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Abstract

We show by computational solution of the incompressibleibla8tokes equa-
tions with friction force boundary conditions, that thesdecal inviscid circulation
theory by Kutta-Zhukovsky for lift of a wing and laminar viaes boundary layer
theory by Prandtl for drag, which have dominated 20th cenflight mechan-
ics, do not correctly describe the real turbulent airflonmuai a wing. We show
that lift and drag essentially originate from a turbulentkevaf counter-rotating
rolls of low-pressure streamwise vorticity generated bgrain instability mech-
anism of potential flow at rear separation. The new theonnspbe possibility
of computational prediction of flight characteristics ofairplane using millions
of meshpoints without resolving thin boundary layers, éast of the imposssible
guadrillions required according to state-of-the-art foubdary layer resolution.

1 New and Old Theories of Flight

As a corollary of the resolution of d’Alembert’'s paradox @fra lift/drag of potential
flow recently presented in this journal [26, 28], we outlinghis article a mathemat-
ical theory for the generation of lift and drag of a wing in sabic flight, which is
fundamentally different from the classical theory by Keflaukovsky for lift in invis-
cid flow and by Prandtl for drag in viscous flow. We give evideitat the turbulent
flow around a wing can be seen as a perturbation of zerorhfyygdotential flow result-
ing from a specific three-dimensional instability mechen# separation generating a
turbulent wake of counter-rotating low-pressure rollstoéamwise vorticity, a mecha-
nism which changes the pressure distribution around tlileng@&dge so as to produce
lift but also drag. By mathematical analysis and computatie thus identify the basic
mechanism, seen as a modification of zero lift/drag potkifiia, generating both lift
and drag in real turbulent flow around a wing. On the other haredjive evidence that
the modification by Kutta-Zhukovsky consisting of largeledao-dimensional circu-
lation around the section of the wing, which is the basic raegm for lift according
to classical theory representing state-of-the-art, i®lyuictional without counterpart
in real turbulent flow. We thus identify the true mechanismifoth lift and drag of a
wing, which is not captured by classical theory.

The problem of explainingvhy it is possible to fly in the air using wings has
haunted scientists since the birth of mathematical scende fly, an upward force
on the wing, referred to dgt L, has to be generated from the flow of air around the



wing, while the air resistance to motiondrag D, is not too big. The mystery isow
a sufficiently large ratiog— can be created.

In thegliding flightof birds and airplanes with fixed wings at subsonic speéds,
typically between 10 and 20, which means that a good glidegtide up to 20 meters
upon loosing 1 meter in altitude, or that Charles Lindbergld@ross the Atlantic in
1927 at a speed of 50 m/s in his 2000%girit of St Louisat an effective engine thrust
of 150 kp (with & = 2000/150 ~ 13) from 100 horse powers.

By Newton’s 3rd law, lift must be accompanied dgwnwashwith the wing redi-
recting air downwards. The enigma of flight is the mechani$m wing generating
substantial downwash, which is also the enigma of sailirajreg the wind with both
sail and keel acting like wings creating substantial lift.

Classical mathematical mechanics could not give an andheavton computed by
elementary mechanics the lift of a tilted flat plate redirggta horisontal stream of
fluid particles, but obtained a disappointingly small vapreportional to the square
of the tilting angle orangle of attack D’Alembert followed up in 1752 by formulat-
ing his paradox about zero lift/drag wiviscid incompressible irrotational steady flow
referred to apotential flow indicating that flight is mathematically impossible, or at
least inexplicable. To explain flight d’Alembert’s paradued to be resolved.

It is natural to expect that today gliding flight is well undi&rod, but surprisingly
one finds that the authority NASA [39] first dimissses threpylar theories for lift
as being incorrect, but then refrains from presenting aepmyclaimed to be correct
and ends with the empty out of reacfip truly understand the details of the genera-
tion of lift, one has to have a good working knowledge of thieElHquations”, and
the Plané&Pilot Magazine [40] has the same message. In short, stateeedrt litera-
ture [2, 20, 48, 49] presents a two-dimensional theory fr@®31for lift without drag
at small angles of attack in inviscid potential flow by the hsabaticians Kutta and
Zhukovsky, called the father of Russian aviation, and agrotiieory for drag without
lift in viscous laminar flow from 1904 by the physicist Prandalled the father of
modern fluid dynamics, but no theory for lift and dragtimee-dimensional slightly
viscous turbulent incompressikilew such as the flow of air around a wing of a jum-
bojet at the critical phase of take-off at large angle ofcktid 2 degrees) and subsonic
speed (270 km/hour), as evidenced in e.g. [1, 5, 6, 8, 10,0,33 37].

In this article we present such a theory based on the incasitle Navier-Stokes
equations for slightly viscous flow with slip (small frictidorce) boundary conditions
as a model of a turbulent boundary layer coupling a solid damto the free stream
flow through a small skin friction force. We compute turbulsaolutions of the Navier-
Stokes equations using a stabilized finite element methtidayposteriori error control
of lift and drag, referred to a&eneral Galerkinor G2, available in executable open
source from [18]. The stabilization in G2 acts as an autarrtatbulence model, and
thus offers a model faab initio computational simulation of the turbulent flow around
a wing with the only input being the geometry of the wing.

We show that lift and drag of an airplane at subsonic speedsbeaaccurately
predicted by G2 using millions of mesh points, to be compavid the impossible
quadrillions of mesh-points required by state-of-thet@résolve thin no-slip boundary
layers as dictated by Prandtl [38, 50]. The computationsghat Kutta-Zhukovsky’s



circulation theory is unphysical and that the curse of Pii@idminar boundary layer
theory can be avoided opening new possibilities of flightudation. Our analysis
includes the following key elements:

(i) Turbulentsolutions of the incompressible Navier-&skquations with slip/small
friction force boundary conditions.

(i) Potential flow as Navier-Stokes solution subject to Bifimsce perturbations.
(iif) Separation of potential flow only at stagnation.

(iv) Mechanism of lift/drag from instability at rear septiom of retarding opposing
flows generating surface vorticity enhanced by vortex cfiiag in accellerating
flow after separation into counter-rotating low-pressiksrof streamwise vor-
ticity, which change the pressure distribution of potdrit@aw into lifting flow
with drag.

Before presenting details of (i)-(iv) we briefly recall thiagsical theories of lift/drag
and give a shortcut to the new theory, also presented as a/R®jol

2 Kutta-Zhukowsky and Prandtl

It took 150 years before someone dared to challenge thenpisisimathematical pre-
dictions by Newton and d’Alembert, expressed by Lord Kelai“l can state flatly
that heavier than air flying machines are impossibléh the 1890s the German en-
gineer Otto Lilienthal made careful studies of the glidirigtt of birds, and designed
wings allowing him to make 2000 successful heavier-tharglading flights starting
from a little artificial hill, before in 1896 he broke his netling to the ground af-
ter having stalled at 15 meters altitude. The first sustapmudered heavier-than-air
flights were performed by the two brothers Orwille and Willwiright, who on the
windy dunes of Kill Devils Hills at Kitty Hawk, North Caroli@, on December 17 in
1903, managed to get their 400 kg airpldger off ground into sustained flight using
a 12 horse power engine.

The undeniable presence of substantial lift now requiredxgdantion and to this
end Kutta and Zhukovsky augumented inviscid zero-lift ptitd flow by a large scale
two-dimensionactirculation or rotation of air around the wing section causing the ve-
locity to increase above and decrease below the wing, thusrggng lift proportional
to the angle of attack [49, 48], orders of magnitude largantNewton’s prediction,
but the drag was still zero. Kutta-Zhukovsky thus showed ithere is circulation
then there is lift, which by a scientific community in despersearch for a theory of
lift was interpreted as an equivalencH:the airfoil experiences lift, a circulation must
exist”, [48, 31]. State-of-the-art is described in [3] &8he circulation theory of lift is
still alive... still evolving today, 90 years after its inttuction”.

The modified potential solution is illustrated in Fig.1 iodiing zones of low (L)
and high (H) pressure, with the switch between high and lossgure at the trailing
edge creating lift as an effect of the circulation. KuttadKbvsky suggested that the



circulation around the wing section was balanced by a countating so-calledtart-
ing vortexbehind the wing shown in Fig.1 (right) giving zero total citation according
to Kelvin's theorem Kutta-Zhukovsky’s formula for lift agreed reasonably welth
observations for long wings and small angles of attack, butor short wings and large
angles of attack. We will below subject Kutta-Zhukovskyigory of lift to a reality
test, and we will find that it in fact is pure fiction, as muchifictas zero-lift potential
flow; the true origin of lift is not large scale two-dimensarcirculation around the
wing section.

LH—\- :LL

Figure 1: Potential flow (left) past a wing section with zeifddrag modified by cir-
culation around the section (middle) to give Kutta-Zhukgviiow (right) leaving the
trailing edge smoothly with downwash/lift and a startingtea behind, but without
viscous drag.

In 1904 the young physicist Ludwig Prandtl took up the chake of resolving
d’Alembert’s paradox and explaining the origin of drag i & page sketchy article
Motion of Fluids with Very Little Viscositj41] described in [43] asone of the most
important fluid-dynamics papers ever writteahd in [20] as'the paper will certainly
prove to be one of the most extraordinary papers of this egnéund probably of many
centuries”. Prandtl suggested that the substantial drag (and lift) oddybmoving
through aslightly viscoudfluid like air, possibly could arise from the presence of a
thin no-slip laminar viscous boundary layevhere the tangential fluid velocity rapidly
changes from zero on the boundary to the free-stream valuend® argued that a
flow canseparatefrom the boundary due to adverse pressure gradierdtarding the
flow in a laminar boundary layer to formlaw-pressure wakbehind the body creating
drag. This is the official resolution of d’Alembert’s paradd?2, 45, 49, 14], although
seriously questionedin e.g. [9, 11, 34]. The commonly atEzbpiew on Prandtl’s role
is expressed as follows:

e Prandtl's contribution was to realize that a proper understling of the bound-
ary layer allows us to understand how a (vanishingly) smatesity and a
(vanishingly) small viscous region can modify the globakffeatures. Thus,
with one insight Prandtl resolved d’Alembert’s paradox gmovided fluid mech-
anists with the physics of both lift and form drgg].

e The general view in the fluid mechanics community is that figractical point
of view, the paradox is solved along the lines suggested bpd® A formal
mathematical proof is missing, and difficult to provide,ms® many other fluid-
flow problems modelled through the NavierStokes equati®he. viscous effects



in the thin boundary layers remain also at very high Reynoldsibers they
result in friction drag for streamlined objects, and for Hlbodies the additional
result is flow separation and a low-pressure wake behind theat, leading to
form drag[14].

The suggestion is that substantial drag results from theepiee of a thin boundary
layer even for arbitarily small viscosity, that is a subsit@reffect from a vanishingly
small cause [47]:

e ...great efforts have been made during the last hundred gresws to propose
alternate theories and to explain how a vanishingly smadtimnal force in the
fluid can nevertheless have a significant effect on the flopepties.

But to claim that something substantial can result fromusiliyy nothing, is very cum-
bersome from a scientific point of view, since it requiresesscto an infinitely precise
theory for justification, which is not available. MoreovdiAlemberts paradox con-
cerns a contradiction between mathematical predictionpradtical observation and
can only be solved by understanding the mathematics leadiag absurd mathemat-
ical prediction. It is precisely &mathematical proof” which is needed, which the
fluid mechanics community apparently acknowledgemissing”. The trouble is that
mathematics predicts zero drag, not that observation skobatantial drag.

If it is impossible to justify Prandtl’s theory, it can welklpossible to disprove it:
It suffices to remove the infinitely small cause (the boundaygr) and still observe
the effect (substantial drag). This is what we did in our hetson of d’Alembert’s
paradox [26], but we did not remove the viscosity in the iteof the flow, which
creates turbulent dissipation manifested in drag.

In any case, Prandtl’s resolution of d’Alembert’s paradmdtfluid dynamics out of
its crisis in the early 20th century, but led computatioreabalynamics into its present
paralysis described by Moin and Kim [38] as follows:

e Consider a transport airplane with a 50-meter-long fuselamnd wings with a
chord length (the distance from the leading to the trailirdge) of about five
meters. If the craft is cruising at 250 meters per second ailttude of 10,000
meters, about0'® grid points are required to simulate the turbulence near the
surface with reasonable detail.

But computation with10'6 grid points is beyond the capacity of any thinkable com-
puter, and the only way out is believed to be to desigbulence modelfor simula-
tion with millions of mesh points instead of quadrillons bblis is an open problem
since 100 years. State-of-the-art is decribed in the sexpuefAIAA Drag Prediction
Work Shop$15], with however a disappointingly large spread of the &aBtipipating
groups/codes reported in the blind tests of 2006. In additlee focus is on the simpler
problem of transonic compressible flow at small angles @ickt(2 degrees) of rele-
vance for crusing at high speed, leaving out the more demgmiiblem of subsonic
incompressibldlow at low speed and large angles of attack at take-off anditay
because a work shop on this topic would not draw any partitgpasimilar difficulties
of computing lift is reported in [31, 32]:



e Circulation control applications are difficult to computeliably using state-of-
the-art CFD methods as demonstrated by the inconsisteici@BD prediction
capability described in the 2004 NASA/ONR Circulation @anworkshop.

3 Shortcut tothe New Theory

The new resolution of d’Alembert’s paradox [25, 26, 24] itiées the basic mechanism
of instability of potential flow described above, which wdlind is also an essential
mechanism for generating lift of a wing by depleting the hjgressure before rear
separation of potential flow and thereby allowing downwdagtis mechanism is illus-
trated in Fig.2 showing a perturbation (middle) consistiigounter-rotating rolls of
low-pressure streamwise vorticity developing at the saam of potential flow (left),
which changes potential flow into turbulent flow (right) wahdifferent pressure dis-
tribution at the trailing edge generating lift. The rollsajunter-rotating streamwise
vorticity appear along the entire trailing edge and havedfardint origin than theving
tip vortex[17], which adds drag but not lift, which is of minor importanfor a long
wing. We shall find that the diameter of the rolls scale witl thickness of the wing
(and not the viscosity), and the intensity with the anglettzck.

Figure 2: Stable physical 3d turbulent flow (right) with Aiftag, generated from po-
tential flow (left) by a perturbation at separation consigdf counter-rotating rolls of
streamwise vorticity (middle), which changes the presatithbe trailing edge generat-
ing downwash/lift and drag.

We see that the difference between Kutta-Zhukovsky andeheaxplantion is the
nature of the modification/perturbation of zero-lift paiahflow: Kutta and Zhukovsky
claim that it consists of a global large scale two-dimenaiarculation around the
wing section, that iransversal vorticityorthogonal to the wing section combined with
a transversal starting vortex, while we find that it is a thd@aensional local turbulent
phenomenon of counter-rotating rolls of streamwise vitytiat separation, without
starting vortex. Kutta-Zhukovsky thus claim that lift cosnffom global transversal
vorticity without drag, while we give evidence that instddtlis generated by local
turbulent streamwise vorticity with drag.

We observe that the real turbulent flow shares the cruciglgatyg of potential flow
of adhering to the upper surface beyond the crest and thasrgelownwash, because
the real flow is similar to potential flow before separatiomd #ecause potential flow
can only separate at a point of stagnation with opposing flmesting in the rear, as
we will prove below.



On the other hand, a flow with a viscous no-slip boundary layki(correctly ac-
cording to Prandtl) separate on the crest, because in aundsmundary layer the pres-
sure gradient normal to the boundary vanishes and thus taontribute the normal
acceleration required to keep fluid particles following tuevature of the boundary
after the crest, as shown in [27]. It is thus the slip boundamydition modeling a
turbulent boundary layer in slightly viscous flow, whichdes the flow to suck to the
upper surface and create downwash. This is a feature of ipEssible irrotational
slighty viscous flow with slip, thus in particular of poteadtflow, and is not an effect
of viscosity or molecular attractive forces as often sugggesinder the name of the
Coanda effect

This explains why gliding flight is possible for airplanesidarger birds, because
the boundary layer is turbulent and acts like slip prevenéarly separation, but not
for insects because the boundary layer is laminar and &ets16-slip allowing early
separation. Th&®eynolds numbesf a jumbojet at take-off is aboud® with turbulent
skin friction coefficient< 0.005 contributing less thaf% to drag, while for an insect
with a Reynolds number dfo? viscous laminar effects dominate.

Concerning the size of the viscosity, we recall that for b&kinematic viscosity
(normalized to unit density) is abot6—> (and for water about0—%). Normalizing
also with respect to velocity and length scale, the visgasitepresented by the inverse
of the Reynolds numbemvhich in subsonic flight ranges froi0® for medium-size
birds over10” for a smaller airplane up to0® for a jumbojet. We are thus considering
normalized viscosities in the range frar—> to 10~ to be compared with density,
velocity and length scale of unit size. We understandtbaf is smallcompared to 1,
and thatl0—? compared to 1 isery small

Massive evidence indicates that the incompressible N&tigkes equations consti-
tute an accurate mathematical model of slightly viscous fitosubsonic aerodynamics.
We will show that turbulent solutions can be computed on &olafor simple geome-
tries and on a cluster for complex geometries, with corregamvalue outputs such
as lift, drag and twisting moment of a wing or entire airplawihout resolving thin
boundary layers and without resort to turbulence modelsis iBhmade possible by
using skin friction force boundary conditions for tangahstresses instead of no-slip
boundary conditions for tangential velocities, and beeathg skin friction is small
from a turbulent boundary layer of a fluid with very small \6sity, and because it is
not necessary to resolve the turbulent features in theidmtef the flow to physical
scales.

4 Navier-Stokes with Force Boundary Conditions

The Navier-Stokes equations for an incompressible fluid rof density withsmall
viscosityr > 0 andsmall skin friction3 > 0 filling a volume$ in R?® surrounding a
solid body with boundary" over a time interval = [0, T, read as follows: Find the



velocityu = (u1, ue, ug) and pressurg depending orfx, t) € QUT x I, such that

U+ (u-Vu+Vp—-V.o = f inQx I,
Veu = 0 inQx I,
U, = ¢ onI" x I, Q)
os = [us onI' x I,
u(-,0) = u° in Q,

whereu,, is the fluid velocity normal t@’, u is the tangential velocityy = 2ve(u) is
the viscous (shear) stress with:) the usual velocity straing, is the tangential stress,
f is a given volume forcey is a given inflow/outflow velocity withy = 0 on a non-
penetrable boundary, and is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stresso the tangential velocity, with
the friction coefficients with 5 = 0 for slip, andg >> 1 for no-slip. We note that is
related to the standaskin friction coeffieient; = % with 7 the tangential stress per
unit area, by the relatiog = %Cf. In particular,3 tends to zero witle; (if U stays
bounded).

Prandtl insisted on using a no-slip velocity boundary ctadiwith us = 0 on T,
because his resolution of d’Alembert’s paradox hinged sorithinating potential flow
by this condition. On the oher hand, with the new resolutibd’Alembert’s paradox,
relying instead on instability of potential flow, we are fteechoose instead a friction
force boundary condition, if data is available. Now, expemts show [45, 13] that
the skin friction coefficient decreases with increasing idgs numberRe ascy ~
0.07 ~ Re™%2, so thatc; =~ 0.0005 for Re = 10'% andc; ~ 0.007 for Re = 10°.
Accordingly we model a turbulent boundary layer by frictlmoundary condition with
a friction paramete ~ 0.03U Re~°-2. For very large Reynolds numbers, we can
effectively uses = 0 in G2 computation corresponding to slip boundary condgion

We have initiated benchmark computations for tabulatingesof 5 (or o) for
different values ofRe by solving the Navier-Stokes equations with no-slip for glien
geometries such as a flat plate, and more generally for differalues of/, U and
length scale, since the dependence seems to be more commghesimply through the
Reynolds number. Early results are reported in [25] with 0.005 for v ~ 10~* and
U = 1, with corresponding velocity strain in the boundary lay&to, ~ 50 indicating
that the smallest radius of curvature without separatighigcase could be expected
to be about.02 [27].

5 Potential Flow

Potential flow(u, p) with velocity u = V¢, whereyp is harmonic inQ2 and satisfies
a homogeneous Neumann condition Ibrand suitable conditions at infinity, can be
seen as a solution of the Navier-Stokes equations for §ligigcous flow with slip
boundary condition, subject to

e perturbation of the volume forcé = 0 in the form ofc = V - (2ve(u)),

e perturbation of zero friction in the form of, = 2ve(u)s,



with both perturbations being small becauwsis small and a potential flow velocity

is smooth. Potential flow can thus be seen as a solution of #lveeNStokes equations
with small force perturbations tending to zero with the oisity. We can thus express
d’Alembert’s paradox as the zero lift/drag of a Navier-&slkolution in the form of a

potential solution, and resolve the paradox by realizireg fotential flow is unstable

and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot beesved in reality be-
cause it is unstable and under infinitesimal perturbationsstinto a swinging motion.
A stationary inverted pendulum is a fictious mathematicéltsmn without physical
correspondence because it is unstable. You can only obpbéemomena which in
some sense are stable, and an inverted pendelum or poftavtia not stable in any
sense.

Potential flow has the following crucial property which pasill be inherited by
real turbulent flow, and which explains why a flow over a wingjsat to small skin
friction can avoid separating at the crest and thus gendmat@wash, unlike viscous
flow with no-slip, which separates at the crest without doasiw We will conclude
that gliding flight is possible only in slightly viscous inopressible flow. For simplic-
ity we consider two-dimensional potential flow around amgfical body such as long
wing (or cylinder).

Theorem. Let ¢ be harmonic in the domai in the plane and satisfy a homogeneous
Neumann condition on the smooth boundBrgf Q2. Then the streamlines of the cor-
responding velocityy = V¢ can only separate frofi at a point of stagnation with
u= Ve =0.

Proof. Let« be a harmonic conjugate towith the pair(, 1) satisfying the Cauchy-
Riemann equations (locally) ift. Then the level lines of> are the streamlines qf
and vice versa. This means that as longvas # 0, the boundary curvé' will be a
streamline ofu and thus fluid particles cannot separate fidin bounded time.

6 Exponential Instability

Subtracting the NS equations with= 0 for two solutions(u, p, o) and(a, p, &) with
corresponding (slightly) different data, we obtain thddwiing linearized equation for
the differenc€v, ¢, 7) = (u — @, p — p,0 — &) with :

v+ (u-Viv+ (v -V)a+Vg-V-1 = f—f inQx I,
Vo = 0 inQ x I,
vn = g—g onI' x I, (2)
7 = 0 onl' x I,
v(-,0) = u®—u° in Q,

Formally, withw anda given, this is a linear convection-reaction-diffusionipleom for
(v, q, T) with the reaction term given by thgex 3 matrix Vu being the main term of
concern for stability. By the incompressiblity, the tradeNou is zero, which shows
that in generaVa has eigenvalues with real value of both signs, of the sizg/af
(with | - | som matrix norm), thus with at least one exponentially usistaigenvalue.



Accordingly, we expect local exponential perturbationvgitoof sizeexp(|Vul|t)
of a solution(u, p, o), in particular we expect a potential solution to be illpas€His
is seen in G2 solutions with slip initiated as potential flevirich subject to residual
perturbations of mesh siZe in log(1/k) time develop into turbulent solutions. We
give computational evidence that these turbulent solstase wellposed, which we ra-
tionalize by cancellation effects in the linearized praob)evhich has rapidly oscillating
coefficients when linearized at a turbulent solution.

Formally applying the curl operatdv x to the momentum equation of (1), with
v = 3 = 0 for simplicity, we obtain thevorticity equation

O+ u-Vw—(w-Vu=Vx f inQ, (3)

which is a convection-reaction equation in the vorticity= V x u with coefficients
depending onu, of the same form as the linearized equation (2), with sinplap-
erties of exponential perturbation growtkp(|Vu|t) referred to avortex stretching
Kelvin’s theorem formally follows from this equation assimgp the initial vorticity is
zero andVv x f = 0 (andg = 0), but exponential perturbation growth makes this con-
clusion physically incorrect: We will see below that largerticity can develop from
irrotational potential flow even with slip boundary condits.

7 Energy Estimate with Turbulent Dissipation

The standareénergy estimatéor (1) is obtained by multiplying the momentum equa-
tion
U+ (u-Vu+Vp—-V.o0—f=0,

with « and integrating in space and time, to get in the ¢ase0 andg = 0,

/t/ R, (u,p) - udxdt = D, (u;t) + Bg(u;t) 4
0o Jo

where
Ry(u,p) =i+ (u-V)u+Vp

is theEuler residualfor a given solution(u, p) with v > 0,

t
D,(u;t)Z/ /V|e(u(f,x))|2dxdf
0 JQ
is theinternal turbulent viscous dissipatipand
t
Bg(u;t):/ /5|us(f,x)|2dxdt_
0 JI

is theboundary turbulent viscous dissipatidnom which follows by standard manip-
ulations of the left hand side of (4),

K, (u;t) + Dy (u;t) + Bg(u;t) = K(u®), >0, (5)

10



where )
K, (u;t) = —/ lu(t, z)|*da.
2 Ja

This estimate shows a balance of #ieetic energyK (u;t) and theturbulent viscous
dissipationD, (u; t) + Bg(u;t), with any loss in kinetic energy appearing as viscous
dissipation, and vice versa. In particular,

Dy (u;t) + Ba(u; t) < K(0),

and thus the viscous dissipation is bounded (i 0 andg = 0).
Turbulent solution®f (1) are characterized tgubstantial internal turbulent dissi-
pation that is (fort bounded away from zero),

D(t) = lir% D(uy;t) >> 0, (6)

which is Kolmogorov’s conjecturgl9]. On the other hand, the boundary dissipation
decreases with decreasing friction

lirr%) Bg(u;t) =0, (7)

since3 ~ 192 tends to zero with the viscosity and the tangential velocity, ap-
proaches the (bounded) free-stream velocity, which ismatcordance with Prandtl’s
conjecture that substantial drag and turbulent dissipati@inates from the boundary
layer. Kolmogorov’s conjecture (6) is consistent with

1 1
[Vullo ~ 7 [ Ry (w, p)llo ~ N (8)
where|| - ||o denotes thd.o(Q)-norm with@ = 2 x I. On the other hand, it follows
by standard arguments from (5) that

1Ry (u, )| -1 < VY, (9)

where|| - ||_ is the norm inLy(I; H=1(2)). Kolmogorov thus conjectures that the
Euler residualR, (u, p) for smallv is strongly (inL-) large, while being small weakly
(in H—1).

Altogether, we understand that the resolution of d’Alentibgraradox of explain-
ing substantial drag from vanishing viscosity, consistseaaflizing that the internal
turbulent dissipatiorD can be positive under vanishing viscosity, while the bouynda
dissipationB will vanish. In contradiction to Prandtl, we conclude theagdoes not
result from boundary layer effects, but from internal tueou dissipation, originating
from instability at separation.

8 G2 Computational Solution

We show in [25, 24, 26] that the Navier-Stokes equations &b) loe solved by G2
producing turbulent solutions characterized by substhfitrbulent dissipation from

11



the least squares stabilization acting as an automatialenbe model, reflecting that
the Euler residual cannot be made small in turbulent regiG2shas a posteriori error
control based on duality and shows output uniqueness in walaes such as lift and
drag [25, 22, 23]

We find that G2 with slip is capable of modeling slightly vissoturbulent flow
with Re > 10° of relevance in many applications in aero/hydro dynamiosiuiding
flying, sailing, boating and car racing, with hundred thawsaof mesh points in sim-
ple geometry and millions in complex geometry, while actogdo state-of-the-art
quadrillions is required [38]. This is because a frictiamee/slip boundary condition
can model a turbulent blundary layer, and interior turboéedoes not have to be re-
solved to physical scales to capture mean-value outpu}s [25

The idea of circumventing boundary layer resolution byxigg no-slip boundary
conditions introduced in [22, 25], was used in [7] in the fosfrweak satisfaction of
no-slip, which however misses the main point of using a fawedition instead of a
velocity condition.

An G2 solution(U, P) on a mesh with local mesh sizéx, t) according to [25],
satisfies the following energy estimate (wjth= 0, g = 0 andg = 0):

K(U(t) + D (Ust) = K (u), (10)
where .
Dh(U;t):/ /h|Rh(U,P)|2dxdt, (11)
0 JQ

is an analog oD, (u; t) with h ~ v, whereR, (U, P) is the Euler residual ofU, P)
We see that the G2 turbulent viscosiy, (U; t) arises from penalization of a non-zero
Euler residualR;, (U, P) with the penalty directly connecting to the violation (ato
ing the theory of criminology). A turbulent solution is clhaterized by substantial
dissipationDy, (U; t) with || Ry, (U, P)|jo ~ h~'/%, and

|Ru(U, P)|| -1 < VR (12)

in accordance with (8) and (9).

9 Wellposedness of M ean-Value Outputs

Let M(v) = fQ vpdxrdt be amean-value outpudf a velocityv defined by a smooth
weight-functiomy(x, t), and let(u, p) and(U, P) be two G2-solutions on two meshes
with maximal mesh sizé. Let (p, 8) be the solution to thdual linearized problem

—¢p—(u-V)p+VU T o+V0 = 1 inQ x I,
Vep = 0 inQ x 1,
p-n = g onI' x I, (13)
o, T) = 0 in Q,

whereT denotes transpose. Multiplying the first equationby U and integrating by
parts, we obtain the following output error representafiti ?]:

M(u) - M(U) = /Q (Rn(u.p) — Ru(U, P)) -  dedt (14)
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where for simplicity the dissipative terms are here omitfeaim which follows the a
posteriori error estimate:

[M(u) = M(U)| < S([|Bn(u, p)l|-1 + [[Ba(U, P)[|-1), (15)
where the stability factor
S:S(U,U,M):S(U,U)Z ||<p||H1(Q) (16)

In [25] we present a variety of evidence, obtained by contjrial solution of the
dual problem, that for global mean-value outputs such ag dnal lift, S << 1/v/h,
while || R||_; ~ v/, allowing computation of of drag/lift with a posteriori errcontrol
of the output within a tolerance of a few percent. In shortamealue outputs such as
lift amd drag are wellposed and thus physically meaningful.

We explain in [25] the crucial fact thaf << 1/v/h, heuristically as an effect of
cancellationrapidly oscillating reaction coefficients of turbulent stibns combined
with smooth data in the dual problem for mean-value outpiiissmooth potential
flow there is no cancellation, which explains why zero liflg cannot be observed in
physical flows.

As an example, we show in Fig.3 turbulent G2 flow around a cé#r substantial
drag in accordance with wind-tunnel experiments. We seeti@rpaof streamwise
vorticity forming in the rear wake. We also see surface edgjxtiforming on the hood
transversal to the main flow direction. We will below discosmilar features in the
flow of air around a wing.

Figure 3: Velocity of turbulent G2 flow with slip around a car

10 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flovo intrbulent flow, based
on identifying perturbations of strong growth in the lineked equations (2) and (3) at
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separation generating rolls of low pressure streamwistcityrchanging the pressure
distribution to give both lift and drag of a wing.

As a model of potential flow at rear separation, we considerpbtential flow
u(z) = (x1, —22,0) in the half-plang{z; > 0}. Assumingz; andz, are small, we
approximate the,-equation of (2) by

U2 — V2 = fo,

wheref, = f3(x3) is an oscillating mesh residual perturbation dependingp(in-
cluding also a pressure-gradient), for examfiérs) = hsin(xs/d), with § > 0. It
is natural to assume that the amplitudefetiecreases with. We conclude, assuming
v2(0,2) = 0, that

v2(t, w3) = texp(t) f2(zs),

and for the discussion, we assumg = 0. Next we approximate the-vorticity
equation forzo small andx; > z; > 0 with z; small, by

. Ow1
w +x15— —wy =0,

axl
with the “inflow boundary condition”

ov
w1(T1, @2, x3) = 8—12 = texp(t)
3

ofs
8x3'

The equation for; thus exhibits exponential growth, which is combined witlp@x
nential growth of the “inflow condition”. We can see thesetdiees in Fig.?? show-
ing how opposing flows on the back generate a pattern of @itngtsurface vortices
which act as initial conditions for vorticity stretchingtinthe fluid generating rolls of
low-pressure streamwise vorticity, as displayed in Figad 3.

Altogether we expeatxp(t) perturbation growth of residual perturbations of size
h, resulting in a global change of the flow after tifie~ log(1/h), which can be
traced in the computations.

We thus understand that the formation of streamwise sti@saitse result of a force
perturbation oscillating in thes direction, which in the retardation of the flow in the
xo-direction creates exponentially increasing vorticitytiez; -direction, which acts as
inflow to thew; -vorticity equation with exponential growth by vortex stieing. Thus,
we find exponential growth at rear separation in both thedateon in thezs-direction
and the accelleration in the, direction. This scenario is illustrated in principle and
computation in Fig.4. Note that since the perturbation isvested with the base flow,
the absolute size of the growth is related to the length oé tine perturbation stays in
a zone of exponential growth. Since the combined expordegroavth is independent
of ¢, it follows that large-scale perturbations with large aitojle have largest growth,
which is also seen in computations withthe distance between streamwise rollss as
seen in Fig.3 which does not seem to decrease with decrefasing

Notice that at forward attachment of the flow the retardatioes not come from
opposing flows, and the zone of exponential growthugis short, resulting in much
smaller perturbation growth than at rear separation.
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We can view the occurence of the rear surface vorticities mgehanism of sep-
aration with non-zero tangential speed, by diminishingribemal pressure gradient
of potential flow, which allows separation only at stagnatid@he surface vorticities
thus allow separation without stagnation but the price rsegation of a system of low-
pressure tubes of streamwise vorticity creating drag inran fof “separation trauma”
or “cost of divorce”.

The scenario for separation can briefly be described asifsilvelocity instability
in retardation as opposing flows meet in the rear of the cglingenerates a zig-zag
pattern of surface vorticity from which by vorticity instiity in accelleration, a pattern
of rolls of low-pressure vorticity develops. We depict thtenario is depicted in Fig.4.

Figure 4: Turbulent separation without stagnation in ggplecand simulation in flow
around a circular cylinder.

11 Separation vs Normal Pressure Gradient

Fluid particles with non-zero tangential velocity can oslgparate from a smooth
boundary tangentially, because the normal velocity vasgin the boundary. By ele-
mentary Newtonian mechanics it follows that fluid partid@tow the curvature of the
boundary without separation if

0 U?

= E (7
and separate tangentially if

0 U?

B < T (18)

wherep is the pressurey denotes the unit normal pointing into the fluid,is the tan-
gential fluid speed ang is the radius of curvature of the boundary counted positive i
the body is convex. This is because a certain pressure gtattiemnal to the boundary
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Figure 5: Separation in slightly viscous flow with slip ovesraooth hill by generation
of surface vorticity. Notice that the flow separates afterdhest

is required to accelerate fluid particles to follow the cimve of the boundary. By mo-
mentum balance normal to the boundary, it follows t%tscales with the strain rate
relating separation t& as indicated in Section 4.

One of Prandtl's boundary layer equations for a laminaratscno-slip boundary
layer states thagﬁ = 0, from which follows separation at the crest of a wing without
downwash and lift [27]. However, Prandtl erronously asatas separation with an
adverse pressure gradient retarding the flow in a tangpntiathe boundary. In any
case, gliding flight in viscous laminar flow with no-slip is possible. It is the slip
boundary condition resulting from a turbulent boundaryelayvhich makes the flow
stick to the upper surface of a wing and thus generate downarmdg lift.

12 Mechanismsof Lift and Drag

We have given evidence that the basic mechanism for the ggoreof lift of a wing
consists of counter-rotating rolls of low-pressure stre@a vorticity generated by
instability at separation, which reduce the high pressartop of the wing before the
trailing edge of potential flow and thus allow downwash, bhtek also generate drag.
At a closer examination of the quantitative distributiofi$ifo and drag forces around
the wing, we discover large lift at the expense of small desyitting from leading edge
suction, which answers the opening question of of how a warggenerate a lift/drag
ratio larger than 10.
The secret of flight is in concise form uncovered in Fig. 6 simgws2 computed

lift and and drag coefficients of a Naca 0012 3d wing as funetimf the angle of attack
«, as well as the circulation around the wing. We see that thadid drag increase

16



roughly linearly up to 16 degrees, with a lift/drag ratio doait 13 fora. > 3 degrees,
and that lift peaks at stall at = 20 after a quick increase of drag. and flow separation
at the leading edge.

We see that the circulation remains small foless than 10 degrees without con-
nection to lift, and conclude that the theory of lift of by KatZhukovsky is fictional
without physical correspondence: There is lift but no dtion. Lift does not origi-
nate from circulation.

Inspecting Figs. 7-9 showing velocity, pressure and vitytend Fig. 10 showing
lift and drag distributions over the upper and lower sur§aoé the wing (allowing
also pitching moment to be computed), we can now, with eepee from the above
preparatory analysis, identify the basic mechanisms fgmeration of lift and drag
in incompressible high Reynolds number flow around a wingiff¢rént angles of
attacka: We find two regimes before stall at= 20 with different, more or less linear
growth in« of both lift and drag, a main phage< « < 16 with the slope of the lift
(coefficient) curve equal t6.09 and of the drag curve equal @08 with L/D ~ 14,
and a final phasé6 < o < 20 with increased slope of both lift and drag. The main
phase can be divided into an initial phasel o < 4 — 6 and an intermediate phase
4 —6 < a < 16, with somewhat smaller slope of drag in the initial phase. ndfe
present details of this general picture.

13 Phasel: 0<a<4-6

At zero angle of attack with zero lift there is high pressureéha leading edge and
equal low pressures on the upper and lower crests of the veioguse the flow is essen-
tially potential and thus satisfies Bernouilli's law of hitgw pressure where velocity
is low/high. The drag is about 0.01 and results from rollsoe¥-pressure streamwise
vorticity attaching to the trailing edge. As increases the low pressure below gets
depleted as the incoming flow becomes parallel to the lowdasel at the trailing edge
for « = 6, while the low pressure above intenisfies and moves towald$eading
edge. The streamwise vortices at the trailing edge esfigrsiay constant in strength
but gradually shift attachement towards the upper surfade high pressure at the
leading edge moves somewhat down, but contributes littlétidrag increases only
slowly because of negative drag at the leading edge.

14 Phase2: 4 -6 <a <16

The low pressure on top of the leading edge intensifies taeseaormal gradient pre-
venting separation, and thus creates lift by suction pgaiimtop of the leading edge.
The slip boundary condition prevents separation and dowhigcreated with the help
of the low-pressure wake of streamwise vorticity at reaasafion. The high pressure
at the leading edge moves further down and the pressure lietogases slowly, con-
tributing to the main lift coming from suction above. The meag from the upper
surface is close to zero because of the negative drag atddenteedge, known as
leading edge suctigrwhile the drag from the lower surface increases (lineaxligh
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Figure 6: G2 lift coefficient and circulation as functionstbé angle of attack (top),
drag coefficient (middle) and lift/drag ratio (bottom) asftions of the angle of attack.
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the angle of the incoming flow, with somewhat increased Hiltsshall drag slope.
This explains why the line to a flying kite can be almost vaitieven in strong wind,
and that a thick wing can have less drag than a thin.

15 Phase3: 16 <a <20

This is the phase creating maximal lift just before stall meth the wing partly acts as a
bluff body with a turbulent low-pressure wake attachindnatriear upper surface, which
contributes extra drag and lift, doubling the slope of tfficlirve to give maximal lift
~ 2.5 ata = 20 with rapid loss of lift after stall.

=

(1)

Figure 7: G2 computation of velocity magnitude (upper)sgtege (middle), and non-
transversal vorticity (lower), for angles of attack 2, 4d&h (from left to right). Notice
in particular the rolls of streamwise vorticity at sepaoati
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Figure 8: G2 computation of velocity magnitude (upper) sgtee (middle), and non-
transversal vorticity (lower), for angles of attack 10, aad 18 (from left to right).
Notice in particular the rolls of streamwise vorticity apseation.
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Figure 9: G2 computation of velocity magnitude (upper) sgtee (middle), and non-
transversal vorticity (lower), for angles of attack 20, 88d 24 (from left to right).
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Figure 10: G2 computation of normalized local lift force fugp) and drag force (lower)
contributions acting along the lower and upper parts of timgyfor angles of attack O,
2,4 ,10 and 18 each curve translated 0.2 to the right and 1.0 up, with the foece
level indicated for each curve.
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16 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing reéisg from projecting the
pressure acting perpendicular to the wing surface onteastalirections, are plotted
in Fig.10. The total lift and drag results from integratihgs$e distributions around the
wing. In potential flow computations (with circulation acding to Kutta-Zhukovsky),
only the pressure distribution ej-distribution is considered to carry releveant infor-
mation, because a potential solution by construction hesdimg. In the perspective
of Kutta-Zhukovsky, it is thus remarkable that the projectg-curves carry correct
information for both lift and drag.

The lift generation in Phase 1 and 3 can rather easily beienéd, while both the
lift and drag in Phase 2 results from a (fortunate) intridaterplay of stability and
instability of potential flow: The main lift comes from uppgurface suction arising
from a turbulent boundary layer with small skin friction cbimed with rear separation
instability generating low-pressure streamwise vostjoithile the drag is kept small
by negative drag from the leading edge. We conclude thateptewg transition to
turbulence at the leading edge can lead to both decreasaddifincreased drag.

17 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points @iperiments [21,
36], we find good agreement with the main difference that thesb of the lift co-

efficient in phase 3 is lacking in experiments. This is prdpan effect of smaller
Reynolds numbers in experiments, with a separation buldstaifg on the leading
edge reducing lift at high angles of attack. The oil-film prets in [21] show surface
vorticity generating streamwise vorticity at separatisrobserved also in [24, 27].

A jumbojet can only be tested in a wind tunnel as a smalleestaldel, and upscal-
ing test results is cumbersome because boundary layerstdoale. This means that
computations can be closer to reality than wind tunnel @rparts. Of particular im-
portance is the maximal lift coefficient, which cannot bediceed by Kutta-Zhukovsky
nor in model experiments, which for Boeing 737 is reporteeéd.73 in landing in
correspondence with the computation. In take-off the makilift is reported to be
1.75, reflected by the rapidly increasing drag beyand 16 in computation.

18 Kutta-Zhukovsky’s Lift Theory is Non-Physical

We understand that the above scenario of the action of a windifferent angles of
attack, is fundamentally different from that of Kutta-Zlowsky, although for lift there
is a superficial similarity because both scenarios involeglifired potential flow. The
slope of the lift curve according to Kutta-Zhukovsky2ig? /180 ~ 0.10 as compared
to the computed.09.

Fig.6 shows that the circulation is small without any inaseap too = 10, which
gives evidence that Kutta-Zhukovsky’s circulation theopupling lift to circulation
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does not describe real flow. Apparently Kutta-Zhukovsky aggnto capture some
physics using fully incorrect physics, which is not science

Kutta-Zhukovsky’s explanation of lift is analogous to artdated explanation of
the Robin-Magnus effect causing a top-spin tennis ball twewown as an effect
of circulation, which in modern fluid mechanics is insteadienstood as an effect of
non-symmetric different separation in laminar and turbtbundary layers [27]. Our
results show that Kutta-Zhukovsky’s lift theory for a winig@aneeds to be replaced.

19 Sailing

Both the sail and keel of a sailing boat under tacking agalrestvind, act like wings
generating lift and drag, but the action, geometrical stzeqaeangle of attack of the sail
and the keel are different. The effective angle of attack dibis typically 20 degrees
and that of a keel 10 degrees, for reasons which we now give.

The boat is pulled forward by the sail, assuming for simplithat the beam is
parallel to the direction of the boat at a minimal tacking landpy the component
Lsin(20) of the lift L, as above assumed to be perpendicular to the effective wind
direction, but also by the following contributions from teng assumed to be parallel
to the effective wind direction: The negative drag on thelegrd side at the leading
edge close to the mast gives a positive pull which largelymemsates for the positive
drag from the rear leeward side, while there is less positieg) from the windward
side of the sail as compared to a wing profile, because of tfiereice in shape.
The result is a forward pub sin(20)L =~ 0.2L combined with a side (heeling) force
~ L cos(20) ~ L, which tilts the boat and needs to be balanced by lift fronthieckeel
in the opposite direction. Assuming the lift/drag ratio fbe keel is 13, the forward
pull is then reduced te: (0.2 — 1/13)L = 0.1L, which can be used to overcome the
drag from the hull minus the keel.

The shape of a sail is different from that of a wing which gigesaller drag from
the windward side and thus improved forward pull, while tleelkhas the shape of a
wing and acts like a wing. A sail with add) degrees gives maximal pull forward at
maximal heeling/lift with contribution also from the reaanpof the sail, like for a wing
just before stall, while the drag is smaller than for a win@@tlegrees aoa (for which
the lift/drag ratio is about 3), with the motivation givencsde. The lift/drag curve for
a sail is thus different from that of wing with lift/drag laggfor a sail at aoa 20. On
the other hand, a keel with aoa 10 degrees has a lift/dragabtut 13. A sail at aoa
20 thus gives maximal pull at strong heeling force and smraly dwhich together with
a keel at aoa 10 with strong lift and small drag, makes an efft@ombination. This
explains why modern designs combine a deep narrow keelgeefiitiently for small
aoa, with a broader sail acting efficiently at a larger aoa.
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