ corpus using a memory-based learn-
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ing (MBL) algorithm. For each word boundary, they obtained a feature vector of

13 elements from the word and its neighboring words, including the probability of

the word starting or ending a sentence, their POS tags, and so on. The precision

and recall of their approach was around 35% when case information of the word was

removed. The results were much improved when case information was provided to

their sentence boundary detection system. Clearly, case information is important for

this method, suggesting that it may not extend well to ASR outputs, which do not

capture case information and often contain incorrect words.

2.1.2 Combining Textual and Prosodic Information for Sentence Bound-

ary Detection

Some past research has been conducted on combining prosodic information and

textual information to find sentence boundaries and their subtypes in speech. It

is known that there is a strong correspondence between discourse structure and

prosodic information. A comparison between syntactic and prosodic phrasing was

presented by Fach [26]. In that study, the syntactic structure was generated by Ab-

ney’s chunk parser [27] and prosodic structure was given by ToBI label files [28]. This

work showed that at least 65% of the syntactic boundaries were prosodic boundaries

in read speech.

Chen [29] proposed a method combining speech recognition with punctuation

generation based on acoustic and lexical information using a business letter corpus.

Punctuation marks were treated as words in the dictionary, with acoustic baseforms

of silence, breath, and other non-speech sounds, and her language model was mod-

ified to include punctuation. Chen found that 75.6% of all pauses correspond to

punctuation marks, and that only 6.5% of the punctuation marks do not correspond

to pauses. This finding suggests that pauses are closely related to punctuation in

read speech. Chen conducted a speech recognition and automatic punctuation ex-

periment on a business letter with 330 words, read aloud by 3 speakers. For different
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testing conditions, Chen reported a result of about 70%-80% accuracy on punctu-

ation placement, but lower accuracy on correct identification of punctuation types.

How this result will apply to conversational speech or a larger corpus is unknown.

A sentence boundary recognizer using textual information and pause duration was

developed by Gotoh and Renals [15]. In their work, for each interword boundary, a

decision is made about whether there is a sentence boundary or not. Their algorithm

finds the sequence of sentence boundary classes using speech recognition output by

combining probabilities from a language model and a pause duration model. They

conducted sentence boundary experiments on 16 hours of Broadcast News corpus

using acoustic and duration models trained on 300 hours of acoustic data and using

a language model trained on 9 million words. The word error rate (WER) for their

test set was 26.3%. They obtained a recall rate of about 62% and precision rate

of 80% for sentence boundary detection. Their study found that a pause duration

model when used alone performs more accurately than using an N-gram language

model for sentence boundary detection. This could be possibly because the language

model suffers a lot from the word errors in the recognition output. They found that

the result is improved by combining these two information sources.

Shriberg, Stolcke and their colleagues have built a general HMM framework for

combining lexical and prosodic cues for tagging speech with various kinds of hidden

structural information, including sentence boundaries, disfluencies, topic boundaries,

dialogue acts, emotion, and so on [12,30–33]. Experimental results have shown that

the combination of the prosody model and language models generally performs better

than using each knowledge source alone.

In [12], Shriberg et al. directly compared two corpora (Switchboard and Broad-

cast News) on the task of sentence segmentation. Experiments were conducted on

both human transcriptions and speech recognition outputs to compare the degra-

dation of the prosody model and LM in the face of ASR errors. They extracted

prosodic features such as pause, phone and rhyme duration, and F0 features, as well

as other non-prosodic features such as turn change and gender. The features were
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used as inputs to a decision tree model, which predicted the appropriate segment

boundary type at each interword boundary. They investigated the performance of

the prosody model, a statistical LM that captures lexical correlations with segment

boundaries, and a combination of the two models. On Broadcast News, the prosodic

model alone performed as well as (or even better than) the word-based statistical LM,

for both human transcriptions and recognized words. They found that the prosody

model often degraded less in the face of recognition errors. Furthermore, for all tasks

and corpora, they obtained a significant improvement over the word-only models by

combining models. Analysis of the decision trees revealed that the prosody model

captures language-independent boundary indicators, such as pre-boundary length-

ening, boundary tones, and pitch resets. In addition, feature usage was found to

be corpus dependent. While pause features were heavily used in both corpora, they

found that duration cues dominated in Switchboard conversational speech; whereas,

pitch is a more informative feature in Broadcast News.

Kim and Woodland [16] also combined prosodic and lexical information in a

system designed to identify full stops, question marks, and commas in Broadcast

News. Their approach is similar to the one used by Shriberg et al. [12]. A prosodic

decision tree was tested alone and in combination with a language model, with some

improvements reported through the use of the combined model.

Christensen et al. [17] investigated two different approaches to automatically

identify punctuation using the Broadcast News corpus. A finite state approach com-

bining a linguistic model with a prosody model significantly reduced the detection

error rate and increased the related precision and recall measures, especially when

using pause duration. They also showed how prosodic features like pause duration

increased detection accuracy for full stops but had very little impact for detecting

the other types of punctuation marks. The second approach used a multi-layer per-

ception (MLP) to model the prosodic features. This approach provides insight into

the relationship between the individual prosodic features and the various punctua-
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tion marks. The results confirmed that pause duration features are the most useful

features for finding full stops.

Huang and Zweig [34] developed a maximum entropy based method to add punc-

tuation (period, comma, and question mark) into transcriptions for the Switchboard

corpus. Features used in their models involve the neighboring words, the tags (punc-

tuation marks) associated with the previous words, and pause features. They evalu-

ated this approach on both the reference transcription and speech recognition output.

Performance was measured using precision, recall, and F-measure. Results showed

that performance varies for the different punctuation marks, and adding the bigram

type of features (features about the previous and the current position, or the current

and the next position) improves F-measure by about 4% over unigram information.

They noticed that adding pause information only yields a small gain, in contrast

to the results reported for Broadcast news speech (such as [16]). This could be

attributed to the different data sets, or to a suboptimal use of pause information

in this maximum entropy approach. They observed also that a comma is hard to

distinguish from no-punctuation, and that question mark is often confusable with a

period. This approach provides a good framework for designing additional features.

The maximum entropy approach will be investigated further in Chapter 8.

In the 2003 NIST sentence boundary detection evaluation, all the systems used

both prosodic and textual features for sentence boundary detection [35]. The ap-

proaches used are similar to the HMM approach used in [12]. For example, one

system estimated the likelihood of three classes: complete sentence, incomplete sen-

tence, and non-sentence. They used 48 acoustic-prosodic features estimated for each

word boundary, including pause, speaking rate, energy, and pitch features. These

prosodic features were used to train a 2-layer neural network. A linguistic subsystem

used a trigram LM which has sentence tokens inserted between words. The com-

bined decoder used the likelihood of the sentence classes from the acoustic-prosodic

subsystem and the likelihood from the linguistic system, along with a Viterbi al-

gorithm to find the class hypothesis at each word boundary. In another system, a
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decision tree was used to predict 4 classes: complete sentence, incomplete sentence,

interruption point in edit disfluencies, or non-event boundary. The prosodic features

provided to the decision tree are similar to the ones described in [12]. In addition,

the posterior probability from the LMs was included as a feature in the decision

tree. These two systems were further combined using a 2-layer neural network which

uses the minimum square error back-propagation algorithm to hypothesize a binary

score at each word boundary. These systems were evaluated on both the Conversa-

tional Telephone Speech (CTS) and Broadcast News speech (BN), using both human

transcriptions and speech recognition output.

There is also some work that relies on only the prosodic information for finding

the sentence units. Wang and Narayanan [36] developed a method that used only the

prosodic features (mostly pitch features) in a multi-pass approach. They did not use

any word or phone alignment and thus avoid using a speech recognizer. They fit the

pitch contour with two linear folds and search for major breaks in the pitch contour.

Then in the second pass, sentence boundaries are detected based on some pre-defined

rules and statistics. They evaluated this algorithm using a subset of the Switchboard

corpus, and obtained a false alarm rate of 17.9% and a miss rate of 7.1%. This result

is encouraging since only pitch information is used. However, in conversational

speech, pitch may not be a very effective feature for sentence boundary detection.

Clearly we would expect that adding additional prosodic and textual information

may yield further improvement.

2.1.3 Summary of Past Research on Sentence Boundary Detection

Finding sentence-like units and their subtypes can make transcriptions more read-

able, while also aiding downstream language processing modules, which typically

expect sentence-like segments. Previous work has shown that lexical cues are a

valuable knowledge source for determining punctuation roles and detecting sentence

boundaries, and that prosody provides additional important information for spo-
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ken language processing. Useful prosodic features include pause, word lengthening,

and pitch patterns. Past experiments also show that detecting sentence boundaries

is relatively easier than reliably determining sentence subtypes or sentence-internal

breaks (e.g., commas). The poor performance of sentence-internal structure detec-

tion also affects downstream processing, such as parsing [2]. Table 2.1 summarizes

important attributes of much of the previous research. Most make use of textual

information, either by using a statistical LM or employing other machine learning

strategies. The value of adding more syntactic information to the task of sentence

detection is an open question. The approaches listed in the first five rows are simi-

lar to the approach taken in this thesis, since textual and prosodic information are

combined for sentence boundary detection.

2.2 Edit Disfluency Processing

Disfluencies have been investigated using a variety of approaches. Linguists and

psychologists have considered disfluencies largely from a production and perception

standpoint; whereas, computational linguists have been more concerned with recog-

nizing disfluencies and thus improving machine recognition of spontaneous speech.

Although the latter is our main focus, we believe that a better understanding of the

underlying theory of disfluency production and its effect on listeners’ comprehension

can help to construct a better model for the automatic detection of disfluencies;

therefore, we will briefly discuss some studies in psychology and linguistics.

2.2.1 Production and Properties of Disfluencies

Disfluency Production

Disfluencies are very common in spontaneous speech. When speakers cannot

formulate an entire utterance at once or when they change their minds about what

they are saying, they may suspend their speech and introduce a pause or filler before
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continuing, or add, delete, or replace words they have already produced. Spontaneous

speech is systematically shaped by the problems speakers encounter while planning

an utterance, accessing lexical items, and articulating a speech plan. Speech errors

and disfluencies produced by normal speakers have been studied for decades to learn

about linguistic production and the cognitive processes of speech planning [37–39].

Disfluency has been used as evidence for cognitive load in speech planning. Ovi-

att [40] and Shriberg [41] have shown in different types of task-oriented conversations

that long utterances have a higher disfluency rate than short ones. This effect may

be related to the planning load of the utterance, i.e., speakers have more difficulty

planning longer utterances, while making task-oriented plans at the same time. An-

other observation is that disfluencies occur more frequently at the beginning of an

utterance when the utterance is at an early planning stage, providing evidence of

the impact of utterance planning on disfluencies.

Clark and Wasow [42] studied the phenomenon of repeated words in spontaneous

speech. In their work, repeats are divided into four stages: initial commitment,

suspension of speech, hiatus, and restart of the constituent. These four stages cor-

respond to the four components (i.e., reparandum, interruption, editing term, and

correction) that have been laid out in Chapter 1 for all edit disfluencies. They pro-

posed a commit-and-restore model of repeated words, as well as three hypotheses to

account for the repeats, namely, the complexity hypothesis, the continuity hypoth-

esis, and the commitment hypothesis. They hypothesize that the more complex a

constituent, the more likely speakers are to suspend it after an initial commitment

to it (i.e., complexity hypothesis), and that speakers prefer to produce constituents

with a continuous delivery (i.e., continuity hypothesis), and that speakers make a

preliminary commitment to constituents, expecting to suspend them afterward (i.e.,

commitment hypothesis). They analyzed repeated articles and pronouns in two large

corpora, the Switchboard corpus and the London-Lund corpus,3 and found strong

empirical evidence to support the proposed commit-and-restore model, along with

3See [42] for a description of the corpus.
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evidence for all three hypotheses. They noticed that speakers are more likely to make

a premature commitment, and then immediately suspend it when the constituent

becomes more complex, and that it is more likely that speakers restart a constituent

the more that their suspension disrupts the utterance. One example is the frequent

occurrence of function words in repeats. It has long been recognized for English

that function words are repeated far more often than content words. When speakers

want to make an initial commitment to a constituent, the word they mostly com-

monly use is a function word. Overall, Clark and Wasow [42] found that function

words were repeated more than ten times as often as content words, 25.2 versus 2.4

per thousand in the Switchboard corpus. This more frequent occurrence of function

words in repeats is explained by the three hypotheses they proposed.

Knowing the types of words that speakers tend to repeat (or revise) is helpful

for building a better model of spontaneous speech. For example, when speakers

repair a content word, they often return to a major constituent boundary, such as

“on Friday, I mean, on Monday”. Such an observation is beneficial for defining

disfluency patterns and can aid in automatically identifying them.

Effect on Listeners

It is also valuable to understand how human listeners cope with disfluent input.

Studies by Lickley [43], Lickley and Bard [5] have shown that listeners generally miss

the disfluencies or incorrectly report on the occurrence of disfluencies, suggesting that

disfluencies may have been filtered out for utterance comprehension. Psycholinguists

believe that disfluencies play specific roles in our communication, such as sending sig-

nals to the listener to do things like pay more attention, help the speaker find a word,

or be patient while the speaker gathers his or her thoughts. Disfluencies provide in-

formation that enables people in a conversation to better coordinate interaction and

manage turn-taking [41].
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Brennan [44] investigated how comprehension is affected when listeners hear dis-

fluent speech. In her experiments, listeners followed fluent and disfluent instructions

for selection of an object in a graphical display. She found that listeners make fewer

errors when hearing less misleading information before the interruption points of

disfluencies. She also observed that mid-word interruptions are better signals than

between-word interruptions that a word was produced in error and that the speaker

intends to replace it. This supports Levelt’s hypothesis [38] that “by interrupting

a word, a speaker signals to the addressee that that word is an error. If a word is

completed, the speaker intends the listeners to interpret it as correctly delivered”.

Brennan also found in her experiments that there is information in disfluencies that

partially compensates for any disruption that listeners meet while processing disflu-

ent speech.

Fox Tree [45] studied how naturally occurring speech disfluencies affect listeners’

comprehension. She observed that disfluencies do not always have a negative effect

on comprehension. For example, repetitions do not hinder the listeners, because they

can help listeners to recover information missing in the first occurrence of words that

are repeated. However, it does take longer to identify words when there is a false

start. When false starts begin utterances, listeners may abort the false starts with no

cost to comprehension. But, if false starts are in the middle of utterances, listeners

have to figure out where the false start begins, what to abort, and where to attach

the restarted information. This process slows down comprehension.

Disfluency Rates

A conservative estimate (excluding silent hesitations) for the rate of disfluencies4

in spontaneous speech is approximately 6 words per 100 words [45]. There are a

variety of factors that may influence disfluency rate.

4Speech disfluencies here include fillers.
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Disfluency rates vary across different corpora. Oviatt [40] found that people

talking on the telephone produced more disfluencies than those talking face-to-face,

8.83 to 5.5 disfluencies per 100 words. Shriberg [41] also found that disfluency rate is

lower in speech directed at machines. Differences in disfluency rates in conversations

conducted over different media are attributed to the resources these media may

offer for coordination. For example, when eye contact and other visual cues such as

gesture [46] are available, they can be used to signal such things as the intention to

continue speaking or difficulty with an utterance in progress.

Disfluency rate is also affected by the speaker’s age, gender, and familiarity with

the conversational partners. Shriberg [41] showed that men produced relatively more

fillers than women did, but the sexes had similar disfluency rates for the other

disfluency types. More fillers may provide a way for men to maintain the floor.

Manyhart [47] compared speech produced by children, adults, and the elderly people

in Hungarian, and did not observe any differences in the frequency of different types

of disfluencies, although children generated more disfluencies per 100 words than the

other groups. Males and females differ with respect to the rate of disfluencies, with

women generating more.

Bortfeld et al. [48] examined several factors that may affect disfluency rates us-

ing a corpus of task-oriented conversations. These factors included speakers’ ages,

gender, task roles, difficulty of topic domain, and the relationship between speak-

ers. Older speakers produced only slightly higher disfluency rates than young and

middle-aged speakers. Overall, disfluency rates were higher when speakers acted as

directors or when they discussed abstract figures, confirming that disfluencies are

associated with an increased difficulty in planning speech. However, fillers were dis-

tributed somewhat differently than repeats or restarts, suggesting that fillers may

be a consequence of interpersonal coordination.
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2.2.2 Past Research on Automatic Disfluency Detection

Like sentence boundary detection, the research on automatic disfluency detection

has been conducted using a text-based approach, or an approach combining textual

and prosodic information. It is difficult to compare the results of prior work because

the data sets are different and also “disfluencies” mean different things.

Text-based Processing

Bear et al. [49] proposed a two-stage speech repair processing method. The

first stage is a simple pattern-matcher, which uses lexical pattern matching rules to

retrieve candidate repair utterances. This is done by finding identical sequences of

words and pre-specified simple syntactic anomalies, such as “a the” or “to from”. Of

the 500 sentences in the ATIS corpus that this algorithm hypothesized as containing a

repair, 62% actually did, among which the algorithm made the appropriate correction

to 57%. The repair candidates constitute useful input for further processing based

on other sources of information such as syntactic and semantic information. In the

second step, a natural language processing system is used to distinguish repairs from

false positives by either parsing the whole sentence or parsing only localized word

sequences identified as potential repairs to avoid the effect due to factors unrelated

to the portion with the repair. Bear et al. [49] claimed that acoustic information can

be quite effective when combined with other sources of information, noting acoustic

differences between the true speech repairs and false positives.

The two-stage approach by Bear et al. [49] promotes the important idea that

automatic repair processing might be made more robust by integrating knowledge

from multiple sources. The lexical pattern matching approach is computationally

tractable and provides reasonable coverage of repair types. However, this method

can only detect speech repairs with the predefined patterns. One weakness of this

approach lies in the conceptualization of repair types. It is difficult to systematically

extend the pattern definition to increase the coverage of such a system because of
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the difficulty of listing all the possible repair patterns. In addition, experiments were

conducted on the ATIS corpus, which is more template-based than the Switchboard

conversational speech, and thus is more amenable to a pattern-based approach.

Charniak and Johnson conducted speech repair detection before parsing Switch-

board sentences [50]. A classifier is used to predict the edited words (i.e., the reparan-

dum region of an edit disfluency) based on features such as the POS tags of the pre-

ceding word and the following word, and whether or not the word token appears in

a “rough” copy, which identifies repeated sequences of words that might be repairs.

With the goal of minimizing misclassification, they used a greedy boosting algorithm

for classification. On the Switchboard corpus, where 5.9% words are edited words,

they obtained an overall misclassification rate of 2.2% with a precision of 94.4% and a

recall of 66.8% for the edited words. After detecting and removing the edited words,

a statistical parser parses the remaining words in the utterance. The parser achieved

a precision rate of 85.3% and a recall of 86.5% on the cleaned-up utterances, but the

parsing results were not reported for the original utterance.

Unlike the method used by Bear et al., which uses a parser to help detect repairs,

Charniak and Johnson [50] did not feed any information from the parser back to help

detect repairs. The edited word detection is based on the assumption that edited

words are relatively shallow phenomena that can be detected by using repeated words

and POS tags, and that the information provided by a parser is much less critical.

However, it is our belief that a variety of knowledge sources are critical for accurate

edited word detection, including syntactic information.

In [51], Johnson and Charniak proposed a new noisy channel model for speech

repair detection. They used a Tree Adjoining Grammar (TAG) to represent the tree-

structured dependencies between the reparandum and correction regions. The source

model is a language model (word N-gram or syntactic parser LM), which describes

the clean sentence X that does not contain the reparandum. A TAG is used as

a channel model that defines the conditional probability of the surface sentence

Y given X. Several distributions are estimated: the probability of a disfluency
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beginning after a word in X, the probability distribution of the editing term, the

probability of a disfluency type given the word in the reparandum and correction

region, and the probability that a word Mi in the correction region is a word that is

inserted or substituted for a word Ri in the reparandum. The last two distributions

are estimated based on the alignment of the reparandum and the correction regions

in the training set. Experiments were conducted using the transcriptions of the

Switchboard corpus. In testing, all partial words and punctuation are removed from

the data to reflect a more realistic testing situation using the speech recognition

output (assuming no word errors). A precision rate of 82.0% and recall of 77.8% is

obtained when the parser language model is used. This result is significantly better

than that obtained by using a word-by-word classifier [50]. The main reason for using

the TAG channel model is to model the cross-dependency between the reparandum

and correction in a disfluency. These account for the majority of disfluencies in

conversational speech; however, these can also be modeled by other simpler methods,

without using syntactic parsers. This algorithm does not handle restart disfluencies,

which do not have the correction part, or complex disfluencies in which a correction

is the reparandum of the following disfluency.

Core and Schubert [52] proposed a framework for handling speech that contains

repairs. Assuming that pre-parser repair identification is performed, their parser

can use its grammar knowledge and the syntactic structure of the input to correct

some errors in the repair identification results. Using the Trains corpus, Core and

Schubert obtained a 4.8% increase in the recall rate of speech repairs, but precision

dropped from 55.76% to 43.46%. This approach is similar to the experiment by

Bear et al. in [49], except that the focus in [49] was on reducing false alarms. Core

and Schubert argue that their goal was to increase the recall rate of speech repair

detection, which is obtained by trying alternatives with lower parsing probabilities

when no parse can be found, and that the “drop in precision is a worthwhile tradeoff

as the parser is never forced to accept posited repairs but is merely given the option

of pursuing alternatives that include them” [52].
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This argument might be acceptable if rich transcriptions (word sequence and

the hypothesized disfluency information) are used as input to a language processing

module; whereas, if the goal is only to yield cleaned-up transcriptions, then more

false alarms (i.e., low precision) will remove fluent utterances and reduce important

information. The parser used by Core and Schubert requires the speech repair in-

formation as input, so the parser can use its syntactic knowledge to correct speech

repair identification errors in the input. However, if the ASR output contains many

incorrect words, the parser may not be robust. Further evaluation of this approach

is needed.

Zechner [53] used a word-based approach for disfluency and sentence bound-

ary detection in a dialogue summarization system.5 He used a POS tagger which

includes, in addition to the standard Switchboard treebank tag set, tags for the dis-

fluent regions and special purpose words, including co-ordinating conjunctions (e.g.,

“and”, “then”), discourse markers (e.g., “you know”, “like”), editing terms within

speech repairs (e.g., “I mean”), and filled pauses. A decision tree determines the

linguistically motivated sentence boundaries, both within a turn and between two

turns for the same speaker. The best decision tree yielded a 3.6% error rate for

sentence boundary detection. For disfluency detection, a simple repetition detection

script was used to find repeated sequences of up to four words. A shallow chunk

parser was also used to support the decision tree’s detection of false starts. Zechner

evaluated false start detection on 3,000 sentences of the Switchboard corpus using

the human transcriptions and obtained an F-score of 0.61 for false start detection

and 0.96 for non-false-start detection.

Lendvai et al. [54] used a memory-based learning algorithm to detect disfluen-

cies in Dutch. The definition of disfluencies is fairly broad in this study, including

everything that does not fit in the tree structure of a sentence. They used a man-

ually built syntactic tree for each utterance, from which the reference tag for each

5Although this work also detects sentence boundaries, we postponed its description until now so
that we can discuss sentence boundary and disfluency detection results together.
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word (inside or outside a disfluency) is obtained. The features they used include

lexical features, word, word context, and overlap within windows (not POS tags).

Infrequent or unknown words were processed using an attenuation method. A 97%

accuracy (F-measure 80.0%) was obtained on a small corpus of Dutch spontaneous

speech using reference transcriptions.

Stolcke and Shriberg [55] and Heeman and Allen [56] both extended the tradi-

tional N-gram language model to deal with sentences that include repairs. Stol-

cke and Shriberg [55] incorporated disfluency resolution into a word-based language

model with the assumptions that probability estimates for words after a disfluency

are more accurate if conditioned on the intended fluent word sequence and that dis-

fluencies themselves can be modeled as word-like events, each having a probability

conditioned on its context. In predicting a word, they summed over the probability

distributions for each type of repair (including no repair at all). For hypotheses that

include a repair, the prediction of the next word was based on a cleaned-up represen-

tation of the context, taking into account whether a single or double word repetition

was predicted. They found that on the Switchboard corpus the model reduced word

perplexity only in the neighborhood of disfluency events; however, overall differences

were small and had no significant impact on recognition accuracy. The goal of such

a disfluency LM is to improve speech recognition accuracy by better modeling the

occurrence of disfluencies in spontaneous speech.

Heeman and Allen [56] proposed a statistical language model which includes

the identification of POS tags, discourse markers, speech repairs, and intonational

phrases. An example of such a tightly coupled LM is shown in Equation (2.1). A is

the acoustic signal; W , D, R, E, and I represent the word sequence, POS sequence,

repair annotation sequence, editing term sequence, and intonational phrase sequence,

respectively. The speech recognition problem is redefined so that its goal is to find

the sequence of words and the corresponding POS tags, intonation, editing terms,

and repair tags that are most probable given the acoustic signal.
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Ŵ D̂R̂ÊÎ = arg max
WDREI

Pr(WDREI/A)

= arg max
WDREI

Pr(A/WDERI)Pr(WDREI) (2.1)

The second term is the language model probability and can be rewritten as follows.

Pr(W1,ND1,NR1,NE1,NI1,N) =
N∏

i=1

Pr(WiDiRiEiIi/W1,i−1D1,i−1R1,i−1E1,i−1I1,i−1)

=
N∏

i=1

Pr(Ii/W1,i−1D1,i−1R1,i−1E1,i−1I1,i−1)

Pr(Ei/W1,i−1D1,i−1R1,i−1E1,i−1I1,i)

Pr(Ri/W1,i−1D1,i−1R1,i−1E1,iI1,i)

Pr(Di/W1,i−1D1,i−1R1,iE1,iI1,i)

Pr(Wi/W1,i−1D1,iR1,iE1,iI1,i) (2.2)

Equations (2.1) and (2.2) were also extended to include more information, such

as the correction of repairs. Experimental results show that when the extended

LM is applied to human transcriptions of the Trains corpus, it is able to identify

72% of turn-internal boundaries with a precision of 71%, and 97% of the discourse

markers with 96% precision, while detecting and correcting 66% of repairs with 74%

precision. They attribute these results to their LM that accounts for the interaction

of the tasks of identifying intonational phrases, discourse markers and POS tags,

and detecting and correcting speech repairs. Heeman and Allen [56] also pointed

out that a prosody model could be integrated with the LM approach as shown in

Equation (2.2).

Current speech recognizers rely upon LMs for resolving acoustic ambiguity. Dis-

fluencies are often not handled specially, i.e., they are only captured by the N-gram

word sequence. LMs with the ability to model disfluencies [55, 56] seem promising.

However, Stolcke and Shriberg’s LM actually increases perplexity and word error

rate on the Switchboard corpus. They claimed the reason for this is that disfluencies
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are inherently a local phenomena that are modeled surprisingly well by standard N-

grams, even without context “cleanup”. They also attributed their results to their

treatment of filled pauses: utterance-medial filled pauses should be cleaned up be-

fore predicting the next word; whereas, utterance-initial ones should be left intact.

Heeman and Allen’s LM allows the speech recognizer to model other aspects of the

speaker’s utterances, in addition to the words, and thus generates more structural

information of the speaker’s turn for later processing. The model is able to capture

the interactions that exist between word prediction and a variety of other phenomena

in dialogue. However, joint modeling of words and tags in the LM could increase

the sparse data problem. Also such a LM needs to be trained from annotated train-

ing data, whose size is generally much smaller than the text corpus used to train a

traditional word-based LM. It is important to note that Heeman and Allen’s tightly

coupled LM was only evaluated on the Trains corpus, which has a more constrained

grammar than general spontaneous conversational speech and thus is relatively eas-

ier to model. Additionally, investigation of the performance of such a tightly coupled

LM on ASR output remains to be tested.

Combining Textual and Prosodic Information For Disfluency Processing

Text-based approaches have largely left open the question of whether there exist

effective acoustic and prosodic cues for repairs. Different studies have been conducted

in an attempt to answer this question.

Some studies from linguistics suggest that prosodic emphasis is not utilized in

human perception of the disfluencies. Fox Tree [45] found that listeners could not

reliably detect where the edits occurred when they were provided with the speech

that was edited to remove false starts and repetitions, implying that the prosodic cues

alone were not perceptible. However, some prosodic cues may exist by comparing

the reparandum and correction regions. Levelt and Cutler [57] found that 55% of

repairs involving erroneous words were not prosodically emphasized. Cutler [58] in a
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different corpus, found that 62% of speech repairs were not prosodically emphasized.

Repairs that are used to restructure the speech but not necessarily make lexical

changes are even less likely to be prosodically emphasized, in fact, 81% of them were

not prosodically marked. Repairs involving phonetic errors were never prosodically

emphasized. Most of these studies from linguists are focused only on the prosodic

emphasis in the corrections of disfluencies. Additional acoustic properties still remain

to be investigated.

Lickley et al. [59] found that listeners do not detect a disfluency at the point of

interruption, but at a point later in the speech stream. In another study, Lickley

and Bard [60] used a word gating paradigm6 to discover how much information is

necessary for detecting a disfluency. They found that nearly 80% of the disfluencies

in their corpus were detectable at the first word gate in a correction, sometimes even

before lexical access of that word had occurred. Their results suggest that acoustic

cues at the interruption points or before are insufficient to detect disfluencies and

that accessing some information after the interruption point is necessary.

Hindle [61] originally suggested that an “edit signal” serves as a cue that fluent

speech has been interrupted. Although no evidence for a single such cue has been

found, several corpus studies have found combinations of cues that could be used by

algorithms to identify disfluencies with reasonable success. Some potentially useful

prosodic cues include: glottalization at the end of a reparandum especially in vowel

final fragments [13, 49], silence duration and prepausal lengthening [62], differences

in F0 across the interruption point [13, 63], presence of similar F0 contours in the

reparandum and the correction [62,64], and the juncture properties between the offset

of the reparandum and the onset of the correction that differ from fluent boundaries

due to their lack of coarticulation [5].

Nakatani and Hirschberg [13] proposed that speech repairs should be detected

in a “speech-first” model using acoustic-prosodic cues, relying less on a word tran-

scription. They developed the “repair interval model” to provide a general model

6Stimuli were presented in chunks, which increase by one word each time.
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of the temporal intervals that comprise a repair and explored a variety of acoustic

and prosodic signals associated with the regions of these intervals. They used hand-

transcribed prosodic-acoustic features such as silence duration, energy, and pitch,

as well as traditional text-first cues, such as the presence of word fragments, filled

pauses, word matches, word replacement, POS tags, and the position of the word in

the turn. A decision tree was built to carry out the classification. They obtained

a detection recall rate of 86% with a precision of 91% using a portion of the ATIS

corpus. Note that their corpus contained many word fragments and their training

and testing included only turns with speech repairs; hence, their “findings should

be seen more as indicative of the relative importance of various predictors of speech

repair location than as a true test of repair site location” [13].

O’Shaughnessy [65] examined the acoustic aspects of false starts7 and conducted

experiments on their automatic identification. He found that most disfluencies oc-

curred in the middle of an utterance and were accompanied by silent pauses of 100-

400 ms; whereas, a minority of disfluencies occurred within the first three syllables of

the utterance and had a variable amount of pausing. Acoustic analysis showed that

when a word was repeated, in most cases it had virtually the same prosodic features

in both its instances and that there were a number of times where the repeated word

had shorter duration and lower pitch. However, when there is a revision, the sec-

ond instance had a greater amount of stress. O’Shaughnessy conducted automatic

detection experiments on the ATIS corpus. When he used the simple rule of “pause

< 400 ms, then disfluency”, 70% of disfluencies were correctly identified, with 35%

false alarms. When some spectral analysis was exploited for repetition detection,

the results were described as being even better, although specific numbers were not

reported.

Using an approach similar to the one used for sentence boundary detection [12],

Shriberg and Stolcke [18] conducted experiments on disfluency detection using a

prosody model, a language model, and their combination on the Switchboard cor-

7“False starts” in this work are edit disfluencies.
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pus. They found that a prosody model alone (using features such as pause length and

F0) performed significantly better than chance performance, and also outperformed a

language model on detecting false starts. However, experiments were evaluated only

on downsampled data in that research rather than the true test set. In another inves-

tigation on non-downsampled Switchboard data [30], Stolcke et al. reported results

on the overall accuracy of event detection, including sentence boundaries, fillers, and

edit disfluencies. They found that the prosody model was significantly better than

chance and that the combination of the prosody model and LM outperforms either

model alone. Because the system performs better on sentence boundary detection

than on disfluencies and sentence boundaries are more frequent than disfluencies, the

overall result does not represent the system’s performance on disfluency detection.

Snover et al. [66] used a transformation based learning (TBL) for the detection of

disfluencies, under the assumption that the majority of disfluencies can be detected

using lexical features, without the use of many prosodic cues. TBL rules were learned

from features including lexeme, POS tags, whether the word was followed by a pause,

and whether the lexeme was used more often than the average by the speaker. Only

very simple prosodic features are used in this algorithm, i.e., pause information after

each word. This approach was applied to both the reference transcriptions and the

recognition output of the CTS corpus in the 2003 NIST disfluency detection task.

The results are worse than the other systems in the evaluation that used both the

prosodic and textual knowledge sources. However, since the methods that are used

to model textual information are different across systems, it is hard to say whether

the poorer performance is due to the limited prosodic features used in this system.

2.2.3 Summary of Past Research on Disfluencies

Studies from linguistics and psychology have shown that disfluencies play an

important role in a speaker’s utterance planning as well as in discourse and that some

disfluencies (e.g., repetitions) are often not detrimental to listeners’ comprehension.
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Disfluencies are not random phenomena; instead, some measurable patterns exist in

disfluencies [41]. Understanding possible disfluency patterns can help us to build a

better automatic disfluency detection model.

Prior research has shown some progress on automatic disfluency detection by us-

ing prosodic cues, statistical LMs, and syntactic structure information. Some related

research on disfluency detection is summarized in Table 2.2. It is worth pointing out

that in most of the prior work, sentence boundary information is available for disflu-

ency detection, which makes it a relatively easier task compared to without accessing

sentence boundary information. Notice that most research has been conducted us-

ing reference transcriptions. The research on disfluency detection is still at an early

stage. Clearly investigations using reference transcriptions can provide useful ideas

for better modeling spontaneous speech; however, when testing on ASR output, the

presence of incorrect words is likely to create serious problems, since all the infor-

mation extracted from the words or at the syntactic level will be less reliable. This

suggests that we need to develop a better understanding of the interaction between

disfluency detection and speech recognition.

2.3 Filler Word Processing

Filler words are treated as a category in structural event detection tasks; there-

fore, we put the prior work related to filler word processing in a separate section,

even though they are sometime included in “disfluencies” in some of the prior studies

for disfluencies, as have been already discussed in Section 2.2.

2.3.1 Production and Perception of Fillers

Filled pauses (FPs) are defined as vocalized hesitation in the flow of an utter-

ance. A filled pause may occur when a speaker needs to think about what to say

next. The speaker actually interrupts his or her speech while continuing his or her

articulation. This articulation is not considered to be a word by many people. FPs
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serve an important purpose in helping a speaker hold the conversational floor. When

a speaker appears to have finished an idea but wishes to continue speaking, although

a subsequent utterance is not yet prepared, an FP may be uttered in order to keep

control of the conversational floor. Note that although some word lengthening plays

a similar role to a filled pause, this phenomenon is not categorized as a filled pause

in this research.

As pointed out previously in Chapter 1, filled pauses and discourse markers can

act as an editing term in a disfluency. For example, “I 〈uh〉 I like it, I 〈you know〉

I like it”. Levelt [67] found that 62% of repairs in a corpus of spontaneous task-

oriented utterances included some type of editing expressions, among which “uh”

was the most common one.

From a different perspective, Fox Tree [45] found suggestive evidence that fillers

(meaning FPs in that research) affect comprehension, and that the two fillers “um”

and “uh” affect listeners’ comprehension differently. “Ums” seem to help compre-

hension, possibly by providing information about the meta-communicative process,

such as directing listeners’ attention to the upcoming phrase. “Uhs”, in contrast, had

no effect on word recognition, perhaps because the effects were masked by pausing

effects.

Brennan [44] showed in her experiments that interruptions marked by a filler are

better error signals than interruptions without them. This follows Levelt’s proposal

that an editing expression like “uh” may “warn the addressee that the current mes-

sage is to be replaced” [38]. She also showed that it is not the phonological form of

the filler that was driving the fast comprehension, but the extra time that elapsed

before the corrections due to the presence of fillers. A longer editing interval gives

the listeners more time to process the evidence that there is some trouble, and thus

listeners are able to better process the disfluencies.
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2.3.2 Past Research on Filler Word Processing

Some HMM-based recognizers (e.g., [68]) regard filled pauses as out-of-vocabulary

words and deal with them by using a subword-unit based decoder for processing

unknown words. Currently most recognition systems include filled pauses in their

vocabulary and build acoustic models for them, thus making filled pause detection

in the subsequent structural event detection system essentially a word spotting task.

Goto et al. [69] proposed a method that detects filled pauses and word length-

ening on the basis of small fundamental frequency transitions and small spectral

envelope deformations under the assumption that speakers do not change articula-

tor parameters during filled pauses. A recall rate of 84.9% and precision of 91.5%

were achieved on a Japanese spoken dialogue corpus.

Siu and Ostendorf [70] created a LM to account for three roles a filled pause can

take on, namely, when it is utterance initial, part of a repair, or simply a filled pause

to hold the floor. By allowing each of these roles to be distinguished, they were

able to reduce the perplexity of their LM. They also observed a reduction of LM

perplexity for a few discourse markers, such as “you know”. Whether the perplexity

reduction of their LM can transfer to word error rate reduction in speech recognition

is currently untested.

Filled pauses and discourse markers are strongly dependent on word identity. A

simple approach for filler word detection is to use lexicon lookup; however, to deter-

mine whether the potential words are really fillers, especially in the case of discourse

markers, is not a straightforward problem due to their role ambiguity. Sometimes

even humans have difficulty judging their role in the face of ambiguity. More knowl-

edge about the dialog is needed to better model discourse markers. Additionally,

word errors in ASR output (especially in the filler words themselves) can seriously

affect their detection.
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2.4 Chapter Summary

We have described some work from psychologists and linguists on the production

of disfluencies, the role of fillers, and the effect of these phenomena on listeners’

comprehension. We believe that the insights from these efforts will help us to build

better automatic detection models. Using an analog from speech recognition, under-

standing how speech is perceived has proven extremely beneficial to the construction

of better automatic speech recognition systems.

Past work has shown that both textual and prosodic cues provide important

information for the detection of sentence boundaries and disfluencies. Potential

prosodic cues include pauses, word or syllable lengthening, F0 features, interrupted

words, glottalization, laryngealization, and increased stress on a correction word

versus a reparandum word. Note that we have only focused on prior work related

to detecting sentence boundaries and disfluencies and did not introduce all prior

work related to prosody. Prosody has been extensively investigated to derive more

information about discourse structure. In the speech-to-speech translation system in

the Verbmobil project [14], prosody (including F0 and duration) was used to guide

the rescoring of an N-best list of word hypotheses produced by a speech recognizer.

Much of the previous work on sentence boundary and disfluency detection has

been conducted only on human transcriptions. Although the study of human tran-

scriptions can shed some light on potential features and useful models, our final goal

is to enrich speech recognition results, which contain a variety of errors and thus make

detection more difficult. Language models or other machine learning techniques that

capture textual information are effective, but they will be seriously affected by the

word errors in ASR outputs. Without correct word identity, fillers cannot be found,

disfluency patterns may not be matched, and sentence-initial word information may

be corrupted. It is important to begin looking at the impact of speech recognition

on structural information extraction.
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Even though previous research is divided into different categories based on the

target event type, this does not imply that each problem must be addressed sepa-

rately. For example, fillers at the start and the middle of a sentence have different

impacts on a LM [55,70], and many prior studies on disfluency detection rely on the

availability of sentence boundary information. Future work should take into account

the interactions among different structural events.

Much work remains to be done on structural event detection for rich transcription

of speech to generate more readable recognition output or help downstream process-

ing modules. The approach that will be employed in this thesis builds upon Shriberg

and Stolcke’s framework for sentence boundary and disfluency detection [12,18]. As

described in Chapter 1, we will build a more robust prosody model, utilize lexical

and syntactic information, and more optimally combine different knowledge sources.
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3. DATA RESOURCES AND TASKS

There currently exist two corpora with different speaking styles that were annotated

by LDC with structural events using annotation guidelines [71] for the DARPA EARS

program [72]. The ready availability of this data makes it possible for others to com-

pare to our systems; hence, these corpora have been chosen for our investigations of

structural event detection. Details about the event types investigated, and the tasks

and corpora in the EARS program, are described in this chapter. The experiments

in Chapters 5 through 8 use data annotated according to the annotation guideline

Version 5.0 [71], but those in Chapter 9 use data annotated with guideline Version

6.2 [73].

This chapter is organized as follows. Section 3.1 describes the structural event

types in speech that are investigated in this thesis. Section 3.2 describes the struc-

tural event detection tasks and the performance measures for these tasks. Section

3.3 describes the two corpora that are used for the experiments.

3.1 Structural Speech Events Types

There are many types of markups that can make a transcription more readable,

for example, the addition of speaker turn information. The events this thesis in-

vestigates are structure-oriented, including the identification of sentence boundaries,

fillers, and edit disfluencies. Each type is described briefly in the next three subsec-

tions.
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Table 3.1
Structural events annotated by LDC and investigated in this thesis.
Note that the subtype of an edit disfluency is not annotated LDC,
nor is the correction in an edit disfluency.

Event Type Subtype Annotation Mark

Statement ./

Question ?/

SU Backchannel @/

Incomplete .../

Filled pause

Filler Discourse marker 〈 〉

Explicit editing term

Repeat

Edit disfluency Revision [(original utterance) * 〈editing term〉

Restart correction]

Complex

3.1.1 Sentence-like Units (SUs)

“Sentences” in spontaneous conversational speech can be quite different from

those in written text or read speech. Section 4 of the structural event annotation

guideline [71] calls these sentence-like units SUs. SUs express a speaker’s complete

thought or idea. Often times this unit corresponds to a sentence, other times to a

unit that is semantically complete but smaller than a sentence (e.g., a noun phrase

in response to a question). An SU boundary usually coincides with a syntactic clause

boundary, but this is sometimes not the case. An SU can be an entire well-formed

sentence, phrase, or a single word. Many short SUs are not full sentences or clauses

but are nevertheless complete units. Given the differences between sentences and

SUs, we use this term from now on to indicate the sentence-like units in conver-
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sational speech. There are four types of SUs that are annotated using the LDC

annotation guideline [71]:

• Statement: A complete SU that functions as a declarative statement. For

example, “Money seems to be too big of an issue with what’s going on today./ ”

in the example of Chapter 1 on page 3. Short phrases that are not grammatical

can be a complete statement SU, for example, as a response to a question.

• Question: A complete SU that functions as an interrogative (including both

wh and yes-no questions). Note again that a speaker can use statements with

a rising final intonation to make an utterance act as a question, for example,

“And that’s a possible next step ?/ ” on page 7.

• Backchannel: Sometimes called an acknowledgment or continuer, a backchan-

nel is a word or phrase that encourages the dominant speaker to continue

talking by indicating that the non-dominant speaker is still listening to the

conversation. Backchannels serve a function similar to gestures like head nod-

ding. Examples of backchannel words include hm, hmm, right, huh, sure,

mm-hm, yeah, oh, yep, okay, yes, really, uh-huh.

• Incomplete SU: This occurs when a speaker is interrupted and then does not

continue with the old utterance or when a speaker trails off. For example, “and

get down to the values of you know i mean .../ ” in the example of Chapter 1

on page 3.

3.1.2 Fillers

As indicated in Section 2 of the annotation guideline [71], fillers include filled

pauses, discourse markers, and explicit editing terms.

Filled pauses (FPs) are non-lexemes (non-words) that speakers employ to indicate

hesitation or to maintain control of a conversation while thinking about what to say
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next. FPs can occur anywhere in a speech stream. FPs in the current annotation

guideline [71] are limited to the following words: ah, eh, uh, um.

A discourse marker (DM) is a word or phrase that functions primarily as a struc-

turing unit of spoken language. It frequently appears at the beginning or the end

of an SU. To the listener, it signals the speaker’s intention to mark a boundary in

discourse, including a change in dominant speaker or the beginning of a new topic.

The following words are often used as DMs: actually, now, anyway, see, basically,

so, I mean, well, let’s see, you know, like, you see.

The third filler type is explicit editing term. These are editing terms that are not

defined as filled pauses or discourse markers. For example, in “Today is (Monday),

〈sorry〉, Tuesday”, “sorry” is an explicit editing term. Filled pauses and discourse

markers can also function as an editing term within an edit disfluency, as in the

following example (inside brackets 〈 〉):

(with) 〈uh〉 with (many) many people

However, these are not marked as explicit editing terms.

3.1.3 Edit Disfluencies

Edit disfluencies happen when people need to either refocus or revise what they

are saying. As indicated in Section 3 of the annotation guideline [71], edit disfluencies

follow a basic pattern, each part of which is described below. In the examples shown

in this thesis, the extent of an edit disfluency is marked with square brackets [ ].

Note that in the annotated data in the EARS program, the correction part is not

annotated, nor are the subtypes of edit disfluencies; however, this information is

provided in examples in order to better illustrate the structure of an edit disfluency.

Edit disfluency template (appears embedded in a sentence):

[(original utterance) * 〈editing term〉 correction]
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• Original utterance: Also called a “reparandum,” this is the portion of the

utterance that is corrected or abandoned entirely (in the case of restarts).

This portion would be discarded when removing disfluencies for a cleaned-up

transcription. As shown in the template, the original utterance is indicated by

parentheses. This convention was used in the example in Chapter 1 on page 3

and also in the examples provided in this section.

• Interruption point (∗): This is the point at which the speaker breaks off the

original utterance, and then repeats, revises, or restarts his or her utterance.

Interruption points are marked with ‘∗’ in our examples.

• Editing term: Some edit disfluencies include an overt statement from the

speaker marking their existence. The term can consist of a filled pause, a

discourse marker, or an explicit editing term (such as “sorry”, “excuse me”).

An editing term is optional in an edit disfluency.

• Correction: This consists of the portion of the utterance that corrects the

original utterance. It is the part that would remain after the cleanup of the

transcription.

Based on their internal structure, edit disfluencies can be divided into the follow-

ing four subtypes:

• Repetitions: The speakers repeat some part of the utterance. For example,

[(we may not) * we may not] have as high a standard of living.

• Revisions (content replacements): The speaker modifies the original utter-

ance using a similar syntactic structure. For example, Show me flights [(from

Boston on) * 〈uh〉 from Denver on] Monday.

• Restarts (false starts): A speaker abandons an utterance or a constituent and

then starts over entirely. For restarts, the correction region in the disfluency

template above is typically marked as empty. For example, [(It’s also) * ] I

used to live in Georgia.
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• Complex disfluencies: A speaker produces a series of disfluencies in succession

or in nested structure. For example, [(I think * I * I) * 〈now〉 I think] peo-

ple generally volunteer. The internal structure (nested or sequential structure)

inside the complex disfluency is not annotated based on the guideline [71]; how-

ever, the internal interruption points are marked. This annotation is different

from the disfluency annotation in the Switchboard Penn Treebank data [19],

which indicates the internal structural information of disfluencies, as shown

below:

[ [ [ I think * I ] * I ] * 〈now〉 I think ] people generally volunteer

where each square bracket represents a disfluency with the reparandum and

correction regions split by the IPs (*). Nested structure can be represented

using this annotation scheme.

3.2 Structural Event Detection Task Description

Our focus is on the official Rich Transcription structural metadata extraction

(MDE) tasks defined in the DARPA EARS program due to the availability of the

annotated data that can be used for system training and testing, as well as the

availability of scoring tools. We believe the methodology developed for these tasks

can generalize to other structural event detection tasks or other similar speech and

language processing tasks.

3.2.1 Task Description

The 2003 Rich Transcription (RT-03) structural MDE task includes four subtasks,

described below.

• SU boundary detection: The goal is to find the end point of an SU. Note that

SUs may correspond to either complete or incomplete utterances.



46

• Filler word detection: The goal is to identify words used as filled pauses (FPs),

discourse markers (DMs), or explicit editing terms (EETs) in edit disfluencies.

• Edit word detection: The goal is to find all the words within the reparandum

region of an edit disfluency. This is essentially the portion of an utterance that

if deleted results in a more “fluent” version of the utterance.

• Interruption point (IP) detection: The goal is to find the interword location at

which point fluent speech becomes disfluent. In addition to the IPs within the

edit disfluencies, IPs defined in RT-03 include the boundary before filler words.

Note that it is convenient to divide tasks into separate subtasks, which for exam-

ple makes scoring easier. However, these subtasks are not independent. In fact edit

word detection and IP detection are clearly interdependent. Additionally there are

some ambiguities across different event types (e.g., an incomplete SU versus restart

edit disfluency), which will affect multiple subtasks.

Among the tasks above, there are two types: boundary detection and extent

detection tasks. SU boundary detection and IP detection belong to the boundary

detection category;1 whereas, filler word and edit word detection tasks involve extent

detection. The boundary detection task is equivalent to a classification task, i.e., for

each interword boundary, a decision is made about whether there is a structural event

at that position. The extent detection task, on the other hand, needs to determine

a portion of the utterance that is a filler word phrase or the reparandum of an edit

disfluency.

Structural event detection is evaluated on two different corpora: conversational

telephone speech (CTS) and broadcast news (BN) speech. Details about these two

corpora are provided in Section 3.3 of this chapter.

For EARS MDE evaluation, two different types of transcriptions are used: human-

generated transcription (REF) and speech recognition output (STT). Using the ref-

1The SU detection task is really an extent detection task; however, under the assumption that the
end of a previous SU indicates the beginning of the following SU (ignoring possible pauses), for
simplicity, SU detection task is treated as a boundary detection task.
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erence transcriptions provides the best-case scenario for the evaluation of a structural

event detection algorithm. Evaluation across transcription types allows us to study

the structural event detection tasks both with and without the confounding effect of

speech recognition errors.

3.2.2 Performance Measures

Each of these tasks is evaluated separately. There are several performance mea-

sures used for evaluating system performance: the NIST official scoring metric and

some additional metrics that convey various types of useful information about sys-

tem performance. We describe all of the metrics here that are used in this thesis,

and then describe which metrics are used and why in various experiments. Generally

we use the NIST scoring metric for system performance in order to compare with

other systems’ performance, but choose other appropriate metrics when focusing on

a specific aspect of the problem.

• NIST scoring metric. The NIST scoring tools first align the reference and

hypothesis words. This is straightforward when evaluating on the human tran-

scriptions since they match exactly. When recognition output words are used,

they usually do not align perfectly with those in the reference transcriptions.

In this case, an alignment that minimizes the word error rate is used. After

word alignment, the hypothesized structural events are mapped to the reference

events using the word alignment information, and then unmatched structural

events are counted. For edit and filler word detection, the error rate is the av-

erage number of misclassified reference tokens per reference edit or filler word

token. For SU and IP detection, the error rate is the number of misclassified

boundaries per reference SU or IP. For example, the following equations show

the NIST error rate for SU detection and edit word detection:

SU error rate =
number of incorrect boundaries

total number of SU boundaries
(3.1)
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Edit word error rate =
number of misclassified words

total number of edit words
(3.2)

The error rate in the NIST metric can be greater than 100%. The following

example shows a system SU hypothesis aligned with the reference SUs:

Reference: w1 w2 w3 / w4

System: w1 / w2 w3 w4

ins del

where wi is a word and ‘/’ indicates an SU boundary. There are two misclas-

sified boundaries: one insertion error and one deletion error (indicated by ‘ins’

and ‘del’) in the example above. Since there is only one reference SU boundary,

the NIST SU error rate for this system output is 200%. A detailed description of

the scoring tool is provided in http://www.nist.gov/speech/tests/rt/rt2003/fall/.

If a system hypothesizes a non-event boundary at each interword boundary,

then the NIST error rate will be 100% for the boundary detection tasks, all

due to deletion errors, without any insertion errors. This is used as a baseline

performance.

• Classification error rate (CER). The structural event detection problem can

be treated as a classification problem for which performance can be easily

measured using CER. CER is defined as the number of incorrectly classified

samples divided by the total number of samples (not just the positive samples).

For this measurement, the samples are all the interword boundaries for the

boundary detection tasks or the total number of words for the extent detection

tasks. In the example shown above, there are four word boundaries, among

which two are misclassified, therefore the CER is 2/4=50%. The baseline

performance (also called chance performance) using CER is equal to the event

prior.
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The NIST error rate and CER tend to be highly correlated. When a reference

transcription is used, the errors in NIST’s metric correspond almost directly to

classification errors. The major difference lies in the denominator: the num-

ber of reference events is used in the NIST scoring metric; whereas, the total

number of word or word boundaries is used in the CER measure. When using

recognition output, CER is not well defined due to the presence of insertion

and deletion errors in the recognized word stream. However, given the cor-

respondence between NIST error rate and CER for the reference condition,

the NIST error rate can be converted proportionately to CER for the STT

condition as follows:

CER = NIST error rate × Event prior (3.3)

• F-measure. In a classification or detection task, the F-measure is defined as

follows:

F -measure =
(1 + β2) × recall × precision

β2 × recall + precision
(3.4)

where precision = TP
TP+FP

, recall = TP
TP+FN

, and TP and FP denote the num-

ber of true positives and false positives, respectively. FN represents the number

of false negatives, and β corresponds to the relative importance of precision

versus recall. β is set to 1 if false alarms and misses are considered equally

costly. For this measure, the minority class is the positive class, i.e., the SU or

IP boundaries, or the filler or edit words.

• The Receiver Operating Characteristics (ROC) and the Area Under the Curve

(AUC). ROC curves [74, 75] can be used to enable visual judgments of the

trade-off between true positives and false positives for a classification or detec-

tion task. Depending on the application, an appropriate operating point from

the ROC curve can be selected [76]. For structural event detection tasks, a

threshold needs to be selected to minimize the overall classification error rate

or NIST error rate. The AUC can tell us whether a randomly chosen majority
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class example has a higher majority class membership than a randomly chosen

minority class example; thus, it can provide insight on the ranking of the pos-

itive class examples. F-measure, ROC, and AUC measures are only used for

the reference condition, due to the imperfect alignment problem when using

recognition output.

Currently there exist no standard tests for significance test using the NIST scoring

method. The problem is that the metric is not based on a consistent segment [77].

For the CER metric, the sign test can be utilized to test significance at the word

boundary level. We believe the findings based on the sign test are likely to transfer

to other methods for significance test.

3.3 Corpora

Conversational telephone speech (CTS) and broadcast news (BN) are used in the

structural event detection tasks in EARS. We believe investigations using these two

corpora can enhance our understanding of how structural information is represented

in human languages. In CTS, participants are paired by a computer-driven “robot

operator” system that sets up the phone call, selects a topic for discussion from a

predefined set of topics, and records the speech into separate channels until conver-

sation is complete. Each conversation is about 6 minutes on average. BN contains

news broadcasts from ABC, CNN and CSPAN television networks, and NPR and

PRI radio networks. Figure 3.1 shows examples of human-generated transcriptions

for CTS and BN, respectively. The CTS transcription is diarized because it is a two

person dialog.

CTS and BN are very different genres. They differ in both average sentence length

and frequency of disfluencies. Speech in BN has fewer disfluencies, sentences tend to

be longer and more grammatical, and the speakers are mostly professionals reading

teleprompted text. Speech in CTS is more casual and conversational, containing

many backchannels, filler words, and edit disfluencies.
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CTS:

speaker A: hi um yeah i’d like to talk about how you dress

for work and and um what do you normally what type

of outfit do you normally have to wear

speaker B: well i work in uh corporate control so we have

to dress kind of nice so i usually wear skirts and

sweaters in the winter time slacks i guess [noise] and

in the summer just dresses

speaker A: uhhuh

speaker B: we can’t even well we’re not even really sup-

posed to wear jeans very often

speaker A: and is

speaker B: so it really doesn’t vary that much from season

to season since the office is kind of you know always

the same temperature

BN:

the top selling car of nineteen ninety-seven was announced

today and the winner is toyota camry toyota out sold both

the honda accord and the ford taurus which has been number

one for the past five years on wall street today the dow jones

industrials lost just under four points to close at seventy-

nine oh two on the nasdaq market stocks lost almost eighteen

and a half points just ahead is there the possibility of peace

between america and iran

Fig. 3.1. Examples of transcriptions for CTS and BN, respectively.
SU boundaries are not shown in the examples.
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The data used for training and evaluating our structural event detection models

is taken from the official NIST RT-03 data. Training and test data were annotated

with structural events by LDC using guidelines detailed in [71]. The CTS data set

contains roughly 40 hours of speech (377 conversations) for training and 6 hours

(72 conversations) for testing. The BN data contains about 20 hours of speech

for training and 3 hours (6 shows) for testing. There are about 90 shows in the

BN training data; however, for most shows, only some portion is annotated with

structural events.

Table 3.2 shows the class distribution of different structural event types in the two

corpora, along with the data size, and the WER of the speech recognition output on

the test set. WER is determined using the recognition output from SRI’s recognizer

used in the 2003 NIST evaluation [78].

Table 3.2
Information on the CTS and BN corpora, including the data set
sizes, the percentage of the different types of structural events in the
training set, and the word error rate (WER) of the speech recognizer
on the test set.

CTS BN

Training size (number of words) 480K 178K

Test size (number of words) 71K 24K

WER (%) 22.9 12.1

SU percentage 13.6 8.1

Edit word percentage 7.4 1.8

Edit IP percentage 4.5 1.1

Filler word percentage 6.8 1.8

Filled pause percentage 2.9 1.2

Discourse marker percentage 2.5 0.4
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Note that the corpora described here are composed of speech and annotated tran-

scriptions (both CTS and BN) that are used for training and testing the structural

event detection models. There is much more additional speech data with correspond-

ing transcriptions that is used for training the speech recognition models. Because

annotations require much more effort than transcribing speech, the annotated data

size is generally much smaller than the size of the data used for training the acoustic

and language models for speech recognition. Some additional text corpora will be

utilized for language model training in the structural event detection tasks, which

will be described in Chapter 6.



54

4. THE HMM APPROACH TO STRUCTURAL EVENT

DETECTION

In this chapter, the HMM is introduced that is used as a baseline method for the

boundary detection tasks. This approach builds upon the prior work of Shriberg and

Stolcke [12, 31]. This chapter presents the general approach; whereas, the specific

models for different event types are discussed in Chapter 5.

This chapter is organized as follows. Section 4.1 provides an overview of the three

components of the HMM. Section 4.2 describes the textual and prosodic features

used in this system. Models constructed for each knowledge source are introduced

in Section 4.3 and model combination is described in Section 4.4. A summary for

this chapter appears in Section 4.5.

4.1 Overview

The structural event boundary detection task is represented as a classification

task, that is, for an interword boundary, a decision is made about whether or not

there exists a structural event at that position. For extent detection, the boundary

detection approach is combined with additional knowledge processing.

There are three components in the statistical boundary detection algorithm. Each

is described in detail in the indicated sections.

• Feature Processing (Section 4.2): develop an inventory of input features for the

statistical classifiers, including prosodic features (e.g., temporal, intonational,

and energy features) and lexical features (e.g., word co-occurrence, part-of-

speech, or keywords).
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• Model Construction (Section 4.3): evaluate the use of a variety of model types

that capture information from the various knowledge sources, including the

prosody and language models. Each component model can be finely tailored

to the data and task.

• Model Combination (Section 4.4): integrate selected model types and knowl-

edge sources. In addition to the HMM-based integration approach, we briefly

describe other integration approaches such as a simple interpolation of classifier

scores.

4.2 Feature Types

4.2.1 Prosodic Features

Prosodic features reflect information about temporal, intonational, and energy

contours. Figure 4.1 shows an example of a waveform, with the corresponding pitch

and energy contour, the word alignment, and SU boundary information for the ut-

terance “um no I hadn’t heard of that.” Although only word alignment information

is shown in the figure, phone-level alignment is also used for prosodic feature com-

putation.

Duration, pitch, and energy features are included in our prosodic feature set.

All of these features are associated with each interword boundary and they can be

automatically extracted from the word and phonetic alignments of the word sequence.

Below is a description of the prosodic features that are investigated and how they

are computed. A comprehensive listing of the features in the prosodic feature set,

101 in total, can be found in [79].

• Duration Features

Pause duration after each word boundary is extracted based on the alignment

of human transcriptions or recognition output. We also included the duration

of the pause preceding the word before the boundary to reflect whether speech
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Fig. 4.1. The waveform, pitch and energy contours, word alignment,
and SU boundaries for the utterance “um no I hadn’t heard of that”.

right before the boundary is just starting up or is a continuation of previous

speech. Phone durations are also computed. To capture preboundary length-

ening, which typically affects the nucleus and coda of syllables, we measure

vowel and rhyme duration. For example, the normalized vowel duration is

calculated as follows:

Norm duri =
(duri − µi)

σi

(4.1)

where duri is the duration for a vowel, and µi and σi are the mean and the

standard deviation of this vowel over all the training data. Index i is used here

to represent a vowel. We also extract features such as the duration of the last

vowel or the stressed vowel in a multisyllabic word, as well as their normaliza-

tion. The duration for the word preceding a boundary and its normalization

are also included as duration features.

• F0 Features
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An autocorrelation-based pitch tracker (get f0 function in the ESPS package) is

used to calculate frame-level F0 estimates. These raw F0 values are then post-

processed to account for tracking errors, to use speaker dependent parameters,

and to simplify the F0 features. For each speaker, the F0 distribution is fitted

to a lognormal tied mixture model (LTM) [80], whose mixture weights are

found using an expectation maximization (EM) algorithm. The model returns

a pitch baseline value for a speaker, which represents the lowest non-halved

pitch value that will be used later for pitch normalization. A median filter is

also applied to smooth voicing onsets for which the pitch tracker is unreliable.

The frame level F0 values are then stylized to simplify tonal contours, shapes,

and slopes. A piecewise linear fit (PWL) algorithm [80] is used to create line

estimates for the median-filtered F0 values. On a particular voiced region, the

PWL algorithm attempts to fit lines by minimizing the mean squared error

between the linearized pitch estimates and the raw F0 values using a greedy

algorithm. After picking the best fit nodes, the pitch contour is represented as

the summation across all of these nodes for the voiced region:

F0 =
K∑

k=0

(akF0 + bk)I[xk−1<F0<xk] (4.2)

where ak and bk are the best parameters chosen by the PWL algorithm for

a node indexed by k. K is the total number of nodes in the voiced region.

Figure 4.2 shows an example of the raw and the stylized F0 contour for the

utterance “um no I hadn’t heard of that”. As can be seen from the figure,

the stylized F0 contour captures the overall pitch contour, at the same time

eliminating the effect of imperfect estimation of the raw F0.

Using the stylized pitch contour, several different types of F0 features are

computed.

Range features: These features reflect the pitch range of a single word or win-

dow relative to the speaker-specific baseline F0 value computed in the LTM

model. Examples of such range features are the minimum, maximum, mean,
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Fig. 4.2. The raw and stylized F0 contours for the utterance “um no
I hadn’t heard of that”.

and last F0 values for each word boundary, excluding values which are un-

voiced, halved, or doubled. These features are normalized by the baseline F0

values using a linear difference, log difference, and log ratio. We expect speak-

ers to be more likely to fall closer to the bottom of their pitch range at a phrase,

sentence, or topic boundary.

Movement: We take measurements from the stylized F0 contours for the voiced

regions of the word preceding and the word following a boundary. The min-

imum, maximum, and mean F0 values, and the starting or ending stylized

F0 values are computed and compared to that of the following word. Log

difference and log ratio normalization values are also calculated.
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Slope features: The stylized pitch values generate pitch slope within a word

or a predefined length of window. The slope across a boundary is compared

to capture local pitch variation. A continuous trajectory is more likely to

correlate with non-boundaries; whereas, a broken trajectory tends to indicate

a boundary of some type.

• Energy Features

Speakers tend to start an utterance loudly and taper off over time. Thus we

first generate the frame level root mean square (RMS) energy values (obtained

from the get f0 function of the ESPS package), and then compute the minimum,

maximum, and the mean RMS values over the word and over the voiced frames.

Similar to stylized F0 processing, the raw energy values are fit to a linear model

to capture the slope change of energy, and the difference of energy values across

a word boundary is also computed.

• Additional Features

Some additional automatically extracted features are also included, such as

turn-related features and gender features. Like all the prosodic features de-

scribed above, these features can be automatically extracted from the speech

data, using gender detection or automatic speaker segmentation and cluster-

ing techniques. These features may interact with the aforementioned prosodic

features (e.g., F0 features), so these features are put in the prosodic feature

category to model possible interactions. Turn-related features include whether

or not there is a speaker change at a boundary, the time elapsed from the

start of a turn, and the turn count within the current conversation. Note that

gender detection and speaker segmentation algorithms are not accurate, and

thus these additional features are imperfect.
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4.2.2 Textual Features

Textual information can be represented by lexical features for a word, the co-

occurrence of two or more words, a word’s part-of-speech tag, or its semantic class.

As discussed in Chapter 3, some words are highly correlated with backchannels, filled

pauses, and discourse markers. Some cue words and their associated event types are

listed in Table 4.1. Although these provide important lexical cues for structural

event detection, many are ambiguous (e.g., ‘right’ may be used in contexts other

than backchannels, ‘like’ can be a verb rather than a discourse marker).

Our baseline system largely uses word co-occurrence information, in particular,

features such as which words tend to precede or follow a structural event type.

Investigations incorporating other types of lexical features and syntactic structure

information are described in Chapters 6 and 8.

Table 4.1
Examples of cue words that are highly representative of some struc-
tural event types.

Event Type Example Words

Backchannel yeah, okay, right, uhhuh

Filled Pause uh, um, mm

Discourse Marker I mean, you know, like, so

4.3 The Models

4.3.1 The Prosody Model

The goal of the prosody model in the structural event detection task is to de-

termine the class membership for each word boundary using the prosodic features.

For the baseline experiments, a decision tree classifier [81] serves as the prosody
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model for estimating the posterior probability of an event type at a given interword

boundary. A decision tree classifier is used because it offers the distinct advantage

of interpretability. This is crucial for a baseline system, which is helpful for us to ob-

tain a better understanding of how prosodic features are used to signal various event

types, and select or design other useful features. Second, our preliminary studies

have shown that a decision tree performs as well as other classifiers, such as neural

networks, Bayes classifiers, or mixture models. Third, the decision tree classifier can

handle missing feature values, as well as both continuous and categorical features.

Fourth, the decision tree can produce posterior probability estimates that can be

easily combined with a language model.

During training, the decision tree learning algorithm selects a single feature that

has the highest predictive value, i.e., reduces entropy the most, for the classification

task in question. The leaves of the tree store probabilities about the class distribution

of all the samples falling into the corresponding region of the feature space, which

then serve as predictors for unseen test samples. Various smoothing and pruning

techniques are commonly employed to avoid overfitting the decision tree model to

the training data. We use the CART algorithm for learning decision trees and

the cost-complexity pruning approach, both of which are implemented in the IND

package [82]. The software offers options for handling missing feature values and is

capable of processing large amounts of training data. On the test set, the decision

tree can generate posterior probabilities for each sample representing the likelihood

of each class given the prosodic features.

An example of a decision tree is shown in Figure 4.3. This is the decision tree

created for the SU detection task on the BN corpus. The features used in this tree are

described in Table 4.2. The prosodic features used by the decision tree are associated

with a word, and the boundary for which the system needs to make an event-type

decision is at the end point of that word.
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PAU_DUR < 4.5:  0.8651 0.1349 0

|   F0K_WRD_DIFF_LOLO_N < -0.035966:  0.7872 0.2128 0

|   |   F0K_LR_LAST_KBASELN < -0.070707:  0.604 0.396 0

|   |   |   PATTERN_BOUNDARY in rr,ff,fr,rf,rX,fX :  0.5585 0.4415 0

|   |   |   |   LAST_RHYME_DUR_PH_ND_bin < -0.5:  0.7114 0.2886 0

|   |   |   |   LAST_RHYME_DUR_PH_ND_bin < -0.5:  0.7114 0.2886 0

|   |   |   |   LAST_RHYME_DUR_PH_ND_bin >= -0.5:  0.409 0.591 S

|   |   |   |   |   PREV_PAU_DUR < 12.5:  0.3735 0.6265 S

|   |   |   |   |   PREV_PAU_DUR >= 12.5:  0.9269 0.07306 0

|   |   |   PATTERN_BOUNDARY in Xf,Xr :  0.9363 0.06371 0

|   |   F0K_LR_LAST_KBASELN >= -0.070707:  0.8164 0.1836 0

|   F0K_WRD_DIFF_LOLO_N >= -0.035966:  0.9105 0.08952 0

PAU_DUR >= 4.5:  0.1169 0.8831 S

|   PAU_DUR < 16.5:  0.3454 0.6546 S

|   |   TURN_TIME_N < 0.9962:  0.4755 0.5245 S

|   |   |   F0K_DIFF_LAST_KBASELN < 2.3293:  0.2695 0.7305 S

|   |   |   |   PREV_PAU_DUR < 12.5:  0.2439 0.7561 S

|   |   |   |   PREV_PAU_DUR >= 12.5:  0.7222 0.2778 0

|   |   |   F0K_DIFF_LAST_KBASELN >= 2.3293:  0.5828 0.4172 0

|   |   |   |   PREV_PAU_DUR < 7.5:  0.548 0.452 0

|   |   |   |   |   LAST_RHYME_NORM_DUR_PH_ND_bin < -0.25:  0.6467 0.3533 0

|   |   |   |   |   LAST_RHYME_NORM_DUR_PH_ND_bin >= -0.25: 0.4919 0.508 S

|   |   |   |   |   |   F0K_WRD_DIFF_ENDBEG < 0.1034:  0.5456 0.4544 0

|   |   |   |   |   |   |   F0K_WRD_DIFF_LOLO_N < -0.071836:  0.4097 0.5903 S

|   |   |   |   |   |   |   F0K_WRD_DIFF_LOLO_N >= -0.071836:  0.6729 0.3271 0

|   |   |   |   |   |   F0K_WRD_DIFF_ENDBEG >= 0.1034:  0.356 0.644 S

|   |   |   |   PREV_PAU_DUR >= 7.5:  0.8707 0.1293 0

|   |   TURN_TIME_N >= 0.9962:  0.01177 0.9882 S

|   PAU_DUR >= 16.5:  0.07639 0.9236 S


Fig. 4.3. An example of a decision tree for SU detection. Each line
represents a node in the tree, with the associated question regarding
one particular prosodic feature, the class distribution, and the most
likely class among the examples going through this node (S stands
for SU boundary, and 0 for non-SU boundary). The indentation
represents the level of the decision tree. Some of the features used in
this tree are described in Table 4.2.

4.3.2 The Language Model (LM)

The role of the LM in speech recognition is to predict the next word given the

previous word history; whereas, for structural event detection, the goal of the lan-

guage model is to capture the structural information (e.g., SUs, disfluencies, and
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PAU DUR pause duration after a word’s end point

LAST VOW DUR Z bin binned normalized duration of the last vowel

in the word

WORD DUR word duration

PREV PAU DUR pause duration before the word

STR RHYME DUR PH bin binned normalized duration of the stressed

rhyme in the word

TURN F whether there is a turn change after the word

F0K INWRD DIFF the log ratio of the first and the last stylized

F0 value for the word

Table 4.2
Examples of the prosodic features used for the SU detection problem
that appear in the decision tree shown in Figure 4.3.

fillers) contained in the word sequence. For such a goal, a hidden event LM [83] is

used to model the joint distribution of boundary types and words in an HMM with

the hidden variable in this case being the boundary type. Let W represent the string

of spoken words, W1, W2, · · · , and E represent the sequence of interword events, E1,

E2, · · · . The hidden event language model describes the joint distribution of words

and events, P (W, E) = P (w1, e1, w2, e2, ...wn, en). Note that for such a word level

LM, no explicit features are used for each word other than word co-occurrence that

is directly incorporated in the model.

For training a hidden event LM, hand-labeled data is used such that each event

is represented by an additional non-word token that is explicitly included in the N-

gram LM. For example, “I 〈IP〉 I like it”, event 〈IP〉 is an additional token in the

dictionary. The bigram parameter P (〈IP〉|I) gives the probability of an IP following

the word “I”. Note that we do not represent the fluent, intra-sentence boundary

events explicitly, considering that they are implied by the absence of other events.
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We believe this choice better captures the flow of word strings than including the

‘non-event’ explicitly in the N-gram LM and avoids fragmenting the training data.

The hidden event LM can be utilized to label a word sequence with the most likely

events in an HMM. In this model, the word-event pairs correspond to states and the

words to observations, with the transition probabilities given by the hidden event N-

gram model. Given a word sequence W , a forward-backward dynamic programming

algorithm [84] is used to compute the posterior probability P (Ei|W ) of an event

Ei at position i. For a boundary detection task, an event Êi is found such that

it maximizes the posterior probability P (Ei|W ) at each individual boundary. This

approach also minimizes the expected per-boundary classification error rate.

In addition to a statistical hidden event LM approach, a keyword based language

model can be used for detecting fillers and backchannels (see Table 4.1 for examples

of such keywords). However, these lexical cues are well captured by a hidden event

LM; for example, the bigram probability P (Type = SUbackchannel | uhhuh) is very

high in a hidden event LM, so we choose not to use keyword-based models to locate

such structural event types.

4.4 Model Combination

Because prosodic and lexical cues provide complementary information with dif-

ferent levels of granularity, we expect the combination of these knowledge sources

will give superior performance over each model alone. Two approaches are described

below for model integration:

• Posterior Probability Interpolation

Since both the prosody model (the decision tree classifier, denote ‘DT’) and

the language model yield posterior probabilities for an event type Ei at each

interword boundary, a better estimation of the posterior probability of an event
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occurring at that boundary given both the knowledge sources can be obtained

by linearly interpolating the posterior probabilities from these two models:

P (Ei|W, F ) ≈ λPLM(Ei|W ) + (1 − λ)PDT (Ei|F ), (4.3)

where λ can be optimized based on held-out data. PLM(Ei|W ) and PDT (Ei|F )

are the posterior probabilities generated by the hidden event LM and the

prosody model respectively, where W is the word sequence and F represents

prosodic features. In addition to combining the prosody model and a word-

based LM, this posterior probability interpolation method can be applied to

other models, as will be described in Chapter 6.

• An Integrated HMM Approach

An integrated HMM models the joint distribution P (W, F, E) of word sequence

W , prosodic features F , and the hidden event types E in a Markov model.

The goal of this approach is to find the event sequence Ê that maximizes the

posterior probability P (E|W, F ):

Ê = arg max
E

P (E|W, F ) = arg max
E

P (W, F, E) (4.4)

At each position i, the associated prosodic features Fi are modeled as emissions

from the hidden states Ei with likelihood P (Fi|Ei, W ). Under the assumption

that prosodic observations are conditionally independent of each other given

the event type Ei and the word sequence W , P (W, E, F ) can be rewritten as

follows:

P (W, E, F ) = P (W, E)
∏

i

P (Fi|Ei, W ) (4.5)

Additionally prosodic observations depend only on the phonetic alignment Wt,

ignoring word identity W . This may also make prosodic features more robust
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to recognition errors. Therefore, Equation (4.5) can be rewritten using only

the phonetic alignment information Wt for the second term:1

P (W, E, F ) = P (W, E)
∏

i

P (Fi|Ei, Wt) (4.6)

An estimation of P (Fi|Ei, Wt) can be obtained from the decision tree class

posterior probabilities PDT (Ei|Fi, Wt) as follows:

P (Fi|Ei, Wt) =
P (Fi|Wt)PDT (Ei|Fi, Wt)

P (Ei|Wt)
≈ P (Fi|Wt)PDT (Ei|Fi, Wt)

P (Ei)
(4.7)

P (Ei|Wt) is approximated as P (Ei) above, assuming that a structural event is

dependent on word identity but independent of word alignment information.

Substituting Equation (4.7) and Equation (4.5) into Equation (4.4), we obtain

the following expression for the most likely event sequence, using the hidden

event LM P (W, E), the decision tree estimation PDT (Ei|Fi, Wt), and the prior

probabilities of the events P (Ei):

Ê = arg max
E

P (E|W, F ) = arg max
E

P (W, E)
∏

i

PDT (Ei|Fi, Wt)

P (Ei)
(4.8)

The first term P (Fi|Wt) in the numerator of Equation (4.7) is independent of

E, therefore it can be ignored in the argmax formula and does not appear in

Equation (4.8).

What remains is to explain how P (Ei|Fi, Wt) is calculated during testing. As

described earlier, the decision tree prosody model can generate the posterior

probability for a test sample. However, if we downsample the majority class in

training but apply the trees to non-downsampled test data, there would be a

mismatch between the class distribution in the training and test set, and thus

the posterior probabilities would need to be adjusted accordingly [85]. For a

classification problem, the posterior probability of the class membership for a

sample x can be expressed using Bayes theorem:

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
(4.9)

1Wt is used here rather than Wti
since Fi is computed using contextual information beyond Wi.
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where Ck is the class membership for the sample x. If training and testing

sets differ significantly in class distribution, then it is appropriate to use Bayes

theorem to make necessary corrections in the posterior probabilities for the test

set. This can be done by dividing the output posterior probabilities from the

classifier by the prior probabilities corresponding to the training set, multiply-

ing them by the new prior probabilities for the test set,2 and then normalizing

the results.

Notice that the formula above is derived to obtain the most likely event se-

quence Ê. In our system, we use a forward-backward algorithm to find the

most likely event for each interword location, rather than using the Viterbi

algorithm to determine the most likely event sequence. This minimizes the

per-boundary classification error rate.

Although there are other alternatives for model combination, for instance, the

scores from a LM could be included directly as a feature in the decision tree model,

as in [86], results in [12] showed that this approach performs worse than the HMM

described in this section. Hence, this method is not considered in this thesis.

4.5 Chapter Summary

In this chapter, we have described the baseline HMM approach for the structural

event boundary detection task. At each word boundary, a set of prosodic features is

extracted, which reflect the duration, pitch, and energy information. A decision tree

is used to implement the prosody model that estimates the event class membership at

each word boundary given the prosodic features. A hidden event LM is used to model

the joint word and event sequence. These two knowledge sources are integrated in

an HMM system. Since effective model combination is very important, alternative

methods will be investigated in Chapter 8.

2Although the distribution for a test set is usually unknown, it can be estimated from the original
non-downsampled training set.
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5. HMM BASELINE PERFORMANCE

In this chapter we describe our baseline system’s performance for the detection of

structural events. Research enhancements will be described in Chapters 6 through

9. For each interword boundary, various knowledge sources are used to determine

whether it is a boundary for the structural events of interest, namely SU, disfluency

interruption points, or filler word boundaries using the HMM described in Chapter 4.

In addition, rule-based knowledge is used for event extent detection (i.e., filler word

and edit disfluency detection).

This chapter is organized as follows. Section 5.1 describes our choices of the

classes used in the classifiers for the boundary detection tasks, as well as the train-

ing and testing procedures. Section 5.2 provides the HMM baseline results for the

structural event detection tasks. Section 5.3 summarizes our findings.

5.1 System Description

5.1.1 Choice of Classes

For the boundary detection tasks, a general HMM has been described in Chap-

ter 4. A remaining problem is the choice of target classes used for the system. Recall

that we are investigating several structural event detection tasks, SU detection, filler

word detection, and edit word and IP detection. For SU detection, since the end

of an SU often implies the beginning of a following SU, the SU boundary between

words is used to represent the end of an SU and the start of the next one. Because

an IP always corresponds to an interword boundary, the selection of a boundary

representation for the IP task is obvious.
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For filler word detection, the end of a filler word string is used as the class in

the boundary detection framework. Since filler words are limited to a word list,

knowing the end point of the string allows us to go backward to determine the

onset of the filler word sequence. One reason that the end of the filler word string

is chosen, rather than its beginning, is that prosodic information should be more

helpful for locating the final word of the filler word sequence. In addition, filled

pauses (FPs) and discourse markers (DMs) are distinguished because they are quite

different phenomena. Therefore, the structural event types used for the boundary

detection tasks are: the end of an SU, the edit IP, the end of a DM, and the end of

an FP.

It needs to be decided whether to train one model that learns to distinguish

between every event type, or separate models that only learn to distinguish among

a subset of event types. Some of the events shown above can co-occur, for example,

SU and the end of a filler, but some do not co-occur (e.g., SUs and IPs).

The approach we adopt for the baseline system is to train a separate prosody

model and LM for each event, that is, a binary classification for SU versus non-SU, IP

versus non-IP, DM END1 versus non-DM END, and FP END versus non-FP END.

Since the distributions of these events are quite different, we believe that combining

them into a single model may degrade the quality of the decision trees by masking

the characteristics of the minority classes. In addition, the possible co-occurrence

of two events will increase the total number of unique classes and may fragment

the training data. We expect the models will be better tailored to each task by

implementing the structural event detection tasks as multiple classification tasks.

One drawback of such an approach is that the model cannot exploit the fact that

some events often co-occur or do not co-occur at all; however, a post-processing step

that is applied presumably will be able to address some of the problems that result

from the separate modeling approach.

1DM END means the end of a discourse marker word sequence. Similarly FP END means the end
of a filled pause.
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5.1.2 Training Procedures

Data Preparation

As described earlier, structural event detection tasks are evaluated on both hu-

man transcriptions and recognition output. Note that when applying the models

that are trained from human transcriptions to recognition output, there is likely a

mismatch between training and testing. Our preliminary experiments showed that

a model trained from the reference transcriptions yielded better performance than

one trained from the recognition output when evaluating on the recognition output

testing condition. Therefore, we used the reference transcriptions for model training

and apply the resulting models to both the reference transcription and recognition

output test conditions.

Figure 5.1 shows a diagram of how training data is obtained for the LM and

prosody model. Speech needs to be segmented into shorter waveforms for later

processing. For BN, reference “segments” are provided, which were generated by the

transcribers based on pause and syntactic information. For CTS, segmentation is

done automatically. In the training data, each word in a transcription has associated

beginning and ending time; therefore, the speech data can be segmented when the

pause between two adjacent words is greater than a pre-defined threshold (length

greater than 0.3 seconds for CTS).

Before forced alignment, a step called ‘text normalization’ is performed. The

purpose of this procedure is to “normalize” the words to match the vocabulary of

the speech recognizer. For example, different backchannel words such as “uhhuh” or

“umhmm” are mapped to a single token “uhhuh”, and compound words are split to

avoid out-of-vocabulary words. The normalized words together with the structural

event annotation in the original transcriptions compose joint sequences of words and

structural events, which are then used for the hidden event LM training.
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Fig. 5.1. Data preparation for model training.

The normalized transcriptions (without events) are then force aligned with the

speech data to obtain the word and phone level alignments.2 Forced alignments are

obtained using SRI’s large vocabulary speech recognizer [78]. The prosodic features

are then computed using this alignment information as described in Chapter 4. Al-

2Even though word alignment information is provided in the training data, phone-level alignment
is needed for prosodic feature computation; therefore, the re-alignment is conducted.



72

though prosodic features are extracted from the word or phone alignments, word

identity information is not explicitly used in these features. Only phone identity is

used to obtain normalized phone duration features. To compute F0 features, speaker

information is needed. On CTS, it is straightforward to obtain this information,

since each channel corresponds to one speaker. On BN, automatic clustering [87]

is used to obtain a pseudo speaker label for each speech segment.3 After prosodic

feature computation, the data for the prosody model training is ready: a vector of

prosodic features is associated with each word boundary, plus the structural event

type corresponding to that boundary.

Model Training

As described in Chapter 4, a decision tree is used as the prosody model. Since

the decision tree learning algorithm can be inductively biased toward the majority

class (in the structural event detection case, non-event boundaries), the minority

class may not be well modeled. Hence, for each two-way classification task in the

baseline system, when training the decision tree using the prosodic features, we

have randomly downsampled the training data in order to allow the decision trees

to learn the inherent properties for the event classes. Downsampling evens out

distributions by creating classes that each has the same number of tokens as the

smallest minority class. Other ways to address the skewed class distribution problem

will be investigated in Chapter 7.

From the joint word and event sequence (W, E), a 4-gram word-based hidden

event LM is trained, with Kneser-Ney smoothing. Unlike prosody model training, for

LM training, word sequence information must be preserved; therefore, no sampling

is used.

3In the reference transcriptions, each segment has an associated speaker label. We chose not to
use this information because in testing such information is unavailable; there would be a mismatch
between training and testing if reference speaker information is used in training.
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5.1.3 Testing Procedures

Testing Steps

Figure 5.2 shows the steps for testing the structural event detection models.

These steps apply to either human transcriptions or recognition output. In both

cases, word alignment information is available. When evaluating on the human

transcriptions, the test data provided by NIST contains word alignment information.

When evaluating on the recognition words, alignment information is available from

the recognizer output. Each step in testing is briefly described below.

First the transcription with word alignment information is used to segment the

speech (the whole conversation in CTS or a show in BN). This is done by finding

a pause that is longer than a predefined threshold (0.5 second in our experiments)

between two adjacent words.

For each segment of speech, a forced alignment is performed to its correspond-

ing word transcription to obtain more detailed phone and word level alignments for

later prosodic feature computation. In this step, a speaker label is also added to each

segment of speech. For CTS, this is straightforward, since each channel corresponds

to speech from one speaker. For BN, automatic speaker labeling is performed.4

Prosodic features are then computed using the forced alignments and speaker infor-

mation. Finally, the prosody model and the LM are combined in an HMM to obtain

the final structural event hypotheses.

Evaluation Conditions

To achieve the best system performance, the prosody model and the LM are

combined using an HMM. However, each model is also evaluated individually in

order to understand their individual contributions. Hence, there are three evaluation

conditions investigated:

4Different automatic speaker labeling methods will be discussed in Chapter 10.
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Fig. 5.2. System flow diagram of the testing procedure.

• Prosody model alone: The decision tree prosody model estimates the posterior

probability of an event given the prosodic features at each word boundary.

Since the decision trees are trained from a balanced training set, when test-

ing the prosody model alone on the non-downsampled test data, the posterior

probabilities generated by the decision trees are adjusted. Assume the prior

probabilities of the two classes are P (C1) and P (C2) and the posterior prob-
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abilities from the decision tree are PDT (C1|F ) and PDT (C2|F ), then for class

Ci, the adjusted posterior probability is calculated as follows:

Padjusted(Ci|F ) =
PDT (Ci|F ) × P (Ci)

PDT (C1|F ) × P (C1) + PDT (C2|F ) × P (C2)
(5.1)

• LM alone: For each word boundary, the hidden event LM is used to compute

the posterior probability of an event P (Ei|W ) using the forward-backward

algorithm.

• Combination of the LM and the prosody model: The HMM is used to inte-

grate the prosody model and the word-based hidden event LM as described

in Chapter 4. When a downsampled balanced training set is used for prosody

model training, then in the non-downsampled test set, the posterior probabil-

ities are adjusted to account for the mismatch between decision tree training

and testing as follows:

PDTadjusted
(Ei|Fi, Wt) ∝ PDToriginal

(Ei|Fi, Wt) × P (Ei) (5.2)

Substituting this into Equation (4.8), the most likely event sequence using

the combined prosody model and LM can be obtained using the posterior

probabilities directly from the decision tree:

Ê = arg max
E

P (W, E)
∏

i

PDToriginal
(Ei|Fi, Wt) (5.3)

Posterior probabilities are generated for each word boundary in all these condi-

tions: the LM alone, the prosody model alone, and the HMM combination approach.

A threshold of 0.5 is used to generate the final decisions for all the binary structural

event detection tasks, that is, the class whose posterior probability is greater than

0.5 is chosen. This is because our goal is to minimize the overall classification error

rate, and the errors associated with each class (event vs. non-event) are assumed to

be equally costly.
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5.2 Baseline System Performance

The prosody model, LM, and their combination are evaluated for the structural

event detection tasks, using human transcription or recognition output for the CTS

and BN corpora. Experiments for each subtask are described in the following sub-

sections.

5.2.1 Task 1: SU Detection

Setup

This is a two-way classification task, where non-SU boundaries are distinguished

from SU boundaries. During the model training and testing, SU subtypes are not

distinguished. Hence, the “SU” class includes statements, questions, backchannels,

and incomplete utterances. All the other boundaries are grouped into one class

“non-SU”.

Training and test data are those used in the RT-03 evaluation, which is described

in Chapter 3 (see Table 3.2). The decision tree prosody model is trained from a

downsampled training set. Evaluation is conducted on both the human transcrip-

tions (REF) and recognition outputs (STT), using the LM and the prosody model

individually, as well as their combination. To obtain a baseline performance for the

SU detection task, the NIST error rate is used, which allows comparisons with the

other systems using the same data. Results are also reported using classification

error rate (CER) to examine the boundary detection performance.

SU Detection Results for CTS

Table 5.1 shows the SU detection results for CTS. As shown in the table, the

LM performs better than the prosody model alone, and the model combination

outperforms either model alone. The word-based LM does not generalize well to

unseen cases: it can only accurately detect SU boundaries when the word context
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has occurred in the training data. On the other hand, combining with the prosody

model is better at generalizing to unseen test conditions. This can be seen from

Table 5.2, which shows the deletion and insertion error rate using the LM and the

prosody alone and in their combination for the reference transcription condition. In

the model combination case, there are fewer missed SU boundaries (deletion errors),

although there is an increase in false alarms (insertion errors) compared to using the

LM alone.

Table 5.1
CTS SU detection results using the NIST SU error rate (%) and the
boundary-based CER (% in parentheses) on human transcriptions
(REF) and recognition output (STT), for the LM and the prosody
model individually, and in combination. The baseline error rate,
assuming there is no SU boundary at each word boundary is 100%
for the NIST SU error rate and 15.7% for CER.

CTS

LM Prosody LM+Prosody

REF 42.02 (6.56) 68.77 (10.73) 36.24 (5.65)

STT 53.25 (8.31) 70.98 (11.07) 46.52 (7.26)

Table 5.2
Deletion and insertion error rates (NIST SU error rate in %) for the
CTS REF condition, using the LM and the prosody alone and in
their combination.

CTS

DEL INS Total

LM 27.15 14.87 42.02

Prosody 62.58 6.18 68.77

LM+Prosody 18.86 17.38 36.24
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The word errors in the recognition output have a negative impact on both the

prosody model and LM, with the LM more severely affected (i.e., there is a greater

relative SU detection error increase in the STT condition for the LM than for the

prosody model). Since the LM is more dependent on lexical information than the

prosody model, it follows that it would be less robust in the face of word errors.

The prosody model is also indirectly impacted because the prosodic features are

extracted from the word alignments using transcriptions containing word errors, so

they should be less accurate than using human transcriptions. In addition, incorrect

phones in the STT output affect prosodic feature extraction; for example, it impacts

the normalization of phone duration, which uses phone identity.

An analysis of the decision tree created during training highlights what prosodic

features are used most often for SU boundary detection. Table 5.3 reports the feature

usage for this SU task. Feature usage reflects the percentage of times decisions involve

a certain feature when classifying all the training samples [12]. Features that are used

higher up in the decision tree have higher usage values. Only those features with

the feature usage value greater than 4% are listed in the table. Descriptions of the

feature abbreviations are given in Appendix B. As can be seen, duration is extremely

important for SU detection on CTS data, including pause duration and phone level

(e.g., vowel) duration. Another useful feature is whether there is a turn change,

which in most cases implies that the speaker has finished his or her utterance, thus

signaling an SU boundary.

SU Detection Results for BN

SU detection results using BN corpus are shown in Table 5.4. Similarly to the

CTS results, the combination of the LM and the prosody model yields better per-

formance than either model alone, and there is a performance degradation in face

of speech recognition errors. However, the contribution from the prosody model to

the combined performance for BN is greater than for CTS, i.e., there is about a 20%
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Table 5.3
Feature usage (%) for SU detection on CTS.

Feature Feature Usage (%)

PAU DUR 23.613

WORD DUR 20.146

PREV PAU DUR 12.647

MAX VOWEL DUR NSP 11.430

TURN TIME N 7.963

TURN F 4.382

error rate reduction after combining with the prosody model for BN, compared to

around 13% for CTS on the reference condition. Table 5.5 shows the deletion and

insertion errors for the reference condition. Similar to the CTS results, adding the

prosody model yields fewer deletion errors and increases the insertion errors.

Table 5.4
BN SU detection results using the NIST SU error rate (%) and the
CER (% in parentheses) using the prosody model, the LM, and their
combination. Results are shown for both REF and STT conditions.
The baseline error rate is 100% for the NIST SU error rate and 7.2%
for CER.

BN

LM Prosody LM+Prosody

REF 80.44 (5.79) 85.67 (6.17) 64.75 (4.66)

STT 84.71 (6.10) 85.67 (6.17) 69.07 (4.97)

Recall from Table 3.2 that there is a smaller percentage of SUs in BN than CTS.

Since the number of reference SUs is used as the denominator in the NIST error

rate calculation, the same number of misclassified boundaries will result in a higher
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Table 5.5
Deletion and insertion error rates (NIST SU error rate in %) for the
BN REF condition, using the LM and the prosody model alone and
in their combination.

BN

DEL INS Total

LM 66.00 14.44 80.44

Prosody 30.42 55.26 85.67

LM+Prosody 37.01 27.74 64.75

NIST error rate in BN than in CTS. This partly explains why the NIST SU error

rate is generally higher on BN than on CTS. The boundary-based CER is lower for

BN than for CTS, although the simple baseline performance is also lower (7.2%) for

BN than for CTS (15.7%).

Comparing the SU detection results on BN and CTS (Table 5.1 and Table 5.4),

we notice that the performance of the LM alone is worse on BN than on CTS. There

are several reasons for this. First, the training data size is smaller for BN than for

CTS. Second, these two corpora differ in speaking style. In conversational speech,

there are many first person pronouns and backchannel words, which are very good

signals for SU boundaries; whereas, for BN, sentence initial and final words are quite

variable and thus the data is more sparse. These characteristics make the BN SU

detection a harder task, which is reflected by the higher NIST SU error rate (which

is normalized by the event priors).

As expected, the performance of the LM alone degrades more than that of the

prosody model alone on the STT condition. The degradation (relative error rate

increase for the LM alone) due to the STT errors is lower on BN than on CTS,

which can be attributed to the better word recognition accuracies on BN than CTS.

In contrast to CTS, we observe that the performance of the prosody model alone
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does not degrade on the STT condition.5 In fact, for the STT condition, the prosody

model alone yields a performance similar to the LM alone.

Table 5.6 shows the most frequently used prosodic features by the decision tree

for the BN SU detection task. These differ from those for CTS, although the pause

duration at the word boundary is the most frequently used feature in both cases.

For BN, pitch plays a more important role than for CTS; whereas, phone and word

duration is more important for CTS. The pause duration before the current word is

not as useful for BN as for CTS. These differences may be due to the fact that most

of the speakers in BN are professional reporters reading tele-prompted text, and

they use pitch change to reflect the sentence structure more consistently than people

engaged in conversational speech. In addition, CTS involves conversational speech

between two speakers, and thus the pause information for one speaker is affected by

the speech activity of the other speaker.

Table 5.6
Feature usage (%) for SU detection on BN.

Feature Feature Usage (%)

PAU DUR 44.299

TURN TIME N 20.966

LAST RHYME DUR PH ND bin 17.713

F0K DIFF LAST KBASELN 4.539

Note that for the RT-03 structural event detection tasks, subtypes of SU are not

evaluated; therefore, those results are not reported here. A preliminary investigation

[88] indicates that different prosodic features may be important for identifying some

SU subtypes (e.g., the rising pitch for a question SU). Additionally, the word-based

5The exact same SU error rate for the prosody model alone is just a coincidence; the errors are
different.
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N-gram LM is less effective at distinguishing questions from statements than for

detecting backchannels.

5.2.2 Task 2: Filler Word Detection

Setup

Since filler words are infrequent phenomena in BN, we focus only on CTS for

this task. Here we only detect filled pauses (FPs) and discourse markers (DMs)

for filler word detection. Explicit editing terms are not considered due to the lack

of a good modeling approach for them and their infrequent occurrence. We expect

that FPs and DMs have sufficiently different characteristics that separate models

are built for each. As explained earlier, a boundary detection approach is first used

for determining the end boundary of the filler words. Both the filled pause and

discourse marker detection tasks involve a 2-way classification. After detecting the

end of a discourse marker phrase, we search backward over words that appear on

a pre-defined discourse marker list to determine the onset of the discourse marker

phrase. Filled pauses contain only one word; therefore, knowing the end of an FP is

equivalent to detecting the FP.

Evaluation is performed using both the human transcription and recognition

output from CTS. As for the SU detection task, the prosody model and the LM are

evaluated individually and in combination.

CTS Filler Word Detection Results

The results for filler word detection on the CTS corpus are shown in the first two

rows in Table 5.7. Again we observe a performance degradation due to the errors in

the STT output. For tasks such as filler word detection, which strongly depend on

word identity, inaccurate STT output severely affects the LM’s performance. The

increase of the filler error rate in the STT condition (compared to using human
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transcriptions) is more dramatic than for the SU detection task. The combination of

the LM and the prosody model is not substantially better than using the LM alone

for filler detection, in contrast to what we have observed for SU detection on both

CTS and BN.

Table 5.7
Results for CTS filler word (including FP and DM) detection, FP
detection, and DM boundary detection using NIST error rate (%)
and CER (% in parenthesis) for the prosody model, LM, and their
combination. Results are for both the REF and STT conditions. The
baseline CER is 8.3% for filler word detection, 3.6% for FP detection,
and 2.8% for DM boundary detection.

CTS

LM Prosody LM+Prosody

Filler word REF 21.18 (1.76) 63.02 (5.23) 20.78 (1.72)

STT 49.22 (4.09) 79.59 (6.61) 48.10 (3.99)

FP REF 6.77 (0.19) 5.0 (0.14) 3.04 (0.09)

STT 50.88 (1.42) 49.36 (1.38) 48.87 (1.37)

DM boundary REF 39.48 (1.42) 96.81 (3.49) 38.71 (1.39)

STT 55.52 (2.0) 96.85 (3.49) 56.14 (2.02)

A detailed look at the performance for FP detection alone shows some interesting

trends, as can be seen in the two rows of the FP detection results in Table 5.7.

The prosody model alone yields very good accuracy for FP detection. It is quite

surprising that prosody information can be utilized alone to so accurately detect

filler words when human transcriptions are used. Additionally, on both the REF

and STT conditions, we observe that the prosody model performs better than the

LM alone. We believe that the decision tree has learned very word specific prosodic

features (e.g., by learning specific duration and pitch features for filled pauses). The

DM results in the last two rows of Table 5.7 are for DM boundary detection, not for
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DM extent. This represents better the performance of our models, since the 2-way

boundary detection model is used for DM detection. Unlike FP, the prosody model

alone performs poorly for DM detection. In addition, on the STT condition, the

combination of the LM and the prosody model is not better than the LM alone.

The feature usage of the prosody model for each of the FP and DM detection

tasks is shown in Table 5.8. Features such as vowel duration and rhyme duration

play an important role for filler word detection. These features are very different

than those chosen for the SU detection task on both the CTS and BN data. For

example, the most used feature for SU detection is the pause after a word; whereas,

for filler, especially FP detection, word lengthening is more informative.

Filler detection will not be a major focus in this thesis. When using the speech

recognition output, whether the recognizer outputs the correct filled pause word

largely determines FP detection performance since it then only involves simple key-

word identification. For DM detection, there is some ambiguity because some dis-

course marker words are confusable with words used in other situations. Higher

level textual information together with word-dependent prosody models is needed

for resolving this ambiguity.

5.2.3 Task 3: Edit Word and IP Detection

Since the edit word detection and IP6 detection tasks are highly correlated, we

describe the two tasks together in this section. Our focus is on CTS data because

edit disfluencies are infrequent in BN.

Overview of Edit Detection

Edit word detection is an extent detection task; whereas, IP detection belongs to

the boundary detection category. Since speakers are still fluent at the starting point

6An IP here means the IP inside an edit disfluency, not including the point before the filler words,
which are not the editing terms in an edit disfluency.
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Table 5.8
Feature usage (%) for the FP and DM detection tasks in CTS.

Task Feature Usage (%)

MAX PHONE DUR N 14.869

MAX PHONE DUR Z 14.325

ENERGY WIN DIFF HIHI N 13.173

LAST VOW DUR N bin 11.741

LAST RHYME DUR PH ND bin 8.079

FP LAST VOW DUR Z bin 5.403

AVG PHONE DUR Z 5.141

STR RHYME DUR PH bin 4.963

AVG PHONE DUR ZSP 4.501

PREV PAU DUR 4.162

F0K WRD DIFF LOLO N 4.073

WORD DUR 19.338

LAST RHYME DUR PH bin 15.178

DM TURN TIME 12.832

AVG VOWEL DUR Z 5.219

AVG VOWEL DUR N 4.570

of an edit disfluency, it is likely that there are no acoustic or lexical cues at that

location, but there might be some cues at the point when the speaker interrupts his

or her speech. Therefore, our baseline approach is to use the prosodic and lexical

features to detect the interruption point (IP) and then use knowledge-based rules

to locate the corresponding reparandum onset for the hypothesized IPs. Figure 5.3

shows a system diagram for this method. The final system output (for both IP and

edit word detection) is from the combination of the HMM-based IP detection, rule-
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based reparandum onset detection, and repetition pattern detection. Each box in

the figure is described below.
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Fig. 5.3. System diagram for edit word and IP detection.

HMM-based IP Detection

The top left box in Figure 5.3, shown with a dashed line, represents a two-way

classification model used to determine whether or not there is an edit IP at an

interword boundary position. A decision tree prosody model is trained from a down-

sampled training set. A hidden event LM is trained to model the joint distribution

of words and IP events (e.g., “I 〈IP〉 I go to school”). These two models are then

combined using an HMM. The final output from this module is the IP hypothesis

for each word boundary.

Modeling Repetition Patterns

A word-based N-gram LM can only learn certain frequently occurring disfluen-

cies from the training data and cannot generalize to other related disfluencies using

different words. For example, in “I hope to have to have lots of dinner parties” (with

“to have” repeated), a regular word-based hidden event LM would fail to detect the
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IP in this utterance.7 Such a failure would also affect the speech recognition task

for which the purpose of the LM is to calculate the probability of word strings. To

address this issue, the word-based LM has been modified to account for repetitions.

Currently only repetitions are handled because they are the most constrained and

frequently occurring edit disfluencies in CTS (more than half of all edit disfluencies

are repetitions).

To train a LM that can deal with repetition patterns, the training corpus is

processed in the following way. For each repetition in the training data, we remove

the reparandum region to obtain a cleaned-up utterance, and record the repetition

pattern. For the example above, the cleaned-up text is “I hope to have lots of dinner

parties”, and the repetition is mapped as follows:

       to                 have           to                have

START          ORIG-1             IP           REP-1             END


The pattern sequence in the example is thus ‘START ORIG-1 IP REP-1 END’.

The number after ‘-’ in the pattern denotes the position of that event in either the

reparandum or the repeat region. An N-gram LM is trained from the counts that are

obtained from both the cleaned-up text and the counts of such repetition patterns.

Note that the whole repetition pattern sequence is modeled as shown in the pattern

example (e.g., IP as well as the reparandum onset); whereas, the hidden event LM

captures only the hidden event IP information.

During testing, for each word boundary, repetition events are hypothesized based

on the valid state transitions and whether a word matches a previous word. Each

hidden event in a repetition pattern has properties representing where it occurs in

the pattern, from which a possible valid next event can be inferred. During trellis

decoding, only valid state transitions are considered. Figure 5.4 shows the state

transitions for repetitions with up to three repeated words. This LM can also be

interpreted as a class-based LM, i.e., when a word sequence is found to be repeated,

the words in the reparandum region are mapped to the class tags (i.e., the tokens used

7The word-based LM would fail to detect the repetition in the utterance because “to have to have”
was never observed in the training data.
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in the repetition patterns). In addition, we assume there is not any lexical context

associated with these repetition patterns in the N-gram LM, which is equivalent to

allowing such a pattern to occur for any word choice. The probability of a word

sequence is calculated in the same way as in a word-based N-gram LM for fluent

words up until the ‘IP’ point, then in the repetition, the pattern N-gram probability

is used instead of the word-based probability. An advantage of this approach is that

it can detect more than the frequently occurring repetitions in the training data.

Note that in the repetition detection model, there are some cue words that are not

allowed to be mapped to the repetition pattern (e.g., “yeah”, “uhhuh”, “right”),

since the repetitions of these words generally are not edit disfluencies.
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Fig. 5.4. Valid state transitions for repetitions of up to 3 words. The
X and Y axes represent the position in the reparandum and repetition
regions respectively, with events denoted as ORIG- and REP-. In
ORIG-n, n means the position of a word in the reparandum; in REP-
m.n, m is the total number of repeated words and n represents the
position of the event in the repeat region. Optional filler words are
allowed after the IP in the transition.
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Rule-based Reparandum Detection

The rule-based knowledge box in Figure 5.3 applies heuristic knowledge to de-

termine the extent of the reparandum region of a disfluency after the interruption

point is detected. Linguistic investigations (e.g., [42]) suggest that people tend to

start from the beginning of a constituent in repetitions or revisions (e.g., repeating

the function words). For example, a revision disfluency may be: “a red a blue car”,

where the speaker starts from “a” when trying to correct the word “red”. In this

example, if the IP is correctly hypothesized at the interword boundary, that is “a

red 〈IP〉 a blue car”, then we can go backward to find whether the same word as

the word after the IP (“a” in this example) has occurred before the IP and thus

determine the onset of an edit disfluency. For a word boundary that has a system IP

hypothesis from the HMM component or that follows a word fragment, Figure 5.5

shows how rule-based knowledge is applied to determine the reparandum starting

point. During the post-processing of IPs, the system generated SU information is

also used. In the bottom right box in Figure 5.3, when looking forward to search for

a word that matches the word after the IP, the search stops when it hits a system

SU hypothesis or a cue word (e.g., “and”, “but”) to avoid false alarms.

Edit and IP Detection Results

Table 5.9 shows the results for edit word and IP detection using the CTS corpus.

When testing on the human transcriptions, one important type of information is the

occurrence of word fragments, which often signals a disfluency interruption point. For

the human transcription results shown in Table 5.9, this information is used, because

our goal is essentially to recognize fragments from the speech signal. However, most

currently available speech recognizers do not hypothesize the occurrence of word

fragments, so there is a difference between the REF and STT conditions related to

the availability of word fragment information.
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Fig. 5.5. A rule-based method for determining the reparandum region
after IPs are hypothesized. SU hypotheses are used in the rules.

As can be seen from Table 5.9, when the prosody model is used alone, none of

the edit IPs and thus none of the edit words are detected. The NIST error rate

is 100%, which are all deletion errors. Note that when the prosody model is used

alone, we do not have access to the word repetition module (which uses textual

information). Experiments in [18] have shown that useful prosodic cues exist at the

interruption points, but the performance of the prosody model was not investigated

on non-downsampled test data in that study. In prior work, we have found that

on a downsampled test set the prosody model alone yields a better accuracy than

chance performance of 50% for IP detection [88]; however, on the non-downsampled

data, Table 5.9 shows that the prosody model alone yields only chance performance.

This may be because the posterior probability generated by the prosody model is
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Table 5.9
CTS edit word and IP detection results using NIST error rate (%)
and CER (% in parenthesis) for the prosody model, the LM, and
their combination. Results are for the REF and STT conditions.
The baseline CER is 8.3% for edit word detection, and 4.8% for edit
IP detection.

CTS

LM Prosody Only LM+Prosody

Edit word REF 59.14 (4.91) 100 (8.3) 59.06 (4.90)

STT 88.02 (7.31) 100 (8.3) 87.86 (7.29)

Edit IP RER 41.1 (1.96) 100 (4.78) 40.47 (1.93)

STT 81.6 (3.9) 100 (4.78) 81.26 (3.88)

insufficiently high to overtake the low prior probability of an ‘IP’ event. As shown in

Equation (5.2), when the prosody model is used alone, the final posterior estimation

at a word boundary is obtained by adjusting the decision tree’s output using the

prior probability information. The prior probability for an IP is about 4.5% in CTS

(as shown in Table 3.2); therefore, if the decision tree’s posterior probability output

for the IP event is not greater than 0.955, then the non-IP event will have a higher

adjusted posterior probability at that boundary. This is in contrast to FP detection

(see Table 5.7) on non-downsampled data, where the prosody model performs very

well even though the FP event has a lower prior probability (2.9%) than for the

IP event (4.5%). The effectiveness of the FP prosody model is attributed to the

reliability of the prosodic features for that task, i.e., the prosody model has a very

high posterior probability for some FP test samples (almost 1). In contrast, the

prosody model for the IP detection task is less reliable given the current set of

prosodic features used in the prosody model.

Results in Table 5.9 indicate that the LM performs significantly better than

chance; however, word errors significantly affect the robustness of the LM because it
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relies heavily on the word identities and patterns. An analysis of the results shows

that most of the IPs correctly detected by the hidden event LM are repetitions.

This makes sense since repetitions are common in the training set. Additionally, it is

difficult to capture the properties of revisions and restarts using a simple word-based

N-gram model. Even though the prosody model only achieves chance performance

when used alone on the non-downsampled test set for IP detection since the posterior

probabilities do not win over the high priors of the non-IP event, we find that the

combination of the LM and prosody model slightly outperforms the LM alone.

On downsampled data, the decision tree learns some important prosodic features

for IP detection. The feature usage of the prosody model trained from a downsam-

pled training set is shown in Table 5.10.

Table 5.10
Feature usage (%) for IP detection on CTS corpus.

Feature Feature Usage (%)

PAU DUR 19.933

AVG PHONE DUR N 17.624

TURN TIME N 10.984

WORD DUR 10.213

SLOPE DIFF 6.683

AVG PHONE DUR ZSP 5.412

AVG PHONE DUR NSP 4.653

5.2.4 Summary for All the Tasks

Table 5.11 summarizes our baseline system performance in NIST error metric for

all the structural event detection tasks on the human transcription and recognition
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output for the CTS and BN corpora. Since these tasks are benchmark tests, using

the NIST standard metric enables comparison with other systems.

Table 5.11
System performance (NIST error rate in %) for all the structural
event detection tasks on CTS and BN test sets. Results are presented
for both the REF and STT conditions.

BN CTS

REF STT REF STT

SU 64.75 69.07 36.24 46.52

Edit word 51.37 100.39 59.22 87.99

Filler word 9.22 52.45 18.07 47.97

IP 17.51 74.47 27.13 65.75

Since separate classifiers are used for each task, there can be conflicts between

different classifiers’ decisions at an interword boundary. SU and edit IP conflicts are

reconciled by looking at the posterior probability of the SU hypothesis since that

value is more accurate than the IP posterior probability. When the SU posterior is

higher than a predefined threshold, the SU hypothesis is preserved; otherwise the

IP or edit hypothesis is used. For example, “That is great. That is great.” If the

repetition detection hypothesizes it as a repeat (edit disfluency) and the SU detection

model hypothesizes this as a potential SU, then we check the posterior probability

of the SU result. In this case, if it is higher than 0.85, then the edit word and IP

hypotheses are removed and the SU hypothesis is preserved.

As shown in Table 5.11, performance degrades dramatically on the STT condition

for all the tasks. Notice that the degradation on the SU detection task is less than

for the other tasks. Some possible reasons for its greater robustness are: the prosody

model for SU provides more help and is relatively more robust to recognition errors

than the word-based model, the SU LM is not dependent on a list of the key words

(as in the case of filler words detection) or specific patterns (as in the case of edit
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word detection), and there are more SU events in the training data and so the model

is better trained. Additionally, some of the degradation for edit disfluency and IP

detection is due to the fact that in the reference transcription word fragments are

provided, which always signal IPs; whereas, in recognition output, this information

is unavailable. We also find greater degradation on the filler and edit detection

tasks on the STT condition for BN than for CTS. This is probably because these

events are more undertrained and a larger percentage of edit disfluencies contain

word fragments on BN.

Interestingly, we observe from the table that the edit word detection error rate

on BN is not worse than CTS for the reference condition, even though the percent-

age of edit words is much smaller on BN than CTS, which significantly affects the

denominator used in the performance measure. This suggests that to some extent

edit word detection is a relatively easier task on BN than CTS, which makes sense

because of the different speaking style of the two corpora. Many edit disfluencies on

BN are repeats and simple revisions, some of which are due to reading errors.

5.3 Chapter Summary

In this chapter, we have described our structural event detection baseline system

performance. An HMM incorporating word information and prosodic features is

used for each boundary detection task. Additional rules are used for further extent

detection. We have observed effective acoustic-prosodic cues at the event boundaries

and these features vary for different tasks and corpora. For example, a pause after a

word is an important feature for SU boundaries, word lengthening is more important

for filler words, and pitch was found to be more effective for BN SU detection than for

CTS. The LM alone generally outperforms the prosody model, and the combination

of the two models usually performs better than either individual model. Comparisons

of performance on the REF and STT conditions suggest that the incorrect words

contained in the recognition output are more detrimental to the LM than to the
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prosody model. This makes sense since the former is more dependent on correct

word identity.

In summary, the combination of multiple knowledge sources improves perfor-

mance for the structural event detection tasks. Different models and knowledge

sources have their own strengths in modeling different components in the structural

event detection tasks. How to more effectively model each knowledge source and

integrate them for improved system performance is a major focus for the remaining

chapters in this thesis.
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6. INCORPORATING TEXTUAL KNOWLEDGE

SOURCES INTO THE HMM SYSTEM

In speech recognition, the role of a LM is to predict the next word based on its

context or to disambiguate word candidates that are acoustically confusable. For

such a purpose, a word-based N-gram LM performs very well, although research has

also shown that incorporating more knowledge further improves performance [89,90].

For structural event detection tasks, it is likely that syntactic information will be

even more important for determining SUs and disfluencies than for word prediction.

In this chapter, we investigate whether textual information beyond words is helpful

for detecting structural events in speech.

Another motivation for our investigation of using additional information beyond

the word-level is the data sparsity issue in training the hidden event N-gram LM.

A hidden event LM requires the use of an annotated training set, which typically

requires more effort to produce than transcriptions. Therefore the data set available

for training the hidden event LM is generally much smaller than the size of the corpus

used to train a word-based LM used in speech recognition. A traditional class-based

LM1 is less affected by the sparse data problem and thus may generalize better since

it groups similar words into classes, which leads to a decrease in the vocabulary size.

In addition, we will also investigate using additional ‘annotated’ text material that

does not accurately match the type of data we will test on.

This chapter is organized as follows. Section 6.1 reviews related LM techniques.

Section 6.2 describes additional knowledge sources that we investigate, including au-

tomatically induced classes, part-of-speech tags, syntactic chunks, and other textual

1A class-based LM is in contrast to a word-based LM; the tokens in a class-based LM are the
‘classes’ of words.



97

material that imperfectly matches the test condition. Section 6.3 describes how these

textual knowledge sources are combined together, as well as with the prosody model.

Section 6.4 shows the experimental results for the SU detection task in the HMM

system. Section 6.5 summarizes this chapter.

6.1 Review of Related Language Model Techniques

In our baseline system, a word-based hidden event LM is used. Before this LM is

extended, we first review some related efforts aimed at improving LMs, most of which

were developed in the context of speech recognition. We will review word-based LMs

and their parameter estimation, word+class-based LMs,2 and LM adaptation. Some

of the techniques presented here will be applied to the structural event detection

tasks.

• Word-based LMs

The goal of a LM is to estimate the prior probabilities of a word sequence:

P (W n
1 = w1w2...wn) = P (w1)P (w2|w1)...P (wi|H(wi))... (6.1)

where H(wi) is the word history for a word wi. If the history mapping function

H(wi) contains the previous n−1 words of wi, then it becomes an N-gram LM,

the most widely used LM. Even though this LM only captures limited local

information, it is very powerful in applications such as speech recognition and

machine translation, where the training corpora are reasonably large.

For parameter estimation, the maximum likelihood (ML) method is generally

used to obtain estimates: P (w|h) = C(w, h)/C(h). In ML estimation, if an

event (w, h) does not occur in the training data, then it will be assigned a zero

probability and thus the word sequence will have a zero probability. This prob-

lem is known as the sparse data problem. In order to address this problem, a

2These are sometimes called class-based LMs, too. We use ‘word+class’ to denote that both word
and class information is used in this LM, in order to distinguish it from the POS- or chunk-based
LMs described later that do not use word information.
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variety of smoothing methods have been proposed [91–94]. These techniques

are central to improving a LM’s performance (such as in speech recognition).

Most of the smoothing methods discount probabilities of events that have oc-

curred in the training set, and use these probabilities to provide probabilities

for the unseen events. Commonly used smoothing techniques include linear

interpolation, which combines the higher order N-gram LMs with the lower or-

der ones, and backoff for which a higher order LM is used when the frequency

is greater than some threshold; otherwise, there is a back-off to a lower order

LM. Note that the sparse data problem is not limited to word-based LMs.

Smoothing methods are applicable to, for example, class-based LMs that are

discussed next.

• Word+class-based LMs

Class-based LMs are important since they reduce the number of parameters,

addressing at least in part the data sparsity problem, and they have the poten-

tial to increase the generality of the LMs to unseen events. There are two ways

to obtain the classes: either the classes can be automatically induced based

on some statistical information in the training set, or existing linguistic classes

such as POS tags or semantic tags can be used.

There are two modeling methods that have been used for jointly utilizing word

and class information for word prediction. The first is the conditional proba-

bilistic model that calculates p(w|h) in the following way [95]:

P (wi|H(wi)) =
∑
C(wi)

p(wi|C(wi)) × p(C(wi)|H(wi)) (6.2)

where C(wi) is the mapped class for word wi, also simplified as Ci. If a trigram

LM is used and the word history is also mapped to their classes, then the

formula above becomes:

P (wi|wi−1, wi−2)) =
∑

Ci,Ci−1,Ci−2

p(wi|Ci) × p(Ci|Ci−1, Ci−2) (6.3)
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The second method uses a joint model, which calculates the probability of the

joint word and class sequence as follows:

p(W, C) =
∏

i

p(wi, ci|wi−1
1 , ci−1

1 ) =
∏

i

p(ci|wi−1
1 , ci−1

1 )p(wi|wi−1
1 , ci

1) (6.4)

And the probability for the word sequence W is obtained by summing up over

all the class sequences:

P (W ) =
∑

ci,c2,...cn

P (W n
1 , Cn

1 ) (6.5)

Heeman [96] reported perplexity reduction using the joint model of words and

classes compared to a word-based trigram LM. However, using the conditional

model as shown in Equation (6.2) has not yielded significant reductions in

perplexity or speech recognition error rate [97]. The joint modeling approach

appears to provide a superior performance over the conditional model [98],

largely due to the importance of lexical information, which is lost in the con-

ditional modeling approach.

In addition to the POS tags and the automatically induced classes, recently LM

researches are attempting to exploit more syntactic structure information for

word prediction. Intuitively people do not simply employ local word-occurrence

information for word prediction; they use much higher level knowledge, such

as syntactic, semantic, and pragmatic information, in the face of acoustic am-

biguity. LMs have been proposed that are based on various grammar. For

example, Wang et al [89, 99, 100] and Chelba [90] have shown significant word

error rate reductions in large vocabulary speech recognition tasks by incorpo-

rating syntactic information.

• LM Adaptation

Another theme of research for LMs is adaptation. As we have already seen,

a large training corpus is needed to obtain reliable parameter estimation for

the N-gram tuples. However, in a new application, it is likely that the ex-

isting corpus is different from the application under study in terms of genre,
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vocabulary, etc. In this case, adaptation methods can be used to adapt LM

parameters from the general domain to the new domain, usually making use of

a limited size training corpus that matches the application. Another approach

is to build topic-dependent LMs, and then in a new application, detect the

topic in order to choose a LM with the matched topic or use or a mixture of

LMs with weights optimized for the testing corpus.

We have only reviewed some LM research that is more related to the methods

that are going to be used for structural event detection. There is much work on

LMs, such as using latent semantic analysis [101], exponential LMs [102, 103], and

skipping LMs [104]. We choose to not elaborate on them since they are less relevant

to our work.

6.2 Various Knowledge Sources

The work described in the previous section has been used in speech recognition;

however, our research focuses on using LMs to detect structural events in speech.

The question is, how well do the insights gained from word prediction applications

transfer to the detection of structural events. In this section, we introduce various

knowledge sources that are used to expand our word-based hidden event LM. The

impact of these sources is evaluated in Section 6.4.

Note that for word prediction in speech recognition, a joint model of words and

classes provides richer information, and thus helps resolve ambiguity and yields better

estimation of the following word given word history. For the structural event detec-

tion task, it is unclear that a joint model of words, classes, and events P (W, C,E)

will be effective, since the goal is different from word prediction, i.e., detecting the

hidden events given word-related contextual information. Additionally since we have

such a limited training set, and a joint model P (W, C, E) contains more parameters

and requires more training data, we choose not to adopt the joint modeling approach

for structural event detection tasks. Rather each class-based LM is a separate hid-
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den event LM, which is used to model the joint distribution of classes and structural

events P (C, E), where C is the class sequence corresponding to the word sequence

W . Class-based LMs have the advantage of reducing the vocabulary size and thus

address data sparsity to some extent, while potentially capturing semantic or syn-

tactic similarity information. Various LMs are then loosely combined. The next

subsections describe each of the combined LMs.

6.2.1 Word-LM

This model was used in our HMM baseline system in Chapter 5. The hidden

event word LM models the joint distribution of word and event sequence:

P (W, E) = P (w1, w2, ...wi, ei, ...)

= P (w1)p(e1|w1)...P (wi|wi−3, wi−2, wi−1)P (ei|wi−2, wi−1, wi)... (6.6)

Note again that only the structural events (e.g., ei=SU) are explicitly included during

training, but not the ‘non-event’ token. In the equation above, there is no other event

other than ei; therefore, the previous 3 words are used as the word history for wi

in a 4-gram LM. The Kneser-Ney smoothing method is used to smooth parameter

estimates.

6.2.2 Automatically Induced Classes (AIC)

The word classes are induced from the distributional statistics (i.e., the bigram

counts) in the annotated training data, using the criterion of minimizing perplexity of

the class-based N-gram. Incremental greedy merging is performed, starting with one

class each for the M most frequent words, and then adding one word at a time [105].

This class induction algorithm generates a one-to-one mapping, that is, each word is

mapped to one and only one class. The resulting LM can be applied efficiently since

the right context is not needed to map the current word to its corresponding class.
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For the structural event detection tasks, since events are valid tokens in the vocab-

ulary, one question is how to deal with the structural events during class induction.

As mentioned earlier, the ‘non-event’ is not explicitly included in the hidden event

LM in order to avoid fragmenting the word context. However, when inducing classes,

it is unclear whether this token should be preserved or not in the bigram statistics.

One hypothesis is that it may capture information that similar words co-occur with

this ‘non-event’ token, suggesting these words have similar roles in terms of struc-

tural event detection. Preliminary experiments have been conduced comparing the

methods for automatic class induction: with and without adding the ‘non-event’

token explicitly to the word sequence, but there was no improvement in performance

from including it. Therefore this ‘non-event’ token is omitted from class induction.

Table 6.1 depicts examples of some words and the resulting classes that were

induced for the SU detection task in CTS. We observe similar words are sometimes

grouped into one class, such as class-1, which contains words that are good signals

of SU boundaries. Class-2 also contains many similar words, for example “you’re”,

“we’re”; however, there exist other words (e.g., “fierce”, “historically”) that seem

dissimilar to the words in this class. The criterion for class induction is to reduce

perplexity, but it is possible that there is a mismatch between this criterion and the

task of event detection.

6.2.3 Part-of-speech (POS) Tags

The automatically induced classes are derived in a data-driven way. These classes

may have the advantage of representing word usage in the data set; however, they

do not necessarily result in groupings with a clearly interpretable linguistic mean-

ing. Additionally, there may be a mismatch between training and testing corpora,

and thus the bigram statistics used to induce the classes may not match the test

conditions well. In contrast, part-of-speech tags represent syntactic word class in-

formation, and are related to how the language is generated. Example POS tags
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Table 6.1
Two examples of automatically induced classes for the CTS SU de-
tection task, depicting member words and each word’s probability
given the class.

CLASS p(w|c) Word

0.577331 yeah

0.355084 uhhuh

0.0298036 huh

CLASS-1 0.0118913 wow

0.00617145 bye-bye

0.0106871 hum

0.00903138 yep

0.252747 you’re

0.252015 we’re

0.442491 they’re

0.0271062 who’s

0.0010989 fierce

0.00769231 somebody’s

CLASS-2 0.00879121 everybody’s

0.0032967 something’s

0.0021978 nobody’s

0.0014652 historically

0.0010989 peripheral

include NN (noun), VB (verb), and WP (wh-pronoun). POS tags are investigated

for structural event detection tasks. The goal is to model syntactically generalized

patterns, such as the tendency to repeat prepositions and the type of words that

tend to begin utterances. The hidden event LM is used to model the joint distribu-
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tion of POS tags and structural events P (P, E), where P is the POS tag sequence

corresponding to the word sequence W .

POS tags are obtained via a statistical TnT tagger, which uses a trigram HMM-

based approach [106]. For this method, POS tags are represented as states in the

HMM, and the transition probabilities are the maximum likelihood probability es-

timation derived from the training data. Viterbi and beam search are used during

decoding (tagging) to speed up processing. The POS taggers are trained for CTS

and BN corpora respectively in the follow way.

• CTS training. The TnT POS tagger is trained using the Switchboard Treebank

data [107] and then applied it to tag the training and testing data used for the

structural event detection task. Similarly to [83], the identity of some cue

words (e.g., backchannels, filled pauses) are maintained.

• BN training. For BN, there is no BN Treebank data that is annotated with

POS tags. We started with WSJ Treebank, from which an initial tagger was

trained. We then tagged the BN text corpus (which is used to train a word-

based LM for speech recognition) and re-trained a final POS tagger from the

tagged BN data. Although the data set used to train the tagger is inaccurate,

we expect the large set of the training data may compensate for this to some

extent. The retrained tagger is used to tag the BN training and testing sets

for the structural event detection task.

6.2.4 Syntactic Chunk Tags

We have introduced simple word-based and class-based hidden event LMs (au-

tomatically induced classes and POS tags) that do not directly model syntactic

structure. Notice that a POS-based LM captures some syntactic knowledge by mod-

eling the co-occurrence of syntactic POS tags, but it does not directly represent the

syntactic structure of the input utterance. In order to investigate whether modeling

syntactic structure helps structural event detection, we investigate the use of chunk
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parsing. A chunker is chosen rather than a full parser for several reasons. First, a

full parser often requires a sentence as input, which is not available in our situation.

Second, because spontaneous speech often contains ungrammatical and/or incom-

plete utterances, a full parser may either fail for the ill-formed utterances or provide

misleading structures; whereas, a chunk parser tends to be more robust. Finally, a

chunk parser requires less computational effort than a full parser.

Text chunks represent the non-overlapping phrases of a sentence and provide

a rudimentary syntactic structure. Each word belongs to a phrasal constituent.

Examples of text chunks are the beginning of a noun phrase (B-NP), inside a noun

phrase (I-NP), the beginning of a verb phrase (B-VP), and outside a phrase (O).

The example in Table 6.2 shows a sentence from the BN corpus with the associated

POS and chunk tags. The simple structure of this sentence is shown below, in which

each chunk is indicated by a square bracket with the chunk types following the left

bracket ‘[’.

[NP the top selling car] [PP of] [NP nineteen ninety-seven] [VP was

announced] [NP today] [O and] [NP the winner] [VP is] [NP toyota

camry]

Text chunking is represented as a classification problem, for which a supervised

transformation-based learning (TBL) approach [108] is used. Starting with a set of

predefined rule templates, TBL learns an ordered list of rules in a greedy way. At

each iteration, a new rule is generated (based on the rule templates) that corrects

at least one error in the training set, and the best rule which has the highest score

is preserved. A typical objective function in TBL is to optimize the evaluation

function, i.e., the difference between the number of the positive and the negative

examples when a rule is applied.

We chose to investigate the use of chunk information only on BN since sentences

are more similar to written text and thus they may have a more constrained syntactic

structure. Also since POS tags are the input to a chunker and we expect a higher
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Table 6.2
The POS and chunk tags for a sentence from the BN corpus, “the
top selling car of nineteen ninety-seven was announced today and the
winner is toyota camry”.

Word POS tags Chunk tags

the DT B-NP

top JJ I-NP

selling NN I-NP

car NN I-NP

of IN B-PP

nineteen JJ B-NP

ninety-seven NN I-NP

was VBD B-VP

announced VBN I-VP

today NN B-NP

and CC O

the DT B-NP

winner NN I-NP

is VBZ B-VP

toyota NN B-NP

camry NN I-NP

tagging accuracy on BN than CTS, one might expect a better chunking accuracy on

BN. We used those rules that are provided in the fnTBL program [108] and that were

trained from the sections 1-21 of the Wall Street Journal part of the Penn Treebank.

Such a text chunker is used to obtain the chunk tags for both the training and test

corpus in the BN SU task. Similar to POS and automatically induced classes, a
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hidden event LM is built from the joint chunk and event sequence (CH, E), where

CH is the chunk tag sequence corresponding to a word sequence W .

6.2.5 Word LMs from Additional Corpora

Since the hidden event word LMs are trained using a small corpus annotated by

LDC for the structural event detection tasks, it is likely that LMs trained from this

data will be undertrained. Hence an important question arises: can LMs from other

corpora annotated with structural events help to improve performance? We expect

an additional corpus can help address the sparse data problem encountered when a

word-based LM is trained using only the annotated corpus by LDC. We investigate

using other corpora for the CTS and BN SU detection task.

• CTS. The LDC Treebank for the Switchboard data contains punctuation and

disfluency annotations [19]. The annotation guideline differs from that used in

the EARS program [71], such as the definition of “sentences” and a different

interpretation of incomplete SUs versus restart edit disfluencies. This corpus

contains about 1.4 million words, which is larger than the RT-03 CTS training

set (about 480K words as shown in Table 3.2). The percentage of SU bound-

aries is about 12% of all word boundaries, which is similar to that in the RT-03

data.

• BN. For BN, there exists a large text corpus that is used to train the LM for

BN speech recognition. The punctuation information in this corpus is highly

similar to the SUs in the structural event annotation. This corpus contains

about 130 million words, compared to 178K words available in the RT-03 BN

data (see Table 3.2).

For these additional materials, we can either merge them with the annotated RT-

03 training set, then train a hidden event word-based LM using the merged data,

or we can train separate LMs from each and then combine the models. Since the
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additional text corpora differ from the RT-03 training and testing data on annotation

scheme, it is likely that building separate models and then combining them with

different weights is the better option.

Note that unlike BN, for CTS only the LDC Switchboard treebank data is used.

Presumably for CTS we could also utilize the text corpus that is used to train the

LM for speech recognition by using punctuation to approximate SU events; however,

our preliminary experiments have shown that such a LM does not yield any gain.

We hypothesize this is probably because the punctuation in the large data set is not

as carefully annotated for SUs as in the RT-03 CTS data. Additionally the sparse

data problem is not as serious in CTS as in BN (e.g., in CTS the sentence initial

words do not vary as much as in BN).

6.3 Integration Methods for the LMs in an HMM

An important issue in combining multiple knowledge sources is the mechanism

used for integration. Much depends on the knowledge sources and their individual

models. For this work, we choose to train models using various knowledge sources

separately, and then use a loosely coupled approach for model combination. As

mentioned earlier, training a joint model of words and various class tags would

require much more training data than is available for the structural event detection

tasks. Given the annotated transcription, it is straightforward to train a word-based

hidden event LM as described in Chapter 5. The word sequence W is then mapped

to an automatically induced class sequence, a POS tag sequence P , and a chunk

tag sequence CH (for BN only). Separate hidden event LMs are then trained from

the various tag sequences plus the original event sequence E: AIC-LM, POS-LM,

and chunk-LM. A word-based hidden event LM is also trained from the additional

out-of-domain text corpora (word-LM-ood).

During testing, given a word sequence, the question is how to use various knowl-

edge sources to make the best decision about the structural event. We how we com-
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bine the various LMs first, and then integrate the combined LMs with the prosody

model in the HMM system. Note that in the following descriptions, the LMs are all

hidden event LMs.

• Combining with AIC-LM. For the automatically induced classes, since there

is a one-to-one mapping from a word to its class, which can be done on the

fly, The AIC-LM is combined with the word-based LM at the LM level. For

example, for a word wi and its history H(wi) = wi−1
i−n:

p(wi|H(wi)) = αpword(wi|H(wi)) + (1 − α)pAIC(wi|H(wi)) (6.7)

where 0 < α < 1, and is optimized based on some held-out data set. pword

is the probability obtained from the word-based LM; pAIC uses both the word

and class information in a conditional modeling approach as shown in Equation

(6.2):

PAIC(wi|H(wi)) = p(wi|Ci) × P (Ci|Ci−1
i−n) (6.8)

This loosely coupled approach has fewer parameters than a joint model of

classes and words.

• Combining with POS-LM and chunk-LM. Unlike the automatically induced

classes, POS and chunk tags can not be obtained on the fly from the word

sequence since it is not a one-to-one mapping and the entire word sequence is

needed for tagging. First the word sequence is tagged to obtain the POS se-

quence using the TnT tagger, and then the chunks with the TBL text chunker.

At each interword boundary, the most likely event Ei is computed according

to the POS- or the chunk-based hidden event LMs individually. This is done

using the same forward-backward algorithm as is used for the word-based LM.

Then for each word boundary, the posterior probabilities from the POS- or

chunk-based LM are combined via linear interpolation with the other LMs:

p(Ei|W ) = λpword(Ei|W ) + (1 − λ)pclass(Ei|class). (6.9)
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where pclass can be pPOS, pchunk, or pcomb depending on which LM is used, POS,

chunk, or their combination. Note that unlike AIC-LM, word information is

not used in POS-LM and chunk-LM.

• Combining with word-LM-ood. These LMs are trained from the out-of-domain

(ood) corpora and are combined with the word LMs trained from the in-domain

training data at the LM level. When the AIC-LM is also combined, the final

combination becomes:

p(wi|H(wi)) = αpword(wi|H) + βpAIC(wi|H) + (1 − α − β)Pword−ood(wi|H)

(6.10)

where 0 < α < 1 and 0 < β < 1, pAIC is shown in Equation (6.8), and

pword−ood means the word-based LM trained from the out-of-domain material.

Combination at the LM level is implemented using functions in the SRILM

toolkit [109].

Next we describe how these LMs are combined with the prosody model. Figure

6.1 shows the combination method. The box indicated by the dotted lines uses the

HMM approach described in Chapter 4. Here rather than using the word-based hid-

den event LM, the state transition probabilities are obtained from the combination

of the word-LM, AIC-LM, and the word-LM-ood (as in Equation (6.10)). These are

then integrated with the prosody model as described in Chapter 4. The outputs

from this box are the posterior probabilities for the events at each word boundary.

The POS- and chunk-based LMs also generate posterior probabilities individually.

Finally at each word boundary, all of the event probabilities from different models

are interpolated, with the weights chosen using a held-out set.

6.4 Experiments on SU Detection Task

Various knowledge sources described above are evaluated, alone and in combina-

tions for the SU boundary detection task in both CTS and BN. Training and test
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Fig. 6.1. Integration methods for the various LMs and the prosody model.

data are the same as for the baseline system. The annotated text corpus is used

to train various class-based hidden event LMs: AIC-LM, POS-LM, and chunk-LM.

The additional text material for CTS and BN is as described in Section 6.2.5.

6.4.1 CTS SU Task

Table 6.3 shows the results using various LMs for CTS SU boundary detection

task. Results are only reported for human transcriptions so that we can more easily

understand each model without considering the effect of incorrect words.

Among all of the LMs that are trained from the RT-03 training data, results show

that when each is used alone, the word-based LM yields the lowest error rate, with

the AIC-LM the second best, and the POS-LM coming last. The POS-LM loses

much fine-grained lexical information when the word sequence W is converted to

the POS sequence P . The AIC-LM performs similarly to the word-based LM. The

vocabulary size of the AIC-LM (100 in our experiments) is not substantially greater
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Table 6.3
SU detection results (NIST error rate in %) for human transcriptions
of CTS data using various LMs, alone and in combination with the
prosody model. The deletion (DEL), insertion (INS), and total error
rate are reported.

CTS

Model DEL INS Total Error Rate

Word-LM 27.15 14.87 42.02

AIC-LM 30.86 14.45 45.31

POS-LM 37.17 23.57 60.74

Word-LM-ood 33.82 12.27 46.09

Word-LM+Prosody 18.86 17.38 36.24

Word-LM+Prosody

+ Word-LM-ood 19.06 15.99 35.05

Word-LM+Prosody

+Word-LM-ood+AIC-LM 19.26 15.35 34.61

Word-LM+Prosody+Word-LM-ood

+AIC-LM+POS-LM 19.39 14.71 34.10

than a POS-LM, yet it maintains some of the fine-grained information because it

uses word information via P (W |C) as in Equation (6.8). Another possible reason

for this may be the poor POS tagging accuracy on CTS. Looking at the insertion and

deletion errors, the AIC-LM and the word-LM have similar insertion errors. AIC-

LM has slightly more deletions, possibly because some effective words that signal

sentence start or end are not grouped correctly. POS-LM yields more insertion and

deletion errors than other LMs.

The word-LM-ood performs worse than the in-domain word-LM and AIC-LM,

but better than the POS-LM. There is some mismatch between that training cor-

pus and the test condition; hence, even though the word-LM-ood is trained from
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a relatively larger training corpus, it suffers from the mismatch. In addition, we

find that the error pattern using the word-LM-ood is somewhat different from the

word-LM trained from the RT-03 training data, i.e., there are fewer insertions and

more deletion errors.

Results are also presented when the prosody model is combined with the various

LMs. For SU detection, by combining various LMs with the baseline word-based LM

and the prosody model, a consistent improvement is obtained compared to a word-

based LM alone. We notice that compared to the results using the word-LM and

the prosody model, combining with various additional LMs decreases the insertion

errors, at the cost of the slightly increased deletion errors. This suggests that adding

the prosody model tends to generate more insertion errors (see results for using word-

LM versus word-LM+prosody); whereas, adding the various LMs tends to decrease

the insertion errors and yield more deletion errors.

6.4.2 BN SU Task

Experimental results from using various LMs alone, and in combination with the

prosody model, for the BN SU detection task are shown in Table 6.4. In contrast

to what we observed on CTS, the POS-LM outperforms the AIC-LM on BN. One

possible reason for this is that more training data is available to train the POS

tagger, which is likely to result in a better tagging accuracy.3 Another possible

reason may lie in the difference between the language styles used on CTS and BN.

Utterances tend to be more grammatical and more similar to written text on BN

than for conversational speech. The chunk-LM alone does not perform well, probably

because its coarse granularity does not preserve sufficient information to distinguish

between events and non-events accurately.

Using the word-based LM trained from the out-of-domain corpus, the perfor-

mance is similar to the word-based LM trained from the RT-03 data. The mismatch

3The tagging accuracy for these two corpora has been evaluated.
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Table 6.4
SU detection results (NIST error rate in %) for human transcriptions
of the BN data using various LMs, alone and in combination with
the prosody model. The deletion (DEL), insertion (INS), and total
error rate are reported.

BN

Model DEL INS Total Error Rate

Word-LM 66.00 14.44 80.44

AIC-LM 69.19 17.79 86.98

POS-LM 67.14 18.14 85.28

Chunk-LM 74.08 17.06 91.13

Word-LM-ood 66.23 13.87 80.10

Word-LM+Prosody 37.01 27.74 64.75

Word-LM+Prosody

+ Word-LM-ood 29.05 24.56 53.61

Word-LM+Prosody

+Word-LM-ood+AIC-LM: 28.94 23.99 52.93

Word-LM+Prosody+Word-LM-ood

+AIC-LM+POS-LM 29.90 22.51 52.42

Word-LM+Prosody+Word-LM-ood

+POS-LM+Chunk-LM 31.84 20.41 52.25

between training and testing potentially affects the LM performance, but the avail-

ability of more training data helps address some of the sparse data problems and thus

compensates in part for the mismatch between the training and testing sets. This is

in contrast to what we have observed for CTS, where the word-LM-ood yields a lower

accuracy than the word-LM trained from the RT-03 data. For CTS, the amount of
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training data does not compensate for the mismatch between the LDC annotated

training data and the additional text corpus.

It should be noted again that as on CTS, adding the prosody model decreases

deletion error rate (although at the cost of some insertion errors). Combining with

various LMs decreases SU detection error rate compared to the baseline system using

the word-based LM and the prosody model. The contribution from the word-LM-ood

on BN is more significant than that on CTS.

6.5 Chapter Summary

We have investigated using information beyond word-based knowledge, including

automatically induced classes, POS tags, and chunk tags, together with the addi-

tional training data to improve the accuracy for SU detection. Experiments have

confirmed that adding class-based LMs improves performance and that more train-

ing data is helpful. We observe the impact of the new sources differs across corpora.

The POS-based LM performs relatively better on BN than on CTS, partly due to

the better tagging accuracy, but largely because of the different speaking styles in

the two corpora. The out-of-domain data is shown to be more important on BN

than CTS possibly because it is relatively larger than the data size in CTS, and the

data sparsity issue is more severe in BN than in CTS.

For the AIC-LM, a conditional modeling approach is used (as shown in Equa-

tion (6.8)) to combine word and class information, which can reduce model param-

eters compared to a word-based LM. For the POS- and chunk-based LMs, a loosely

coupled model is used, i.e., first the class sequence for the test word string is gener-

ated, and then the event probabilities using the class token sequence are computed,

which are then combined with the probabilities from the word-based LM. Heeman

and Allen [56] proposed a tightly-coupled approach to find the best POS sequence and

disfluency events together. Their experiments were conducted on the Trains corpus,

which differs from the conversational speech in that it is far more template-based.
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Given that there is interaction between syntactic information, SU boundaries, and

disfluency phenomena, it is likely that a tightly-coupled model, such as the model

proposed in [56], may perform better, but this would require a larger training set

than is currently available. The maximum entropy approach that will be described

in Chapter 8 provides an interesting alternative method for more tightly integrating

knowledge sources.
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7. PROSODY MODEL

As described in Chapter 4, for our baseline system, a decision tree classifier is used

to implement the prosody model and then combine it with an N-gram language

model in an HMM to find the most likely structural events at interword boundaries.

Since the structural events are less frequent than the non-events in the training

data, the decision tree prosody model must be designed to deal with the imbalanced

class distribution. Our initial approach in the baseline system was to randomly

downsample the training set to obtain a balanced data set for decision tree training

in order to make the model more sensitive to the minority class (e.g., SU boundaries

or IPs), followed by adjusting the posteriors in the test set. A problem with this

approach is that many potentially important majority class samples are not used

for model training, and thus downsampling may degrade performance on the test

set. In this chapter, we investigate several sampling approaches to cope with the

imbalanced class distribution, as well as a bagging scheme, in an attempt to build

more effective structural event prosody model classifiers.

A pilot study is first conducted for the SU boundary detection task that uses a

small training set in order to extensively evaluate all the methods. In this study,

human transcriptions are used to factor out the effect of speech recognition errors.

We also examine the effect of these approaches across different classification tasks

(SU and IP detection) and evaluate the impact of training data size. Then based on

the findings of this pilot study, some of the most successful methods are chosen to

evaluate on the full NIST SU boundary task on both the CTS and BN corpora.

This chapter is organized as follows. Section 7.1 describes the imbalanced class

problem and the approaches that are investigated to address this problem. In Section

7.2, different techniques are systematically evaluated for the SU boundary detection
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task in a pilot study using the CTS corpus. In Section 7.3 the sampling and bagging

approaches are investigated across the SU and IP tasks. Section 7.4 shows the results

on the NIST SU task using some of the best approaches from the pilot study. Section

7.5 summarizes this chapter.

7.1 Addressing the Imbalanced Data Set Problem

7.1.1 The Imbalanced Class Distribution Problem

In a classification problem, the training set is imbalanced when one class is more

heavily represented than the others. Clearly, this problem arises in our structural

event detection tasks, as we have mentioned earlier: only about 13.6% of the inter-

word boundaries correspond to SU boundaries in conversational speech, and 8.1%

in broadcast news speech. The data is even more skewed for the IP detection with

only about 4.5% of the boundaries being IPs in CTS, and 1.1% in BN.

The imbalanced data set problem has received much attention from statisticians

and the machine learning community [110–119]. Various approaches attempt to bal-

ance the class distribution in the training set by either oversampling the minority

class or downsampling the majority class. Some variations on these approaches use

sophisticated ways to choose representative majority class samples (instead of ran-

domly choosing some of the majority class samples to match the size of the minority

class), to synthetically generate additional samples for the minority class (rather

than replicating the existing samples), or to combine classifiers trained from both

downsampled and oversampled data sets. It is important to note that most of these

techniques focus on improving the minority class prediction (due to its relatively

higher importance in their problem specification). For example, in application like

fraud detection or tumor detection, the minority class is clearly more important.

Weiss and Provost [120] observed from their empirical study that the naturally occur-

ring distribution is not always the optimal distribution and that when using receiver

operating characteristics (ROC) as a performance criterion, a balanced distribution
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is often a preferred choice. While sampling methodologies generally improve the

prediction of the minority class, they also tend to penalize the majority-class cases.

However, for the structural event detection tasks investigated in this thesis, both

false positives and false negatives are considered equally costly.1 Therefore, chang-

ing the distribution to have relatively more minority class samples may not produce a

classifier with the best performance. Our goal is thus to evaluate various techniques

to address the imbalanced class distribution in the training sets for structural event

detection.

Which sampling method is the best greatly depends on the properties of the ap-

plication, such as how the samples are distributed in the multidimensional space and

the extent to which the different classes are mixed. Therefore, a systematic investi-

gation of different sampling approaches is important for building better models.

In addition to sampling methods, we investigate the use of bagging. Bagging

samples the same training set multiple times and has been shown to outperform

a single classifier trained from the training set [121]. Both sampling and bagging

techniques are described in the next section.

To our knowledge, this is the first study on the imbalanced class problem for struc-

tural event detection based on speech inputs. This study should provide groundwork

for future classification tasks related to spoken language processing, such as finding

hot spots in the meeting corpus [122], where classes are also imbalanced. The present

study has properties that are characteristic of machine learning tasks for speech: it

involves rather large amounts of data, it involves inherent ambiguity (SU boundaries

and IPs are sometimes a matter of judgment), the data is noisy because of both mea-

surement errors (from imperfect forced alignments and pitch extraction) and labeling

errors (human labelers make errors), and the class distribution is heavily skewed, the

latter being the main issue addressed in this chapter. In addition, the property that

the majority and the minority classes are of equal interest is another attribute that

1More studies are needed to see whether missing a structural event and inserting an incorrect
event have the same impact on human understanding or downstream language processing modules.
Currently, equal penalty is used for both insertion and deletion errors in the scoring procedure.
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makes this problem interesting. We believe that this study is therefore beneficial to

both the machine learning and the speech and language processing communities.

7.1.2 Approaches to Address the Problem

Sampling Approaches

In a pilot study, four different sampling approaches are investigated, as well as

no sampling (i.e., the original training set is used):

• Random downsampling: This approach randomly downsamples the majority

class to equate the number of the minority and majority class samples. Since

this method uses only a subset of the majority class samples, it may result in

poorer performance for the majority class [111,114,115].

• Oversampling using replication: This sampling approach replicates the minor-

ity class samples to equate the number of the majority and minority class

samples. All the majority class samples are preserved, and the minority class

samples are replicated multiple times. The replication of the poor minority

class samples for addition to the training set may lead to poorer performance

of the minority class [111,115,119].

• Ensemble downsampling: Ensemble downsampling is a simple modification of

random downsampling, in which the majority class is split into N subsets,

each with roughly the same number of samples as the minority class [118], and

then the classifier is trained using these subsets together with the minority

class. In the end, there are N decision trees, each of which is trained from

a balanced training set. For testing, the posterior probabilities from these

N decision trees are averaged to obtain the final decision. The samples used

for this approach are the same as in the oversampling approach, that is, all

the majority class samples are used plus the minority class samples that are

replicated N times. The two approaches differ only in how the decision trees
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are trained. The ensemble downsampling approach is more scalable since it

can be easily implemented in a distributed fashion.

• Oversampling using synthetic samples — SMOTE:SMOTE stands for ‘Synthetic

Minority Over-sampling Techniques’. In the oversampling approach, the mi-

nority class samples are replicated multiple times. By contrast, the SMOTE

[111] approach generates synthetic minority class samples rather than replicat-

ing existing samples. Synthetic samples are generated in the neighborhood of

the existing minority class examples. For continuous feature values, SMOTE

produces new values by multiplying a random number between 0 and 1 with

the difference between the corresponding feature values of a minority class

example and one of its nearest neighbors in the minority class. For nominal

cases, SMOTE takes a majority vote among a minority class example and its

k-nearest neighbors. The synthetic samples can potentially cause the classifier

to create larger and less specific decision regions, which can generalize better

on the testing set than simple oversampling with replication.

• Original data set: There is no sampling in this method. The original training

set is utilized as is.

The Bagging Technique

Bagging [121] combines classifiers trained from instances that are sampled with

replacement given a training set. The bagging algorithm is shown in Figure 7.1. To

maintain a fixed class distribution for all the bagging trees, each class is sampled

separately. Therefore, in each bag the class distribution is the same as in the original

given data set. T sets of samples are generated, each of which is used to train a

classifier, and the final classifier is built from the T classifiers, equally weighted.

Since each classifier generates a posterior probability for a test sample, the outputs

from these classifiers can be averaged to obtain the final probability for this sample.
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Input: training set S, number of bagging T

Bagging (T, S)

size 1 = sizeof (class 1 in S)

size 2 = sizeof (class 2 in S)

for i = 1 to T {

S ′
1 = sample from class 1 in S (with replacement) size 1 times

S ′
2 = sample from class 2 in S (with replacement) size 2 times

S ′ = S ′
1 + S ′

2

train a decision tree Ci from S ′

}

Output: T classifiers

Fig. 7.1. The bagging algorithm. T is 50 in our experiments. In each
bag, the class distribution is the same as in the original data S.

Bagging has several advantages. First, because different classifiers make different

errors, combining multiple classifiers generally leads to a superior performance when

compared to using a single classifier [123]. The combination of multiple trees from

different bags of sampled instances makes the final classifier more noise tolerant.

Second, bagging can be implemented in a parallel or distributed fashion to speed up

training time [124]. Finally, bagging is able to maintain the class distribution of the

training set on which bagging is applied. This is important since when the prosody

model is combined with the LM as described in Chapter 4, it is easier to have a fixed

class distribution in the training set. One disadvantage of bagging is that bagging

results in multiple decision trees that can make it more difficult to understand the

features that contribute most to a final decision.
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7.2 Pilot Study for SU Detection

7.2.1 Experimental Setup

Features and Data Set

In this pilot study, a small subset of the RT-03 CTS training data is used in

order to evaluate each of the methods described above. Table 7.1 describes the data

set that is used in this pilot study. The training data set contains about 128K word

boundaries, of which 16.8K are in the SU class, with the remaining being non-SUs.

The test set consists of 16K word boundaries.

Because it is time consuming to train a decision tree with a large number of

features and also to synthetically generate minority samples using the SMOTE ap-

proach, first we trained a decision tree from a downsampled training set using all the

prosodic features in Section 4.2, and then used the features selected by this decision

tree (25 features in total) to evaluate the various sampling approaches in order to

minimize the computational effort for the pilot work. For these initial investigations,

human transcriptions are used instead of the speech recognition output to factor out

the impact of recognition errors on our investigation of the prosody model.

Table 7.1
Description of the data set used in the pilot study for the CTS SU detection task.

Training size 128K

Test size 16K

Class distribution 87% are SUs, 13% are non-SUs

Features 25 features (2 discrete)
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Evaluation Conditions

All of the sampling and bagging approaches are evaluated on the test set under

two conditions:

• Prosody model alone. For the decision trees trained from a balanced data set,

the priors and the posterior probabilities generated by the decision trees are

combined to obtain the final hypothesis for the imbalanced test set as shown

in Equation (5.1). For the decision trees trained from the original data set, the

posterior probabilities do not need to be adjusted, under the assumption that

the original training set and the real test set have similar class distributions.

• Combination with LM. The combination of the prosody model and the hidden

event LM is evaluated on the test set. If the decision tree is trained from the

balanced data set (no matter which downsampling or oversampling approach

is used), the posterior probability from the decision tree needs to be adjusted,

finally resulting in Equation (5.3) for the HMM. For the decision tree trained

from the original data set, the posterior probability generated by the decision

tree is the true posterior probability P (Ei|Fi, Wt) in the numerator of Equation

(4.8). Therefore, the priors of different classes must be taken into account as

shown in Equation (4.8).

Results are reported using the classification error rate (CER), F-measure, and

the ROC and AUC metrics described in Chapter 3. These metrics are used in order

to better focus on the machine learning aspects of the problem. For all of the test

conditions, a β of 1 is used in the F-measure computation. In addition, a threshold

of 0.5 is set to make the final decision at each boundary, that is, when the posterior

probability of being an SU boundary is greater than 0.5, then it is hypothesized as

an SU; otherwise, it is a non-SU boundary.
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7.2.2 Sampling Results

Experimental results for the different sampling approaches are shown in Table 7.2.

Generally, the downsampling methods outperform the oversampling method that

employs replication, which can lead to overfitting. As can be observed from the table,

the CER from oversampling by replication is much higher than any other techniques

in the table, thus indicating that the decision tree does not generalize well on the

testing set. Downsampling is a good way to increase the sensitivity of the decision

tree classifier to the minority class. There is a slight improvement when using an

ensemble of multiple decision trees over using a single randomly downsampled data

set to train the prosody model. However, this gain does not hold up when combining

the prosody model with the LM. This suggests that even though one classifier alone

achieves good performance, other knowledge sources (e.g., a language model) may

mask this gain.

Table 7.2
SU detection results (CER in % and F-measure) for different sam-
pling approaches in the pilot study of the CTS corpus, using the
prosody model alone and in combination with the LM. The CER of
the LM alone on the test set is 5.02%.

Approaches Prosody alone Prosody + LM

CER F-measure CER F-measure

Chance 13 0 - -

Downsampling 8.48 0.612 4.20 0.837

Oversampling 10.67 0.607 4.49 0.826

Ensemble 7.61 0.644 4.18 0.837

SMOTE 8.05 0.635 4.39 0.821

Original 7.32 0.654 4.08 0.836
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Using the original training set achieves the best overall performance in terms of

CER. This is potentially due to the equal costs assigned to both the classes. It is

also possible that there are sufficient examples belonging to the minority class in

the training set to learn about the SU boundaries. Thus, the CER is lower than

the other sampling approaches. However, training a decision tree from the original

training set takes much longer than from a downsampled training set. Also if the

training set were large or heavily skewed, the advantage of the original training set

may be diminished.

SMOTE improves upon the results from both the downsampling and the over-

sampling approaches for the prosody model alone. SMOTE introduces new examples

in the neighborhood of the minority class cases, thereby improving the coverage on

the minority class cases. Since SMOTE enables the entire majority class set to be

used in a single decision tree, it can also improve the performance on the majority

class (i.e., the non-SU decision). However, SMOTE can lead to a computational

bottleneck for very large data sets, in which the distribution is imbalanced but there

are sufficient examples belonging to the minority class. More examples are added to

the original training set, and if it is already very large, it can substantially increase

training time. One can possibly deploy a combination of SMOTE and downsam-

pling to counter the large training set size [111]. Notice also that the gain from the

SMOTE method when the prosody model is used alone does not hold up when it is

combined with the LM. This may be due to the fact that the synthesized samples

to some extent are incompatible with what normally happens in language, or the

samples that SMOTE helps make correct decisions for the prosody model alone are

the ones that are already well modeled by the LM.

Figure 7.2 compares the various techniques using the ROC curves and the AUC

obtained by each of the approaches using the prosody model alone. The ROC curves

span over the entire continuous region of classification thresholds, and hence provide

a visualization of the trade-off between the true positives and false positives. For

the CER measurement, using the original training set achieves the best performance
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(as shown in Table 7.2); however, the advantage of the sampling techniques is more

pronounced when we look at the ROC curves (and the corresponding AUC value).

The AUC of the sampling and ensemble techniques is significantly larger than the

AUC obtained by training a decision tree on the original distribution. Like Weiss

and Provost [120], we observe that downsampling beats oversampling with repli-

cation, while SMOTE beats both oversampling and downsampling. This has also

been observed by other researchers in the machine learning literature [125, 126]. As

shown in Figure 7.2, at the lower false positive (FP) rate, the original distribution

is competitive to the sampling techniques, while at higher FP rates, the sampling

schemes significantly dominate over the original distribution. If the minority class

were of greater importance, then one would tolerate more false positives and achieve

a higher recognition on the minority class by locating the appropriate operating

point. If obtaining a high recall for the SU detection task is important, then based

on the ROC analysis, the sampling techniques are definitely useful. The non-smooth

ROC using the original training set is largely due to its imperfect probability estima-

tion. For example, the minimum posterior probability among all the test samples is

0.16 according to the decision tree; therefore, when the decision threshold is greater

than 0.16, then all the test samples are hypothesized as being in the positive class,

resulting in a sharp turning point. Whereas, in the other sampling approaches, the

posterior probabilities span over the entire region between 0 and 1.

In Table 7.3, to focus on the error patterns for each sampling method, we show the

precision and recall rate using the prosody model alone, as well as in combination

with the LM. Using the prosody model alone, oversampling yields the best recall

result, at the cost of a lower precision. This may result from replicating the minority

class samples multiple times. We had expected that using a balanced training set

would be beneficial to the recall rate; however, contrary to our expectations, the recall

performance from the downsampling and ensemble sampling approaches is not better

than using the original training set. Note again that 0.5 is used as the threshold to

make decisions based on the posterior probabilities, since the false positive and the
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Fig. 7.2. ROC curves and their AUCs for the decision trees trained
from different sampling approaches and the original training set.

false negative errors are equally costly. Thus, there are many fewer false-positives

if the original distribution is used in learning the decision tree. This leads to a

much higher value of precision compared to any of the sampling techniques. After

the prosody model is combined with the LM, we observe that the recall rate is

substantially improved for the downsampling and ensemble sampling approaches,

resulting in a better recall rate than when the original training set is used. However,

SMOTE does not combine well with LM: the recall rate is the worst after combining

with LM even though SMOTE yields a better recall rate than downsampling or

ensemble sampling when the prosody model is used alone. The gain in the recall rate

from the oversampling approach when the prosody model is used alone is diminished,

too, when combined with LM.
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Table 7.3
Recall and precision results for the sampling methods in the pilot
study of CTS SU detection. Using LM alone yields a recall of 74.6%
and a precision of 84.9%.

Approaches Prosody alone Prosody + LM

Recall Precision Recall Precision

Downsampling 51.4 75.6 83.0 84.5

Oversampling 63.5 58.2 82.2 83.1

Ensemble 53.2 81.4 82.6 84.9

SMOTE 53.8 77.4 77.4 87.4

Original 53.5 84.7 80.0 87.5

7.2.3 Bagging Results

Several sampling techniques have been selected on which bagging is applied.

Since downsampling is an approach that is computationally efficient and does not

significantly reduce classification accuracy, first bagging is applied to a downsampled

training set to construct multiple classifiers. Bagging together with the ensemble ap-

proach is also tested. As described above, for the ensemble approach, the majority

class samples are partitioned into N sets, each of which is combined with the mi-

nority class samples to obtain a balanced training set for decision tree training.

The final classifier is the combination of the N base classifiers. Bagging (with trial

number T ) is applied to each of N balanced sets, and thus T × N classifiers are

generated for combination. Finally, bagging is applied to the original training set.

50 bags are used for each of the bagging experiments. We do not combine bagging

with any oversampling approaches because of their poorer performance compared to

downsampling or using the original training set.

The bagging results are reported in Table 7.4. The table shows that bagging

always reduces the classification error rate over the corresponding method without
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Table 7.4
CTS SU detection results (CER in % and F-measure) with bag-
ging applied to a randomly downsampled data set (DS), ensemble
of downsampled training sets, and the original training set. The re-
sults for the training conditions without bagging are also shown for
comparison.

Approaches Prosody alone Prosody + LM

CER F-measure CER F-measure

Downsampling 8.48 0.612 4.20 0.837

Ensemble downsampling 7.61 0.644 4.18 0.837

Original 7.32 0.654 4.08 0.836

Bagging on DS 7.10 0.665 3.98 0.845

Bagging on ensemble DS 6.93 0.673 3.93 0.847

Bagging on original 6.82 0.676 3.87 0.849

bagging. Bagging the downsampled training set uses only a subset of the training

samples, yet achieves better performance than using the original training set without

bagging. The difference between bagging on the original training set and ensemble

bagging is not significant (i.e., p > 0.05 using the sign test). Bagging is able to con-

struct an ensemble of diverse classifiers, and improves the generalization of decision

tree classifiers; it mitigates the overfitting of a single decision tree classifier. The

gain is more substantial when bagging is applied to the downsampled training set

than to the original training set or the ensemble sampling sets, compared to each of

the corresponding conditions without bagging respectively.

Similarly to the study on sampling techniques, the ROC curves are plotted for

the three bagging schemes in Figure 7.3, with a zoomed version of the curves shown

at the bottom. The AUC is substantially better when bagging is employed compared

to the results shown in Figure 7.2, and the three bagging curves are very similar.

Notice that the AUC is improved substantially when bagging is applied to the original

training set. This is attributed to the better posterior probability estimation, which
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Fig. 7.3. ROC curves and their AUCs for the decision trees when
bagging is used on the downsampled training set (bag-ds), the en-
semble of downsampled training sets (bag-ensemble), and the original
training set (bag-original).
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is obtained from the average of multiple classifiers. This explains why the ROC

curve is more smooth with bagging applied to the original training set compared to

the curve without bagging shown in Figure 7.2. Consistent with the results without

bagging, applying bagging to the original training set yields a slightly poorer AUC

than for the downsampled and ensemble bagging cases.

7.3 Sampling and Bagging Across SU and IP Tasks

We have investigated a variety of sampling approaches, as well as bagging and

ensemble methods for detecting SU boundaries. Considering that these approaches

may be affected by the characteristics of this task, for example, the data is less skewed

than for other structural events and the prosodic features are quite informative, we

also evaluate the techniques on a different task, IP detection. Additionally, the effect

of the data size is examined for the SU detection task.

7.3.1 Experimental Setup

Data

In this experiment, the full RT-03 CTS training set is used, rather than the pilot

data due to the relative infrequency of the IP event (see Table 3.2). The 754 con-

versations are split into training and testing sets. Table 7.5 shows the experimental

setup, including the training and testing set sizes (number of inter-word boundaries)

and the percentage of the minority class in the data set for the task of IP and SU

detection. Since this data set is larger than the one used for the pilot SU study, this

also allows us to examine the effect of the data size on the sampling and bagging

techniques for the SU task. For comparison, we include the description of the data

set used in the pilot study for the SU task in Table 7.5.



133

Table 7.5
Description of the data sets used for the SU and IP detection tasks.
The data set used in the pilot study is shown in the second column,
which is a subset of the data set used in this investigation (“large
set” denoted in the table).

SU IP

Pilot data Large set Large set

Training set 128K 428K 428K

Test set 16K 53K 53K

Percentage of

the minority event 13.0 13.56 4.54

Methods

Similarly to the pilot study, a decision tree was first used to choose some impor-

tant features, which are then used for the other sampling and bagging techniques.

This minimizes computational effort. For both the SU and IP tasks, evaluation is

conducted on the reference transcription condition, and performance is measured

using CER.

Among the sampling and bagging approaches evaluated in the pilot study, SMOTE

is not used due to its computational complexity and lack of performance gain. Hence,

that leaves the following approaches for the study across SU and IP tasks: original

training set, downsampling, oversampling, ensemble sampling, bagging on downsam-

pled set, and bagging on ensemble sampling.

7.3.2 Results Across SU and IP Tasks

Table 7.6 shows the experimental results of the sampling and bagging approaches

for the IP and SU detection tasks. In addition to evaluating on the original test set,

we present the results on a downsampled test set when using the prosody model
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alone for IP detection, due to the fact that the prosody model does not do better

than chance performance on the non-downsampled test set.

Table 7.6
IP and SU detection results in CER (%). ‘DS’ denotes ‘downsam-
pled’. Chance performance is 4.36% on the original test set for IP,
and 13.64% for SU. The CER using LM alone is 2.34% on the IP
task, and 5.27% on the SU task.

IP SU

Method DS test set original test set original test set

Prosody Prosody Prosody+LM Prosody Prosody+LM

original 50 4.36 2.34 7.45 4.53

sampling downsampled 23.76 4.36 2.27 8.05 4.42

oversampled 27.69 4.36 2.31 8.46 4.64

ensemble 22.07 4.36 2.24 7.86 4.47

bagging on DS 20.64 4.36 2.25 7.26 4.29

on ensemble 20.20 4.36 2.24 7.22 4.35

Effect of Data Size for the SU Task

First the impact of the data size for the SU task is examined by comparing the

results in Table 7.6 and Table 7.2. As the data set size increases, we expected that

the gain from using the original training set might be lost and the benefit from en-

semble sampling might decrease, since a downsampled training set might be more

representative of the data set. Table 7.6 shows that contrary to our expectation,

using the original training set yields the best results, although it has a greater cost

in training time. As expected, the gain from ensemble sampling is diminished as

the data set size increases. When the data set is small, ensemble sampling has the

advantage of making use of the full data set within the ensemble. As the data set

increases and is inherently more representative, the benefit from ensemble decreases.

Similar to using the smaller data set in the pilot study, oversampling is computation-
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ally expensive and does not yield a performance improvement. Downsampling the

training set performs reasonably well, and has the advantage of saving computation.

This is important when the training set size is large, i.e., hundreds of thousands of

data samples. For both the data sets, which differ in data size, bagging outperforms

a single classifier trained without bagging.

Sampling and Bagging Results for the IP Task

We observe from Table 7.6, using the prosody model alone on the original test

set, none of the approaches (original training set, downsampling, bagging, ensemble)

is able to win over the bias of the majority class and achieve performance better

than the baseline chance performance.

If the original training set is used, then because the IP samples are an extremely

small portion of the training set, the decision tree does not split, i.e., the classifier

is not able to learn the characteristics of the minority class. Therefore, the classifier

performs at chance on a downsampled test set. Sampling methods, which use a more

balanced training set, improve classification performance on a downsampled test set.

Bagging and ensemble bagging perform significantly better than the corresponding

approaches without bagging on the downsampled test set when using the prosody

model alone.

The prosody model trained from the original data set does not provide any infor-

mation when combined with the LM on the original test set; whereas, for the other

techniques (sampling and bagging), despite achieving only chance performance when

used alone, the prosody model provides added information after it is combined with

the LM.

Comparisons Between the IP and SU Tasks

Since IPs are much less frequent than SU boundaries (4.5% vs. 13.5%), sampling

appears to have a different impact on the two tasks. On the SU detection task,
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for the prosody model alone, the best performance is achieved by using the original

training set among the different sampling approaches; whereas, for the IP task,

none of the sampling approaches is able to yield better performance than chance.

On a downsampled test set of the IP task, when the prosody model is used alone,

sampling techniques help improve classification performance. When the prosody

model is combined with the LM, the relative error rate reduction compared to using

LM alone is smaller for the IP detection task than for the SU detection task, i.e.,

4.3% versus 18.6% respectively, when using the prosody model trained from bagging

on downsampled data set. When the prosody model is used alone, bagging improves

classification accuracy on a downsampled test set for the IP task; however, on the

non-downsampled IP test set, only chance performance is achieved. In contrast, for

the SU task, bagging yields a substantial gain even on the non-downsampled test.

When combined with the LM, there is a gain from bagging on both the SU and IP

tasks.

Figure 7.4 shows the ROC curves for the IP and SU detection tasks for the orig-

inal test set using the downsampled training set, bagging on downsampled training

set, and ensemble bagging when using the prosody model alone. These curves sug-

gest that bagging indeed improves the performance over using a single randomly

downsampled training set. The ROC curve from ensemble-bagging is similar to that

using bagging on one downsampled set. Notice also that the relative improvement

from bagging on the IP detection task is larger than on the SU task (by looking at

the improvement from the two ROC curves), suggesting that bagging improves the

generality of decision tree classifiers more on the IP task than on the SU task.

7.4 Evaluation on the Full NIST SU Task

7.4.1 Experimental Setup

Some of the best techniques identified by the pilot study are evaluated on the full

NIST SU detection task using the CTS and BN corpora, on both the reference and
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Fig. 7.4. ROC curves for IP and SU detection using the prosody
model alone on the CTS corpus.

the STT output conditions. Data is the full set that is used in the previous chapters

(see Table 3.2). Results are reported using the official NIST SU error rate metric,

in order to compare with our baseline systems in Chapter 5. In addition, evaluation

is conducted not only on the reference transcriptions, but also on the STT output,

which makes using the classification error rate less straightforward.

Results of the pilot study suggest that bagging is beneficial for generating a robust

classifier, and the two best approaches are ensemble bagging and bagging on original

training set. Hence, we will evaluate these two approaches, alone and in combination

with LMs. Since a downsampled training set was trained in the baseline system in

Chapter 5, this is also included for comparison. In contrast to the pilot study, we
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preserve all the prosodic features (total 101 features), expecting that bagging could

generate different trees, each of which might use different features.

7.4.2 Results on the NIST SU Task

Table 7.7 shows the results using each of the above prosody models, and their

combination with LMs on the CTS and BN SU tasks, using both the reference

transcription (REF) and the recognition output (STT). The LMs used are the word-

based hidden event LMs, trained from the LDC annotated training data plus the

out-of-domain extra text corpora as described in Chapter 6. Overall, there is a

performance degradation when using the speech recognition output, as we observed

in Chapter 5. Recognition errors affect both the LMs and the prosody model, with

less impact on the latter. The gain from bagging and sampling techniques in the

reference transcription condition seems to transfer well to the STT condition. In

both conditions, we find that applying the bagging technique yields a substantial win

compared to the non-bagging conditions. When the prosody model is used alone,

applying bagging on the original training set achieves significantly better results (at

p < 0.05) than ensemble bagging on both of the corpora; whereas, when the prosody

model is combined with LMs, the difference between using bagging on the original

training set and bagging on the ensemble of balanced training set is diminished (i.e.,

the gain is not significant).

Even though the pilot study is only conducted using the CTS corpus, results

in Table 7.7 shows a similar trend for the BN corpus. Although there are some

differences across the two corpora (e.g., different class distributions because of their

different speaking styles), the gain from bagging on the original training set is also

observed on BN and is in fact greater than that found in CTS. Since the prosody

model contributes relatively more for the BN corpus than CTS, a better prosody

model is relatively more beneficial to BN.
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Table 7.7
SU detection results (NIST error rate in %) for both the CTS and
BN corpora, on the REF and STT conditions.

Approaches BN CTS

REF STT REF STT

LMs 68.16 72.54 40.56 51.85

Prosody-downsampling 85.67 85.67 68.77 70.98

Prosody-ensemble-bagging 72.94 72.09 61.23 64.35

Prosody-bagging-original 67.65 67.77 59.19 62.98

LMs + prosody-downsampling 53.61 59.69 35.05 45.30

LMs + prosody-ensemble-bagging 50.03 56.17 32.71 43.71

LMs + bagging-original 49.57 55.14 32.40 43.81

7.5 Chapter Summary

7.5.1 Summary

We have attempted to build more robust prosody model in this chapter by ad-

dressing the imbalanced data set problem that arises in the structural event detec-

tion tasks. Several sampling and bagging approaches are investigated for training

the decision tree prosody model. Empirical evaluations in a pilot study for the SU

detection task show that downsampling the data set generates a reasonably good

classifier, while requiring less training time. This computational advantage might

be more important when processing a very large training set. Oversampling with

replication increases training time without any gain in classification performance.

An ensemble of multiple classifiers trained from different downsampled sets yields

performance improvements when using the prosody model alone for the SU task.

We have also found that the performance of the prosody model alone may not al-

ways be correlated with results obtained when the prosody model is combined with
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the language model; for example, SMOTE outperforms the downsampling approach

when the prosody model is used alone, but not when the prosody model is combined

with the language model. Using the original training set achieves the best classifi-

cation error rate among the sampling methods. However, if ROC or AUC is used,

then using a balanced training set yields better results than the original training set,

especially if the minority class is of more interest.

Bagging was investigated on a randomly downsampled training set, an ensemble

of multiple downsampled training sets, and the original training set. Bagging com-

bines multiple classifiers and thus it reduces the variance caused by a single classifier

and improves the generality of the classifiers. Bagging results in even better per-

formance than the use of more samples (e.g., comparing bagging on a downsampled

training set versus the original training set without bagging) when using the prosody

model alone for the pilot study of the SU task. Bagging can run in parallel, and thus

training is computationally efficient.

Our investigation of the IP task highlights differences between the IP and SU

tasks, which are probably due to differences in the magnitude of skew or inherent

differences in the cues to these two different phenomena. When the prosody model

is combined with the LM, we found that sampling techniques are more important

in the case of the IP task, which has a much more severe problem with data skew.

Bagging generates more robust classifiers for both SU and IP detection. A prelim-

inary experiment using boosting also highlights additional differences between the

SU and IP detection tasks (see Appendix A).

Several of the best methods found from the pilot study have been evaluated in

the NIST SU detection task across CTS and BN corpora and across transcriptions.

Bagging has yielded substantial gain compared to the baseline system. Additionally

we find that when the prosody model is used alone, significantly better performance

is observed when bagging is used on the original training set than ensemble bagging,

yet most of the gain is eliminated when the prosody model is combined with the LM

for SU detection.
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7.5.2 Discussion

These experimental results confirm that using multiple classifiers reduces the

variance and improves the robustness of the model. The combination of multiple

learned models has been a research topic in the machine learning community, with

the goal of forming an improved estimate [127, 128]. There are two issues involved

in model combination.

The first issue is model generation. It is important to generate a set of models

that are diverse in the sense that they make errors in different ways. Different

approaches have been developed for generating multiple models. One approach is

to use a particular learning algorithm and a data resampling technique to create

a set of learned models. Bagging is such a technique to obtain multiple classifiers

by using different resampling of the training data. Another approach is to use a

variety of learning algorithms on all of the training data. Additionally, multiple

models could also be learned using different feature sets. These techniques attempt to

achieve diversity in the errors of the learned models by varying training data, learning

algorithms, or features. The multiple models are typically combined using variants of

a weighted majority strategy. Combining multiple classifiers is an interesting future

direction for our investigation of more effective prosody model. Our experiments so

far have not yielded any performance gain from the combination of multiple decision

trees that are trained using different features sets, or the combinations of various

sampling approaches as used in this chapter.

The second issue is model combination, i.e., to decide which models to rely on

for a decision and how much weight to give each model. When the errors made

by different models are uncorrelated, taking the majority vote is a reasonably good

approach for their combination. However, when patterns exist in the errors that

different models make, a more elaborate strategy could be far better. For example, a

combining method needs to identify the unique contribution of each model and the

inherent redundancy among them. Currently we have only used a simple average
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of the posterior probabilities from a variety of decision trees for the prosody model.

Training a super classifier that learns how to combine multiple classifiers is clearly

an important goal for future work in this area.
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8. APPROACHES TO COMBINE KNOWLEDGE

SOURCES

As described in previous chapters, our baseline structural event detection system

is based on an HMM approach. While an HMM is computationally efficient and

provides a convenient way for modularizing the knowledge sources, it has two main

drawbacks. First, the standard training methods for HMMs maximize the joint

probability of the observations and the hidden events, as opposed to the posterior

probability of the correct hidden variable assignment given the observations. The

latter is a criterion more closely related to classification error. Second, the N-gram

LM underlying the HMM transition model makes it difficult to use features that

are highly correlated (such as word and POS labels) without greatly increasing the

number of model parameters; this in turn makes robust estimation difficult. In

Chapter 6, a non-optimal approach (i.e., interpolation at the LM level or posterior

probability level) has been used for combining different textual sources within the

HMM framework.

In this chapter, we describe our efforts to overcome some of the shortcomings

of an HMM by using a maximum entropy (Maxent) classifier and the conditional

random field (CRF) sequence decoding method for the SU detection task. These

approaches estimate the conditional posterior probabilities directly, in contrast to the

generative HMM. They also provide a more principled way to combine a large number

of overlapping features. The Maxent and CRF approaches differ in that the former

does not directly model sequence information. Although both techniques have been

used previously for some traditional NLP tasks, they have not been widely applied

to a task with both prosodic and textual information, as used in the SU detection

task. We describe the techniques that have been developed to incorporate these
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knowledge sources, and compare SU detection performance using the HMM, Maxent,

and the CRF approaches on two different genres of speech: CTS and BN. How word

recognition error and different knowledge sources affect the comparison will also

be investigated. Finally, we show that a simple combination of these approaches

improves upon the best results using any one approach.

This chapter is organized as follows. Section 8.1 describes the knowledge sources

used in the models to be evaluated. Section 8.2 reviews the HMM approach that

has been used in the previous chapters. Section 8.3 introduces the Maxent modeling

approach and describes experimental results when using it on the SU detection task.

Section 8.4 compares the CRF model with the HMM and Maxent models over several

experimental conditions. Section 8.5 summarizes this chapter.

8.1 Knowledge Sources

In this section, we briefly summarize the knowledge sources that have been used

previously in the HMM approach and will be used by the different modeling ap-

proaches compared in this chapter. Words and SU boundaries are mutually con-

strained via syntactic structure. Therefore, the word identities themselves (from au-

tomatic recognition or human transcriptions) constitute a primary knowledge source

for the SU boundary detection task. We also make use of various automatic tag-

gers that map the word sequence to other representations. The TnT tagger [106] is

used to obtain POS tags. A TBL chunker [129] maps each word to an associated

chunk tag, encoding chunk type and relative word position (beginning of a noun

phrase, inside a verb phrase, etc.). The tagged versions of the word stream are

provided to allow generalizations based on syntactic structure and to smooth out

possibly undertrained word-based probability estimates. For the same reasons we

also generate word class labels that are automatically induced from bigram word

distributions [105]. Hidden event LMs based on these various tags were described in

Chapter 6.
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To model the prosodic structure of SU boundaries, prosodic features are ex-

tracted around each word boundary as described in Chapter 4. These are based

on the acoustic alignments produced by a speech recognizer or forced alignments of

the reference transcriptions when given. The features capture duration, pitch, and

energy patterns associated with the word boundaries. A crucial aspect of many of

these features is that they are highly correlated (e.g., some are derived from the same

raw measurements via different normalizations), real-valued (not discrete), and pos-

sibly undefined (e.g., unvoiced speech regions have no pitch). These properties make

prosodic features difficult to model directly together with the textual information in

the HMM approach. Hence, a modular approach has been adopted: the information

from the prosodic features is modeled separately by a decision tree classifier that out-

puts posterior probability estimates P (ei|fi), where ei is the boundary event after

wi, and fi is the prosodic feature vector associated with the word boundary. Con-

veniently, this approach also permits us to include some non-prosodic features that

are highly relevant to the task but are not otherwise represented in the generative

HMM, such as whether a speaker (turn) change occurs at the location in question.

8.2 A Review of the HMM for SU Detection

Our baseline model, as described in Chapter 4, is a hidden Markov model (HMM).

This model forms the basis of much of the prior work on sentence boundary detection

in speech [12, 15–17]. We briefly review the HMM that is used for structural event

detection in this section. This system has been evaluated in Chapters 5 through 7.

In the HMM, the states of the model correspond to the word wi and event label ei

that is associated with the word end boundary. The observations associated with

the states are the words, as well as other prosodic features fi. Figure 8.1 shows a

graphical model representation of the variables involved. Note that the words appear

in both the states and the observations, such that the word stream constrains the
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Fig. 8.1. The graphical model for the SU detection problem. Only
one word-event pair is depicted in each state, but in a model based on
N-grams the previous N − 1 tokens would condition the transition
to the next state. O are observations consisting of words W and
prosodic features F , and E are structural events.

possible hidden states to matching words; the ambiguity in the task stems entirely

from the choice of events.

For the HMM approach, standard algorithms are available to extract the most

probable state (and thus event) sequence given a set of observations. Since our goal

is to minimize the per-boundary error rate (and thus the NIST SU error rate), rather

than finding the highest probability sequence of events, we identify the events with

the highest posterior probability individually at each boundary i:

êi = arg max
ei

P (ei|W, F ) (8.1)

where W and F are the words and features for the entire test sequence, respectively.

The individual event posteriors are obtained by applying the forward-backward al-

gorithm for HMMs [84].

Training of the HMM is supervised since event-labeled data is available. The state

transition probabilities are estimated using a hidden event N-gram LM [83]. The LM

is obtained with standard N-gram estimation methods from data that contains the
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word-event pair tags in sequence: w1, e1, w2, . . . en−1, wn. The resulting LM can then

compute the required HMM transition probabilities as:1

P (wiei|w1e1 . . . wi−1ei−1) =

P (wi|w1e1 . . . wi−1ei−1) ×

P (ei|w1e1 . . . wi−1ei−1wi)

The N-gram estimator maximizes the joint word-event pair sequence likelihood P (W, E)

on the training data (modulo smoothing), and does not guarantee that the correct

event posteriors needed for classification according to Equation (8.1) are maximized.

The second set of HMM parameters are the observation likelihoods P (fi|ei, wi).

Instead of training a likelihood model we make use of the prosodic classifier as

described in Chapter 4. Observation likelihoods may be obtained as follows:

P (fi|wi, ei) =
P (ei|fi)

P (ei)
P (fi) (8.2)

where p(ei|fi) is obtained from the decision tree estimation. As in Chapter 7, instead

of a single decision tree, we use ensemble bagging to reduce the variance of the clas-

sifier and generate more reliable posterior probability estimation. In Chapters 4 and

7, we have described how to deal with the mismatch of class distributions between

training and testing for decision tree learning.

The HMM modeling representation we adopt for the SU detection is different from

the HMM that is used for the POS tagging problem or other sequence labeling tasks

in NLP. For comparison, Figure 8.2 shows a graphical model for POS tagging, where

the hidden states consist of POS tags, and the observations are the words. In the SU

detection task, since there are only two classes (SU or not), we hypothesize that if

they were used as states, the state sequence would not contain enough discriminative

information to effectively decode the sequence. Hence, rather the words are added in

the states to constrain the event sequence. Table 8.1 shows the SU detection results

1To utilize the word and event contexts of length greater than one, HMMs of order 2 or greater are
used, or equivalently, use the entire word-event pair N-gram as the state.
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Fig. 8.2. The graphical model for the POS tagging problem. POS
tags are the hidden states in this problem. S are POS tags, and W
are words.

comparing models for which words appear in the states or not, on the CTS human

transcription condition. Both approaches use trigram models that use only word

information for sequence decoding (i.e., no prosodic information is used). Clearly

there is a substantial performance degradation when word information is removed

from the ‘hidden’ states; hence, the state configuration in Figure 8.1 is used in all of

the remaining experiments.

Table 8.1
SU detection results (NIST error rate in %) for different state config-
urations using the trigram LM alone on the CTS reference condition.
The insertion (INS), deletion (DEL), and total error rate are shown.

State membership SU error rate (%)

INS DEL Total

event only 60.56 15.11 75.66

word and event 31.47 13.74 45.20

The HMM structure makes strong independence assumptions: (1) that features

depend only on the current state (and in practice, only on the event label) and (2)

that each word-event pair label depends only on the previous N−1 tokens. In return,

we get a computationally efficient structure that allows information from the entire
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sequence of words and prosodic features W, F to inform the posterior probabilities

needed for classification, via the forward-backward algorithm.

More problematic in practice is the integration of multiple word-level features,

such as POS tags and chunker output. Theoretically, all tags could simply be in-

cluded in the hidden state representation to allow joint modeling of words, tags, and

events. However, this would drastically increase the size of the state space, making

robust model estimation with standard N-gram techniques difficult. A method that

works well in practice is linear interpolation, whereby the conditional probability es-

timates of various models are simply averaged. Some improvement in SU boundary

detection performance has been obtained by combining the word-based hidden event

LM with the class-based LMs, as discussed in Chapter 6.

Similarly, we can interpolate LMs trained from different corpora. This is usually

more effective than pooling the training data because it allows control over the

contributions of the different sources. For example, we use LMs that are obtained

from the extra, larger corpora in Chapter 6. Given a larger training corpus, it should

get a larger weight; but given more imprecise labeling of SU boundaries, it should

get a lower weight. By tuning the interpolation weight of the two LMs empirically

(using held-out data), a good compromise between these two extremes can be found.

8.3 The Maxent Posterior Probability Model for SU Detection

The Maxent model [130] has been successfully applied to a variety of NLP tasks,

such as POS tagging [131, 132], text categorization [133], chunking [134], machine

translation [135], language modeling [102, 103, 136], named entity detection [137–

139], and word sense disambiguation [140]. It has been found to perform similarly

to other state-of-the-art approaches for these NLP tasks. Each model has taken

a classification approach and has designed features accordingly. Most of features

involve word context, lexical information about the word, and other word related

information. Focus on feature design has led to superior performance, for example
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[132] for POS tagging. We will show later that feature design is an important factor

in Maxent performance for structural event detection.

8.3.1 Description of the Maxent Model

As discussed in Chapter 4, the SU detection problem is represented as a classifica-

tion task. For a given word boundary, each observation consists of the context of the

word and the corresponding prosodic features, and the task is to classify this bound-

ary as an SU or not. The assumption here is that the observations Oi = (Fi, C(wi))

are independent. Note that we have already pre-encoded some dependency into the

feature set associated with each sample, e.g., using the word context C(wi). More

contextual prosodic features could also be encoded in the observation Oi, not just

using the features Fi associated with the word boundary.

For a classification problem, there could be different ways to set the model param-

eters θ, either to maximize the joint likelihood P (E, O) or the conditional likelihood

P (E|O) over the entire training set, where E denotes the class labels. The posterior

probability (likelihood) correlates more with the classification error rate metric than

the maximum joint likelihood does, therefore the conditional likelihood is used as

our objective function [141]:

CL(θ,D) = P (E|O) =
∏

e,o∈D

P (e|o) (8.3)

where D is the training data set consisting of labeled examples (e, o), CL is con-

ditional likelihood, and θ denotes the model. The conditional likelihood p(e|o) is

closely related to the individual event posterior probability used for classification,

allowing this type of model to explicitly optimize discrimination of correct from

incorrect labels.

The problem now is to estimate the conditional probability p(e|o), where o is a

vector of features, representing different knowledge sources, and e is the class label

(SU or not). The Maxent model, which models things that are known and does not

make assumptions about the unknown events, provides one possible solution. Con-
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straints in the Maxent model are obtained from the training set, i.e., the empirical

distribution is equal to the expected value of a feature functions g with respect to

the model p(y|x): Ep̃[gi] = Ep[gi], i.e.:

1

|D|
∑

x

g(x, y(x)) =
∑

x

p̃(g)
∑

y

p̃(x)p(y|x)g(x, y) (8.4)

where x is the feature set associated with a sample, and y is its class label. The

functions gi(x, y) are indicator functions corresponding to (complex) features defined

over events, words, and prosodic features. For example, one such feature function

for the SU detection task might be:

g(x, y) =

 1 : if wi = uhhuh and y = SU

0 : otherwise

When there is no confusion, we sometimes call the predicate part in the indicator

function ‘features’. These are generally used as features by other machine learning

approaches, such as decision trees.

The Maxent model finds a probability distribution that satisfies these constraints,

and has the maximum conditional entropy:

H(p) = −
∑

x

p(x)p(y|x) log p(y|x) (8.5)

The solution to this constrained optimization problem has the exponential form:

p(y|x) =
1

Zλ(x)
exp(

∑
i

λigi(x, y)) (8.6)

where Zλ(x) is the normalization term:

Zλ(x) =
∑

y

exp(
∑

i

λigi(x, y)) (8.7)

To find the parameters λ, the log likelihood
∏

i P (ei|W, F ) over the training data

is maximized. In our experiments, the L-BFGS parameter estimation method is used,

with Gaussian-prior smoothing [142] to avoid overfitting. Implementations for both

methods are from the Maxent toolkit [143]. The training data for structural event
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detection is very limited; therefore, smoothing is essential. The intuition behind the

use of Gaussian priors is to force the parameters to be distributed according to a

Gaussian distribution with mean µ and variance σ2. This prior expectation penalizes

parameters that drift away from their mean prior value (µ is 0 generally). When

Gaussian smoothing is used, a penalty term is added to Equation (8.3) during the

maximum likelihood estimation:

CL′(λ) = CL(λ) +
∑
λi

log
1√

(2 × π × σ2)
exp(

−λi

2 × σ2
) (8.8)

8.3.2 Features Used

Even though Maxent gives us the freedom to use features that are overlapping or

otherwise dependent, we still must choose a subset of features that are informative

and parsimonious in order to obtain good generality and robust parameter estimates.

We included all features that correspond to information available to our HMM ap-

proach, which are summarized below. Those features that are triggered only once in

the training set are then eliminated to improve robustness and to avoid overfitting

the model. More discussion on feature selection will appear in the next section.

• Word N-grams. Combinations of preceding and following words are used

to encode the word context of the event, e.g., <wi>, <wi+1>, <wi, wi+1>,

<wi−1, wi>, <wi−2, wi−1, wi>, and <wi, wi+1, wi+2>, where wi refers to the

word before the boundary of interest.

• POS N-grams. POS tags (see Section 6.2) are the same as used for the HMM.

The features capturing POS context are similar to those based on word tokens.

• Chunker tags. These are used similarly to POS and word features, except

tags encoding chunk type (NP, VP, etc.) and word position within the chunk

(beginning versus inside) are used. Chunker features are only used for the

BN data. These syntactic chunk tags are generated from a TBL chunker as

described in Section 6.2.
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• Word classes. These are similar to N-gram patterns but over automatically

induced classes that are obtained in the same way as described in Section 6.2.

• Turn flags. Since speaker change often marks an SU boundary, this binary

feature is used. Note that in the HMM this feature is grouped with the prosodic

features and handled by the decision tree since it is not easy to capture this

information using the hidden event LM in the HMM; whereas, in the Maxent

approach, it can be used separately as a feature.

• Prosody. Even though it is possible to include prosodic features in the Maxent

framework, designing a method to encode the many various prosodic features

used by the decision trees is not straightforward. Therefore we decided to use

the decision tree classifiers to generate the posterior probabilities p(ei|fi). Since

it is convenient to use binary features in the Maxent classifier, the prosodic

posteriors are encoded into several binary features via thresholding. Equation

(8.6) allows each feature in a Maxent model to have a monotonic effect on

the final probability (raising or lowering it by a constant factor eλkgk). This

suggests encoding the decision tree posteriors in a cumulative fashion through

a series of binary features, for example, p > 0.1, p > 0.3, p > 0.5, p > 0.7,

p > 0.9. These thresholds are heuristically chosen. This representation has the

advantage that it is more robust to a possible mismatch between the posterior

probability in training and test sets, since small changes in the posterior value

affect at most one feature.

In order to obtain the posterior probability from the prosody model for the

training samples, a cross-validation approach is used. If we were to train the

decision trees from the training set and generate the posterior probability on

the same set using these trees, then the probabilities would probably be biased.

Hence, a 10-fold cross-validation is used: the training set is split into 10 subsets

and the trees trained from 9 sets are used to generate the posterior probabilities

for the one that is left out. In this way, each sample in the training set is
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assigned a probability which is binned for use in the Maxent model. In testing,

the trees that are trained from the entire training set are used to estimate

probabilities.

Although that the Maxent framework does allow the use of real-valued feature

functions, our preliminary experiments have shown no gain compared to the

use of binary features constructed as described above. Results using continuous

features in the Maxent model are shown in Section 8.3.4.

• Auxiliary LM. As mentioned earlier, additional text-only language model train-

ing data is often available. In the HMM model, we incorporated auxiliary LMs

by interpolation, which is not possible here since there is no LM per se, but

rather N-gram features. However, the same trick can be used as is used for

the prosodic features. A word-only HMM is used to estimate posterior event

probabilities based on the auxiliary LM, and these posteriors are then thresh-

olded to yield binary features. The auxiliary LM is applied to both the training

and the test set of the RT-03 training and test data to generate the posterior

probability estimations for CTS and BN respectively.

• Combined features. To date we have not fully investigated compound features

that combine different knowledge sources in order to model their interaction

explicitly. Only a limited set of such features is included, for example, a com-

bination of the decision tree hypothesis and POS contexts. The reason we

choose to use POS tags together with the decision trees’ hypotheses is to limit

the number of parameters (since there are only limited number of POS tags),

while attempting to combine some grammatical constraints with prosodic in-

formation.
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8.3.3 Comparisons of the Maxent and HMM Approaches

HMM training does not directly maximize the posterior probabilities of the cor-

rect labels, resulting in mismatch between training and the use of the model as a

classifier. A second problem with HMMs is that the underlying N-gram sequence

model does not cope well with multiple representations (features) of the word se-

quence (words, POS, etc.) short of building a joint model involving all variables.

These problems can be well addressed by the Maxent model. A Maxent model di-

rectly estimates the posterior boundary label probabilities P (ei|W, F ), rather than

maximizing the joint likelihood of the observation and the state sequence. The Max-

ent model allows correlated features to apply simultaneously, and therefore gives

greater freedom for combining knowledge. Another desirable characteristic of the

Maxent models is that they do not split the data recursively to condition their prob-

ability estimates, which makes them more robust than decision trees when training

data is limited. Hence it is possible to include prosodic features directly into the

Maxent framework, instead of modeling them separately using decision trees.

The HMM and Maxent differ regarding the training objective function (joint

likelihood versus conditional likelihood) and with respect to the handling of depen-

dent word features (model interpolation versus integrated modeling via Maxent).

On both counts the Maxent classifier should be superior to the HMM. However, the

Maxent approach also has some theoretical disadvantages compared to the HMM by

design. One obvious shortcoming of the Maxent approach is that some information

is lost by the thresholding that converts posterior probabilities from the prosodic

model and the auxiliary LM into binary features.2 A more qualitative limitation of

the Maxent model is that it only uses local evidence, namely, the surrounding word

context and the local prosodic features. Based on this, the Maxent model resembles

the conditional probability model at the individual HMM states. The HMM as a

2This is not a drawback of the Maxent classifier itself, rather a design used for this SU detection
task.
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whole, however, through the forward-backward procedure, propagates evidence from

all parts of the observation sequence to any given decision point.

8.3.4 Results and Discussion for the Maxent SU Model

Experiments comparing the Maxent and HMM approaches were conducted for

the SU detection task on the BN and CTS corpora. Training and test data are

the same as those used in the experiments in Chapters 5. System performance is

evaluated using the official NIST evaluation tools.

In our experiments, we compare how the two approaches perform individually

and in combination. The combined classifier is obtained by simply averaging the

posterior estimates from the two models, and then picking the event type with the

highest probability at each position. Other experimental factors are also investigated,

such as the impact of the speech recognition errors, the impact of genre, and the

contribution of textual versus prosodic information in each model.

Experimental Results

Table 8.2 shows SU detection results for BN and CTS, on both the reference

transcriptions and speech recognition output conditions, using the HMM and the

Maxent approach individually and in combination. The Maxent approach slightly

outperforms the HMM approach when evaluating on the reference transcriptions,

and the combination of the two approaches achieves the best performance for all the

tasks (significant at p < 0.05 using the sign test on the REF condition, mixed results

on the STT condition).

We observe in Table 8.2 that there is a large increase in error rate when evaluating

on speech recognition output. This replicates findings from previous chapters. The

Maxent system degrades more than the HMM when recognition output is used. As

can be seen from Table 8.2, the Maxent outperforms the HMM when the reference

transcription is used; however, in the STT condition, the Maxent yields comparable
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Table 8.2
SU detection results (NIST error rate in %) using the Maxent and the
HMM approaches individually and in combination on BN and CTS,
on reference transcriptions (REF) and recognition output (STT).

HMM Maxent Combined

BN REF 48.72 48.61 46.79

STT 55.37 56.51 54.35

CTS REF 31.51 30.66 29.30

STT 42.97 43.02 41.88

or slightly worse performance than the HMM. This makes sense since most of the

improvement of the Maxent model comes from better lexical feature modeling. But

these are exactly the features that deteriorate most with recognizer errors. On the

other hand, prosodic information is more robust in face of recognition errors and yet

it is not fully utilized in the Maxent approach.

Table 8.3 shows the deletion and insertion error rates for the HMM and the

Maxent approaches on the reference condition. Due to the reduced dependence on

the prosody model, the errors made by the Maxent approach are different from the

HMM approach. There are more deletion errors and fewer insertion errors, since

the prosody model tends to overgenerate SU hypotheses. We consistently observe

a decrease in deletion rate and an increase in insertion error rate when the LM is

combined with prosody model (compared to using the LM alone). The different

error patterns suggest that we can effectively combine the system output from the

two approaches, which is confirmed in Table 8.2, where the combination consistently

yields the best performance (significantly better than the HMM alone at p < 0.05

using sign test).

Table 8.4 shows SU detection results for the two approaches, using textual in-

formation only, as well as in combination with the prosody model. We focus on the
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Table 8.3
Deletion, insertion, and total error rate (NIST error rate in %) of the
HMM and Maxent approaches on reference transcriptions of BN and
CTS.

DEL INS Total

BN HMM 28.48 20.24 48.72

Maxent 32.06 16.54 48.61

CTS HMM 17.19 14.32 31.51

Maxent 19.97 10.69 30.66

results for the reference transcription condition. The Maxent achieves a lower error

rate than the HMM when using only the textual features; however, when prosodic

information is incorporated, the gain diminished. The superior results for text-only

classification are consistent with the Maxent model’s ability to combine overlapping

word-level features in a principled way. In contrast, the HMM approach linearly

interpolates various LMs (see Chapter 6) at the LM level or posterior probability

level. However, the HMM largely catches up once prosodic information is added.

This can be attributed to the direct use of prosodic posterior probabilities in the

HMM, as well as the fact that in the HMM, each boundary decision is affected by

prosodic information throughout the whole sequence; whereas, the Maxent model

uses only the prosodic features at the boundary to be classified.

Notice also from Table 8.2 that the Maxent approach yields more gain over the

HMM on CTS than on BN (e.g., for the REF condition on both corpora). One

possible reason for this is that there is more training data and thus less of a sparse

data problem for CTS. Another possible reason is that the prosody model contributes

more on BN than on CTS (a pattern observed also in Chapter 5), and the role of

that component is lower in the Maxent approach. As can be seen from Table 8.4,

when using textual information only, the gain (relative error rate reduction) from

the Maxent over the HMM is slightly less on BN than on CTS.
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Table 8.4
SU detection results (NIST error rate in%) using different knowledge
sources on BN and CTS, evaluated on the reference transcription.

BN CTS

HMM Textual 67.48 38.92

Textual + prosody 48.72 31.51

Maxent Textual 63.56 36.32

Textual + prosody 48.61 30.66

Additional Investigations

The Maxent model makes better use of lexical features, but does not use the

prosodic information as effectively partly due to accumulatively binning the posterior

probabilities from the prosody model. However, the framework of the Maxent itself

is not restricted to binary features; if the features have a continuous value, that value

can be used when weighting the features. Hence, we investigate whether preserving

the posterior probabilities from the prosody model improves the sensitivity of the

Maxent model to prosodic information. Table 8.5 shows the results of the Maxent

model using the same features as in our earlier experiment (the features listed in

Section 8.3.2), with the exception that the posterior probabilities from the decision

trees are now real-valued features. This experiment is performed using the reference

transcriptions from the CTS data. We consider using the posterior probability from

the prosody model as is and also using its log value in the Maxent framework.

Clearly there is no improvement when the posterior probability is represented

as a real-valued feature. The degradation is not substantial when the real-valued

posterior probabilities are used as is; however, if the log value of the probabilities

is used, there is a significant degradation in performance. A potential advantage of

using continuous features could result from using the confidence scores generated by
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Table 8.5
Comparison of using the posterior probabilities from the prosody
model as binary features versus continuous valued features in the
Maxent approach for SU detection in CTS reference transcription
condition.

Posterior probabilities SU error rate (%)

binary cumulative binned probability 30.66

continuous posteriors 30.82

log posteriors 31.77

the speech recognizer, so that each textual feature will be weighted based on their

confidence measures on the STT test condition.

In another study, feature selection or feature pruning is investigated in the Maxent

approach. Feature selection is important, since some features can be noisy and

thus hurt performance. In addition, overfitting may result when features do not

generalize well to the test set. Removing irrelevant features can generate more

accurate predictions and a more compact model. Various feature selection algorithms

for the Maxent models have been investigated, e.g., [130]. We consider some of

feature selection metrics that have been previously studied for text classification

[144].

• Information gain (IG): This is widely used in machine learning and data

mining as a measure of association. It is based on the definition of entropy and

conditional entropy:

IG(Y |x) = H(Y ) − H(Y |x) (8.9)

where H(Y ) is the entropy:

H(Y ) =
∑

y

p(y) log p(y) (8.10)
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H(Y |x) is the conditional entropy:

H(Y |x) =
∑

y

p(y|x) log p(y|x) (8.11)

x is a feature, and Y is a random variable representing the class membership.

Information gain measures the number of bits saved when transferring Y be-

cause of the presence of x. If x does not provide any information about Y ,

then the IG value is 0, otherwise it is positive.

Given a training set, the information gain that each feature provides for a

two-way SU classification task is calculated as follows:

H(Y ) = −(p(SU) × log p(SU) + p(SU) × log p(SU))

H(Y |x) = −(p(SU |x) × log p(SU |x)

+p(SU |x) × log p(SU |x)) (8.12)

Table 8.6 shows some of the N-gram features with the highest IG weights for

the SU detection task. Clearly, the selected words are good signals for SU

boundaries, most of which are sentence initial and final words.

• Mutual information (MI): The mutual information3 between a feature f

and a class c is defined as:

MI(f, c) = log p(f |c) − logp(f)

= logp(c|f) − logp(c) (8.13)

and the average of MI(f, c) over all the classes is the mutual information

between the feature x and the class variable Y :

MI(x, Y ) =
∑
ci

p(ci)MI(f, ci)

=
∑

c

p(c)(log p(c|x) − log p(c)) (8.14)

3Sometimes IG and MI are not well defined and are used interchangeably in the literature; hence,
we indicated how we use these terms.
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Table 8.6
Some of the N-gram features with the highest IG weights for the CTS
SU detection task.

Feature IG weight

current word is YEAH 0.026768

next word is YEAH 0.025801

current word is UHHUH 0.019321

next word is UHHUH 0.019032

next word is AND 0.016337

next word is BUT 0.010515

next word is OH 0.008910

current word is OH 0.007039

next word is WELL 0.005783

current word is RIGHT 0.005663

current and next words YEAH YEAH 0.005369

next word is SO 0.004947

current word is I 0.004632

current word is THE 0.004045

Mutual information represents the reduction in uncertainty about Y due to

the knowledge of x. MI can be easily computed from the training set. Note

that the mutual information is equal to:

H(Y ) +
∑

c

p(c) log p(c|f) (8.15)

This is similar to, but different from the information gain, which is:

H(Y ) +
∑

c

p(c|f) log p(c|f) (8.16)
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• Chi-square statistics: Chi-square measures the independence between a fea-

ture and a class by using a Chi distribution. For a two by two contingency

table as shown in Table 8.7, the Chi statistic is defined as:

Chi =
N × (AD − CB)2

(A + C)(B + D)(A + B)(C + D)
(8.17)

For each feature, we find the Chi statistic results from the Chi distribution

using a degree of freedom of 1. The Chi-square statistic may not be reliable

when the event frequency is low [145].

Table 8.7
Notation for a 2 × 2 contingency table used in Chi-square statistics.

feature occurs feature does not occur

class occurs A B

class does not occur C D

We compute the weight for each feature in the training set using the metrics

described above and sort the features based on their weights. The N features that

have the highest weights are preserved and the others are pruned. Table 8.8 shows

the results when different numbers of the features are preserved using the weights

based on each of the three metrics. Experiments were conducted on the reference

transcriptions of the CTS data. Our experiments show that preserving more features

yields a consistent gain. Using all the features outperforms the pruned feature sets

(the difference is significant at p < 0.05). This is not very surprising since Gaussian

prior smoothing can make the model parameter estimates more robust, mitigating

issues of noisy features or overfitting. For each feature selection metric, the difference

between using 1 million and 2 million features is significant (at p < 0.01). Mutual

information outperforms the other two feature selection algorithms. There is no

significant difference between using information gain and the Chi-square metrics for

feature selection.
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Table 8.8
SU detection results (NIST error rate in %) using different feature
selection metrics and different pruning thresholds (number of the
preserved features), for the CTS REF condition.

Number of preserved features SU error rate (%)

IG MI CHI

0.5 million 33.46 32.03 32.71

1 million 33.07 31.88 32.96

2 million 32.24 31.45 32.21

all the features (5.1 million) 30.66

8.4 The Conditional Random Field (CRF) Model for SU Detection

A simple combination of the Maxent and HMM was found to improve upon the

performance of either model alone (as shown in Table 8.2). This is likely due to

the complementary strengths and weaknesses of the two models. An HMM is a

generative model, yet it is able to model the sequence via the forward-backward

algorithm. The Maxent approach is a discriminative model; however, it attempts to

make decisions locally, without using sequential information. A conditional random

field (CRF) model [146] combines the benefits of these two approaches. Like the

Maxent, a CRF can accommodate many correlated features and can be trained in a

discriminative way. Like an HMM, a CRF uses sequence decoding that is globally

optimal. Hence, we will compare the performance of the CRF model to both the

HMM and Maxent approaches on the SU detection task.
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Fig. 8.3. The graphical representation of a CRF for the sentence
boundary detection problem. E represents the state tags (i.e., SU
boundary or not), while W and F are word and prosodic features
respectively. O are observations consisting of W and F .

8.4.1 Description of the CRF Model

A CRF is a random field that is globally conditioned on an observation sequence

X. CRFs have been successfully used for a variety of text processing tasks, such as

parsing [147], named entity recognition [148], and information extraction [149].

Figure 8.3 depicts a graphical representation of this modeling approach for the

sequence labeling task. The CRF is an undirected graph, in which the states of

the model correspond to event labels Ei, and the observations Xi associated with

the states are the words Wi, as well as other prosodic features Fi. The most likely

sequence Ê for the given input sequence (observations) X is:

Ê = arg max
E

exp(λ × G(E, X))

Zλ(X)
(8.18)

where the function G is a potential function over the events and the observations,

and Zλ is the normalization term

Zλ(X) =
∑

E

exp(λ × G(E, X)) (8.19)
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The CRF model is trained to maximize the conditional log-likelihood of a given

training set. Like the Maxent model, this is closely related to the performance

metric. The most likely sequence is found using the Viterbi algorithm.4

The Mallet package [150] is used to implement the CRF model. To avoid over-

fitting, a Gaussian prior is employed with a mean of zero on the parameters [142],

similar to what is used for training Maxent models. The features used in the CRF

SU detection model are the same as those used in the Maxent approach. The CRF

takes longer to train than do the HMM and Maxent models, especially when the

number of features becomes large. The HMM requires less time for training than

the other two models.

8.4.2 Comparisons of CRF and Other Models

A CRF, like the Maxent, differs from an HMM with respect to its training ob-

jective function (joint versus conditional likelihood) and its handling of dependent

word features. HMM training does not maximize the posterior probabilities of the

correct labels; whereas, the CRF directly estimates posterior boundary label prob-

abilities P (E|W, F ). The underlying N-gram sequence model of an HMM does not

cope well with the overlapping representations of the word sequence; however, the

CRF model supports simultaneous correlated features and therefore allows us to

easily incorporate a variety of knowledge sources. A CRF, like the HMM, differs

from the Maxent method with respect to its ability to model sequence information.

The primary advantage of the CRF over the Maxent approach is that the model is

optimized globally over the entire sequence; whereas, the Maxent model uses only

local evidence. The CRF is essentially a Maxent model at the sequence level, i.e., the

entire sequence is treated as one sample for the posterior probability estimation in

the Maxent framework, but it is implemented using the efficient Viterbi algorithm.

4The forward-backward algorithm would likely be better here, but it is not implemented in the
current software used [150].
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In addition, the CRF differs from a maximum entropy conditional Markov model

(CMM). In a CMM, a single function p(s|s′, o) represents the probability of the

current state s given the previous state s′ and the current observation o. However,

this approach has a known problem, called label bias problem, due to the per-state

normalization of the transition scores. This causes problems when there are fewer

outgoing states. For example in the extreme case, if there is only a single state, then

the observations are equivalently ignored. The CRF approach addresses this label

bias problem of the CMM by employing sequence modeling.

Figure 8.4 compares the graphical models of the HMM, CMM, and CRF ap-

proaches. The HMM is a generative model, which models the joint distribution of

P (S, O) and in which the state is dependent only on the previous state (or a limited

set of previous states if higher orders of HMMs are used). In the CMM, the state

depends on the previous state and the observation. In the CRF sequence modeling

approach, a single exponential form is used for the probability of the state sequence

given the entire observation, rather than the per-state exponential form in the CMM

approach.

8.4.3 Results and Discussion for the CRF SU Model

The features used for the CRF are the same as those described in Section 8.3.2 for

the Maxent model, which also happen to be the knowledge sources for the HMM (but

with different representations). Keeping the knowledge sources consistent across the

models enables us to focus on the comparison of the effectiveness of the modeling

approaches. However it is worth noting that it is possible that different modeling

approaches (e.g., CRF) could make use of new features, which has not been explored

yet. For this investigation, we compare the CRF, HMM, and Maxent models to one

another, as well as to a voting-based combination of the three.

SU detection results using the CRF, HMM, and Maxent approaches individually,

using the reference transcriptions or recognition output for CTS and BN are shown
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Fig. 8.4. The graphical model representations of the HMM, CMM,
and CRF approaches. O are observations, and S are events (or tags).

in Tables 8.9, along with a combination of the three modeling approaches using a

majority vote. Results are reported using the NIST SU error rate.

As can be seen from the table, the CRF is superior to both the HMM and Maxent

across all conditions (the differences are significant at p < 0.05) except for the BN
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Table 8.9
SU detection results (NIST error rate in %) using the HMM, Max-
ent, and CRF approaches individually and in combination on BN
and CTS, on reference transcriptions (REF) and recognition output
(STT). The combination of the three approaches is obtained via a
majority vote.

HMM Maxent CRF Majority vote

BN REF 48.72 48.61 47.92 46.28

STT 55.37 56.51 55.37 54.29

CTS REF 31.51 30.66 29.47 29.30

STT 42.97 43.02 42.00 41.88

STT condition. The combination of the three approaches is superior to any model

alone. Previously, we found that the Maxent and HMM posteriors combine well (see

Table 8.2). The toolkit that is used for the implementation of the CRF does not

provide a posterior probability for a sequence; therefore, we were unable to combine

the system output via posterior probability interpolation, which we would expect to

yield a stronger performance gain. We observe from Table 8.9 the CRF has a larger

increase in error rate when evaluating on speech recognition output compared to the

HMM, suggesting that the CRF suffers more from the recognition errors.

The CRF yields relatively less gain over the HMM on BN than on CTS. One

possible reason for this difference is that there is more training data for the CTS

task, and both the CRF and Maxent approaches require a relatively larger training

set than the HMM. It is also possible that there is more effective sequence information

in CTS due to the different speaking styles in CTS and BN. Since the CRF model

is only a first-order Markov model, it is likely that it is better at modeling shorter

SUs on CTS than the longer SUs on BN.

Similarly to the comparisons for the HMM and Maxent approaches, we investigate

the impact of different knowledge sources. Table 8.10 and Table 8.11 show SU
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Table 8.10
CTS SU detection results (NIST error rate in %) using the HMM,
Maxent, and CRF individually, using different knowledge sources.
Note that the ‘all features’ condition uses all the knowledge sources
described in Section 8.3.2.

CTS

HMM Maxent CRF

word N-gram 42.02 43.70 37.71

REF word N-gram + prosody 33.72 35.09 30.88

all features 31.51 30.66 29.47

word N-gram 53.25 53.92 50.20

STT + word N-gram prosody 44.93 45.50 43.12

all features 43.05 43.02 42.00

detection results for CTS and BN respectively, when different knowledge sources are

used: word N-gram only, word N-gram and prosodic information, and using all the

features listed in Section 8.3.2.

We observe from the tables that when only the word N-gram information is used,

the gain of the CRF over the HMM or Maxent is the greatest, with the differences

between the models diminishing as more features are added. This may be due to

the impact of the sparse data problem on the CRF or simply due to the fact that

differences between modeling approaches are less when features become stronger,

that is, strong features compensate for weaknesses in the models. Notice that on

CTS, with fewer knowledge sources (e.g., using only word N-gram and prosodic

information) the CRF is able to achieve a performance similar to or better than

other methods using all the knowledges sources. This may be useful when feature

extraction is computationally expensive. Looking at the results when only word N-

gram information is used, we observe the effect of word errors on each of the models.

The SU detection error rate increases more in the STT condition for the CRF model
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Table 8.11
BN SU detection results (NIST error rate %) using the HMM, Max-
ent, and CRF individually, using different knowledge sources.

BN

HMM Maxent CRF

word N-gram 80.44 81.30 74.99

REF word N-gram + prosody 59.81 59.69 54.92

all features 48.72 48.61 47.92

word N-gram 84.71 86.13 80.50

STT word N-gram + prosody 64.58 63.16 59.52

all features 55.37 56.51 55.37

than for the other models, suggesting that the discriminative CRF model suffers more

from the mismatch between the training (which uses the reference transcription) and

the test condition (in which features are obtained from potentially erroneous words).

8.5 Chapter Summary

Three different approaches have been described for modeling and integrating

diverse knowledge sources for SU detection: a state-of-the-art approach based on

HMMs, an alternative approach based on posterior probability estimation via the

Maxent method, and a CRF sequence decoding approach. To achieve competitive

performance using the Maxent and CRF models, we devised and evaluated a cumu-

lative binary coding scheme to map posterior estimates from auxiliary submodels

(prosody model and auxiliary LM) into features.

The HMM and Maxent approaches have complementary strengths and weak-

nesses that are reflected in the results, consistent with the findings for text-based

NLP tasks [141]. The Maxent model is a discriminative approach that yields much
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better accuracy than the HMM with lexical information, but a smaller win after com-

bination with prosodic features possibly because of poorer prosodic feature modeling

currently used for this approach. The HMM is a generative approach that in our

modeling can currently make more effective use of prosodic information and thus

degrades less with erroneous word recognition. An interpolation of posterior prob-

abilities from the two systems achieves a 2-7% relative error reduction compared to

the baseline (significant at p < 0.05 for the reference transcription condition). The

results were consistent for two different genres of speech. Additionally we observe

that Maxent is affected by the recognition errors more than the HMM approach,

due to its heavy reliance on the textual information and lighter use of the prosodic

information. Results also show that feature selection is not an important issue for

the Maxent approach and pruning features degrades performance.

Our investigations have shown that a discriminatively trained CRF model is a

competitive approach for the SU detection task. The CRF combines advantages of

the generative HMM approach and the conditional Maxent approach, being discrim-

inatively trained and able to model the entire sequence. It outperforms the HMM

and Maxent approaches consistently across various testing conditions. We also find

that as more knowledge sources are used, the differences among the modeling ap-

proaches decrease. A simple combination of the three modeling approaches (via

majority vote) has proven superior to any single model.

Future useful work in this area would include developing more features that

combine multiple knowledge sources, incorporating prosodic features directly in the

Maxent and CRF approaches, generating posterior probabilities for an event in the

CRF approach, as well as investigating approaches that model recognition uncer-

tainty in order to mitigate the effects of word errors.
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9. SYSTEM FOR RT-04

In this chapter, we describe some new methods that have been used in the latest NIST

RT-04 evaluation and also verify that the approaches that have been investigated

in earlier chapters hold for a new data set. This chapter is organized as follows.

Section 9.1 describes the task and the data used in the RT-04 evaluation. Section

9.2 discusses the system performance for the SU task. Section 9.3 introduces the

method used for SU subtype detection. Section 9.4 describes some new approaches

for edit word detection and compares them with the previous approach described in

Section 5.2.3. Section 9.5 summarizes this chapter.

9.1 RT-04 Tasks and Data

The structural event detection tasks in RT-04 are like those in the RT-03 eval-

uation (as described in Chapter 3), except that for the SU detection, not only are

the positions of the SU boundaries generated, but also the subtype of each SU. The

RT-04 data is annotated using the LDC V6 annotation guideline [73], which differs

from the V5 guideline [71] that was used to annotate the RT-03 data (Table 3.2).

For BN, there are some minor changes (e.g., more conventions are introduced for

identifying sign offs and subordinating conjunctions), resulting in no significant dif-

ferences between the annotations for the data of RT-03 and RT-04. Given this and

the fact that the data sparsity problem is more severe for BN, we combine the RT-

03 and RT-04 BN data, in order to increase the training data size. In contrast,

the differences between the two guidelines for CTS are significant enough that only

the RT-04 training data is used. The V6 annotation guideline uses open classes for

filler words and backchannels, rather than a pre-defined word list as was used in

the V5 guideline [71]. Additionally, more conventions and rules are introduced, for
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example, in order to distinguish incomplete SUs and restart edit disfluencies. Given

these differences, it is not straightforward to automatically map the RT-03 training

data to the V6 annotation guideline. Therefore the RT-03 CTS data is not used.

Table 9.1 describes the training and testing data used in the RT-04 NIST evaluation.

The WER on the STT output used for the structural event detection tasks is also

reported in the table. The CTS STT output is a combined IBM and SRI system;

and the BN STT output is from the combination of all the RT-04 EARS systems.

Table 9.1
Data description for CTS and BN used in the RT-04 NIST evaluation.
BN training data is the combined RT-03 and RT-04 data. CTS
contains only the RT-04 training data.

BN CTS

merged RT-03 and RT-04 data RT-04 data only

Training 40 hours 40 hours

Test 6 hours (12 shows) 3 hours (36 conversations)

STT WER (%) 11.7 18.6

9.2 System Performance for SU Boundary Detection

In this section, we discuss results on the SU boundary detection task using the

new RT-04 data. Table 9.2 shows the SU boundary detection results. We compare

the baseline system described in Chapter 5 with systems incorporating improvements

investigated in Chapters 6 through 8. The baseline system uses an HMM that

combines the word-based hidden event 4-gram LM trained from the data shown in

Table 9.1 and the prosody model trained from a downsampled (DS) training set.

In Table 9.2, we observe significant improvements over the HMM baseline sys-

tem by applying bagging to the prosody model and incorporating additional textual

knowledge sources in the HMM. The Maxent and CRF generally outperform the
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Table 9.2
SU boundary detection results (NIST SU error rate %) on the RT-
04 evaluation data. The ‘combination’ is the majority vote of the
Maxent, CRF, and the improved HMM approaches. ‘DS’ denotes a
downsampled training set.

SU Boundary Error Rate (%)

Models CTS BN

REF STT REF STT

Baseline HMM:

word LM + prosody (DS) 33.00 44.58 60.97 71.35

Improved HMM:

all LMs + prosody (bagging on DS) 28.66 40.47 51.76 63.34

Maxent 27.59 40.27 49.36 60.80

CRF 26.27 40.27 49.58 60.50

Combination 26.21 39.18 47.94 59.57

improved HMM, with a gain even greater than that found for the RT-03 data set

in Chapter 8 for the BN data set. Also notice from the table that the Maxent and

CRF approaches do not degrade as much on the STT condition compared to the

results in Chapter 8. This may be due to better recognition accuracy and a larger

training set (especially for BN). The combination results in the table are from the

majority vote of the improved HMM, Maxent, and CRF approaches. As explained

in Chapter 8, we do not currently have access to the posterior probabilities from the

CRF tool we are using; therefore, a voting scheme is used for system combination.

One would expect that other combination methods would improve upon this result.
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9.3 SU/SU-Subtype Detection

In the SU/SU-subtype detection task, the end of an SU needs to be detected, and

also the subtype for that SU. For this task, a two-step approach is adopted. First

the SU boundary is detected using an HMM, Maxent, CRF, or some combination

of these, then for each system hypothesized SU boundary, a classifier is used to

determine its subtype. The reason we utilize a two-pass approach, rather than using

the boundary detection approach with a 5-way classification (four SU subtypes plus

non-SU) is to more easily incorporate knowledge about boundary locations (SU and

SU initial words) into the subtype decisions. This kind of information would be

difficult to directly incorporate in a one-pass 5-way classification approach. Hence,

after the SU boundary is detected, a second-pass is used to determine the boundary

type.

A Maxent classifier is used for SU subtype detection because of the ease of incor-

porating various features such as sentence initial cue words. These features would

be hard to model using the current generative HMM. Features used include SU

initial words (after optional filler words), SU final words, whether there is a turn

change at the current and the previous SU boundaries, the length of the SU, and the

binned posterior probabilities from a prosody model that does four-way SU subtype

classification at a given SU boundary.

Table 9.3 shows the percentage of the four SU subtypes in CTS and BN data.

For BN, statement is much more frequent than the other subtypes; whereas, for CTS

the four types are more balanced, although statement remains the majority class.

The highly skewed distribution of the subtypes on BN suggests that reasonably good

performance can be achieved by hypothesizing statement SU for every SU boundary;

hence the SU subtype detection task is only investigated for CTS.

SU subtype detection results are shown for CTS in Table 9.4. The first step

boundary detection uses the majority vote of the HMM, Maxent, and CRF ap-

proaches (same as in the last row of Table 9.2). We report the boundary detection
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Table 9.3
Percentage of SU subtypes for CTS and BN.

statement backchannel question incomplete

BN 94.23 0.86 4.37 0.53

CTS 62.05 26.80 5.11 6.05

Table 9.4
SU/SU-subtype detection results (%) on RT-04 CTS evaluation data.
Results are reported using NIST SU boundary error rate, substitu-
tion error rate, and the subtype classification error rate (CER).

CTS

Boundary error Substitution error Subtype CER

REF 26.21 10.59 12.85

STT 39.18 10.07 13.29

error and the substitution error, both of which are from the NIST SU scoring tools.

These errors are measured against the total number of reference SUs. Also shown in

Table 9.4 is the SU subtype classification error rate (CER), defined as the percentage

of the incorrectly labeled SU boundaries. The denominator in CER metric for SU

subtype detection is the total number of the correct system hypothesized SUs, rather

than all the reference SUs. This metric better represents the classifier’s (the Maxent

classifier here) performance, factoring out the boundaries that are missed in the sys-

tem hypothesized SUs. Interestingly, the substitution errors or subtype classification

error rates generally are not much affected by the STT errors or the SU hypothesis

errors. Table 9.5 shows SU subtype classification performance in a confusion matrix

for the reference transcription condition. As can be observed, there is a relatively

larger percentage of misclassified boundaries for incomplete and question subtypes,
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which are less frequent than the other subtypes (see Table 9.3), and they may also

be more difficult to discern from the other types.

Table 9.5
SU subtype detection results (in confusion matrix) on CTS human
transcription condition. Each cell shows the count and percentage
(%) of a reference subtype (row) that is hypothesized as the subtype
shown in the column.

System hypothesis

backchannel incomplete question statement

backchannel 1199 (84.98) 11 (0.78) 4 (0.28) 197 (13.96)

incomplete 6 (2.05) 167 (57.19) 10 (3.42) 109 (37.33)

Reference question 2 (0.78) 2 (0.78) 158 (61.48) 95 (36.87)

statement 56 (2.62) 30 (1.40) 25 (1.17) 2030 (94.82)

Note that in testing, features are extracted based on the system hypothesized

SU boundaries; therefore, the starting point for an SU may be wrong (i.e., an SU

detection insertion or deletion error), which will affect the features related to SU

initial words. Recall also that the prosody model is built based on the features

extracted around each word boundary; therefore, it does not account for the longer

span prosodic features, which could be more useful for subtype detection. Since this

is a new task, much research remains to be done to investigate what are the effective

features and modeling approaches.

9.4 Edit Word Detection

9.4.1 Methods

For edit word and IP detection, an HMM as described in Chapter 5 is used as

a baseline approach. In this section, two additional methods, the Maxent and CRF

approaches, are examined for edit word and IP detection.
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HMM for Edit Word Detection

For edit word detection, an HMM is first used for detecting IPs in edit disfluencies.

The hidden event word-LM is trained from the joint word and edit IP sequence.

There is no additional textual information (e.g., POS tags or automatically induced

classes) used for the IP task. The prosody model is trained from a downsampled

training set. Since the word-LM is generally undertrained and is able to only detect

those repetitions that have occurred in the training set, a repetition detection model

described in Section 5.2.3 is also used, which finds the repeated word sequences with

possible filler words allowed after the edit IP. A rule-based approach is used to find

the beginning of an edit disfluency after the IP is detected.

Maxent for Edit Word Detection

In the Maxent approach, first a Maxent classifier is used for a 3-way classification:

SU, IP, or NULL. Then similarly to the HMM, heuristic rules are used to determine

the onset of the reparandum. One advantage of this approach is that it jointly

models SU and IP events. For example, if “that is great. that is great” has occurred

in the training set, then the model will learn that these are two SUs, rather than

an edit disfluency, even though the word sequence is repeated. In the repetition

detection module in the HMM, we predefine some cue words that will be SUs and so

would not be considered to be edit disfluencies (such as ‘uhhuh uhhuh’); whereas, the

probabilistic Maxent model is able to learn these kinds of cue words from the training

set and thus models them more elegantly. Also note that in the heuristic rules, the

system SU hypotheses are used when determining the onset of a reparandum based

on the IP hypotheses. For the Maxent approach, this SU information is generated

directly by the Maxent classifier so the SU detection is tightly integrated in the

system.

The features used in the Maxent model for the SU/IP/NULL detection task are

as follows:
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• All the features used for SU detection as described in Section 8.3.2.

• Repetition information. At each word boundary, this feature represents whether

there is a repeated word sequence (up to 3 words) that ends at that point, with

optional filler words allowed starting from that point.

• Fragment information. This feature represents whether a word is a fragment.

Only in the reference transcription condition can this feature be triggered.

In the speech recognition output condition, no word fragment information is

provided.

• Filler words. This feature represents whether there is a pre-defined filler phrase

after a word boundary.1

• Prosody posterior probabilities. A decision tree is trained for the binary classi-

fication task, IP or NULL, as in Section 5.2.3. The posterior probabilities are

represented in a cumulative binning way.

CRF for Edit Word Detection

The CRF approach used for edit word detection finds the entire region of the

reparandum, similarly to the named entity recognition task [148]. In this approach,

each word has an associated tag, representing whether it is an edit word or not. The

classes in the CRF edit word detection approach are: the beginning of an edit (B-E),

inside of an edit (I-E), each of which has a possible IP associated with it (B-E+IP

or I-E+IP), and outside of an edit (O). There is a total of 5 states in this model, as

shown in Table 9.6. The following is an example of a transcription excerpt together

with their class tags used in the CRF edit word detection model:

I I work uh i’m an analyst

B-E+IP I-E I-E+IP O O O O

1This is not from the filler word detection results; rather a list of cue words is used.
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and it got it got real rough

O B-E I-E+IP O O O O

The goal of this task is not only to find the reparandum extent, but also the IPs,

including the internal IPs inside a complex edit disfluency. According to the an-

notation guideline and structural event detection task definition, IPs are annotated

inside complex edit disfluencies, and they are also scored in the IP detection task.

Therefore, IPs are included in the target class when using CRF for edit detection in

order to identify the internal IPs inside complex edit disfluencies. For example, “I I

work” in the above example is the reparandum in a complex edit disfluency, with an

internal IP after the first “I”.

Table 9.6
States and transitions used by the CRF for edit word and edit IP
detection. The class tags are: the beginning of an edit (B-E), inside
of an edit (I-E), each of which has a possible IP associated with it
(B-E+IP or I-E+IP), and outside of an edit (O).

State number Notation Meaning Possible state destinations

0 O outside edit O, B-E+IP, B-E

1 B-E+IP begin edit with an IP O, I-E+IP, I-E

2 B-E begin edit I-E+IP, I-E

3 I-E+IP inside edit with an IP O, B-E+IP, I-E+IP, I-E

4 I-E inside edit I-E+IP, I-E

The CRF model is able to learn valid state transitions from the training data.

All of the possible states that a state can go to are shown in Table 9.6. Valid

state transitions are guaranteed, i.e., only state 1 or 2 (the beginning of the edit)

can transition to state 3 or 4 (inside a reparandum); whereas, state 0 cannot. An

advantage of the CRF method is that it is a probabilistic model, and it provides a

more principled way to represent this information than does using heuristic rules.
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Features used in the CRF method are the N-grams of words and POS tags, turn

change (as used in SU detection task), and all of the features used by the Maxent

IP detection model that are not used for SU detection.

9.4.2 Edit Detection Results

The different models for edit word and IP detection are compared in Table 9.7

using the CTS data. Results are shown for both tasks using the NIST error rate.

For the reference condition, the CRF is better at finding edit words, but poorer

at IP detection compared to the HMM or Maxent methods. This ties into how

the models are trained: the HMM and Maxent are trained to detect IPs, but the

heuristic rules used may not find the correct onset for the reparandum; whereas, the

CRF is trained to jointly detect the edit words and IPs and thus may not be as well

trained for IP detection. However, on the STT condition, we observe that the CRF

approach outperforms both the Maxent and HMM methods for both the edit word

and edit IP tasks, suggesting that the CRF degrades less for the edit IP detection

task on the STT condition. This is probably due to the fact that edit word and IP

detection are mutually beneficial from the joint detection approach.

Table 9.7
Results (NIST error rate in %) for edit word and IP detection, us-
ing the HMM, Maxent, and CRF approaches on the reference and
recognition output conditions of CTS data.

CTS

Approaches Edit word Edit IP

REF STT REF STT

HMM 54.33 85.32 33.21 73.66

Maxent 55.89 87.86 34.11 73.72

CRF 50.07 80.41 34.80 72.61
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Table 9.8 shows the results for BN edit word detection on both the reference

transcription and recognition output conditions, using the HMM and the Maxent

approaches. A CRF was not used for the BN data due to the computational re-

quirement of CRF. In addition, the edit disfluencies are very infrequent in BN. The

Maxent approach yields better results for both edit word and IP detection than the

HMM. Similar to previous findings, performance degrades severely in the STT con-

dition compared to using reference transcriptions, with error rate increase more than

that observed on the CTS edit word and IP detection tasks.

Table 9.8
Results (NIST error rate in %) for edit word and IP detection, using
the HMM and Maxent approaches.

BN

Approaches Edit word Edit IP

REF STT REF STT

HMM 45.96 93.20 34.30 93.20

Maxent 43.00 89.86 30.89 87.54

9.5 Chapter Summary

We have described the investigation of new data, new tasks, and new approaches

for structural event detection in the most recently RT-04 evaluation. Experiments on

the new RT-04 data for SU boundary detection are consistent with previous findings.

In addition, we applied the approaches used for SU detection (Maxent and CRF)

to other tasks, such as SU subtype detection and edit word detection. Results have

shown the Maxent and CRF outperform the prior HMM for edit word detection.

The CRF approach for edit word detection avoids using ad-hoc rules as used in the

HMM and Maxent approaches and allows more features to be easily incorporated.

A two-step method for SU/SU-subtype detection yields a reasonable baseline sys-
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tem performance, although additional research is needed to develop more effective

features for this task, including textual and utterance-level prosodic features.
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10. RELATED EFFORTS

In the previous chapters, we have described research related to each component of

the structural event detection system, i.e., the prosody model, the language model,

and their combination. In this chapter, we investigate factors that affect system

performance, including the word error rate in recognition output and different meth-

ods to automatically derive speaker change information. In addition, we conduct a

preliminary experiment to investigate whether acoustic and prosodic features can be

used for word fragment detection. This is not a task currently defined in the EARS

program. However, accurate identification of word fragments is helpful for edit word

detection and can possibly improve speech recognition performance.

This chapter is organized as follows. In Section 10.1, we investigate some factors

that impact the system performance for structural event detection. In Section 10.2,

we describe preliminary experiments on word fragment detection. A summary of

this chapter appears in Section 10.3.

10.1 Factors Impacting Performance

10.1.1 Word Error Rates (WER)

As we have already observed, there is a decreased accuracy on our structural

event detection system when testing on the STT output compared to using human

transcriptions, largely due to recognition errors. To understand just how much WER

affects performance, we consider STT outputs from several recognition systems. Ta-

ble 10.1 shows the SU and edit word detection results using several different STT

systems on CTS and BN corpora. The WER for each STT system is indicated. For

comparison, we also show results when using the reference transcription, which has
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essentially a 0% WER. All of the structural event detection models are trained and

tested on the RT-04 data set (see Table 9.1). The SU detection system is the major-

ity vote of the HMM, Maxent, and CRF approaches for CTS, and the combination

of the HMM and Maxent approaches via posterior probability interpolation. The

edit word detection system is the CRF approach for CTS, and Maxent model for

BN, as described in Section 9.4.

Table 10.1
SU and edit word detection results (NIST error rate in %) for CTS
and BN, on REF and various STT conditions using the RT-04 data.
For SU detection, results are reported for the SU boundary detection
error. STT-1 and STT-2 are two different STT outputs, and the
WER (%) for them is shown in the table.

Conditions WER SU boundary Edit word

REF 0 26.21 50.07

CTS STT-1 14.9 39.18 80.41

STT-2 18.6 44.26 80.92

REF 0 47.15 43.00

BN STT-1 11.7 59.73 89.86

STT-2 15.0 62.67 91.40

As can be seen in Table 10.1, system performance degrades more when using a

less accurate recognition output. Experimental results also show that word errors

have a more negative impact on edit word detection than on SU detection. The

relationship between WER and structural event detection performance appears to

be non-linear, especially for edit word detection. For edit word detection, better

STT accuracies only slightly improve performance, and there is a large gap between

using the best STT output and the reference condition. This suggests that in the

STT output more errors occur in the region of edit disfluencies and thus the word

errors have a bigger impact on the edit word detection task. Also recall a main dif-
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ference between the reference transcription and STT output for edit word detection

is whether word fragment information is available or not. The lack of word fragment

knowledge greatly impacts edit word detection on the STT condition. For SU detec-

tion, system performance is clearly impacted by different WERs. This makes sense

since intuitively sentence initial and final words have a greater effect on the system

performance for SU detection. Additionally, deletion errors in the STT output more

are likely to occur in short SUs, such as backchannels, which have a more severe

impact on SU detection than other deletion errors that occur in the middle of an

utterance.

10.1.2 Speaker Label for SU Detection

As we have pointed earlier, speaker change is useful information for detecting

SU boundaries. Speaker change affects the prosody model since it is in the prosodic

feature set (as a single feature and one used to derive other features related to

a “turn”). Looking at the feature usage by the decision trees for SU detection

(Table 5.3 and Table 5.6), we notice that several features related to the speaker

change are used by the trees. In the HMM, speaker change also affects the LM since

it is used to chunk the word string into per-speaker based sequences: the continuous

speech from the same speaker is concatenated into a sequence, to which a hidden

event LM is applied. It is reasonable for a LM to hypothesize an SU at the end of a

word sequence when there is a speaker change.

CTS and BN are processed differently to derive speaker turn change information.

In CTS, since speech is recorded in separate channels, i.e., each channel corresponds

to one speaker, the other channel needs to be considered to find whether there is

a speaker change. Speech in each channel is segmented in places where there is a

long pause, then the segments from the two channels are sorted using their beginning

time. For one segment, if the following speech segment comes from the other channel,

then a speaker change tag is recorded after this speech segment. Figure 10.1 shows
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how the speaker change information is obtained for CTS. Segmentations 1, 4, and

5 are from speaker A; segmentations 2, 3, and 6 are from speaker B. After these

segmentations are sorted based on their starting time, speaker change is added in

those places marked with an arrow in the figure (i.e., after segment 1 for speaker

A, and after segment 3 for speaker B). Note that there is a lot of overlapping in

conversational speech (from the other channel), so this is simply an approximation

of speaker change.

1


2
 3


4
 5

Speaker A:


Speaker B:
 6


Fig. 10.1. An illustration of how speaker change is obtained for the
CTS data. An arrow represents a speaker change after that segment.

In BN, there is only one channel and speaker information is unavailable; therefore,

automatic speaker labeling is needed to identify speaker change. We investigated

two different approaches to generate speaker labels for the pause-based segments

described in Section 5.1.3. Note again that this investigation is conducted for the

test set.

• Automatic speaker clustering: This method is used in speech recognition. An

automatic clustering approach groups similar speech segments together for fea-

ture normalization or speaker adaptation [87]. The grouped segments have a

cluster ID, which is used as a speaker label for the structural event detection

tasks.

• Speaker diarization: An important task supported by the EARS MDE program

is diarization. The goal is to add labels to the regions of the speech signal rep-

resenting their sources, e.g., a particular speaker, music, or noise. We use the

ICSI speaker diarization subsystem that generates the associated speaker la-

bels for chunks of speech [151]. The algorithm first splits speech into k clusters
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(generally greater than the expected number of speakers), then automatically

clusters chunks of speech based on a metric similar to Bayes information met-

ric, until there is no likelihood increase. The features used in the system are

MFCC or PLP features depending on different broadcast shows. Speaker labels

for the segments used in the event detection tasks can be obtained from this

speaker diarization system output. Note that the pause-based segments do not

align well with the chunks of speech corresponding to different speakers from

the diarization system output. Each segment may contain multiple speakers

based on the speaker diarization results. In this case, the speaker that has the

majority of the speech in this segment is chosen as the speaker label for the

event detection tasks.

Table 10.2 compares these two different methods to derive speaker labels for the

BN SU detection task on the RT-04 test set. Results are reported for the reference

condition using the improved HMM system (as shown in Table 9.2). We observe

significant improvements when using the speaker labels derived from the speaker

diarization output, suggesting that automatic speaker clustering is less appropriate

for structural event detection. The goal of the automatic clustering is to cluster

similar speakers together (based on acoustic similarity) for the purpose of recognizing

words, and is less concerned with providing the correct speaker label.

Table 10.2
Comparisons of different ways to derive speaker labels on the RT-
04 test set for the BN SU boundary detection task. Results are
shown using the NIST error rate (%) for the HMM on the reference
transcription condition.

BN

Speaking Labeling Methods SU Error Rate

Automatic clustering in STT 58.04

Diarization 51.76
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So far we have only used the speaker diarization results to derive speaker labels

for the pause-based segments of speech. We have conducted an experiment that uses

the speaker diarization results to segment speech, rather than using a pause-based

segmentation. However, this yields worse results than using the pause-based seg-

ments to which a speaker label is then assigned according to the speaker diarization

results. Since the speaker diarization algorithm uses only acoustic information, it

sometimes hypothesizes a speaker change in the middle of a continuous phrase from

one speaker and thus can increase SU detection errors. A joint model for speaker

recognition, speech recognition, and structural event detection is an important future

direction.

10.2 Word Fragment Detection

In this section, we describe some preliminary experiments related to the detection

of word fragments, which is not evaluated as a structural event detection task by

itself in the EARS program. A word fragment, also called a partial word, occurs

when a speaker cuts off speaking in the middle of a word. Word fragments indicate

the presence of disfluencies; however, most current speech recognizers do not detect

them, thus important information is lost for disfluency detection. Accurate word

fragment detection should also be very important for speech recognition.

10.2.1 Introduction

Word fragments occur frequently in spontaneous speech, and are good indicators

for speech disfluencies [13, 56]. Levelt found the percentage of the disfluencies that

contain a word fragment to be 22% for a pattern description task in Dutch [67];

Lickley reported 36% for casual conversations in British English [152]; Bear et al.

found 60% for the ATIS corpus [49]. We examined 83 conversations of Switchboard

data and found that about 17% of the disfluencies contain word fragments. However,

accurate identification of word fragments in a speech recognizer is still an unsolved
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problem. In most cases, they are simply treated as out-of-vocabulary words or

are often incorrectly recognized as words in the vocabulary. This not only affects

accurate recognition of neighboring words, but also fails to provide the important

information that a word fragment is present, which is important for detecting an

interruption point in a disfluency.

The following is an example of the human transcription and the speech recogni-

tion output from the Switchboard corpus:

Human transcription:

and it’s all just you know i’ve just eating more sort of eat to my apper- appetite

Recognizer output:

and it’s all just see now i’m just eating more sort of need to my out bird’s appetite

We can see that in the recognition output, the word fragment “apper-” is incorrectly

recognized as two words in the vocabulary. Additionally, due to the failure to identify

the word fragment “apper-”, it will be extremely difficult to identify the disfluency

in the recognition results.

The study of word fragments has been conducted across several disciplines. Psy-

chologists and linguists [38] suggest that speakers rarely interrupt a word when it is

correct on its own, but they often do so when it is not. When a word is complete,

the speakers are committing themselves to its correctness (at least at that moment).

While linguists and psycholinguists have considered this problem from the pro-

duction point of view, computational linguistics have investigated this problem with

the goal of better speech recognition and disfluency detection. As noted by Beat

et al. in [49], knowledge about the location of word fragments would be an invalu-

able cue to both detection and correction of disfluencies. Heeman and Allen [56]

proposed an integrated model for the detection of speech repairs that incorporates

word fragments as an important feature. Nakatani and Hirschberg [13] proposed a

“speech-first” model for the detection of speech repairs using acoustic-prosodic cues.

They found that the presence of word fragments is an important indicator of speech
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repairs, along with the other prosodic-acoustic features such as silence duration, en-

ergy, and pitch. They analyzed the properties of word fragments, for example, the

distribution of the fragments in syllable length, the distribution of initial phonemes

in the fragments, and some acoustic cues (glottalization and coarticulation) in the

fragments. Although the role of word fragments as an indicator of disfluencies is em-

phasized, they did not address the problem of how to detect the occurrence of word

fragments, but only suggest that a word-based language model for word fragment

detection is unlikely to be effective. O’Shaughnessy [65] observed in the ATIS corpus

that when speaker stops in the middle of a word and then resumes speaking with no

changed or inserted words (i.e., a repetition), the pause lasts 100-400 ms in 85% of

the examples (with most of the remaining examples having pause of about 1 second

in duration). He also found that three-fourths of the interrupted words do not have

a completion of the vowel in the intended word’s first syllable (i.e., the speaker stops

after uttering the first consonant).

Although word fragments should play an important role for disfluency processing

in spontaneous speech, the identification of word fragments is yet to be tackled by

the speech community. It is infeasible to treat word fragments as regular words

by including all the partial words in the dictionary. Furthermore, it may be quite

difficult to train a good model to cover all the word fragments due to the variability

of the possible partial words. Rose and Riccardi modeled word fragments by using a

single word fragment symbol frag in the system “How May I Help You” [153]. Their

system was improved by explicitly modeling word fragments along with the filled

pauses and non-speech events; however, they did not directly report on the impact

of modeling word fragments.

We investigate the problem of word fragment detection by using speech analysis.

Our goal in this study is to identify reliable acoustic-prosodic features for word

fragment detection.
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10.2.2 Acoustic and Prosodic Features

Our hypothesis is that there are indicative prosodic cues and voice quality char-

acteristics at the boundary of word fragments; hence, our approach is to extract a

variety of acoustic and prosodic features and build a classifier using these features

for the automatic identification of word fragments. The same prosodic features as

used for the structural event detection in Chapter 5 are used. In addition, we be-

lieve that when the speaker suddenly stops mid-word, the voice quality is more likely

to change, so a new set of voice quality related features was investigated for word

fragment detection.

Human speech sounds are commonly considered to result from a combination of

a sound energy source modulated by a transfer (filter) function determined by the

shape of the vocal tract. As the vocal cords open and close, puffs of air flow through

glottal opening. The frequency of these pulses determines the fundamental frequency

of the laryngeal source and contributes to the perceived pitch of the produced sound.

The voice source is an important factor affecting the voice quality, and thus our

investigation focuses on the voice source characteristics. The analysis of voice source

has been done by inverse filtering the speech waveform, analyzing the spectrum, or

by directly measuring the airflow at the mouth for non-pathological speech. A widely

used model for voice source is the Liljencrants-Fant (LF) model [154,155]. Research

has shown that the intensity of the produced acoustic waveform depends more on

the derivative of the glottal flow signal than the amplitude of the flow itself.

An important representation of the glottal flow is given by the Open Quotient

(OQ). OQ is defined as the ratio of the time in which the vocal folds are open to

the total length of the glottal cycle. From the spectral domain, it can be empirically

formulated as [156]:

5.5 × OQ = log((H∗
1 − H∗

2 + 6)/0.27) (10.1)

where H∗
1 and H∗

2 are the amplitudes of the first and the second harmonics of the

spectrum.
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Different phonation types, namely, modal voicing, creaky voicing, and breathy

voicing, differ in the amount of time that the vocal folds are open during each glottal

cycle. In modal voicing, the vocal folds are closed during half of each glottal cycle.

In creaky voicing, the vocal folds are held together loosely resulting in a short open

quotient. In breathy voicing, the vocal folds vibrate without much contact thus

the glottis is open for a relatively long portion of each glottal cycle. We think it

is possible that there are some creaking or breathy voicing when a word fragment

occurs.

For the word fragment detection task, the following voice quality related features

are investigated.

• Jitter is a measure of perturbation in the pitch period that has been used

by speech pathologists to identify pathological speech [157]; a value of 0.01

represents a jitter of one percent, a lower bound for abnormal speech.

The value of jitter is obtained from the speech analysis tool Praat [158]. The

pitch analysis of a sound is converted to a point process, which represents a

sequence of time points, in this case the times associated with the pitch pulses.

The periodic jitter value is defined as the relative mean absolute third-order

difference of the point process (or the second-order difference of the interval

process).

jitter =

∑N−1
i=2 |2 × Ti − Ti−1 − Ti+1|∑N−1

i=2 Ti

(10.2)

where Ti is the ith interval and N is the number of the intervals of the point

process. If no sequence of three intervals can be found whose durations are be-

tween the shortest period and the longest period, the result is undefined [158].

• Spectral tilt is the overall slope of the spectrum of a speech or instrument

signal. For speech, it is responsible for the prosodic features of accent, in that

a speaker modifies the tilt (raising the slope) of the spectrum of a vowel to put

stress on a syllable. In breathy voice, the amplitude of the harmonics in the

spectrum drops off more quickly as the frequency increases than in the modal
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or creaky spectra, i.e., breathy voice has a greater slope than creaky voice.

Spectral tilt is measured in decibels per octave. A linear approximation of the

spectral envelope is used to measure spectral tilt.

• OQ is defined in Equation (10.1). It is derived from the difference of the am-

plitude of the first and the second harmonics of the spectral envelope of the

speech data. Studies have shown that the difference between these two har-

monics (and thus the OQ) is a reliable way to measure the relative breathiness

or creakiness of phonation [159]. Breathy voice has a larger OQ than creaky

voice. As an approximation, F0 and 2 × F0 are used for the first and the

second harmonics in the spectrum.

10.2.3 Experiments

Experimental Setup

Our goal is to identify reliable acoustic-prosodic features for word fragments.

Similar to the event detection tasks in Chapter 4, the task of word fragment identi-

fication is viewed as a statistical classification problem, i.e., for each word boundary,

a classifier determines whether the word before the boundary is a word fragment or

not using acoustic-prosodic features.

Part of the Switchboard corpus is used for our experiments.1 In the human

transcriptions, word fragments are identified (around 0.7% of the words are word

fragments). 80% of the data is used as the training data, with 20% remaining for

testing. At each boundary location, prosodic features and voice quality measures

are extracted as described in the previous section. A decision tree classifier was

trained from a downsampled training set that contains 1438 samples, and tested on

a downsampled test set with 288 samples (50% of the samples in the training and

test set are word fragments).

1See http://www.icsi.berkeley.edu/˜yangl/thesis/fragment.html for information about the conver-
sations used for this study.



196

Experimental Results

Table 10.3 shows the confusion matrix results for the classification task of word

fragment versus complete words using the downsampled data. The precision and

recall for this fragment detection task are 74.3% and 70.1% respectively. The overall

accuracy for all the test samples is 72.9%, which is significantly better than the

chance performance of 50%. These results suggest that acoustic-prosodic features

are effective for word fragment detection.

Table 10.3
Word fragment detection results (in confusion matrix) on the down-
sampled data of Switchboard corpus.

hypothesis

complete fragment

reference complete 109 35

fragment 43 101

An inspection of the decision tree’s feature usage in the results reveals the most

effective features for distinguishing word fragments from complete words. Table

10.4 reports the feature usage for this word fragment detection task. Figure 10.2

shows the pruned decision tree for this task. Among the voice quality features, jitter

is queried the most by the decision tree. This is likely due to the fact that when a

speaker suddenly cuts off in the middle of the word, there is abnormality of the vocal

fold (e.g., the pitch period) that is captured by jitter. The average OQ (AVG OQ)

is also chosen as a useful feature, suggesting that a mid-word interruption generates

some creaky or breathy voice. The questions produced by the decision tree show

that word fragments are hypothesized if the answer is positive to the questions such

as ‘jitter > 0.018053?’, ‘average OQ < 0.020956?’, or ‘average OQ > 0.60821?’.

Speech with these attributes has an abnormal voice quality. We have also conducted
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classification experiments using only two features, jitter and average OQ, and a

classification accuracy of 68.06% is obtained.

Table 10.4
Feature usage (%) for word fragment detection using the Switchboard data.

Feature Usage (%)

JITTER 27.2

ENERGY PATTERN BOUNDARY 24.1

F0K WIN DIFF LOHI N 23.8

AVG OQ 14.7

TURN CNT 8.4

PAU DUR 1.8

From Table 10.4, we also observe that one energy feature and one F0 feature

are queried frequently. However, we may need to be careful of interpreting these

prosodic features, because some word fragments are more likely to have a missing

(or undefined) value for the stylized F0 or energy features (due to their short duration

and unvoiced frames). For example, in one leaf of the decision tree, a word fragment

is hypothesized if the energy slope before the boundary is an undefined value (as

shown in Figure 10.2, the question is ‘ENERGY PATTERN BOUNDARY in Xr,

Xf?’, where ‘X’ means undefined value).

Notice that the usage of the pause feature is very low, even though a pause is

expected after a sudden closure by the speaker. One reason for this is that the

recognizer is more likely not to generate a pause in the phonetic alignments when

the pause after the mid-word interruption is very short. For example, around two

thirds of the word fragments in our training and test set are not followed by a pause

based on the alignments. Additionally, there are many other places (e.g., sentence

boundaries or filled pauses) that are often followed by a pause. Therefore, being
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JITTER < 0.049782:   0

|   ENERGY_PATTERN_BOUNDARY in rf,fr,fX,rr,ff,rX :  0

|   |   F0K_WIN_DIFF_LOHI_N < -0.093224:  0

|   |   |   AVG_OQ < 0.60821:  0

|   |   |   |   TURN_CNT < 13.5:   FRAGMENT

|   |   |   |   |   ENERGY_PATTERN_BOUNDARY in rf,fX,Xr,ff,Xf :  0

|   |   |   |   |   |   JITTER < 0.018053:   0

|   |   |   |   |   |   JITTER >= 0.018053:  FRAGMENT

|   |   |   |   |  ENERGY_PATTERN_BOUNDARY in fr,rr,rX: FRAGMENT

|   |   |   |   TURN_CNT >= 13.5:   0

|   |   |   |   |   AVG_OQ < 0.20956:  FRAGMENT

|   |   |   |   |   AVG_OQ >= 0.20956:   0

|   |   |   AVG_OQ >= 0.60821:   FRAGMENT

|   |   F0K_WIN_DIFF_LOHI_N >= -0.093224:  0

|   ENERGY_PATTERN_BOUNDARY in Xr,Xf :   FRAGMENT

JITTER >= 0.049782:   FRAGMENT

|   F0K_WIN_DIFF_LOHI_N < -0.14995:   FRAGMENT

|   F0K_WIN_DIFF_LOHI_N >= -0.14995:   FRAGMENT

|   |   ENERGY_PATTERN_BOUNDARY in rf,fX,rr,ff,rX :  0

|   |   |   PAU_DUR < 12.5:  0

|   |   |   PAU_DUR >= 12.5:   FRAGMENT

|   |   ENERGY_PATTERN_BOUNDARY in fr,Xr,Xf :  FRAGMENT


Fig. 10.2. The pruned decision tree used to detect word fragments.
The decision is made in the leaf nodes; however, in the figure the
decision for an internal node in the tree is also shown.

followed by a pause cannot always accurately distinguish between a word fragment

and other complete words.

10.3 Chapter Summary

We have investigated a few factors that impact the structural event detection

system performance, including the WER of the speech recognition results and the

speaker labeling approaches. Better recognition output has a greater impact on SU

detection than edit word detection, suggesting word errors may occur more often in

the edit disfluency region. The difference across BN and CTS also suggests that edit

word detection is relatively easier for BN human transcription condition than CTS
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because of different styles of the two corpora. Comparison of two different speaking

labeling methods for BN SU detection task has shown that using the speaker labels

that are derived from the speaker diarization system is more appropriate than using

the automatic speaker clustering as used in speech recognition.

Accurate identification of word fragments would be very helpful for a disfluency

detection algorithm because the occurrence of word fragments is a good indicator of

speech disfluencies. We investigated the problem of word fragment detection using

acoustic and prosodic features. Preliminary experimental results show that some

acoustic-prosodic features provide useful information for word fragment detection.

As a first approximation of the characterization of word fragments via the acoustic-

prosodic cues, we find these results encouraging. They offer an alternative approach

to build acoustic models and suggest speech analysis can be quite relevant to building

speech recognition systems that are more capable of recognizing fragments.

The experiments for word fragment detection are very preliminary. Investigations

using large corpora and more sophisticated versions of our measurements, especially

for the voice quality measurements, should be made. Additionally, experiments

were conducted using only a downsampled data set due to the highly skewed data

distribution. The current word fragment detection method would generate many

false alarms in the real test situation, i.e., on non-downsampled data. We should

also investigate the performance of our algorithm when applying it directly to speech

recognition results.
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11. FINAL REMARKS

11.1 Impact on Other Research Efforts

The research in this thesis has had impact on related research efforts; hence, in

this section, we discuss three research efforts that have benefited from this work.

One uses the structural event detection system output to further improve speech

recognition by modifying speech segments. The other two involve applying the tech-

niques that have been developed in this thesis to other corpora: a multimodal corpus

and a multiparty meeting corpus.

11.1.1 Using Structural Event Information for Word Recognition

Theoretically a joint model is needed to recognize words and structural events

simultaneously. However, due to the lack of a general framework for this purpose,

we have utilized a two-step approach for investigating the impact of structural event

information on speech recognition.

We believe that linguistic segments should be better than acoustic segments for

speech recognition. For example, in LM rescoring, intuitively the initial word of

a sentence should not be dependent on the final words of the previous sentence.

Hence, information about sentence boundaries should be particularly beneficial to a

LM. Yet currently the LM treats each acoustic segment used in speech recognition

as a ‘sentence’. The error analysis in [160] showed that the errors near the sentence

boundaries are higher than in other places. This motivates our investigation of
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whether SU boundary information can be used for generating better segments to

improve recognition accuracy.1

  Segment &

  concatenate


Speech


 Segments

 Re-recognition


Final STT

output


  Speech

  Recognizer


 SU detection

STT output
 SU hypothesis


Fig. 11.1. Using SU information for re-recognition in BN.

Figure 11.1 shows how SU information is fed back to a recognizer in a two-step

approach. First the SU detection system is applied to the recognition output. Then

speech is resegmented using the hypothesized SUs and the word alignments. See [161]

for details on the segmentation step. Finally the new segments are used for another

pass of speech recognition.

Evaluations were conducted using the RT-03 development set of BN data.2 Ta-

ble 11.1 shows the WER after re-segmenting the speech using the SU detection results

and re-recognition. Results are shown using both reference SUs and the system gen-

erated SUs. The SU detection system is the improved HMM system. Also shown in

the table is the baseline recognition results using acoustic segments obtained from a

speech/non-speech detector. The recognizer used in these experiments is a simpli-

fied version of the SRI BN recognizer [162]. As observed from the table, using SU

information to chop the speech yields better segments and thus better recognition

performance. Also using the reference SUs results in better recognition accuracies

than using automatically detected SUs (due to the SU insertion and deletion errors

in the latter). These results suggest that linguistic segments provide an important

alternative to acoustic segments for recognition. It also highlights the importance

1This is the work of Sebastien Coquoz at ICSI [161]. This result is included here to show the impact
of our system.
2This is half of the RT-03 test set discussed in Table 3.2.



202

of the interaction between structural event detection and speech recognition. This

result is quite preliminary because of the small testing set used, and thus additional

investigation is needed. Additionally, this is only a loosely coupled approach, i.e.,

run recognition first, then detect structural events based on the recognition results,

and finally re-run recognition using the structural event hypotheses. A more tightly

coupled approach should result in a better performance.

Table 11.1
WER (%) when SU information is fed back to re-segment and re-
recognize speech, compared to the baseline using the acoustic seg-
ments, evaluating on half of the RT-03 BN data.

WER

Use reference SUs 13.0

Use automatically generated SUs 13.3

Baseline: acoustic segments 14.0

11.1.2 SU Detection in a Multi-modal Corpus

Generalization of CTS Models

Our SU detection model was applied to the wombat data set, which was collected

to investigate multimodality in dialog (see http://vislab.cs.wright.edu/KDI/). The

audio was digitally recorded using a unidirectional boom-mounted microphone placed

at a fixed distance for each interlocutor in a somewhat noisy laboratory environment.

The dialog concerns development of a plan to catch a family of intelligent wombats

that has taken over the theater in the town of Arlee in order to send them back to

Australia. Transcripts were force aligned to the audio signal and hand corrected.

The speech was annotated using the LDC V5 annotation guideline as for CTS and

BN corpora [71]. The task domain differs from CTS and BN in that it involves the
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development of a plan, and the audio is far noisier. There are three dialogs with six

distinct participants. Each recording is about 10 minutes of speech.

The same models as used for the RT-03 CTS data are used, since there is no

similar multimodal corpus available for modeling training. Therefore, there is some

domain mismatch between the training and the test conditions. The reason we chose

to use CTS is because both corpora involve conversational speech. This is reflected

by the percentage of the SUs in the wombat data and the CTS data, roughly 14%

interword boundaries are SU boundaries.

Table 11.2 shows the SU boundary detection results for this task using the HMM

and the Maxent approaches alone, and in combination. Note again that this is

conducted using the reference transcription. We observe similar patterns as on the

CTS reference transcription condition (Table 8.2); however, the error is much greater.

The noisier recording conditions and the new task domain challenges both the textual

and prosodic knowledge sources.

Table 11.2
SU detection results (NIST error rate in %) on the Wombat data.
∗ Note that the combined result is not shown when using textual
information only, in order to make results in parallel to the results
in Chapter 8 (Table 8.2 and Table 8.4).

HMM Maxent Combination

Textual+prosodic 45.25 44.70 43.49

Textual only 63.36 58.72 ∗

Combining Speech Features with Gesture Features

In this thesis we have only used the recorded speech data for structural event

detection. However, humans use every mode they can, such as gesture and eye gaze,

to convey information and better understand each other.
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The HMM was applied to the multimodal wombat corpus, using prosodic infor-

mation, gestural information, and lexical cues for finding SUs.3 Experiments have

confirmed that each knowledge source provides additional information, and their

combination achieves the best performance [163]. Similarly to the prosody model,

the sampling and bagging techniques have been used for building the gestural model

and have proven effective. Preliminary experiments have also shown that prosodic

features and gestural features do not combine as well when the features are jointly

modeled by the decision trees as when they are loosely combined by interpolating

the posterior probabilities of the decision trees from each source. This work sug-

gests that the modeling approach we have developed for SU detection in speech is

effectively extended to other knowledge sources.

11.1.3 Dialog Act Detection in Meeting Corpus

There has been a growing interest in automatic processing of multiparty meet-

ings. Common goals in addition to word recognition include automatic browsing,

retrieval, question-answering, and summarization. Such tasks would require seg-

menting continuous speech into functional units, or dialog acts (DAs). These DAs

are similar in a sense to the SUs investigated in conversational speech.

We explore both DA boundary detection and its subtype detection using the

ICSI Meeting Corpus [164], which includes 75 naturally occurring meetings con-

taining roughly 72 hours of multitalker speech data and associated human-generated

transcriptions.4 The corpus was hand-annotated for dialog acts as described in detail

in [166, 167]. We grouped various DA labels into five broad categories: statements,

questions, backchannels, fillers, and disruptions. The meeting data was recognized

by an SRI recognizer [162], which was trained on CTS data and yielded a WER of

about 39% on the entire meeting corpus. The corpus is split into 51 meetings for

training, 11 for development, and the remaining 11 meetings for testing.

3This is joint work with Lei Chen at Purdue University [163].
4This is joint work with Jeremy Ang at ICSI [165].
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An HMM as described in Chapter 4 is used for DA boundary detection, similarly

to SU boundary detection. For this experiment, only a single pause feature is used

as the prosodic feature, and a single decision tree is trained as the prosody model.

A hidden event LM is trained to model the joint word and DA event sequence.

Table 11.3 shows the DA boundary detection results using the human transcription

or STT output. About 16.2% of the word boundaries are at the end of a DA, which

is comparable to the percentage of SUs in CTS. As can be seen, the prosody model

contributes more on the STT condition to the combined results than the reference

condition, as was found in the CTS SU detection results.

Table 11.3
DA boundary detection results (NIST error rate in %) on ICSI Meet-
ing data. Results are for the reference transcriptions (REF) and STT
output, using the pause decision tree (pause DT) model, hidden event
LM, and the HMM combination of them.

pause DT LM HMM Combination

REF 56.67 45.92 43.54

STT 58.80 61.81 54.72

A Maxent classifier like that used for SU subtype detection is built for DA sub-

type detection. The same lexical features as for the SU subtype detection task

are used. However, for this experiment the prosodic features (duration, pitch, and

energy) are extracted from the whole DA unit, unlike those used in SU subtype de-

tection task, which focuses only on the features associated with each word boundary.

Table 11.4 shows the DA subtype classification accuracy results using the reference

DA boundaries for both the human transcriptions and recognition output.5 Accu-

racy is measured as the percentage of the DAs that are labeled with the correct

class. Results are shown when using only word-based features, and the combined

5The reference DA boundaries for the recognition output are generated by aligning the recognition
words with reference transcriptions plus the DA annotations.
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word-based features and the binned posterior probabilities from the decision tree.

As can be seen, classification accuracy is significantly better than chance perfor-

mance, and incorporating the prosodic information improves classification accuracy.

See [165] for more details when automatic DA boundary detection is used, which uses

a similar two-step approach as used for the SU/SU-subtype detection as described

in Chapter 9.

Table 11.4
DA subtype classification accuracy (%) using the reference DA
boundaries of the ICSI Meeting corpus using the human transcrip-
tions and recognition output. Two conditions are used: word-based
features only, and the combined word-based features and the binned
posterior probabilities from the decision tree (DT). Chance perfor-
mance is obtained when the majority type (statement) is hypothe-
sized for each DA.

Chance Word features Word + DT posteriors

REF 55.08 79.53 81.18

STT 57.07 72.33 73.96

11.2 Summary of Experiments

A systematic study has been conducted on automatic detection of structural

events in speech, namely, SU, edit disfluency, and filler detection, with SU and

disfluencies being of the main focus. Experiments were conducted on two corpora

(conversational speech and broadcast news speech) and two types of transcriptions

(human transcriptions and speech recognition output).

Experiments show that speakers use prosodic cues to resolve ambiguities in

speech, signal the end of an SU, identify the interruption point in an utterance,

or mark discourse structure. Prosodic features provide a valuable knowledge source

for automatic structural event detection, with different prosodic features found to
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be effective for different corpora and speaking styles. Additionally, performance of

the prosody model varies for different structural event detection tasks because of the

different event distributions and the inherent characteristics of the tasks.

Textual information was found to be an important knowledge source for detect-

ing structural events. The hidden event LM has performed reasonably well for such

tasks. The word-based N-gram has been extended, to include more textual cues,

such as POS, automatically induced classes, and syntactic chunks. Some lexical fea-

tures remain to be investigated, such as parsing information. A repetition pattern

detector was also developed for edit disfluency detection. Generally when used alone,

a word-based LM is superior to the prosody model for the structural event detection

tasks. However, the combination of the prosody model and LM usually outperforms

either individual model, suggesting the importance of integrating multiple knowledge

sources for improving system performance. Both the prosody model and LMs de-

grade when using the recognition output due to the word errors and incorrect phone

alignments. We have found that the LM has greater relative error increase when

using recognition output instead of human transcriptions than the prosody model.

Several factors that have an impact on the event detection performance have been

studied, including the recognition error rate and different speaker labeling methods.

We have investigated the imbalanced data set problem encountered in training the

prosody model. A variety of sampling and bagging methods were evaluated for the

SU boundary detection task. If classification accuracy is the performance measure,

then using the original training set yields the best results when the prosody model

is used alone; however, if the performance metric is ROC or if the minority class

is deemed of more interest, then sampling methods are more important. Bagging

generates multiple classifiers, reduces the variance, and significantly improves the

system performance. Studies across the SU and IP tasks have also highlighted their

inherent differences with respect to machine learning methods.

Three modeling approaches have been compared for combining knowledge sources,

the HMM, Maxent, and CRF approaches for SU detection. An HMM is a generative
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approach; whereas, the Maxent and CRF are discriminative models that directly es-

timate the posterior probabilities of events given observations (textual and prosodic

features). The Maxent approach only models local information; whereas, both the

HMM and CRF are able to model the entire sequence. The Maxent and CRF are

better at integrating overlapping textual information, but currently only use the

binned posterior probabilities from the prosody model and thus ignore fine-grained

knowledge about prosody, one possible reason that their performance degrades more

in the STT conditions. The HMM makes more effective use of the prosody model,

but does not jointly model various textual features. A model combining all these

approaches generally achieves the best performance.

These approaches were also examined for edit disfluency detection. Both the

HMM and the Maxent first detect the interruption points and then apply heuris-

tic rules for determining the onset of the reparandum. The CRF provides a more

principled way to incorporate knowledge sources in a probabilistic way for detecting

the extent of reparandum, avoiding the ad-hoc rules used in the HMM and Maxent

methods.

11.3 Contributions

The contributions of this thesis are three fold.

• A systematic and comprehensive investigation of structural event detection in

speech has been conducted. This includes finding more indicative prosodic fea-

tures, effectively using more textual information, and developing better meth-

ods for constructing each model and combining different models than in prior

work. Our investigations across different corpora, using both human transcrip-

tions and recognition output, and three types of structural events have enabled

us to create better models for structural events.

• This thesis also emphasizes the importance of using knowledge from other

disciplines to improve spontaneous speech event processing. First, machine
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learning techniques are crucial for training improved prosody models from an

imbalanced data set and for combining multiple classifiers. Second, methods

from natural language processing are important for more effectively exploiting

textual information. Finally, speech analysis measurements offer additional

valuable features for extending our prosodic feature set. The knowledge from

these disciplines has been beneficial to our ultimate goal of better modeling

speech events.

• The research done in this thesis has proven helpful to several related research

efforts. A preliminary study has shown that using the structural event out-

put can improve speech recognition accuracy. Ongoing research attempts to

tightly integrate the event information into a statistical LM for speech recog-

nition. The methods developed in this thesis have been successfully applied

to two other corpora: prosodic and gestural features are combined with the

hidden event LM for SU detection in a multimodal corpus; the SU/SU-subtype

detection approach has been successfully utilized for dialog act detection and

in a multiparty meeting corpus.

11.4 Future Work

There are many important future directions for this work on structural event

detection in speech. A few directions that are most relevant to the research in this

thesis are listed below.

Additional acoustic-prosodic features should be evaluated for their effectiveness

in detecting different structural events. Long-span features that capture supraseg-

mental information are an important direction. Speaker dependent modeling is an

interesting and important avenue for improving our models, since different speakers

have different speaking styles. For example, some speakers do not pause between

SUs, while others use very specific discourse markers. A word-dependent prosody

model may also be helpful for discourse marker detection.
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Another direction would be to develop a better modeling approach for the prosody

model. We have only extensively investigated the imbalanced date set problem

when training the decision tree prosody model. Other directions include using other

machine learning techniques, such as support vector machines (which have shown

a great success in many applications) to implement the classifier, or methods that

more effectively combine multiple classifiers.

For textual information, a future direction is to include more syntactic structure

in the knowledge sources. Simple N-gram LMs (even those that are POS- or chunk-

based) cannot capture such higher level information. In our error analysis, we have

found that there are many insertion errors at the phrase boundaries. Hence, parse

structure information would be helpful for eliminating these insertion errors. In

addition, the Maxent and CRF approaches have proven to be more effective at

modeling correlated textual features, yet they currently use only binned prosody

model posterior probabilities. Methods for direct incorporation of prosodic features

into the Maxent and CRF approaches need to be investigated.

Since speech recognition errors have a significant impact on the system perfor-

mance, examining the use of confusion networks or word lattices [168] can leverage

multiple recognizer hypotheses and thus may improve performance for both struc-

tural event detection and speech recognition. A tightly coupled framework for both

the structural event detection and speech recognition is a final important future

direction for the detection of the events themselves.

Most of the future work involves creating better models. We believe that although

the data-driven approach used in this thesis is important for building automatic

structural event detection systems, measurement studies are an important avenue

for investigating what features are most important for detecting these events.

Structural event detection is an important bridge that links speech recognition

and downstream language processing modules. Therefore investigating the impact

of structural event detection on downstream applications, such as parsing, machine
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translation, summarization, and information extraction, is an important future di-

rection.



LIST OF REFERENCES



212

LIST OF REFERENCES

[1] D. Jones, F. Wolf, E. Gibson, E. Williams, E. Fedorenko, D. Reynolds, and
M. Zissman. Measuring the readability of automatic speech-to-text transcripts.
In Proceedings of the European Conference on Speech Communication and
Technology, pages 1585–1588, 2003.

[2] M. Gregory, M. Johnson, and E. Charniak. Sentence-internal prosody does
not help parsing the way punctuation does. In Proceedings of Human Lan-
guage Technology Conference / North American Chapter of the Association
for Computational Linguistics annual meeting, 2004.

[3] J. G. Kahn, M. Ostendorf, and C. Chelba. Parsing conversational speech
using enhanced segmentation. In Proceedings of Human Language Technology
Conference / North American Chapter of the Association for Computational
Linguistics annual meeting, 2004.

[4] W. N. Campbell. Durational cues to prominence and grouping. In Proceedings
of ECSA Workshop on Prosody, pages 38–41, Lund, Sweden, 1993.

[5] R. Lickley and E. Bard. On not recognizing disfluencies in dialog. In Proceed-
ings of the International Conference on Spoken Language Processing, pages
1876–1879, 1996.

[6] J. R. De Pijper and A. A. Sanderman. On the perceptual strength of prosodic
boundaries and its relation to suprasegmental cues. Journal of the Acoustical
Society of America, 96(4):2037–2047, October 1994.

[7] D. Hirst. Peak, boundary and cohesion characteristics of prosodic grouping.
In Proceedings of ECSA Workshop on Prosody, pages 32–37, Lund, Sweden,
1993.

[8] P. J. Price, M. Ostendorf, S. Shattuck-Hufnagel, and C. Fong. The use of
prosody in syntactic disambiguation. Journal of the Acoustical Society of
America, 90(6):2956–2970, 1991.

[9] S. Potisuk. Prosodic Disambiguation in Automatic Speech Understanding of
Thai. PhD thesis, Purdue University, 1995.

[10] D. R. Scott. Duration as a cue to the perception of a phrase boundary. Journal
of the Acoustical Society of America, 71(4):996–1007, 1982.

[11] M. Swerts. Prosodic features at discourse boundaries of different strength.
Journal of the Acoustical Society of America, 101(1):514–521, January 1997.

[12] E. Shriberg, A. Stolcke, D. Hakkani-Tur, and G. Tur. Prosody-based automatic
segmentation of speech into sentences and topics. Speech Communication,
pages 127–154, 2000.



213

[13] C. Nakatani and J. Hirschberg. A corpus-based study of repair cues in sponta-
neous speech. Journal of the Acoustical Society of America, pages 1603–1616,
1994.

[14] R. Kompe. Prosody in Speech Understanding System. Springer-Verlag, 1996.

[15] Y. Gotoh and S. Renals. Sentence boundary detection in broadcast speech
transcripts. In Proceedings of ISCA Workshop: Automatic Speech Recognition:
Challenges for the new Millennium ASR-2000, pages 228–235, 2000.

[16] J. Kim and P. C. Woodland. The use of prosody in a combined system for
punctuation generation and speech recognition. In Proceedings of the European
Conference on Speech Communication and Technology, pages 2757–2760, 2001.

[17] H. Christensen, Y. Gotoh, and S. Renal. Punctuation annotation using sta-
tistical prosody models. In ISCA Workshop on Prosody in Speech Recognition
and Understanding, 2001.

[18] E. Shriberg and A. Stolcke. A prosody-only decision-tree model for disfluency
detection. In Proceedings of the European Conference on Speech Communica-
tion and Technology, pages 2383–2386, 1997.

[19] M. Meteer and R. Iyer. Modeling conversational speech for speech recognition.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 1996.

[20] D. D. Palmer and M. A. Hearst. Adaptive sentence boundary disambiguation.
In Proceedings of the Fourth ACL Conference on Applied Natural Language
Processing, pages 78–83, 1994.

[21] J. Reynar and A. Ratnaparkhi. A maximum entropy approach to identifying
sentence boundaries. In Proceedings of the Fifth Conference on Applied Natural
Language Processing, Washington D.C., pages 16–19, 1997.

[22] H. Schmid. Unsupervised learning of period disambiguation for tokenization.
University of Stuttgart, Internal Report, 2000.

[23] D. J. Walker, D. E. Clements, M. Darwin, and J. W. Amtrup. Sentence
boundary detection: A comparison of paradigms for improving MT quality.
In Proceedings of MT Summit VIII: Santiago de Compostela, 2001.

[24] D. Beeferman, A. Berger, and J. Lafferty. Cyperpunc: A lightweight punctu-
ation annotation system for speech. In Proceedings of the International Con-
ference of Acoustics, Speech, and Signal Processing, 1998.

[25] M. Stevenson and R. Gaizauskas. Experiments on sentence boundary detec-
tion. In Proceedings of the North American Chapter of the Association for
Computational Linguistics annual meeting, pages 24–30, 2000.

[26] M. Fach. A comparison between syntactic and prosodic phrasing. In Proceed-
ings of the European Conference on Speech Communication and Technology,
1999.

[27] S. Abney. Chunks and dependencies: Bring processing evidence to bear on
syntax. Computational Linguistics and the Foundations of Linguistic Theory,
pages 145–164, 1995.



214

[28] K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wightman, P. Price,
J. Pierrehumbert, and J. Hirsberg. ToBI: A standard for labeling english
prosody. In Proceedings of the International Conference on Spoken Language
Processing, pages 867–870, 1992.

[29] C. J. Chen. Speech recognition with automatic punctuation. In Proceedings
of the European Conference on Speech Communication and Technology, pages
447–450, 1999.

[30] A. Stolcke, E. Shriberg, R. Bates, M. Ostendorf, D. Hakkani, M. Plauche,
G. Tur, and Y. Lu. Automatic detection of sentence boundaries and disfluencies
based on recognized words. In Proceedings of the International Conference on
Spoken Language Processing, pages 2247–2250, 1998.

[31] E. Shriberg and A. Stolcke. Prosody modeling for automatic speech recog-
nition and understanding. In Proceedings of the Workshop on Mathematical
Foundations of Natural Language Modeling, 2002.

[32] J. Ang, R. Dhilon, A. Krupski, E. Shriberg, and A. Stolcke. Prosody-based
automatic detection of annoyance and frustration in human-computer dialog.
In Proceedings of the International Conference on Spoken Language Processing,
pages 2037–2040, 2002.

[33] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. Bates, D. Jurafsky, P. Taylor,
R. Martin, C. Van Ess-Dykema, and M. Meteer. Dialogue act modeling for
automatic tagging and recognition of conversational speech. Computational
Linguistics, 26:339–373, 2000.

[34] J. Huang and G. Zweig. Maximum entropy model for punctuation annota-
tion from speech. In Proceedings of the International Conference on Spoken
Language Processing, pages 917–920, 2002.

[35] National Institute of Standards and Technol-
ogy. RT-03F workshop agenda and presentations.
http://www.nist.gov/speech/tests/rt/rt2003/fall/presentations/, Novem-
ber 2003.

[36] D. Wang and S. S. Narayanan. A multi-pass linear fold algorithm for sentence
boundary detection using prosodic cues. In Proceedings of the International
Conference of Acoustics, Speech, and Signal Processing, 2004.

[37] G. S. Dell. A spreading activation theory of retrieval in sentence production.
psychological Review, pages 283–321, 1986.

[38] W. Levelt. Speaking: From Intention to Articulation. Cambridge, MA: MIT
press, 1989.

[39] D. G. MacKay. The structure of words and syllables: Evidence from errors in
speech. Cognitive Psychology, 3:210–227, 1972.

[40] S. Oviatt. Predicting spoken disfluencies during human-computer interaction.
Computer Speech and Language, 9:19–35, 1995.

[41] E. Shriberg. Preliminaries to A Theory of Speech Disfluencies. PhD thesis,
University of California at Berkeley, 1994.



215

[42] H. H. Clark and T. Wasow. Repeating words in spontaneous speech. Cognitive
Psychology, pages 201–242, 1998.

[43] R. Lickley. Missing disfluencies. In Proceedings of International Congress of
Phonetics Sciences, pages 192–195, 1995.

[44] S. E. Brennan. How listeners compensate for disfluencies in spontaneous
speech. Journal of Memory and Language, 44:274–296, 2001.

[45] J. E. Fox Tree. The effects of false starts and repetitions on the processing of
subsequent words in spontaneous speech. Journal of Memory and Language,
34:709–738, 1995.

[46] L. Chen, M. Harper, and F. Quek. Gesture patterns during speech repairs. In
Proceedings of the International Conference on Multimodal Interfaces, 2002.

[47] K. Manyhart. Age-dependent types and frequency of disfluencies. In Proceed-
ings of the Disfluency in Spontaneous Speech Workshop, pages 45–48, 2003.

[48] H. Bortfeld, S. D. Leon, J. E. Bloom, M. F. Schober, and S. E. Brennan.
Disfluency rates in conversation: Effects of age, relationship, topic, role and
gender. Language and Speech, 2001.

[49] J. Bear, J. Dowding, and E. Shriberg. Integrating multiple knowledge sources
for detecting and correction of repairs in human-computer dialog. In Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics,
pages 56–63, 1992.

[50] E. Charniak and M. Johnson. Edit detection and parsing for transcribed
speech. In Proceedings of the North American Chapter of the Association for
Computational Linguistics annual meeting, pages 118–126, 2001.

[51] M. Johnson and E. Charniak. A TAG-based noisy channel model of speech
repairs. In Proceedings of the Annual Meeting of the Association for Compu-
tational Linguistics, 2004.

[52] M. G. Core and L. K. Schubert. A syntactic framework for speech repairs and
other disruptions. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, pages 413–420, 1999.

[53] K. Zechner. Automatic Summarization of Spoken Dialogues in Unrestricted
Domains. PhD thesis, Carnegie Mellon University, 2001.

[54] P. Lendvai, A. V. D. Bosch, and E. Krahmer. Memory-based disfluency chunk-
ing. In Proceedings of the Disfluency in Spontaneous Speech Workshop, pages
63–66, 2003.

[55] A. Stolcke and E. Shriberg. Statistical language modeling for speech disfluen-
cies. In Proceedings of the International Conference of Acoustics, Speech, and
Signal Processing, 1996.

[56] P. Heeman and J. Allen. Speech repairs, intonational phrases and discourse
markers: Modeling speakers’ utterances in spoken dialogue. Computational
Linguistics, 25:527–571, 1999.



216

[57] W. Levelt and A. Cutler. Prosodic marking in speech repair. Journal of
Semantics, 2:205–217, 1983.

[58] A. Cutler and D. R. Ladd, editors. Prosody: Models and Measurement, chapter
Speakers? Conceptions of the Function of Prosody, pages 79–91. Heidelberg:
Springer-Verla, 1983.

[59] R. Lickley, R. Shllcock, and E. Bard. How and when are disfluencies found? In
Proceedings of the European Conference on Speech Communication and Tech-
nology, 1991.

[60] R. Lickley and E. Bard. When can listeners detect disfluency in spontaneous
speech? Language and Speech, pages 203–226, 1998.

[61] D. Hindle. Deterministic parsing of syntactic nonfluencies. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics, pages
123–128, 1983.

[62] E. Shriberg. Phonetic consequences of speech disfluency. In Proceedings of the
International conference of Phonetics Sciences, pages 619–622, 1999.

[63] R. Lickley. Juncture cues to disfluency. In Proceedings of the International
Conference on Spoken Language Processing, 1996.

[64] G. Savova and J. Bachenko. Prosodic features of four types of disfluencies. In
Proceedings of the Disfluency in Spontaneous Speech Workshop, pages 91–94,
2003.

[65] D. O’Shaughnessy. Analysis and automatic recognition of false starts in spon-
taneous speech. In Proceedings of the International Conference of Acoustics,
Speech, and Signal Processing, pages 724–727, 1993.

[66] M. Snover, B. Dorr, and R. Schwartz. A lexically-driven algorithm for dis-
fluency detection. In Proceedings of Human Language Technology Conference
/ North American Chapter of the Association for Computational Linguistics
annual meeting, 2004.

[67] W. Levelt. Monitoring and self-repair in speech. Cognition, pages 41–104,
1983.

[68] A. Kai and S. Nakagawa. Investigation on unknown word processing and
strategies for spontaneous speech understanding. In Proceedings of the Euro-
pean Conference on Speech Communication and Technology, pages 2095–2098,
1995.

[69] M. Goto, K. Itou, and S. Hayamizu. A real-time filled pause detection system
for spontaneous speech recognition. In Proceedings of the European Conference
on Speech Communication and Technology, pages 227–230, 1999.

[70] M. H. Siu and M. Ostendorf. Modeling disfluencies in conversational speech.
In Proceedings of the International Conference of Acoustics, Speech, and Signal
Processing, pages 386–389, 1996.

[71] S. Strassel. Simple Metadata Annotation Specification V5.0. Linguistic Data
Consortium, 2003.



217

[72] DARPA Information Processing Technology Office. Effective, affordable,
reusable speech-to-text (EARS). http://www.darpa.mil/ipto/programs/ears/,
2003.

[73] S. Strassel. Simple Metadata Annotation Specification V6.2. Linguistic Data
Consortium, 2004.

[74] D. Hand. Construction and Assessment of Classification Rules. John Wiley
and Sons, Chichester, 1997.

[75] A. P. Bradley. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(6):1145–1159, 1997.

[76] R. O. Duda and P. E. Hart. Pattern Recognition and Scene Analysis. New
York: John Wiley & Sons, 1973.

[77] M. Ostendorf and D. Hillard. Scoring structural mde: Towards more mean-
ingful error rates. In EARS Rich Transcription Workshop, 2004.

[78] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. Ramana Rao Gadde,
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APPENDICES

Appendix A: ADT Boosting For SU and IP Detection

In Chapter 7, bagging and ensemble techniques were explored to obtain more

robust classifiers and thus a more reliable posterior probability of an event given

the prosodic features. Bagging was used in our experiments largely because of its

computational efficiency. In this section, we describe some other preliminary experi-

ments on using boosting method for more robust classifiers. These experiments were

placed in the appendix since they are not used in our full structural event detection

system.

A.1 ADT Boosting Description

Freund and Schapire introduced AdaBoost (adaptive boosting) [169, 170] to im-

prove classification performance by combining multiple weak learning algorithms,

which has proven successful in many classification tasks. In boosting, each classifier

is built based on the output of other classifiers, mostly by focusing on the samples

for which they made incorrect decisions. The boosting algorithm is implemented

by updating the weight of each sample in the training set. In contrast to bagging,

boosting generates classifiers sequentially and thus cannot be implemented in par-

allel like bagging. It generates classifiers from different skewed distributions (due to

the different weights for each sample used in each iteration); hence, this may affect

our ability to combine boosting results, and also their combinations with the LM.

The boosting algorithm was not used in our investigation of the imbalanced data set

problem in Chapter 7 due to the above reasons.
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In [171], Freund and Mason proposed an alternating decision tree (ADT) learning

algorithm based on boosting that produces a single tree, which is a generalization

of the classical decision tree. Figure A.1 shows an example of such an ADT tree.

In each node, questions can be asked about different features. For example, Node 2

and 3 contain different decision questions, and yet they share one parent node. This

is different from a classical decision tree, in which there can be only one question

asked at each node. The tree built in this way is similar to that generated using the

Bayes option in the IND package [82].

Fig. A.1. An example of an alternating decision tree (ADT).
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A.2 Experimental Results

Since the ADT boosting algorithms runs faster than AdaBoosting, we applied

this algorithm to SU boundary and IP detection tasks. Because the ADT boosting

algorithm does not generate posterior probabilities of class membership for each

test sample,1 we only use this on a downsampled training and test set, and do not

report results on the original test set either using the prosody model alone, or when

combining the prosody model with the LM, both of which need posterior probabilities

provided by the trees.

Table A.1
SU and IP detection results (classification error rate in %) using ADT
learning algorithm and bagging. Training and testing were conducted
using a downsampled training and testing set. Chance performance
is 50%.

Bagging Boosting ADT

SU 14.30 14.8

IP 20.64 19.3

For this investigation, the data is the same as used in Section 7.3 for the study of

the SU and IP detection tasks. The model is trained using a downsampled training

set and tested on a downsampled test set. Experimental results using the ADT

algorithm for the prosody model alone are shown in Table A.1. These results show

that the ADT boosting algorithm improves performance for the IP task but not for

the SU detection task, compared to the performance of bagging. This highlights

the difference between the SU and IP tasks, suggesting that the metric of reducing

classification errors used by the ADT learning algorithm may be better for the noisy

IP task; whereas, information gain used in classical decision tree learning is more

1In future work, we will investigate methods for converting the score of the ADT learning algorithm
to a posterior probability.
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appropriate for the SU task. It is likely that the ADT learning algorithm is more

robust to noisy data, and better at exploiting information from a small training set.

A.3 ADT Boosting Summary

In Chapter 7, we have shown some inherent differences between the SU and

IP detection tasks; on the one hand they have different class distributions, on the

other hand, they differ in the effectiveness of the features used in the tasks. The

experiments on boosting show further that these two tasks are impacted differently by

the learning algorithms. These are only preliminary results since they were conducted

on a downsampled data set. Additional investigation on the generation of posterior

probabilities from the ADT boosting algorithm, and thus evaluation on the real test

set and in combination with the LM is needed.

Appendix B: Prosodic Features

All the abbreviated prosodic features that have appeared in this thesis are ex-

plained in this section. We do not include the whole prosodic feature set used in our

structural event detection here. Details about each can be found in [79]. The subset

of the features shown below also reveals how the prosodic features are correlated,

being derived from the same raw features, with different binning or normalization

methods applied. Note again that each feature is associated with and relative to a

word w, as is indicated in the feature descriptions below.

1. Duration features

PAU DUR the duration of pause after word wi

TURN F whether there is a speaker turn change after word wi

GEN gender of the speaker who uttered word wi

PREV PAU DUR the duration of pause before word wi
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LAST RHYME DUR PH bin binned value of [(the last rhyme duration of wi)

/ (the number of phones in the last rhyme of wi)]

LAST RHYME DUR PH ND bin binned value of [LAST RHYME DUR PH

of wi - (the speaker’s mean)]

STR RHYME DUR PH bin binned value of [(the stressed rhyme duration of

wi) / (the number of phones in the stressed rhyme of wi)]

LAST VOW DUR Z bin binned value of the last vowel duration of wi (with

variance normalization)

LAST VOW DUR N bin binned value of the last vowel duration of wi (with

mean normalization)

TURN TIME N (time so far in the current turn) / (the total duration of the

current turn)

WORD DUR the duration of word wi

MAX PHONE DUR Z, AVG PHONE DUR N, MAX PHONE DUR N,

AVG PHONE DUR ZSP, AVG PHONE DUR NSP,

MAX PHONE DUR NSP, AVG VOWEL DUR Z,

AVG VOWEL DUR N These duration features above are the average or

maximum normalized phone duration in word wi: Z means variance nor-

malization over all the speakers, N means mean normalization over all the

speakers, ZSP means variance normalization over the current speaker, and

NSP means mean normalization over the current speaker

2. F0 features

PATTERN WORD this feature consists of a sequence of ‘f’, ‘uv’, and ‘r’,

representing a falling slope, an unvoiced region, and a rising slope in word

wi

PATTERN BOUNDARY the last ‘f’ or ‘r’ in PATTERN WORD for word wi

concatenated with the first slope tag for wi+1
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F0K WRD DIFF LOLO N log ratio between the minimum median filtered F0

value of wi and wi+1

F0K WIN DIFF LOHI N log ratio between the minimum median filtered F0

before the boundary and the maximum value after the boundary, both are

within N frame window of wi

F0K DIFF LAST KBASELN the last good PWL fitted F0 value of wi relative

to the speaker’s baseline F0

3. Energy features

ENERGY WIN DIFF HIHI N log ratio between the highest stylized energy

value before and after wi, both are within N frame window of the current

boundary of wi

ENERGY PATTERN BOUNDARY the last energy slope of wi concatenated

with the first energy slope of wi+1
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