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Abstract

We consider variance-optimal hedging when trading is restricted to a finite time set.
Using Laplace transform methods, we derive semi-explicit formulas for the variance-
optimal initial capital and hedging strategy in affine stochastic volatility models. For
the corresponding minimal expected squared hedging error,we propose a closed-form
approximation as well as a simulation approach. The resultsare illustrated by comput-
ing the relevant quantities in a time-changed Lévy model.
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1 Introduction

A classical question in Mathematical Finance is how the issuer of an option can hedge her
risk by trading in the underlying. To tackle this problem in incomplete markets, we consider
variance-optimal hedging, cf. e.g. [18, 22, 5] and the references therein for a survey of
the extensive literature. Variance-optimal hedging of a contingent claimH means that one
minimizes theexpected squared hedging error

E((v0 + ϕ • ST −H)2)

over all initial endowmentsv0 and trading strategiesϕ, whereϕ • ST represents the cumu-
lated gains resp. losses from tradingϕ up to the expiry dateT of the claim. In this article
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we consider the above problem in affine stochastic volatility models. These generalize Lévy
processes by allowing for volatility clustering and are capable of recapturing most of the
stylized facts observed in stock price time series.

For Lévy processes variance-optimal hedging has been dealtwith using PDE methods
by [6] and by employing Laplace transform techniques in [10,4]. The approach of [10]
has subsequently been extended to affine models by [17, 13, 12] if the discounted asset
price is a martingale and by [14] in the general case. However, whereas [10, 4] incorporate
both continuousanddiscreterebalancing, the results for affine processes have focused on
continuous trading so far.

The present study complements these results by showing how to deal with discrete-time
variance-optimal hedging in affine models. Since only finitely many trades are feasible in
reality, this analysis is important in order to answer the following questions:

1. How should discrete rebalancing affect theinvestment decisionsof the investor, i.e. to
what extent should she adjust her hedging strategy?

2. How can one quantify the additional risk resulting from discrete trading, i.e. by how
much does the hedging error increase?

The general structure of variance-optimal hedging in discrete time has been thoroughly
investigated by [21]. However, examples of (semi-) explicit solutions seem to be limited
to the results of [10, 4] for Lévy processes and [2] for some specific diffusion models with
stochastic volatility. Here we show how to extend the Laplace transform approach of [10]
to general affine stochastic volatility models. Similarly as in [13, 12] we focus on the case
where the discounted asset price process is a martingale. Numerical experiments using the
results of [10] and [14] indicate that the effect of a moderate drift rate on hedging problems
is rather small.

This article is organized as follows. In Section 2 we summarize for the convenience of
the reader the general structural results of [21] on variance-optimal hedging in discrete time,
reduced to the case where the underlying asset is a martingale. Subsequently we explain how
the Laplace transform approach can be used in general discrete-time models in order to ob-
tain integral representations of the objects of interest. Section 4 turns to the computation of
the integrands from Section 3 in affine stochastic volatility models. We show how to com-
pute all integrands in closed form for the optimal initial capital and hedging strategy. This
parallels results for continuous-time hedging in [10, 4] and [13, 12] and for discrete-time
hedging in [10, 4]. Somewhat surprisingly, the expressionsfor the corresponding hedging
error turn out to be considerably more involved than in the continuous-time case and cannot
be computed in closed form. We propose two approaches to circumvent this problem: First,
we determine a closed form approximation, whose error becomes negligible as the number
of trades tends to infinity. As an alternative, we put forwarda simple Monte-Carlo scheme to
approximate the hedging error via simulation. Section 5 contains some numerical examples
for the time-changed Lévy models introduced by [3].
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2 Discrete-time variance-optimal hedging

LetT > 0 be a fixed time horizon,N ∈ N andT0 := {t0, t1, . . . , tN}, T := T0\{0}, where
tn = nT/N for n = 0, . . . , N . Denote by(Ω,F , (Ft)t∈T0

, P ) a filtered probability space
with discrete time setT0. For simplicity, we assume that the initialσ-field F0 is trivial. As
for an introduction to financial mathematics in this discrete setup, the reader is referred to
the textbook of Lamberton and Lapeyre [15]. The logarithmX of the discounted stock price
process

S = S0 exp(Xt), S0 ∈ R+, t ∈ T0,

is supposed to be the second component of an adapted process(y,X), whereX0 is nor-
malized to zero. The first componenty models stochastic volatility or, more accurately,
stochastic activity in the model. Throughout, we suppose that

E(S2
T ) <∞,

as well as
E(∆S2

tn |Ftn−1
) > 0, t ∈ T , (2.1)

to rule out degenerate cases. Our goal is to compute the variance-optimal hedge for a given
contingent claimH in the following sense.

Definition 2.1 We say that(v0, ϕ) is anadmissible endowment/strategy pair, if v0 ∈ R and
ϕ = (ϕt)t∈T is a predictable process (i.e.ϕt is Ft−1-measurable) such that

ϕ • ST :=
∑

t∈T

ϕt∆St ∈ L2(P ).

An admissible endowment/strategy pair(v⋆
0, ϕ

⋆) is calledvariance-optimalfor a contingent
claim with discounted payoffH ∈ L2(P ) at timeT , if it minimizes theexpected squared
hedging error

(v0, ϕ) 7→ E
(

(v0 + ϕ • ST −H)2)

over all admissible endowment/strategy pairs(v0, ϕ). In this case, we refer tov⋆
0 as the

variance-optimal initial capitaland callϕ⋆ variance-optimal hedging strategy.

As noted in the introduction, we restrict ourselves to the case where the stock price is a
martingale.

Assumption 2.2 The stock price processS is a square-integrable martingale.

In this case, the variance-optimal capital and strategy canbe represented as follows.

Proposition 2.3 LetH ∈ L2(P ). Then the variance-optimal endowment/strategy pair for
H is given by

v⋆
0 = V0, ϕ⋆

tn =
E(VtnStn |Ftn−1

) − Vtn−1
Stn−1

E(S2
tn |Ftn−1

) − S2
tn−1

, tn ∈ T ,
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where
Vtn := E(H|Ftn), tn ∈ T0

denotes theoption price processofH. The corresponding minimal expected squared hedg-
ing error is given by

J0 := E(V 2
T − V 2

0 ) −
∑

tn∈T

E
(

ϕ⋆
tn(E(VtnStn |Ftn−1

) − Vtn−1
Stn−1

)
)

.

PROOF. This follows from [21, Section 4.1] by making use of the martingale properties of
S andV . �

Notice that if the initial capital is fixed atv0 ∈ R rather than being part of the optimiza-
tion problem, the same strategyϕ⋆ is still optimal ifS is a martingale (cf. [21, Section 4.1]).
However, the corresponding hedging error increases by(v0 − V0)

2 in this case.

3 The Laplace transform approach

In order to derive formulas that can be computed in concrete models we use theLaplace
transform approach, which has been introduced to variance-optimal hedging by [10]. The
key assumption on the contingent claim is the existence of anintegral representation in the
following sense.

Assumption 3.1 Suppose that the payoff function of the claim is of the formH = f(ST )

for some functionf : (0,∞) → R, such that

f(s) =

∫ R+i∞

R−i∞

szl(z)dz,

for l : C → C andR ∈ R such thatx 7→ l(R + ix) is integrable andE(exp(2RXT )) <∞.

Example 3.2 Most European options admit an integral representation of this kind. E.g. for
the European call with payoff functionf(s) = (s−K)+, we have

f(s) =
1

2πi

∫ R+i∞

R−i∞

sz K1−z

z(z − 1)
dz,

for anyR > 1 by [10, Lemma 4.1]. More generally, theBromwich inversion formulaas in
[10, Theorem A.1] ascertains thatl is typically given by thebilateral Laplace transformof
x 7→ f(exp(x)), cf. [10] for more details and examples.

Henceforth, we only consider contingent claims satisfyingAssumption 3.1. In this case,
Proposition 2.3 can also be written in integral form.
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Theorem 3.3 We haveH ∈ L2(P ) and the corresponding option price process is given by

Vtn =

∫ R+i∞

R−i∞

V (z)tn l(z)dz, tn ∈ T0,

for the square-integrable martingales

V (z)tn := E(Sz
T |Ftn), tn ∈ T0.

Moreover, the variance-optimal hedging strategy forH can be represented as

ϕ⋆
tn =

∫ R+i∞

R−i∞

E(V (z)tnStn |Ftn−1
) − V (z)tn−1

Stn−1

E(S2
tn |Ftn−1

) − S2
tn−1

l(z)dz, tn ∈ T .

PROOF. The first assertion follows from Assumption 3.1 and Fubini’s theorem along the
lines of [13, Lemma 3.3 and Proposition 3.4]. The second can be derived analogously using
the Cauchy-Schwarz inequality andE(S2

tn) <∞, tn ∈ T . �

For the hedging error, Proposition 2.3 and Theorem 3.3 yieldthe following similar inte-
gral representation.

Corollary 3.4 For tn ∈ T andz1, z2 ∈ R + iR, let

J1(z1, z2) :=V (z1)TV (z2)T − V (z1)0V (z2)0,

J2(tn, z1, z2) :=
(E(V (z1)tnStn |Ftn−1

) − V (z1)tn−1
Stn−1

)

E(S2
tn |Ftn−1

) − S2
tn−1

×

× (E(V (z2)tnStn |Ftn−1
) − V (z2)tn−1

Stn−1
).

If, for tn ∈ T ,
∫

∞

−∞

∫

∞

−∞

E(|J2(tn, R + ix1, R+ ix2)|)|l(R+ ix1)||l(R + ix2)|dx1dx2 <∞, (3.1)

the minimal expected squared hedging error is given by

J0 =

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞

E(J1(z1, z2))l(z1)l(z2)dz1dz2

−
∑

tn∈T

∫ R+i∞

R−i∞

∫ R+i∞

R−i∞

E(J2(tn, z1, z2))l(z1)l(z2)dz1dz2.

4 Application to affine stochastic volatility models

Theorem 3.3 and Corollary 3.4 show that in order to compute semi-explicit formulas of
the discrete variance-optimal capital, hedging strategy and hedging error, one must be able
to compute conditional exponential moments of the processX. This suggests to consider
models whose moment generating functionE(exp(uXtn)) is known in closed form. Here
we useaffine processesin the sense of [7].
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Assumption 4.1 Suppose that(yt, Xt)t∈T0
is the restriction to discrete time of a semimartin-

gale which isregularly affinew.r.t y in the sense of [7, Definitions 2.1 and 2.5]. This means
that the characteristic function of(y,X) has exponentially affine dependence ony, i.e. there
existΨj : T × iR2 → C, j = 0, 1 such that, fort ≥ s and(u1, u2) ∈ iR2,

E
(

eu1yt+u2Xt

∣

∣Fs

)

= exp (Ψ0(t− s, u1, u2) + Ψ1(t− s, u1, u2)ys + u2Xs) . (4.1)

Example 4.2 By [7, Theorems 2.7 and 2.12], a continuous-time semimartingale(y,X) is
affine if and only if its local dynamics expressed in terms of the infinitesimal generator resp.
the differential characteristics depend ony in an affine way. Moreover, the functionsΨ0,Ψ1

can be determined by solving some generalized Riccati equations.
[11] shows that a large number of stochastic volatility models from the empirical liter-

ature fit into this framework. Examples include the models ofHeston [9] and Barndorff-
Nielsen and Shephard [1] as well as their extensions to time-changed Lévy models by [3].
A particular specification of this general class of models isgiven by the followingOU-time-
change model:

Xt = L∫ t

0
ysds, dyt = −λytdt+ dZt, y0 > 0,

for a mean reversion speedλ > 0, a Lévy processL with Lévy exponentψL and an increas-
ing Lévy processZ with Lévy exponentψZ, i.e.

E(euLt) = exp(tψL(u)), E(euZt) = exp(tψZ(u)), ∀u ∈ iR.

In this case,(y,X) is affine by [11, Section 4.4] and in view of [11, Corollary 3.5], we have

Ψ1(t, u1, u2) = e−λtu1 +
1 − e−λt

λ
ψL(u2),

Ψ0(t, u1, u2) =

∫ t

0

ψZ(Ψ1(s, u1, u2))ds.

If y is chosen to be aGamma-OU processwith stationary Gamma(a,b) distribution (see e.g.
[20] for more details), we haveψZ(u) = λau/(b − u) andΨ0 can be determined in closed
form as well. By e.g. [12, Proposition 3.6], we have

Ψ0(t, u1, u2) =















aλ

bλ− ψL(u2)

(

b log

(

b− Ψ1(t, u1, u2)

b− u1

)

+ tψL(u2)

)

, if bλ 6= ψL(u2),

−aλ
(

b

λu1 − ψL(u2)
(eλt − 1) + t

)

, if bλ = ψL(u2),

where log denotes thedistinguished logarithmin the sense of [19, Lemma 7.6], i.e. the
branch is chosen such that the resulting function is continuous int.

To compute exponential moments ofX such asV (z)t = E(Sz
T |Ft), z ∈ R + iR, we

need Equation (4.1) to remain valid on a suitable extension of iR2. The following sufficient
condition is taken from [13].
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Assumption 4.3 Suppose that for alltn ∈ T0, the mappings(u1, u2) 7→ Ψj(tn, u1, u2),
j = 0, 1 admit analytic continuations to the strip

S := {z ∈ C
2 : Re(z) ∈ (−∞, (M ∨ 0) + ε) × ((2R ∧ 0) − ε, (2R ∨ 2) + ε)},

for someε > 0 andM := sup{2Ψ1(T − tn, 0, r) : r ∈ [R ∧ 0, R ∨ 0], tn ∈ T0}.

The existence of the analytic extensions in Assumption 4.3 is difficult to verify in gen-
eral. For affine diffusion processes, [8, Theorem 3.3] showsthat it suffices to establish that
solutions to the corresponding Riccati equations exist on[0, T ]. In the presence of jumps, the
situation is more involved and one has to work on a case-by-case basis. For time-changed
Lévy processes, this has been carried out in detail by [12].

Example 4.4 By the proof of [12, Theorems 3.3, 3.4], Assumption 4.3 holdsin the OU-
time-change models from Example 4.2, if the Lévy exponentsψL andψZ admit analytic
extensions to{z ∈ C : Re(z) ∈ ((2R ∧ 0) − ε, (2R ∨ 2) + ε)} resp.{z ∈ C : Re(z) ∈
(−∞,M + ε)} for someε > 0. E.g. ifL is chosen to be a NIG process with Lévy exponent

ψL(u) = uµ+ δ(
√

α2 − β2 −
√

α2 − (β + u)2),

for µ ∈ R, δ, α > 0, β ∈ (−α, α) in the Gamma-OU-time-change model from Example
4.2, one easily shows that the Lévy exponentsψZ andψL admit analytic extensions to
{z ∈ C : Re(z) ∈ (−∞, b)} resp.{z ∈ C : Re(z) ∈ (−α − β, α − β)}. Consequently,
checking the validity of Assumption 4.3 amounts to verifying

M < b, 2R > −α− β, 2R ∨ 2 < α− β,

for M = ((1 − e−λT )/λ)2 max{ψL(R ∧ 0), ψL(R ∨ 0)} ≥ 0 in this case.

By [7, Theorem 2.16(ii)], Assumption 4.3 implies that the exponential moment formula
(4.1) holds for allz ∈ S . In particular,S is square-integrable. We proceed by provid-
ing sufficient and essentially necessary conditions that ensure the validity of the martingale
assumption 2.2 and the non-degeneracy condition (2.1).

Assumption 4.5 Assume that the martingale conditions

Ψ0

(

T

N
, 0, 1

)

= Ψ1

(

T

N
, 0, 1

)

= 0 (4.2)

are satisfied and suppose that for

δ0 := Ψ0

(

T

N
, 0, 2

)

, δ1 := Ψ1

(

T

N
, 0, 2

)

,

we haveδ0, δ1 ≥ 0 and

δ0 > 0 or δ1yt > 0 a.s. for allt ∈ T . (4.3)
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Example 4.6 For OU-time-change models, the martingale conditions (4.2) read asψL(1) =

0, i.e. exp(L) has to be a martingale. E.g. in the NIG-OU models from Example4.4, this
means

µ = δ
(

√

α2 − (β + 1)2 −
√

α2 − β2
)

.

As for the non-degeneracy condition (4.3), the termδ0 + δ1y is actually bounded away from
zero in most applications.

1. In OU-time-change models satisfying the conditions of Example 4.4,Ψ1(s, 0, 2) =

ψL(2)(1 − exp(−λs))/λ > 0, unlessL is deterministic. Moreover,Ψ0(T/N, 0, 2) =
∫ T/N

0
ψZ(Ψ1(s, 0, 2))ds, which is also positive by e.g. [19, Theorem 21.5]. Since

(yt)t∈T0
is bounded from below byexp(−λT )y0 > 0, the termδ0 + δ1y is bounded

away from zero in this case. In particular, (4.3) is satisfied.

2. Now suppose that the Ornstein-Uhlenbeck processy is replaced by a square-root pro-
cess

dyt = κ(η − yt)dt+ σ
√
ytdWt, y0 > 0,

whereκ, η, σ > 0 andW denotes a standard Brownian motion. Subject to certain
regularity conditions (cf. [12, Assumption 4.2]), the proof of [12, Theorems 4.3, 4.4]
and a comparison argument show thatΨ1(s, 0, 2) > 0 for s > 0. This in turn yields
Ψ0(t, 0, 2) = κη

∫ t

0
Ψ1(s, 0, 2)ds > 0 for t > 0 and henceδ0, δ1 > 0. Sincey is

positive, this shows thatδ0 + δ1y is bounded away from zero for theseCIR-time-
change modelsas well and (4.3) holds.

From now on, Assumptions 4.3 and 4.5 are supposed to be in force. Combined with
Theorem 3.3, Assumption 4.3 allows us to compute the variance-optimal initial capitalv⋆

0

and the variance-optimal hedging strategyϕ⋆
t at timet by performing single numerical inte-

grations.

Theorem 4.7 For tn ∈ T0 andz ∈ R + iR, we have

V (z)tn = Sz
tn exp(Ψ0(T − tn, 0, z) + Ψ1(T − tn, 0, z)ytn).

Moreover, fortn ∈ T ,

ϕ⋆
tn =

∫ R+i∞

R−i∞

V (z)tn−1

Stn−1

(

exp(κ0(tn, z) + κ1(tn, z)ytn−1
) − 1

exp(δ0 + δ1ytn−1
) − 1

)

l(z)dz,

where, forj = 0, 1,

δj =Ψj

(

T

N
, 0, 2

)

, j = 0, 1,

κj(t, z) :=Ψj

(

T

N
,Ψ1(T − t, 0, z), z + 1

)

− Ψj

(

T

N
,Ψ1(T − t, 0, z), z

)

.
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PROOF. The formula forV (z) follows immediately from Assumption 4.3 and [7, Theorem
2.16(ii)]. Analogously, we obtain

E(S2
tn |Ftn−1

) − S2
tn−1

= S2
tn−1

(eδ0+δ1ytn−1 − 1) (4.4)

and

E(V (z)tnStn |Ftn−1
) − V (z)tn−1

Stn−1
= V (z)tn−1

Stn−1
(eκ0(tn,z)+κ1(tn,z)ytn−1 − 1), (4.5)

with

κ0(t, z) = Ψ0

(

T

N
,Ψ1(T − t, 0, z), z + 1

)

+ Ψ0(T − t, 0, z) − Ψ0

(

T − t+
T

N
, 0, z

)

,

κ1(t, z) = Ψ1

(

T

N
,Ψ1(T − t, 0, z), z + 1

)

− Ψ1

(

T − t+
T

N
, 0, z

)

.

By the martingale property ofV (z)tn , we have

V (z)tn−1
= E(V (z)tn |Ftn−1

).

Together with [7, Theorem 2.16(ii)], this establishes the semiflow property

eΨ0(T−tn−1,0,z)+Ψ1(T−tn−1,0,z)ytn−1

= eΨ0(T−tn,0,z)+Ψ0(T/N,Ψ1(T−tn,0,z),z)+Ψ1(T/N,Ψ1(T−tn,0,z),z)ytn−1 ,

for tn ∈ T andz ∈ R + iR. Insertion into (4.5) yields the assertion. �

We now consider the expression for the minimal expected squared hedging error in
Corollary 3.4. The first termJ1 represents the variance of an unhedged exposure to the
option. In view of Assumption 4.3, it can be computed by evaluating a double integral with
the following integrand.

Lemma 4.8 For z1, z2 ∈ R + iR, we have

E(J1(z1, z2)) = V (z1 + z2)0 − V (z1)0V (z2)0.

PROOF. This is due to the martingale property ofV (z1 + z2). �

We now turn to the second term in the formula for the hedging error in Corollary 3.4.
Suppose for the moment that (3.1) holds. By Equations (4.4) and (4.5), we have

J2(tn, z1, z2) = V (z1)tn−1
V (z2)tn−1

(eκ0(tn,z1)+κ1(tn,z1)ytn−1 − 1)(eκ0(tn,z2)+κ1(tn,z2)ytn−1 − 1)

eδ0+δ1ytn−1 − 1
.

In view of Corollary 3.4, it therefore remains to compute

E(J2(tn, z1, z2))

=

(

I(κ1(tn, z1) + κ1(tn, z2), tn, z1, z2)e
κ0(tn,z1)+κ0(tn,z2) − I(κ1(tn, z2), tn, z1, z2)e

κ0(tn,z2)

− I(κ1(tn, z1), tn, z1, z2)e
κ0(tn,z1) + I(0, tn, z1, z2)

)

Sz1+z2

0 eΨ0(T−tn−1,0,z1)+Ψ0(T−tn−1,0,z2),
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where

I(u, tn, z1, z2)

:= E

(

exp((u+ Ψ1(T − tn−1, 0, z1) + Ψ1(T − tn−1, 0, z2))ytn−1
+ (z1 + z2)Xtn−1

)

exp(δ0 + δ1ytn−1
) − 1

)

.

Unfortunately,I(u, tn, z1, z2) can only be computed explicitly in some very special cases,
unlike for continuous-time variance-optimal hedging. E.g. if N = 1, i.e. forstatic hedging,
the sum in Corollary 3.4 only consists of the termJ2(T, z1, z2), which is also deterministic
in this case. Hence, we obtain

E(J2(T, z1, z2)) = V (z1)0V (z2)0
(eν0(z1)+ν1(z1)y0 − 1)(eν0(z2)+ν1(z2)y0 − 1)

eΨ0(T,0,2)+Ψ1(T,0,2)y0 − 1
,

for νj(z) = Ψj(T, 0, z + 1) − Ψj(T, 0, z), j = 0, 1, which allows to compute the static
hedging error by evaluating a double integral.

For Lévy processes, we haveδ1 = 0. Hence the denominator in the expression forI

reduces to a constant in this case and the expectations can becomputed using (4.1). This
leads to the formula obtained in [10].

For affine models, one can verify that as the number of tradingtimesN tends to infinity,
the argument of the expectation in the expression for I converges to an expression of the
form

a+ bytn−1

c+ dytn−1

exp(uytn−1
+ (z1 + z2)Xtn−1

).

The expectation of this term can then be calculated, cf. the proof of [13, Theorem 4.2] for
more details.

If the set of trading times is finite, it does not seem possibleto calculateI in closed form.
We discuss two ways to circumvent this problem and tackle thecomputation of the hedging
error. The first is to use the approximation

exp(δ0 + δ1yt) − 1 ≈ δ0 + δ1yt,

which seems reasonable as the numberN of trading dates tends to infinity, because both
δ0 = Ψ0(T/N, 0, 2) andδ1 = Ψ1(T/N, 0, 2) converge to zero in this case. We obtain the
following first-order approximation.

Theorem 4.9 Suppose that for anyt ∈ T0, the following holds.

1. The mappings(u1, u2) 7→ Ψj(T − t, u1, u2), j = 0, 1 admit analytic extensions to

S
′ := {z ∈ C

2 : Re(z) ∈ (−∞, (M ′ ∨ 0) + ε) × ((2R ∧ 0) − ε, (2R ∨ 2) + ε)},

for someε > 0 andM ′ := M ∨ 2Ψ1 (T/N,M/2, R+ 1) .

2.

E

(

exp(M ′yt + 2RXt)

δ0 + δ1yt

)

<∞. (4.6)
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Then(3.1) is satisfied and forn = 1, . . . , N , z1, z2 ∈ R + iR,

u ∈ Ψ1(T − tn−1, 0, z1) + Ψ1(T − tn−1, 0, z2)

+ {κ1(tn, z1) + κ1(tn, z2), κ1(tn, z1), κ1(tn, z2), 0},

we have

E

(

exp(uytn−1
+ (z1 + z2)Xtn−1

)

δ0 + δ1ytn−1

)

=































e−uδ0/δ1

δ1

∫ 1

0

(

δ1
δ0

+ us

)

exp

(

δ0
δ1
us+ χ0(s) + χ1(s)y0

)

ds if δj 6= 0, j = 0, 1,

1

δ1

∫ 1

0

1 + us

s
exp(ϑ0(s) + ϑ1(s)y0)ds if δ0 = 0,

1

δ0
exp (Ψ0 (tn−1, u, z1 + z2) + Ψ1 (tn−1, u, z1 + z2) y0) if δ1 = 0,

where, forj = 0, 1,

δj = Ψj

(

T

N
, 0, 2

)

, χj(s) := Ψj

(

tn−1,
δ1
δ0

log(s) + us, z1 + z2

)

,

ϑj(s) := Ψj (tn−1, log(s) + us, z1 + z2) .

PROOF. In view of (4.3), we haveexp(δ0 + δ1yt) − 1 > δ0 + δ1yt, which combined with
(4.4) yields

E(|J2(tn, z1, z2)|) <
1

δ0 + δ1ytn−1

∣

∣

∣

∣

E(V (z1)tnStn |Ftn−1
) − V (z1)tn−1

Stn−1

Stn−1

∣

∣

∣

∣

×

×
∣

∣

∣

∣

E(V (z2)tnStn |Ftn−1
) − V (z2)tn−1

Stn−1

Stn−1

∣

∣

∣

∣

.

(4.7)

By Assumption 4.3, [7, Theorem 2.16(ii)] and Jensen’s inequality, we have
∣

∣

∣

∣

V (zj)tn−1
Stn−1

Stn−1

∣

∣

∣

∣

≤ SR
0 e

Ψ0(T−tn−1,0,R)+Ψ1(T−tn−1,0,R)ytn−1
+RXtn−1

≤ SR
0 e

Ψ0(T−tn−1,0,R)e
1

2
M ′ytn−1

+RXtn−1 ,

for j = 1, 2. Likewise, it follows from Jensen’s inequality that
∣

∣

∣

∣

E(V (zj)tnStn |Ftn−1
)

Stn−1

∣

∣

∣

∣

≤ E
(

|V (zj)tn |Stn

∣

∣

∣
Ftn−1

)

S−1
0 e−Xtn−1

≤ SR
0 E

(

eΨ0(T−tn,0,R)+Ψ1(T−tn,0,R)ytn
+(R+1)Xtn

∣

∣Ftn−1

)

e−Xtn−1

≤ SR
0 e

Ψ0(T−tn,0,R)E
(

e
1

2
Mytn

+(R+1)Xtn

∣

∣

∣
Ftn−1

)

e−Xtn−1

= SR
0 e

Ψ0(T−tn,0,R)eΨ0(T/N,M/2,R+1)+Ψ1(T/N,M/2,R+1)ytn−1
+RXtn−1

≤ SR
0 e

Ψ0(T−tn,0,R)+Ψ0(T/N,M/2,R+1)e
1

2
M ′ytn−1

+RXtn−1 ,
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for j = 1, 2, where we have used Assumption 4.3 and [7, Theorem 2.16(ii)]for the equality.
Together with (4.7), this implies

|J2(tn, z1, z2)| ≤ C
exp(M ′ytn−1

+ 2RXtn−1
)

δ0 + δ1ytn−1

,

for some constantC > 0 which does not depend onω andz1, z2. Consequently, (4.6) and
Assumption 3.1 yield (3.1). The second part of the assertionnow follows along the lines of
the proof of [13, Theorem 4.2] under the stated assumptions. �

Example 4.10 In most applications the denominator in (4.6) is actually bounded away from
zero (cf. Example 4.6). In this situation, (4.6) follows immediately from Condition 1 of
Theorem 4.9 and [7, Theorem 2.16(ii)].

In view of Theorem 4.9, the hedging error can be approximatedby a sum of triple inte-
grals with known integrands. Notice that because

1

δ0 + δ1yt + 1
2
(δ0 + δ1yt)2

=
1

δ0 + δ1yt
− 1

δ0 + 2 + δ1yt
,

asecond-order approximationbased on

exp(δ0 + δ1yt) − 1 ≈ δ0 + δ1yt +
1

2
(δ0 + δ1yt)

2

follows directly from Theorem 4.9.
Instead of using the closed-form approximation proposed above, one can eschew semi-

explicit computations and instead calculate the hedging error using a Monte-Carlo simula-
tion as in [6]:

1. SimulateK ∈ N independent trajectories(y(ωk), X(ωk)), k = 1, . . . , K of (y,X)

and compute the realizationsS(ωk) = S0 exp(X(ωk)) andH = f(ST (ωk)) of S and
H.

2. Calculate the values ofv⋆
0 andϕ⋆

tn(ωk), tn ∈ T using numerical integration to evaluate
the formulas from Theorem 4.7.

3. Compute the realized squared hedging errors

J0(ωk) =

(

v⋆
0 +

∑

tn∈T

ϕ⋆
tn(ωk)∆Stn(ωk) − f(ST (ωk))

)2

.

4. Use the empirical mean
1

K

K
∑

k=1

J0(ωk) as an estimator forJ0.

In addition to its simplicity, this approach has the advantage of approximating the entire
distribution of the hedging error, rather than just its mean. On the other hand, computation
time is increased.
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5 Numerical illustration

In order to illustrate the applicability of our formulas andexamine the effect of discrete
trading, we now investigate a numerical example. More specifically, we consider the NIG-
Gamma-OU model from Examples 4.2 and 4.4. As for parameters,we use the values esti-
mated in [16] using the generalized method of moments, adjusting the drift rateµ of L in
order to ensure the martingale property ofS:

β = −16.0, α = 90.1, δ = 85.9, µ = 15.0, λ = 2.54, a = 0.847, b = 17.5.

By Example 4.4, Assumption 4.3 and the prerequisites of Theorem 4.9 are satisfied for
European call options and e.g.R = 1.1. Henceforth, we consider a European call with
discounted strikeK = 100 and maturityT = 0.25 years. The results for the variance-
optimal initial hedge ratioϕ⋆

0 for N = 1 (static hedging) andN = 12 (weekly rebalancing)
are shown in Figures 1 and 2.
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Hedging strategy (Strike = 100, T = 0.25, N = 1 )
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Discrete Black−Scholes
Continuous Black−Scholes

Figure 1: Variance-optimal initial hedge ratios forN = 1.

For static hedging, the impact of discretization seems to bequite pronounced, in partic-
ular for out-of-the-money options. Also notice that this effect turns out to be substantially
bigger for the NIG-Gamma-OU than for the Black-Scholes model. For weekly rebalancing,
the effect of discretization on the initial hedge ratio already becomes marginal. More specif-
ically, the difference between the discrete- and continuous-time variance-optimal hedging
strategies is barely visible in Figure 2. Figure 3 shows a simulated path of the discrete
variance-optimal hedges forN = 1, 3, 12, 60.
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Figure 2: Variance-optimal initial hedge ratios forN = 12.
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Figure 3: A simulated path of optimal hedge ratios forN = 1, 3, 12, 60.
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We now turn to the minimal expected squared hedging error, which is depicted forN = 1

(static hedging) toN = 60 (daily rebalancing) in Figure 4.
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Figure 4: Minimal expected squared hedging errors.

As the numberN of trading dates tends to infinity, the discrete hedging errors approach
the respective continuous-time limits both in the Black-Scholes model and in the NIG-
Gamma-OU model. Naturally, this limit vanishes in the complete Black-Scholes model.
As noticed above, the static hedging error forN = 1 can be computed without using any
approximations. ForN ≥ 2, the discrete-time hedging error in the given NIG-Gamma-OU
model is approximated surprisingly well by the sum of the respective continuous-time hedg-
ing error and the corresponding discrete-time hedging error in the Black-Scholes model. In
fact, the maximal absolute difference is smaller than0.045. If such an approximation can be
used for the specific model at hand, computation time can often be drastically reduced by
evaluating the formulas from [10, 12] instead of Theorem 4.9.

Note that the discrete hedging errors in the NIG-Gamma-OU model have been approx-
imated using Theorem 4.9. Since the corresponding results for a simulation study using
one million Monte-Carlo runs differ by less than 2.5% forN = 1, . . . , 60, we do not show
them here. However, in Figure 5, we use the results of the Monte-Carlo study to depict an
approximation of thedistributionof the hedging error forN = 1, N = 12 andN = 60.
Apparently, not only the variance of the hedging error but also its law depend crucially on
the rebalancing frequency.
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Figure 5: Approximated distribution of the hedging error for N = 1, 12, 60.
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