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Abstract

We present a general technique for directly estimating and
tracking surfaces from a stream of rectified stereo pairs in
real-time. These techniques are based on the iterative up-
dating of surface representations directly from image in-
formation and use no disparity search except during ini-
tialization. We perform the tracking through an iteratively
re-weighted least squares minimization wherein a mask is
incorporated to increase robustness to occlusion. The al-
gorithms are formulated for a general family of linear in
parameters surface models and discussed for the cases of
planar surfaces and tensor product surfaces. These algo-
rithms have been implemented on standard hardware and
run at or near frame rate, with accuracy on the order of
1/20 of a pixel. We discuss applications of the technique
including mobile robot localization, general deforming sur-
face tracking, and biometry of biological surfaces.

1. Introduction

Computational stereo has the potential to provide dense, ac-
curate range information to a set of visible surfaces. In-
deed, over the last decade, the advent of cheap, fast stereo
systems has led to a resurgence of interest in stereo vision.
However, most real-time systems are currently based on tra-
ditional “brute force” search techniques using local match
measures. Such methods are well-known to suffer in cases
of occlusion and areas of low-texture, and provide depth
information of limited (and sometimes questionable) accu-
racy [15].

We have developed effective multi-camera processing al-
gorithms that can reconstruct and track the evolution of the
set of rigid or deforming surfaces that comprise a scene. As
described in Section 3, we have found the results to be fast,
stable, and suggestive of accuracy on the order of 1/20 of
a pixel in disparity resolution running at frame rate. Our
formulation imposes no scale or structural constraints and
implicitly verifies surfaces at every frame. The projection
of patterned and polarized light allows accurate tracking
of surfaces with specularities and low texture. We apply

this method in multiple settings, including robot localiza-
tion and biomedical surface tracking.

Our approach is motivated by previous work in image
registration [12, 9, 17, 18] and template tracking [4] which
poses the temporal correspondence problem as one of ob-
jective function minimization over a family of allowed im-
age deformations. In our case, we consider the stereo dis-
parity map on an image region to be a time-varying para-
metric function and optimize a set of parameters describ-
ing that map. We extend and generalize previous work
on tracking and registration as follows. In [17, 18], uni-
form, bi-linear splines are used as a registration technique
to compute optical flow. In the case of (calibrated) stereo
we incorporate the epipolar constraint into the optimiza-
tion process, therefore reducing the dimensionality of the
problem. Furthermore, we formulate the problem in a com-
putationally efficient, time-varying framework and, in that
context, include methods to handle surface discontinuities
and occlusions. In monocular tracking, one of the princi-
ple difficulties is the lack of 3D information. Indeed, al-
most all monocular tracking methods make some implicit
or explicit assumption about the 3D structure of the tracked
object [11, 5] and compute inter-frame or sequence motion
based on it. In our case, we are directly inferring the 3D
structure of the surface and do not explicitly track the mo-
tion of points on the surface [7, 16]. Finally, since we do
not track motion, our algorithms can benefit from projected
scene texture to improve local surface discrimination and
accuracy [8]. In fact, we can even tailor the light to best
improve the performance of local optimization.

The remainder of this paper is structured as follows. In
the next section, we formulate the optimization problem and
present a solution for parameter updates and mask compu-
tation. In Section 3, we describe two implementations of
our algorithm and present results demonstrating its perfor-
mance. In Section 4, we discuss some extensions of our
algorithms and in Section 5 we conclude.



2. Mathematical Formulation

In this development, we assume a calibrated stereo system.
Thus, incoming pairs of images can be rectified to form
an equivalent non-verged stereo pair. Let L(u,v,t) and
R(u,v,t) denote the left and right rectified image pair at
time t, respectively.

In the non-verged case, the disparity map, D is a map-
ping from image coordinates to a scalar offset such that
L(u,v,t) and R(u + D(u,v),v,t) are the projection of the
same physical point in 3D space. As outlined above, our
objective is to estimate a set of parameters p € R” that
describe a parametric disparity map D : R" x 2 — RL.
This disparity map is defined on a given region A of pixel
locations in the left image. For simplicity, we will con-
sider A to be an enumeration of image locations and write
A = {(ui,vi)’}, 1 S ) S N.

In traditional region-based stereo, correspondences are
computed by a search process that locates the maximum of a
similarity measure defined on image regions. As we intend
to perform a continuous optimization over p, we are inter-
ested in analytical similarity measures. Candidate functions
include sum of squared differences (SSD), zero-mean SSD
(ZSSD), and normalized cross-correlation (NCC) to name
a few. Robust objective functions [6] might also be consid-
ered. As we show below, we achieve similar effects using a
reweighting loop in the optimization [3].

We choose our objective to be ZSSD. In practice, zero-
mean comparison measures greatly outperform their non-
zero-mean counterparts [1] as they provide a measure of
invariance over local brightness variations. If the average
is computed using Gaussian weighting, then this difference
can be viewed as an approximation to convolving with the
Laplacian of a Gaussian. Indeed, such a convolution is of-
ten employed with the same goal of achieving local illumi-

nation invariance.

Let L(u,v,t) = L(u,v,t) — (L * M)(u,v,t) and
R(u,v,t) = R(u,v,t) — (R* M)(u,v,t) where x denotes
convolution and M is an appropriate averaging filter kernel
in the spatial-temporal domain. Define d; = D(p;u;, v;).
We can then write our chosen optimization criterion as

O(p) = Z wi(Z(ui,vi,t) —R(ui —l—di,Ui,t))Q
(uq,vi)EA

1)

where w; is an optional weighting factor for location
(ui,vi)’.

For compactness of notation, consider A to be fixed
and write L(t) to denote the N x 1 column vec-
tor (L(uy,v1,t), L(ug,va,t),... L(un,vn,t)) . Likewise,
we define R(p,t) = (R(u1 + di,v1,t),... Rlun +

dN, UN, t))/.

We now adopt the same method as in [12, 9, 4] and ex-
pand R(p,t) in a Taylor series about a nominal value of p.
In this case, we have

O(Ap) = |[(Z(t) — R(p + Ap, t)W/?|2
I(Z(t) — R(p,t) — J(p,t) Ap)W /]2
I(E(p,t) — J(p, t)Ap) W22 )

%

where E(p,t) = L(t) — R(p,t), J(p,t) = OR/dp is the
N x n Jacobian matrix of R considered as a function of p,
and W = diag(w1, wa, ... wy ). Furthermore, if we define

Jp(p) = 9D/0p, we have

J(p,t) = diag(L.(t))Jp(p) 3)

where L, (t) is the vector of spatial derivatives of L(t) taken
along the rows *

It immediately follows that the optimal Ap is the solu-
tion to the (overdetermined) linear system

[J(p.t)WJ(p,t)] Ap = J(p,t)'WE(p,t) (4)

In the case that the disparity function is linear in param-
eters, Jp is a constant matrix and J varies only due to time
variation of the gradients on the image surface.

At this point, the complete surface tracking algorithm
can now be written as follows:

1. Acquire a pair of stereo images and rectify them.

2. Convolve both images with an averaging filter and sub-
tract the result.

3. Compute spatial « derivatives in the zero-mean left im-
age.

4. Warp the right image by a nominal disparity map (e.g.
that computed in the previous step) and subtract from
the zero mean left image.

5. Solve (4).

The final two steps may be iterated if desired to achieve
higher precision. The entire procedure may also be repeated
at multiple scales to improve convergence, if desired. In
practice we have not found this to be necessary.

IHere, we should in fact use the spatial derivatives of the right image
after warping or a linear combination of left and right image derivatives.
However in practice using just left image derivatives workswell and avoids
the need to recompute image derivatives if iterative warping is used.



2.1. Surface Formulations

In practice, we have found this formulation most effective
for tracking disparity functions that are linear in their pa-
rameters (thus avoiding the problem of recomputing the Ja-
cobian of the disparity function at runtime). A example is
when the viewed surface is planar [2]. In this case, it is not
hard to show that disparity is an affine function of image
location, that is:

D(a,b,c;u,v) = au+bv + ¢ (5)

A more general example of a linear in parameters model
is a B-spline. Consider a set of scan-line locations « and
row locations (3, such that («, 3) € A. With m parameters
per scan-line and n parameters for row locations, a pth by
gth degree tensor B-spline is a disparity function of the form

D(p;a,B) =Y > Niy(a) Njg(B) pi;  (6)

i=0 j=0

To place this in the framework above, let x denote
an indexing linear enumeration of the mn evaluated basis
functions, and define B, , = Ny (o) * Ny 4(8;) for all
(i, Bi) € A. Itimmediately follows that we can create the
N x mmn matrix B

Bi11,B12....B1,mn
B31,B22....8B2 mp

Bnj1,BN2....BNmn

and write

D(p) = Bp 7

It follows that the formulation of the previous section
applies directly with Jp = B.

2.2. Reweighting

One of the potential limitations with the system thus far is
that it assumes all pixels in the region of interest fall on a
continuous surface. In particular, an occluding surface in-
troduces a C° discontinuity into the problem. As we discuss
in Section 4, it is possible to directly introduce C° discon-
tinuities into the spline formulation. However, for now we
consider such “outliers” to be undesirable and to be avoided.

There are any number of methods for incorporating some
type of robustness into an otherwise smooth L2 style opti-
mization. Examples include lteratively Re-Weighted Least
Squares and Expectation-Maximization. Here, we adopt an
approach that takes advantage of the spatial properties of the
image. We define a weighting matrix at each new time step

W(t+1) = NCC(L(t), R(p¢, t)). That is, the weight for
a pixel at each new iteration is the normalized cross correla-
tion between the left and right images under the computed
disparity function.

3. Applications

3.1. Implementation

The algorithms presented above have been implemented in
Matlab/mex and in C. The Matlab version is used to gather
data and verify results while the C version runs near frame-
rate and is used as a demonstration system. The C version
uses the OpenGL API to render the reconstructed surface
with the video stream texture mapped onto the surface in
real-time, and it also uses the XVision2 and Intel Integrated
Performance Primitives Libraries for video and image pro-
cessing. Unless otherwise noted, we run the real-time sys-
tem on a Pentium IV running Linux with an IEEE 1394
stereo camera. The tracking system operates as fast as the
stereo vision system, providing a rectified stream of images
at a maximum of 26Hz. Biomedical tracking systems run
at frame rate, although intra-operative sequences are pro-
cessed post-operatively.

In all cases, processing is initiated with a standard
correspondence-based stereo calculation. However, as the
results indicate, the algorithm admits an approximating
plane for the seed.

3.2. Mobhile Robot Localization

The algorithm is applied to robot navigation. Many tasks
on a mobile robot require knowledge about the incremental
changes in position during the operation. We observe that
when viewed in a non-verged stereo system, planes project
to a linear function in the disparity (5). Thus, tracking the
three parameters [ a b ¢ ]T is sufficient to track the 3D
plane. For further information and a complete discussion of
detecting and segmenting planar regions from input images,
refer to [2].

The relative localization between consecutive camera ac-
quisitions is based on significant planes in the field of view
of the camera. Each plane allows the estimation of three out
of the six possible parameters of the pose. A set of two non-
coplanar planes allows the estimation of the 2D position in
the ground plane of the local area and all rotation angles of
the robot. Therefore, relative localization is possible when
at least two planes are tracked between frames.

For the experiments discussed in this section, we are us-
ing a stereo head with 5.18mm lenses, a 92mm baseline, and
square pixels 0.12mm wide. The plane being observed, un-
less otherwise specified, is roughly orthogonal to the view-
ing axis and at a depth of one-meter.



Table 1: Parameter estimation accuracy for a plane at a dis-
tance of about one meter.

Z Mean | Z Std Dev | Normal Error Std Dev
1 | 1064.8mm | 2.2359mm 0.2947°
2 | 1065.3mm | 1.7368mm 0.2673°
3 | 1065.2mm | 1.5958mm 0.2258°

3.2.1 ConvergenceRadius

For a controlled environment with a stationary plane and
robot, we calculated an initial guess for the plane parame-
ters and then varied this guess to test the robustness of the

tracking algorithm to initialization error.
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Figure 1: Graph for convergence while introducing error
into the seed’s depth by 2, 5 and 10 percent toward the cam-

era.

In Figure 1, we show the time to convergence when we
shift the seed’s depth closer to the camera at varying levels.
The convergence speed is directly proportional to the mag-
nitude of the introduced error. We note that the convergence
speed is only about 5 frames for an error of 10%.

3.2.2 Accuracy of Parameter Estimation

Assuming a suitably textured scene, the algorithm esti-
mates a plane’s parameters with sub-pixel accuracy (ap-
proximately 1 pixel per cm). However, this estimation ac-
curacy varies with the depth of the plane being tracked be-
cause the depth-per-disparity increases as the distance to the
plane increases. Table 1 shows the statistics for the plane.
For a non-stationary scene, we show the accuracy of our
system against the robots internal odometry. Figure 2 shows
the robot performing oscillatory rotations in front of a plane
(700 mm distance). We see that the algorithm performs ex-
tremely well for the rotational motion. The estimated ori-

entation lags minimally behind the odometric values; the
length of the lag is proportional to the convergence speed.
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Figure 2: Accuracy of robot orientation.

3.3. Tracking Deforming Surfaces

The algorithm may also be applied to tracking deformable
surfaces in a variety of applications. This technique offers
a means to physically model the flow or irregular deforma-
tion of continuous surfaces without imposing constraints on
scale or structure. The system implicitly verifies the sur-
face at every step. These features ensure that it can reliably
track the true motion of a flag in the wind, the gentle swell
of an ocean wave, and even the otherwise indistinguishable
irregularities of a beating heart.

Since the computationally limiting step of the system is
dominated by the solution to the large linear system (4)
which is dependent on the size of the region being ob-
served and the resolution of the control points, it is ambigu-
ous to give hard frame-rates. However, in the typical case,
we track an image region about 20 percent of the image,
and use bi-cubic surfaces approximated with 4 to 6 control
points in each direction, running at frame rate. Further im-
provements will take advantage of the banded nature of the
linear system and other simple algorithmic considerations.

3.3.1 Convergencevs. Parameter Density

As noted by other authors [15], it is difficult to measure the
accuracy of stereo algorithms as there is usually no way to
get ground truth. One measure of performance is the abil-
ity of the algorithm to correctly register the left and right
images. To this end, we plot the mean image difference
between the left and the warped right image on a repre-
sentative sequence for three different control point resolu-
tions (Figure 3). The graphs show the average pixel er-
ror per iteration. The noticeable peaks correspond to new
images in the sequence; for a given frame of the sequence



we continuously refine our surface approximation until the
intra-iteration update is below a threshold. For our experi-
ments, we use a convergence threshold of 103 pixels. As
expected, for a low control point density, the average pixel
error is slightly higher than for higher control point densi-
ties. However, the convergence speed is slower for higher
control point densities. It should be noted that the real-time
system is not left to converge on 103, Instead, a nominal
number (2-5) of iterations yields satisfactory results without
jeopardizing accuracy (i.e. inter-frame image difference re-
mains small in realtime recordings).
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Figure 3: Tracking Convergence.

3.3.2 Tracking Performance

To evaluate the system’s performance, it is run on a se-
quence of a deforming surface (Figure 4). For this se-
quence, the model was bi-cubic with varying control point
density (4x4, 8x8, 12x12); the recreated surface and nascent
left intensity image are provided for selected key frames,
along with average pixel error at each key frame (Figure
5). The increase in pixel error arises from an elevated inter-
frame difference for later frames (recording at 0.5Hz, with
increased speed of deformation starting at approximately
frame 10). Given the above data on time to convergence
(number of iterations), it is possible to intuit the appropriate
density of parameters based on the desired speed and accu-
racy (determined by evaluation metrics including residual
and parameter variances). Although an automated method
for deciding this density has not been fully implemented,
the underlying principles have been formulated and are un-
der investigation. These principles are built on minimum
description length formulations [14, 19]. It is important to
note that the average pixel error is relatively low in both
scenes, compared to the accepted noise level of 2 pixel val-
ues for these cameras.

3.3.3 Structured Light

This experiment tests the performance of the tracking sys-
tem (bi-cubic with 4x4 control point density) in a scene
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Figure 4: Tracking Cloth with Varying Control Point Den-
sities.

with projected patterned light, or structured light. Struc-
tured light can provide the surface texture necessary to fuel
the optimization process in regions of inherently low sur-
face texture. Certain patterns of light provide better tex-
tures than others. For example, a pattern with vertically-
repeting horizontal lines may cause the system to enter a lo-
cal minimum where the updated disparity mask is actually
”matching” too distant or too near correspondences in the
subtraction process. In the next sequence (Figure 6), note
that as the frequency of the pattern increases to a point, the
pixel error also rises. This may be attributed to the increase
in overall texture of the higher frequency images. This fig-
ure demonstrates that as the frequency increases beyond this
point, the pixel error decreases again. As the frequency of
the pattern increases to an extreme, the projected light be-
comes homogeneous, and essentially acts as a flood light.
Thus, we arrive at the first condition of no projected light,
where pixel error is low due to lack of texture.

3.3.4 Occlusion Robustness

This experiment is designed to test the efficacy of the frame-
work in the face of occlusions. Assuming occlusions can
be represented as C° discontinuities, the tracker effectively
masks out occlusions from the optimization process (2),
prohibiting the occlusion from erroneously altering the un-
derstanding of the surface. Key-frames of a sequence are
run through the tracker, recording the mask and reconstruc-
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Figure 6: Tracking with Structured Light.

tions of the surface.

Figure 7 shows two contrived examples illustrating the
ability of low degree splines to approximate C° and C* dis-
continuities. These approximations incorporate no knot-
multiplicities. It is evident that the low degree splines can
approximate the discontinuities well.

Although splines can handle C° discontinuities, in most
cases such discontinuities are representative of off-surface
occlusion and would interrupt the stability of the occluded
surface’s approximation.

As mentioned earlier in Section 2.2, we incorporate a
weighting matrix (a mask) into our scheme in order to make
our tracking robust to such occlusions. We calculate the
weight as the normalized cross correlation of the spline sur-
face at the end of each frame. The computed mask of each
frame is dilated and propagated forward for the next frame.

GO Discontinuty Fit ©1 Discontinuity

Figure 7: Fitting Discontinuities.

For each key-frames in Figure 8, L (top), E (top-middle),
mask (bottom-middle), and the reconstructed surface (bot-
tom) are provided with and without masking (above and
below the heavy line, respectively). Note that without the
mask the surface demonstrates exaggerated deformation in
the face of occlusions.

Figure 8: Tracking with/without occlusion robustness.

3.4. Tracking Biomedical Surfaces

Three-dimensional biomedical images can provide impor-
tant information about the properties of the objects from
which the images are derived. An understanding of the
overall surface anatomy may provide immense new oppor-
tunities for medical diagnosis and treatment especially in
robotic assisted surgeries. This technique can provide more
accurate intra-operative image guidance when registration
to preoperative images is no longer valid due to movements
and deformations of tissues.

We used an anesthetized Wistar rat as an animal model.
Images of the rat’s chest’s movement were acquired by



a stereo microscope (Zeiss OPMI1-H) mounted with two
CCD cameras (SONY XC77). The rats fur provided a nat-
ural texture. An eight second sequence was processed of-
fline by our Matlab implementation. In Figure 9 we graph
the respiration (75 breaths per minute) of the rat which was
computed by recording a fixed point on the tracked surface.
This disparity representing respiration varies by 1/10 of a
pixel. Close inspection suggests another periodic signal rid-
ing the respiratory signal that is of the order of 1/20 of a
pixel. We believe this second variation to be the heart beat,
although further studies are needed confirmation.
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Figure 9: Graph of rat respiration.

In a second experiment, a cross-bred domestic pig
(weight, 19.5 kg) was anesthetized with telazol-ketamine-
xylazine (TKX, 4.4 mg T/kg, 2.2 mg K/kg, and 2.2 mg
X/kg) and mechanically ventilated with a mixture of isoflu-
rane (2%) and oxygen. Heart rate was continuously mon-
itored by a pulse oximeter (SurgiVet, Waukesha, WI). The
da Vinci tele-manipulation system (Intuitive Surgical, Sun-
nyville, CA) was used for endoscopic visualization. Three
small incisions were made on the chest to facilitate the in-
sertion of a zero-degree endoscope and other surgical tools.
The pericardium was opened and video sequences of the
beating heart from the left and right cameras were recorded
at 30 frames/sec. The recording lasted approximately two
minutes.

The system captured both the beating of the heart and
the respiration of the subject (Figure 10). The results are
consistent with the other measurements we took during the
surgery. In Figure 10, the blue line is a plot of the motion
of a fixed point on the surface. The respiration (red-dotted
line) is computed using Savitzy-Golay Filtering. For a more
detailed discussion of the experiment please see [10].

4. Extensions

Multigrid Enhancements The results in this paper
specifically track surfaces in pre-specified regions of the im-
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Figure 10: Graph of pig respiration and heart beats.

ages. However, to handle general imagery and potentially
track multiple surfaces, further research is required. In [2],
we track multiple planes using a masking technique, but this
does not generalize to all linear in parameters surfaces as
the tracking method in this paper does. Thus, we plan to ex-
plore the use of adaptive multigrid techniques [13]. Multi-
grids provide a systematic method of managing multiple re-
gions in the image each having different surface parameters.

Tracking Depth Rather Than Disparity One might ob-
ject that locally polynomial (e.g. locally quadratic) surface
patches do not project, in general to locally quadratic dis-
parity functions. In this regard, we note two facts. First,
if we consider parameterized range as a function of image
coordinates, then for a non-verged camera, we can write

D(p; U, U) = S/Z(p; u, U) (8)

where s combines scaling due to baseline and focal length.
It follows immediately that

VeD(p;u,v) = —s/z(p,u,v)Qsz(p,u,v) 9

If we approximate z as a tensor B-spline surface, and we
define z(p) = Bp, this we have immediately that

Jp(p) = —s diag(1/z(p, u,v))*B. (10)

Thus, we can track a range map rather than a disparity map
with little extra cost.

One might further object that this formulation still does
not adequately address locally polynomial surfaces. In this
case, the logical solution is to use rational b-splines. This
is a subject of our ongoing research.

5. Conclusion

We presented an approach to real-time 3D surface track-
ing and demonstrated its application to a number of fields



including mobile-robot navigation, general deformable sur-
face tracking, and biomedical surface tracking. This tech-
nique has been formulated as a general linear in parameters
optimization without disparity searching. In performing a
continuous optimization over these parameters, we compute
the disparity surface directly from image intensity data. We
offer results demonstrating the converged fit of multiple sur-
faces in a variety of robotic, general, and medical schemes.
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