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Abstract

We consider variance-optimal hedging when trading isictstt to a finite time set.
Using Laplace transform methods, we derive semi-explanitiulas for the variance-
optimal initial capital and hedging strategy in affine stastic volatility models. For
the corresponding minimal expected squared hedging eveopropose a closed-form
approximation as well as a simulation approach. The reaudtdllustrated by comput-
ing the relevant quantities in a time-changed Lévy model.

Key words: variance-optimal hedging, discrete time, sastic volatility, affine
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1 Introduction

A classical question in Mathematical Finance is how thedassii an option can hedge her
risk by trading in the underlying. To tackle this problemmeomplete markets, we consider
variance-optimal hedgingcf. e.g. [18, 22, 5] and the references therein for a surfey o
the extensive literature. Variance-optimal hedging of aticgent claimH means that one
minimizes theexpected squared hedging error

E((vo+ ¢+ Sr— H)?)

over all initial endowments, and trading strategies, wherey « St represents the cumu-
lated gains resp. losses from tradipgip to the expiry daté" of the claim. In this article
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we consider the above problem in affine stochastic vohatiibdels. These generalize Lévy
processes by allowing for volatility clustering and are afalp of recapturing most of the
stylized facts observed in stock price time series.

For Lévy processes variance-optimal hedging has beenwéhltising PDE methods
by [6] and by employing Laplace transform techniques in [4]0, The approach of [10]
has subsequently been extended to affine models by [17, 13f th2 discounted asset
price is a martingale and by [14] in the general case. Howewleereas [10, 4] incorporate
both continuousanddiscreterebalancing, the results for affine processes have focused o
continuous trading so far.

The present study complements these results by showingddeat with discrete-time
variance-optimal hedging in affine models. Since only flgitaany trades are feasible in
reality, this analysis is important in order to answer tH®feing questions:

1. How should discrete rebalancing affect ihheestment decisioref the investor, i.e. to
what extent should she adjust her hedging strategy?

2. How can one quantify the additional risk resulting froraalete trading, i.e. by how
much does the hedging error increase?

The general structure of variance-optimal hedging in éigctime has been thoroughly
investigated by [21]. However, examples of (semi-) expkdlutions seem to be limited
to the results of [10, 4] for Lévy processes and [2] for somexHje diffusion models with
stochastic volatility. Here we show how to extend the Laplaansform approach of [10]
to general affine stochastic volatility models. Similaryyia [13, 12] we focus on the case
where the discounted asset price process is a martingaleehltal experiments using the
results of [10] and [14] indicate that the effect of a modedtift rate on hedging problems
is rather small.

This article is organized as follows. In Section 2 we sumgeafor the convenience of
the reader the general structural results of [21] on vadasqtimal hedging in discrete time,
reduced to the case where the underlying asset is a magirgalbsequently we explain how
the Laplace transform approach can be used in general disomee models in order to ob-
tain integral representations of the objects of interesttiSn 4 turns to the computation of
the integrands from Section 3 in affine stochastic volgtittodels. We show how to com-
pute all integrands in closed form for the optimal initiapdal and hedging strategy. This
parallels results for continuous-time hedging in [10, 44 §b3, 12] and for discrete-time
hedging in [10, 4]. Somewhat surprisingly, the expressionshe corresponding hedging
error turn out to be considerably more involved than in thatiomous-time case and cannot
be computed in closed form. We propose two approaches tanguent this problem: First,
we determine a closed form approximation, whose error besamegligible as the number
of trades tends to infinity. As an alternative, we put forwagimple Monte-Carlo scheme to
approximate the hedging error via simulation. Section 3aios some numerical examples
for the time-changed Lévy models introduced by [3].



2 Discrete-time variance-optimal hedging

Let7 > 0 be afixed time horizony € Nand.% := {to,t1,...,tn}, 7 = F\{0}, where
t, = nT/N forn = 0,..., N. Denote by(2, .7, (%)%, P) a filtered probability space
with discrete time setj. For simplicity, we assume that the initialfield .%, is trivial. As
for an introduction to financial mathematics in this disersétup, the reader is referred to
the textbook of Lamberton and Lapeyre [15]. The logaritkirof the discounted stock price
process

S = Spexp(X;), So€eRy, teG,

is supposed to be the second component of an adapted prgcesSs where X, is nor-
malized to zero. The first componepntmodels stochastic volatility or, more accurately,
stochastic activity in the model. Throughout, we suppoaé th

E(S}) < oo,
as well as
E(ASE | F, ) >0, te T, (2.1)

to rule out degenerate cases. Our goal is to compute theneariaptimal hedge for a given
contingent claim# in the following sense.

Definition 2.1 We say thafv,, ¢) is anadmissible endowment/strategy pafruv, € R and
v = ()7 Is a predictable process (ig; is .#,_;-measurable) such that

o+ Spi=Y pAS, € L*(P).
tes
An admissible endowment/strategy p@if, ©*) is calledvariance-optimafor a contingent
claim with discounted payoffl € L*(P) at timeT, if it minimizes theexpected squared
hedging error
(vo, ) — E ((Uo + St — H)z)
over all admissible endowment/strategy pdirs, »). In this case, we refer to} as the
variance-optimal initial capitabnd callp* variance-optimal hedging strategy

As noted in the introduction, we restrict ourselves to theeocahere the stock price is a
martingale.

Assumption 2.2 The stock price processis a square-integrable martingale.
In this case, the variance-optimal capital and strategybearepresented as follows.

Proposition 2.3 Let H € L?(P). Then the variance-optimal endowment/strategy pair for
H is given by

E(‘/tnstnLgtnfl) - ‘/tnflstnfl
E(SE |21, ,) — S¢ ’

n—1

t, € 7,

* *
Vo = ‘/07 ()Otn =
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where
Vi, = E(H|%,), t,€ %
denotes theption price processf H. The corresponding minimal expected squared hedg-

ing error is given by

Jo=EWVE-VE) =Y E (¢ (E(V,,S,,

tn€T

Feo ) = Vi 1Se 1)) -

PROOF This follows from [21, Section 4.1] by making use of the nragale properties of
S andV. 0

Notice that if the initial capital is fixed af, € R rather than being part of the optimiza-
tion problem, the same strategy is still optimal if S is a martingale (cf. [21, Section 4.1]).
However, the corresponding hedging error increase@by 14;)? in this case.

3 The Laplace transform approach

In order to derive formulas that can be computed in concraidats we use theaplace
transform approachwhich has been introduced to variance-optimal hedgindglby. [The
key assumption on the contingent claim is the existence aftagral representation in the
following sense.

Assumption 3.1 Suppose that the payoff function of the claim is of the fain= f(S7)
for some functionf : (0,00) — R, such that

R+ioco
o= [ s

for!: C — CandR € R such that: — [(R + iz) is integrable and(exp(2RXr)) < oo.

Example 3.2 Most European options admit an integral representatiohisfkind. E.g. for
the European call with payoff functiof(s) = (s — K)*, we have

1 R+i00 Kl—z
_ = g
f(s) 27i /R_ioo ° 2(z—1) =

forany R > 1 by [10, Lemma 4.1]. More generally, tiBromwich inversion formulas in
[10, Theorem A.1] ascertains thais typically given by thebilateral Laplace transfornof
x — f(exp(x)), cf. [10] for more details and examples.

Henceforth, we only consider contingent claims satisfyAdsgumption 3.1. In this case,
Proposition 2.3 can also be written in integral form.



Theorem 3.3 We havel{ € L?(P) and the corresponding option price process is given by

n

R+i00
Vv = / V) l(2)dz b € T,

R—ico
for the square-integrable martingales
V(Z)tn = E(S’%Lgtn)? tn 6 %
Moreover, the variance-optimal hedging strategy fbican be represented as

* /RHOO E(V(2)t,Stu|Ft,_1) = V(2)tn_1 St 1
P i E(SZ] 70, ) — 57

tn—1

(2)dz, t,€ T.

PROOF The first assertion follows from Assumption 3.1 and Fukitiieorem along the
lines of [13, Lemma 3.3 and Proposition 3.4]. The second easdived analogously using
the Cauchy-Schwarz inequality aftd S? ) < oo, t, € 7. O

For the hedging error, Proposition 2.3 and Theorem 3.3 yieddollowing similar inte-
gral representation.

Corollary 3.4 Fort, € 7 andz;, 2z, € R+ iR, let

Jl (21, 22) Z:V(Zl)TV(ZQ)T - V(Zl)()V(Zg)O,

(E(V(21)t, 56,4, 1) =V (21)t, 15, 1) %
E(SE |, ) — SE_,

X (E(V(22)1, St |Ft, 1) = V(22)t, 1Sty 1)

Jo(tn, 21, 22) 1=

If, fort, € 7,
/ / E(|Jo(tn, R+ ix1, R+ 1x2)|)|I(R + izq)||I(R + ixe)|dx1dzy < 00,  (3.1)

the minimal expected squared hedging error is given by

R+ioc0 R-+ico
J() / / Jl 21,22))l(21)l(22)d2’1d2’2

R+zoo R—+ic0o
/ / Jg tn,Zl,ZQ))Z(Zl)l(Zg)dzleQ.

tn€T

4  Application to affine stochastic volatility models

Theorem 3.3 and Corollary 3.4 show that in order to computei-gxplicit formulas of
the discrete variance-optimal capital, hedging strategl/feedging error, one must be able
to compute conditional exponential moments of the procéss his suggests to consider
models whose moment generating functibexp(u.X;,)) is known in closed form. Here
we useaffine processes the sense of [7].



Assumption 4.1 Suppose thaty;, X;):c # is the restriction to discrete time of a semimartin-
gale which isregularly affinew.r.t y in the sense of [7, Definitions 2.1 and 2.5]. This means
that the characteristic function 6§, X') has exponentially affine dependenceyone. there
exist¥, : 7 x iR* — C, j = 0,1 such that, fot > s and(u;, us) € iR?,

E (e“ly”“ﬂt ‘ﬁs) =exp (Vo(t — s, uy, u) + Vi (t — s, up, uz)ys + s Xs) . (4.2)

Example 4.2 By [7, Theorems 2.7 and 2.12], a continuous-time semimgetay, X) is
affine if and only if its local dynamics expressed in termshaf infinitesimal generator resp.
the differential characteristics dependypim an affine way. Moreover, the functions,, ¥,
can be determined by solving some generalized Riccati spsat

[11] shows that a large number of stochastic volatility medem the empirical liter-
ature fit into this framework. Examples include the model$ieston [9] and Barndorff-
Nielsen and Shephard [1] as well as their extensions to tihasged Lévy models by [3].
A particular specification of this general class of modetsven by the followingOU-time-
change model

Xt - Lf()t ysds7 dyt == _)\ytdt _'_ CZZt7 yo > 07

for a mean reversion spead> 0, a Lévy procesg with Lévy exponent)” and an increas-
ing Lévy processZ with Lévy exponent)?, i.e.

B(e"™) = exp(ty™(u)), E(e"”) = exp(ty?(u)), Vu €R.
In this case(y, X) is affine by [11, Section 4.4] and in view of [11, Corollary B.&we have

1—e M
A

€ U1
t
Wo(t, ur,us2) :/ V2 (W (s, u1, ug))ds.
0

\Ill<t7 Uy, u2) =e N + wL<u2)7

If y is chosen to be @amma-OU processith stationary Gamma(b) distribution (see e.g.
[20] for more details), we have?(u) = Aau/(b — u) and ¥, can be determined in closed
form as well. By e.g. [12, Proposition 3.6], we have

iy (ot0s () ) v,

\II()(tu Uy, Ug) = b -

b
—aN [ ——————— (M = 1)+ ¢ if bA = T

a ()\u1_¢L(u2>(e ) + )7 ' V¥ (ug),
wherelog denotes thalistinguished logarithmn the sense of [19, Lemma 7.6], i.e. the
branch is chosen such that the resulting function is coatisunt.

To compute exponential moments &fsuch asl/ (z); = E(S;|.%;), z € R + iR, we
need Equation (4.1) to remain valid on a suitable extensioiRt The following sufficient
condition is taken from [13].



Assumption 4.3 Suppose that for alt, € %, the mappingSu,,us) — V;(t,, ur, us),
j = 0,1 admit analytic continuations to the strip

S :={2z€C?:Re(z) € (—o0,(MVO0)+e)x (2RA0) —¢,(2RV 2) +¢)},
for somes > 0 andM := sup{2¥,(T — ¢,,0,r) : 7 € [RAO0, RV 0],t, € T }.

The existence of the analytic extensions in Assumptiongdfficult to verify in gen-
eral. For affine diffusion processes, [8, Theorem 3.3] shimnasit suffices to establish that
solutions to the corresponding Riccati equations exisdofi]. In the presence of jumps, the
situation is more involved and one has to work on a case-bg-basis. For time-changed
Lévy processes, this has been carried out in detail by [12].

Example 4.4 By the proof of [12, Theorems 3.3, 3.4], Assumption 4.3 hoidthe OU-
time-change models from Example 4.2, if the Lévy exponeritsaind? admit analytic
extensions tdz € C : Re(z) € (2RA0) —¢,(2RV2) +¢)} resp.{z € C : Re(z) €
(—o0, M +¢)} for somes > 0. E.g. if L is chosen to be a NIG process with Lévy exponent

VM) = up+ (/=P — /P = (B,

forp € R, 6, > 0, 8 € (—a, ) in the Gamma-OU-time-change model from Example
4.2, one easily shows that the Lévy exponenfsand«” admit analytic extensions to
{z € C: Re(z) € (—o0,b)} resp.{z € C : Re(z) € (—a — §,a — 3)}. Consequently,
checking the validity of Assumption 4.3 amounts to verityin

M<b 2R>-a—-0, 2RV2<a-p,
for M = ((1 — e™*)/N)2max{p*(R A 0),v*(R VvV 0)} > 0in this case.

By [7, Theorem 2.16(ii)], Assumption 4.3 implies that thgperential moment formula
(4.1) holds for allz € .. In particular,S is square-integrable. We proceed by provid-
ing sufficient and essentially necessary conditions thstienthe validity of the martingale
assumption 2.2 and the non-degeneracy condition (2.1).

Assumption 4.5 Assume that the martingale conditions

T T
Yol =,0,1)=T;(—=,0,1)=0 4.2
O(va) 1<N77) ( )

are satisfied and suppose that for

T T
50 = \IJO <N7072) ) 51 = \Ill <N7072) )

we havedy, 6; > 0 and

do >0 or oy > 0a.s. forallt € 7. (4.3)

7



Example 4.6 For OU-time-change models, the martingale conditions #2d as)”(1) =
0, i.e.exp(L) has to be a martingale. E.g. in the NIG-OU models from Example this
means

p=0(Va? = (BF17 - Var = 7).

As for the non-degeneracy condition (4.3), the tégm- 6,y is actually bounded away from
zero in most applications.

1. In OU-time-change models satisfying the conditions o&faple 4.4,¥(s,0,2) =
YL (2)(1 — exp(—=As))/A > 0, unlessL is deterministic. Moreove®y,(T/N,0,2) =
OT/N »Z(U4(s,0,2))ds, which is also positive by e.g. [19, Theorem 21.5]. Since
(Yt)te 7 is bounded from below byxp(—AT")y, > 0, the termd, + 6,y is bounded
away from zero in this case. In particular, (4.3) is satisfied

2. Now suppose that the Ornstein-Uhlenbeck progasseplaced by a square-root pro-
cess

dys = k(N — ye)dt + o/yedWy,  yo > 0,
wherex,n,0c > 0 andW denotes a standard Brownian motion. Subject to certain
regularity conditions (cf. [12, Assumption 4.2]), the pfad[12, Theorems 4.3, 4.4]
and a comparison argument show thats, 0,2) > 0 for s > 0. This in turn yields
Wo(t,0,2) = ki [) Wi(s,0,2)ds > 0fort > 0 and hencel, s, > 0. Sincey is
positive, this shows thaf, + d,y is bounded away from zero for the§#R-time-
change modelas well and (4.3) holds.

From now on, Assumptions 4.3 and 4.5 are supposed to be ie.faZombined with
Theorem 3.3, Assumption 4.3 allows us to compute the vagi@ptimal initial capitab}
and the variance-optimal hedging strategyat timet by performing single numerical inte-
grations.

Theorem 4.7 For t,, € 95 andz € R + iR, we have
V(2), = Si, exp(Wo(T — 5,0, 2) + V(T — 1,0, 2)yy, ).
Moreover, fort,, € .7,

. /R+ioo V(2),_, <eXp(Kj0(tn, 2) + K1 (tn, 2)Yt,_, ) — 1) I(2)dz
oy exp(do + 01ys, ,) — 1 |

R—ico Stnfl

where, forj =0, 1,
T .
(Sj :\Ilj (N,O,2> 5 ij,l,

T T
lij(t,Z) I:\Ilj (N,\Ill(T — t,O,z),z+ 1) - \I/j (N,\Ifl(T— t, O,Z),Z) .



PROOF The formula forV/(z) follows immediately from Assumption 4.3 and [7, Theorem
2.16(ii)]. Analogously, we obtain

E(an‘ytn—l) - St2

n—1

=82 (eboFovn1 1) (4.4)

n—1

and

E(V(2)t,Stul Ftns) = V(2)ta_y Stuy = V(2)1,_, S,y (€702 mlin2vn 1)+ (4.5)

n—1

with

T T
Iio(t,Z):\Ilo <N,\I/1(T—t,0,2),2+1) +\I]0(T—t,0,2)—\110 (T—t—FN,O,Z),

T T
Kl(t,z):‘l’l <N,\I/1(T—t,0,2),2+1) —\Ill <T—t+ﬁ,0,2) .

By the martingale property df (z),, , we have
V(2)tny = E(V(2)1, | P, 1)

Together with [7, Theorem 2.16(ii)], this establishes temglow property

e\IIO (T_tnf 1 7072)“1'\1/1 (T_tnf 1 7072)y

— 6\110 (T—tn,0,2)+¥o(T/N,¥1(T~1n,0,2),2)+¥1(T/N,¥1(T~1r,0,2),2)yt,,_,
’

fort, €  andz € R + iR. Insertion into (4.5) yields the assertion. O

We now consider the expression for the minimal expectedrsquledging error in
Corollary 3.4. The first terny; represents the variance of an unhedged exposure to the
option. In view of Assumption 4.3, it can be computed by estihg a double integral with
the following integrand.

Lemma 4.8 For z;, 2z, € R + iR, we have
E(Jl(zl, 22)) = V(Zl + Zz)() — V(Zl)0V(ZQ)Q.
PROOF. This is due to the martingale propertydfz; + 2). O

We now turn to the second term in the formula for the hedgimgren Corollary 3.4.
Suppose for the moment that (3.1) holds. By Equations (4d)4.5), we have

(6ﬂo(tn721)+ﬂ1(tmzl)ytn,l _ 1)(elio(tn722)+l’~1(tn722)ytn,1 _ 1)

JZ(tna 21, 22) = V(Zl)tn—lv(z2)tn71

%0ttt 1 _ 1

In view of Corollary 3.4, it therefore remains to compute
E(Jy(tn, 21, 22))

- (I(’%l (tTw Zl) + K1 (tTw 22>7 tTL? 21, ZZ)eHO(tn’Zl)+HO(tn’Z2) - I(’%l (tTw ZQ)? tTL? 21, ZZ)eHO(tn’Z2)

- I(Kl (tna Zl)v tnv 21, ZZ)6RO(tn721) + [(07 tn7 21, 22)) Sgl+226\110(T_tn7170’21)+\I]0(T_tn7170’22)7
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where

I(U, tnv 21, ZZ)
B (exp((u + U (T —tp1,0,21) + U (T — t,1,0, 22))ys,_, + (21 + Zg)th1)>
. exp(do + 01y, ,) — 1 .

Unfortunately,/(u, t,, 21, z2) can only be computed explicitly in some very special cases,
unlike for continuous-time variance-optimal hedging..B.gV = 1, i.e. forstatic hedging

the sum in Corollary 3.4 only consists of the tesa{ T, z1, z2), which is also deterministic

in this case. Hence, we obtain

<€V0(21)+V1(21)y0 _ 1)(€V0(Zz)+1/1(22)y0 _ 1)
e\IIO(T7072)+\I’1(T7072)y0 J— 1 ’

E(JQ(T, 21, 22)) = V(Zl)QV(Zg)O

for v;(z) = V;(T,0,z + 1) — ¥;(7,0,2), j = 0,1, which allows to compute the static
hedging error by evaluating a double integral.

For Lévy processes, we have = 0. Hence the denominator in the expression for
reduces to a constant in this case and the expectations czoniqauted using (4.1). This
leads to the formula obtained in [10].

For affine models, one can verify that as the number of tratitngs /V tends to infinity,
the argument of the expectation in the expression for | cgyageto an expression of the

form
a—+ by,

c+dy,
The expectation of this term can then be calculated, cf. tbeff [13, Theorem 4.2] for
more details.
If the set of trading times is finite, it does not seem posgibtalculatel in closed form.
We discuss two ways to circumvent this problem and tackledmeputation of the hedging
error. The first is to use the approximation

eXp(uytnfl + (21 + Zz)thfl)'

exp(do + 61y¢) — 1 = 0o + 1y,

which seems reasonable as the numieof trading dates tends to infinity, because both
do = Yo(T'/N,0,2) andd;, = ¥,(T/N,0,2) converge to zero in this case. We obtain the
following first-order approximation

Theorem 4.9 Suppose that for any< %, the following holds.
1. The mappingsu;, us) — V;(T —t,u;, us), j = 0,1 admit analytic extensions to
S :={2€ C*:Re(z) € (—oo,(M'V0)+¢)x (2RA0) —¢&,(2RV 2) +¢)},

for somes > 0and M’ := M v 2V, (T/N,M/2,R+1).

!/
g <exp(M yr + QRXt)> . (4.6)
do + 01y

10



Then(3.1)is satisfied and fon = 1,..., N, z1, 20 € R + iR,

u < \Ifl(T —tn_1, 0, Zl) + \Ill(T —tn_1, 0, ZQ)
+ {k1(tn, 21) + K1(tn, 22), K1(tn, 21), K1 (tn, 22), 0},

we have
60 + 61ytn71
(—udo/61 1 ) 5 .
c / L+ ous exp —Ous+X0(8)+X1(s)yo ds ifd; #0,7=0,1,
1 o do 1
1 1 .
=45 t“s exp(Do(s) + 91 (s)yo)ds if 6 = 0,
1Jo
1 .
5— exp (\Ifo (tn_l, u, 21 + Zz) + \1’1 (tn_l, u, 21 + 22) y()) |f 51 = 0,
\ Y0

where, forj = 0, 1,

T )
§; =, (N’O’ 2) ,oxg(s) =, (tn_1, 5_(1) log(s) + us, z1 + zz) ,

V() ==V, (t,_1,1log(s) + us, 21 + 22) .

PROOEF In view of (4.3), we havexp(dy + d1y¢) — 1 > do + d1y;, which combined with
(4.4) yields

B 1 Fto 1) = V(21)t, 15,4
do + 01Y1, Stn s
X ‘E(v(zz)tnstn|§tnl) - V(Z2>tnflstnfl
Stnfl .

E(V(21)t,5%,

E(|Ja(tn, 21, 22)|)

(4.7)

By Assumption 4.3, [7, Theorem 2.16(ii)] and Jensen'’s iradity) we have

V(Zj)tnfl Stnfl
St 1

S S(}]%e‘lfo (T—tn71 70,R)+\Ijl (T_tnfl 707R)ytn,1 +RXt

n—1

1
< Sé%eqlo(T_t"’l’O’R)eiM/ytnfl"'Rthq’

for j = 1, 2. Likewise, it follows from Jensen’s inequality that

E(V(Z.7>tn Stn ‘gtnfl)
St

< E(\V(Zj)tn\stn

a -1 —X¢,
Jtn71)50 € n—1

n—1

< Sé%E (6\1/0(T—tn707R)+\I/1(T_tnyovR)ytn +(R+1)X¢,

ﬁtn—l ) e_thfl

< Sé%e%(T_t"’O’R)E (e%Myth’_(RJ’_l)th

<9stnf1> e Kin-

_ Sé%eqfo(T—tn,o,R)eq/o(T/N,M/z,R+1)+q/1(T/N,M/2,R+1)ytn71 +RX;

n—1

< Sé%elllo(T—tn,O,R)—i-\Ilo(T/N,M/Z,R—i-l) o3 My, +RX:

n—1
)

11



for j = 1, 2, where we have used Assumption 4.3 and [7, Theorem 2.1f&(iij}he equality.
Together with (4.7), this implies

exp(M'y,, , +2RX;, ,)

tn7 Y S
|J2( 21 Z2)| C (50 + 51ytn71

)

for some constant’ > 0 which does not depend anandz, z,. Consequently, (4.6) and
Assumption 3.1 yield (3.1). The second part of the assertam follows along the lines of
the proof of [13, Theorem 4.2] under the stated assumptions. O

Example 4.10 In most applications the denominator in (4.6) is actuallyrimied away from
zero (cf. Example 4.6). In this situation, (4.6) follows iradiately from Condition 1 of
Theorem 4.9 and [7, Theorem 2.16(ii)].

In view of Theorem 4.9, the hedging error can be approximbyea sum of triple inte-
grals with known integrands. Notice that because

1 1 1
o+ 01y + 200 + G1y)2 o+ 01y o+ 2+ iy

asecond-order approximatidmased on

1
exp(do + 1) — 1~ Jo + b1y + 5(50 + 61y,)?

follows directly from Theorem 4.9.

Instead of using the closed-form approximation proposey@pbone can eschew semi-
explicit computations and instead calculate the hedgingr @1sing a Monte-Carlo simula-
tion as in [6]:

1. SimulateK € N independent trajectorigy(wy), X (wi)), & = 1,..., K of (y, X)
and compute the realizatiod§wy,) = Sp exp(X (wg)) andH = f(Sr(wy)) of S and
H.

2. Calculate the values of andy; (wy), t, € 7 using numerical integration to evaluate
the formulas from Theorem 4.7.

3. Compute the realized squared hedging errors

Jo(w) = (US + > o (W) ASy, (wi) — f(ST(wk))> :

th€T

K
. 1 .
4. Use the empirical mea}c(r Z Jo(wy) as an estimator for,.
k=1
In addition to its simplicity, this approach has the advgetaf approximating the entire
distribution of the hedging error, rather than just its me@n the other hand, computation
time is increased.
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5 Numerical illustration

In order to illustrate the applicability of our formulas aegamine the effect of discrete
trading, we now investigate a numerical example. More $igadly, we consider the NIG-
Gamma-OU model from Examples 4.2 and 4.4. As for parametersise the values esti-
mated in [16] using the generalized method of moments, adgithe drift ratey, of L in
order to ensure the martingale propertysof

f=-160, a=901, 6=859, p=150, A=254, a=0847, b=17.5.

By Example 4.4, Assumption 4.3 and the prerequisites of fdmao4.9 are satisfied for
European call options and e.§. = 1.1. Henceforth, we consider a European call with
discounted strike’ = 100 and maturityl’ = 0.25 years. The results for the variance-
optimal initial hedge ratig for N = 1 (static hedging) andV = 12 (weekly rebalancing)
are shown in Figures 1 and 2.

Hedging strategy (Strike = 100, T=0.25,N=1)
1 T T T T
— — — Discrete NIG-T-OU ==
—— Continuous NIG-IF-OuU =
Discrete Black—Scholes
Continuous Black—Scholes|
0.8 i

0.7 Vi .

0.6 , E

0.5 7 -

hedge ratio

0.3 W m

0.2 2/ «

0.1} A 4

70 80 90 100 110 120 130
stock price

Figure 1: Variance-optimal initial hedge ratios for= 1.

For static hedging, the impact of discretization seems tquie pronounced, in partic-
ular for out-of-the-money options. Also notice that thifeef turns out to be substantially
bigger for the NIG-Gamma-OU than for the Black-Scholes ndger weekly rebalancing,
the effect of discretization on the initial hedge ratio attg becomes marginal. More specif-
ically, the difference between the discrete- and contistiime variance-optimal hedging
strategies is barely visible in Figure 2. Figure 3 shows autated path of the discrete
variance-optimal hedges fof = 1, 3, 12, 60.
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0.9

hedge ratio
o o °© o o
N ul o ~ [oe]
T T T T T

o
w
T

— — — Discrete NIG-T-OU

—— Continuous NIG-F-OU
Discrete Black—Scholes
Continuous Black—Scholes|

Hedging strategy (Strike = 100, T =0.25, N=12)

80 90 100
stock price

Figure 2: Variance-optimal initial hedge ratios r= 12.

Hedging strategy (Strike = 100, T =

110 120

0.25,N=1,3,12,60)

130

0.9

0.8

hedge ratio
o o o
(&) 2] ~

©
IS
T

0.2

0.1f

0.05 0.1
time

0.15 0.2

0.25

Figure 3: A simulated path of optimal hedge ratios #or 1, 3, 12, 60.
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We now turn to the minimal expected squared hedging erragiwik depicted forV = 1
(static hedging) taV = 60 (daily rebalancing) in Figure 4.

Hedging error (Strike =100, T = 0.25)
T T

12 T T T T
| — -+ — Discrete NIG-T-OU
Q — x— - Continuous NIG-T-OuU
\ o Discrete Black—Scholes|
101 -
|
|
|
sl B
|
s | ¢
@ |
2 6F ol i
= 4
D \
=
\
\
a9, -
3}
o N
N
@) N -
(@) T+
2+ + T - —
B e I |
X3¢ KoK . R g X e e x— = e e D
(@)
o
© = = s} o o
0 Il Il Il Il Il
[0} 10 20 30 40 50 60

number of trades

Figure 4. Minimal expected squared hedging errors.

As the numberV of trading dates tends to infinity, the discrete hedgingrerapproach
the respective continuous-time limits both in the Black@es model and in the NIG-
Gamma-OU model. Naturally, this limit vanishes in the coet@lBlack-Scholes model.
As noticed above, the static hedging error for= 1 can be computed without using any
approximations. FolN > 2, the discrete-time hedging error in the given NIG-Gamma-OU
model is approximated surprisingly well by the sum of thgpessive continuous-time hedg-
ing error and the corresponding discrete-time hedging énrthe Black-Scholes model. In
fact, the maximal absolute difference is smaller thad5. If such an approximation can be
used for the specific model at hand, computation time cam dféedrastically reduced by
evaluating the formulas from [10, 12] instead of Theorem 4.9

Note that the discrete hedging errors in the NIG-Gamma-Oldehbave been approx-
imated using Theorem 4.9. Since the corresponding resuita imulation study using
one million Monte-Carlo runs differ by less than 2.5% fér= 1, ..., 60, we do not show
them here. However, in Figure 5, we use the results of the 84Qatrlo study to depict an
approximation of thelistribution of the hedging error fo’v = 1, N = 12 and N = 60.

Apparently, not only the variance of the hedging error babals law depend crucially on
the rebalancing frequency.
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Histograms of the hedging error (N=1, 12, 60)

10000 |-

5000 -

observations

|

-20 -15 -10 -5 0
hedging error (N=1)

o

10000

observations
T
| |

5000
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hedging error (N=12)

(&3]

10000 N

5000 - N
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0 1 1 L
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[&)]

Figure 5: Approximated distribution of the hedging errar {6 = 1, 12, 60.
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