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ABSTRACT 

Polysomnography (PSG)-based sleep studies are information-rich datasets, yet are only 

currently visually interpreted by technicians and medical doctors for retrieval of very 

basic parameters such as sleep staging of the electroencephalogram (EEG), EMG and 

EOG, scoring of respiratory events and periodic leg movements.   Human sleep is a 

complex physiological process that plays a significant role in health and wellbeing and 

millions of PSG studies are now conducted every year in the US alone.  There is a 

growing interest in extracting and validating new PSG biomarkers of disease or health in 

these datasets.  Further, studies having shown many of these parameters to be strongly 

genetic, genomic studies of large PSG datasets may elucidate and uncover the extent and 

degree to which quantifiable alterations of sleep reach into our very lives.  

Unfortunately however, the growth in algorithms and analytic frameworks necessary to 

examine sleep has not kept pace with the collection of this data, which is now reaching 

sufficient statistical power for meaningful genetic, clinical and epidemiological studies.  

The majority of algorithms and findings presented in the sleep literature are based and 

validated using only a small number of curated studies with very clean PSG data that are 

of limited use to others.  Flexible, robust solutions are necessary to analyze sleep in large, 

diverse, and noisy PSG data sets coming from diverse laboratories and containing various 

sleep pathologies. This requires the design and validation of specialized algorithms that 

can be versatile enough to use in heterogeneous PSG recordings, and then, and as 

importantly, can be used to present findings in clear, meaningful ways to sleep 

researchers and clinicians.  There is no silver bullet here, one single right method or 

algorithm for every problem, however there are simple strategies by which the work flow 

can be streamlined and remain flexible enough for a variety of different analyses.   



 

 

In my work, I show how signal estimation and classification techniques, combined with 

visual interaction and receiver operating characteristics (ROC) studies, a commonly used 

statistical analysis method, can be used to investigate PSG based sleep studies (and 

measures) from large, diverse populations for genetic, medical, and clinically relevant 

purposes.  I do this by considering four problems currently faced by the sleep research 

community and developing the signal processing, classification, optimization, and 

visualization measures needed for each.  These problems include: (1) improving 

diagnostic criteria for narcolepsy using clinical and PSG measures; (2) selecting EEG 

power spectral density phenotypes for genome wide association (GWAS) (3) dependably 

detecting and classifying periodic leg movements (PLM) in sleep; (4) measuring rapid 

eye movements in patients with post traumatic stress disorder and major depressive 

disorder.  ROC theory was extended and a combinatorial, iteratively bounded search 

method presented and used to optimize diagnostic testing (both parameter cutpoints and 

configuration) in a tool we called softROC.   The Stanford EEG Viewer (SEV), a 

MATLAB toolbox, is developed to graphically analyze individual sleep studies and 

automate analysis of collections of sleep studies.  The SEV provided the framework 

necessary to develop and optimize a new PLM classification algorithm, which 

implements a novel two pass, variable threshold calculation base on the current noise 

floor calculation.  This algorithm was validated using human scored PLM data from a 

healthy cohort and a cohort with known sleep disorders.  Time locked analysis of PLM 

with respiratory events illuminated the prevalence of PLM apart from respiratory events.  

I provide empirical evidence for improving PLM measures that are currently being put 

into clinical practice. Lastly, several eye movement algorithms are evaluated and a new 

tracking approach is developed which uses a wavelet denoised signal estimate of 

movement using two ocular channels (horizontal and vertical).  Eye movements are 

characterized by activity and position and examined progressively by sleep cycle and 

elapsed sleep in combat veterans across four consecutive sleep studies.   



 

 

Although these four examples represent only a fraction of what can and should be done 

with PSG datasets, they constitute a foundation for future work that will have to 

incorporate multiple algorithms in the analysis of sleep for clinical and research purposes.  

Today, when so much is still unknown about our health and sleep, and so much is known 

about processing data, it is imperative to engage medical experts and provide useful tools, 

methods, and theory to move forward together.  The integration of signal processing 

methods with visual analytics has the potential of accelerating this partnership, as 

illustrated in this work. 
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CHAPTER 1 INTRODUCTION 

In this thesis I investigate several sleep related questions that require processing big data 

sets of polysomnogram (PSG)-based sleep studies, and develop interactive tools which 

process and prepare this data for meaningful biomarkers and present it to researchers in 

novel ways that engage their expertise and brings about helpful solutions.  Instead of 

developing additional hardware, I develop interactive software solutions that rely on 

signal processing, pattern recognition and classification methods to prepare PSG data so 

it can be mined for specific biomarkers relevant to the investigation.  These tools have 

been used to find better diagnostic criteria for narcolepsy, produce and then explore 

electroencephalography (EEG) power spectral density (PSD)-based phenotypes in sleep, 

automatically recognize periodic leg movements (PLM) in sleep and allow me to identify 

genotypes susceptible to PLM, and discover cross hemispheric EEG breakdown during 

sleep of combat veterans diagnosed with post traumatic stress disorder. 

There are significant opportunities right now for electrical engineering to partner with 

sleep science, genetics, psychiatry, and epidemiology in evaluating PSG data collected in 

large diverse cohorts, for lesser known, studied, or well understood health-related issues 

that will lead to collective improvement of our lives.  This thesis provides examples and 

applications of how this can be done successfully.  

Two types of sleep study are examined in this work: nocturnal PSG (NPSG) and the 

multiple sleep latency test (MSLT).  Evaluation of NPSG studies is the primary focus of 

this thesis and discussed first in Section 1.1, followed by the MSLT in Section 1.2.  

Section 1.3 introduces specific sleep disturbances that are examined in the later chapters, 

and Section 1.4 introduces the three sleep study cohorts that are investigated in the course 

of this dissertation.  Motivating remarks for this dissertation are given in Section 1.5, and 

Section 1.6 concludes the chapter with an outline of the dissertation and its contributions. 
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1.1 NOCTURNAL POLYSOMNOGRAPHY BASED SLEEP STUDIES 

NPSG based sleep studies are used mostly to determine if a patient’s sleep is disturbed by 

sleep apnea, leg movements, insomnia, seizures or other abnormalities.  How much sleep 

is disturbed could explain how tired a person is.  During NPSG, the PSG monitors 

various physiological parameters and rhythms that can be used to differentiate healthy 

from abnormal or disordered sleeping (how someone manages to sleep wearing so much 

equipment remains a mystery to me).  Electroencephalography or EEG is used for 

measuring brain function, electromyography (EMG) for muscle tone, electrooculagraphy 

(EOG) for ocular movement, and electrocardiography (ECG) for cardiac activity.  These 

measurements are often taken from set locations and recorded to a specific channel.  

Nasal pressure, oximetry (ear lobe or finger), esophageal pressure, body position, airflow 

(from sensors at nose and mouth), snoring sounds, rib cage and abdominal movement, 

and intercostal EMG may also be measured during PSG.   

A PSG montage refers to specific selection and configuration of channels to monitor 

these signals and often reveals a thoughtful balance between resources (e.g. channel 

inputs available for a recording system) and the line of investigation.  For example, a 

high-density EEG array with hundreds of electrodes may be used for specific 

investigation and localization of brain activity to an evoked response, or multiple leads 

may be placed about the eyes to more precisely measure the position of each to determine 

the degree of synchrony.   

Routine PSG sleep studies, however uses a set number of channels and are evaluated 

according to standardized, published criteria (e.g. 2007 American Academy of Sleep 

Medicine (AASM) scoring manual).  I will discuss the specific montage configurations 

and criteria used for evaluating the different collection of NPSG sleep studies, or cohorts 

used in this dissertation in Section 1.4.  For now, it is important to know that these 

channels are primarily used to (1) score sleep stages, (2) detect and quantify abnormal 
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breathing, (3) identify periodic leg movements (PLM), and (4) evaluate seizure or any 

unusual pattern.   

1.1.1 SLEEP STAGES 

Staging sleep is important as general basic knowledge, and for recognizing narcolepsy 

and insomnia.  Technicians examine the EEG, EOG, and chin EMG following an NPSG 

study for specific changes, interactions, and patterns of brain, eye, and muscle tone 

activity in order to score sleep stages on 30 second intervals, called epochs, according to 

standard Rechtschaffen and Kales (R&K) criteria [1], slightly updated by the AASM[2].  

Sleep is primarily categorized in two parts, non-rapid eye movement (NREM) sleep and 

rapid eye movement sleep (REM) sleep, which typically cycle back and forth between 

each other across a typical night's sleep with NREM sleep occurring first.  Complete 

skeletal muscle loss or atonia is a distinguishing feature of REM sleep (REMS) that is 

typically determined by a flaccid chin EMG.  The EEG gives a rough estimate of brain 

activity as measured through surface electrodes placed at various positions on the scalp.  

A typical EEG montage paces electrodes at the left central position along the top of the 

scalp (C-3 position), and at the left occipital position along the back of the scalp (O-1 

position).  Voltage from these electrodes is measured in reference to the right mastoid.  A 

wake-like EEG and REM are also necessary for classifying or scoring REMS.  REM is 

observed with EOG, which places surfaces electrodes about the outer canthi.   

The EEG’s PSD profile is helpful in staging sleep.  Frequency ranges or bands of interest 

include delta (< 4 Hz), theta (4 to < 8 Hz), alpha (8 to < 13 Hz), and beta (13 to 40 Hz) 

[3]. Quiet wakefulness (Stage 0) refers to the stage prior to sleep onset when the patient’s 

eyes are closed and there is a predominance of alpha band activity in the occipital (e.g. O-

1) and central EEGs (e.g. C-3).  Alpha activity diminishes or disappears with the 

transition to Stage 1 sleep which is further characterized by theta activity and slow rolling 

eye movements seen in the EOG.  Characteristic EEG features of Stage 2 sleep include 

K-complexes (sharp negative deflection followed by slower positive rise) and spindles 
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(0.5 to 2.0 sec burst of 12-14Hz activity with a waxing and waning shape).  Stage 2 

indicates stable NREM sleep, which is deeper than Stage 1, but lighter than Stages 3 and 

4.  Stages 3 and 4, the deepest sleep, are often referred to as slow wave sleep because of 

the characteristic 0.5 to 2 Hz high amplitude (> 75 µV) EEG waveforms produced.  In 

REM sleep (REMS, Stage 5 by convention here), the chin EMG drops to the lowest 

levels, rapid eye movements appear, and EEG activity looks similar to wakefulness.  

Portions of a study that cannot be determined or staged (i.e. 0-5) due to technical 

problems or artifacts are annotated (Stage 7 by convention here) and removed from 

analysis.  In Chapter 4 I develop a visualization-based approach to explore these bands by 

sleep stage for markers to genotype. 

The AASM recommends that several parameters, derived from sleep staging, be reported 

as part of the study.  These include lights out clock time, lights on clock time, total 

recording time (TRT), total sleep time (TST), sleep latency (SLAT), REMS latency, 

wake after sleep onset (WASO), sleep efficiency (SEI), time in each stage, and sleep 

stage percentages.  Lights-out clock time is the exact time that the subject is instructed to 

allow him or herself to fall asleep.  Lights-on clock time is the exact clock time the 

subject is awakened.  TRT is the temporal duration between lights out and lights on, 

while TST is the duration the subject spent sleeping (i.e. in Stage 1-5).  SLAT is the 

elapsed time from lights out until first sleep onset and helps identify difficulty falling 

asleep.  WASO is the duration spent awake between sleep onset and lights on.  SEI is the 

ratio of TST to TRT, which can help characterize how well sleep is maintained.  REMS 

latency is the time elapsed between sleep onset and the first epoch of REMS.  Short 

REMS latency is a characterizing feature of narcolepsy. 
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1.1.2 SLEEP DISORDERED BREATHING 

Sleep disordered breathing (SDB) has gained increasing notoriety because of its harmful 

effects and widespread prevalence.    Abnormal breathing is seen by the presence of sleep 

apneas or hypopneas; respiratory events measured by oxygen saturation, breathing 

airflow, and respiratory effort of the rib cage/abdominal movements and/or intercostal 

EMG.  The overlapping effects observed from SDB events and PLM are investigated in 

Chapter 5.  In the cohorts used in this chapter apneas were defined as a cessation of 

airflow lasting ≥10 sec.  Hypopneas were defined as a ≥ 30% reduction in nasal pressure 

signal excursions and associated ≥ 4% reduction in oxyhemoglobin saturation or arousal.  

This is close to 2007 AASM recommended (Medicare) or Chicago criteria for scoring 

hypopneas [4].  The apnea-hypopnea index (AHI) is a useful metric for characterizing the 

severity of SDB and is defined as the average number of apneas plus hypopneas per hour 

of objectively measured sleep.  An AHI≥15 is used to identify subjects with SDB in 

Chapter 5, which investigates PLM in patients with and without SDB. 

1.1.3 PERIODIC LEG MOVEMENTS 

Electrodes placed on the left and right anterior tibialis (LAT/RAT) are used to determine 

significant leg movements (LM) and the presence of PLMs.  These channels may also be 

combined into a single channel for LM and PLM classification.  PLM are a phenomena 

or movement disorder defined by a minimum sequence of four consecutive leg 

movements (LMs) with intervals between 5 and 90 sec.  The leg EMG, measured from 

surface electrodes placed on the left and or right anterior tibialis, are necessary to 

classifying the LMs, while respiratory effort must be observed to differentiate between 

idiopathic PLM and secondary PLM due to sleep disordered breathing (SDB).  Figure 1.1 

shows a picture of a man prepared for NPSG sleep study.   The strain gauges around his 

chest and waist are designed to measure respiratory effort and expand and contract with 

the diaphragm and rib cage during normal breathing.  Electromyography (EMG) 

measures muscle activity, such as teeth grinding or leg movements, or inactivity.    



 

 43 

 

Figure 1.1:  Polysomnography is useful for evaluating sleep in human subjects and 
abnormalities such as periodic leg movements.  Technicians (lower right) evaluate the 
recorded PSG signals for sleep patterns and behaviors according to specific criteria.  
Monitoring periodic leg movements (PLM) requires electromyography via surface 
electrodes placed on the anterior tibialis to detect movement as well as bands and 
respiratory sensors (e.g. nasal cannula) to measure respiratory effort and oxygen levels in 
order to differentiate idiopathic PLM from PLM secondary to sleep disordered breathing.  

The most current criteria for identifying PLM is the 2007 AASM Manual for Scoring 

Sleep.  Here a significant leg movement (LM) as a period of 0.5-10 sec where LAT/RAT 

EMG activity exceeds 8 µV above baseline and then falls below 2 µV from baseline for 

0.5 sec or longer[2].  A PLM is defined by the consecutive sequence of four or more LMs 

whose inter-movement intervals are between 5 and 90 sec.  The 2007 classification 

excludes LMs 0.5 sec before, during or 0.5 sec after a respiratory event[2].  The PLM 

classifier in Chapter 5 modifies these rules’ respiratory exclusion window to only exclude 
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LM detected at the edges of respiratory events: 5 seconds prior to onset until 0.5 sec after 

and then again 0.5 sec prior to offset 5.0 sec after.  This adjustment was made based on 

empirical analysis of time locked respiratory events and leg EMG activity in patients 

stratified by an AHI of 15.  Prior to the AASM 2007, the World Association of Sleep 

Medicine published their standards for scoring PLM in sleep (PLMS) and wakefulness 

(PLMW).  The WASM 2006 gives considerably more attention to identifying and 

characterizing PLM particularly in regard to Restless Legs Syndrome or RLS.  More will 

be said about PLM and RLS in Section 1.3.2. 

1.1.4 AMBULATORY STUDY 

NPSG may be performed at a sleep clinic or in the patient’s home as an ambulatory 

study.  Ambulatory studies have gained popularity because of their low cost and ease of 

use by the patient who can sleep in a familiar setting.  These studies often serve as a good 

screening tool for SDB, but are often not adequate for more sophisticated research studies 

as recommended by current guidelines (e.g. AASM 2007 scoring manual). Only data 

from clinical NPSG are used in this work.  These datasets and their specific NPSG 

configurations are explained in Section 1.4.  Still, the continual growth in technology 

combined with the impetus to reduce medical costs makes the future of ambulatory 

studies promising.   

1.2 MULTIPLE SLEEP LATENCY TEST 

The MSLT is a sleep EEG test often used as a screening test for narcolepsy.  The test 

presents five daytime opportunities for a patient to fall asleep within 20 minutes and 

measures the average time it takes to fall asleep (based on EEG changes) and the number 

of nap periods in which they entered REMS (SOREMP).  A NPSG sleep study is also 

conducted the night prior to the MSLT to ensure the patient is well rested and not tired 

for other reasons (e.g. sleep apnea, sleep deprivation).  In addition to the MSLT, REML 

is obtained during the NPSG and can assist the diagnosis.  I show how to optimize the 

diagnosis of narcolepsy using a combination of these measures in Chapter 2. 
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1.3 SLEEP DISTURBANCES 

In this thesis I give particular attention to sleep disturbances related to narcolepsy, PLM 

disorder and RLS, and PTSD.  Medication is another sleep altering component that must 

be considered and accounted for.  The following sections give more detailed description 

of these phenomenon and criteria used. 

1.3.1 NARCOLEPSY 

Narcolepsy is a REM sleep disorder classically characterized by excessive daytime 

sleepiness, sleep paralysis, cataplexy, and hypnagogic hallucinations.   More recently, a 

subset of narcolepsy patients has been defined biochemically by measuring hypocretin 

(orexin), a wake-promoting peptide in the brain.  In cases where the disorder is caused by 

the lack of hypocretin, hypocretin levels are greatly diminished in the cerebral spinal 

fluid (CSF), providing a gold standard [5].   These cases commonly have the symptom of 

cataplexy.  Recent classifications of sleep disorders are now calling this subset of 

narcoleptic patients, “narcolepsy Type-I” or “narcolepsy with hypocretin deficiency”. 

As CSF can only be collected using lumbar punctures, a traumatic procedure, older tests 

such as the MSLT are still most often used to diagnose narcolepsy, but have not been 

optimized in relation to the new biochemical standard.  Traditionally, the patient is 

diagnosed with narcolepsy if the mean sleep latency (MSL) during the five naps is less-

than-or-equal eight minutes and two or more SOREMPs are observed [6]. 

1.3.2 PERIOD LEG MOVEMENTS AND RESTLESS LEGS SYNDROME 

As mentioned earlier, PLMs are episodic, involuntary muscle contractions (myoclonus) 

that may occur during sleep or wake.  RLS is often associated with PLMs, with four out 

of five patients diagnosed with RLS exhibiting PLMs[7].  However, PLMs can also occur 

without RLS symptoms.  Because the movements may be accompanied by an arousal or 

sleep fragmentation, a PLM Index (PLMI) over 15 is likely to have an effect on an 

individual’s overall health and wellbeing[8].  Little is known about the cause of PLMs or 
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their impact on daytime sleepiness or insomnia symptoms.  A study review of cardiac 

risk for RLS and PLMS found associations between PLMS and congestive heart 

failure[9].  Additionally, patients with RLS were at higher risk for heart disease and 

hypertension[9].  Another, recent prospective study found increased mortality in men 

with RLS[10].  PLM are known to be associated with several other disorders and 

pathologies such as depression, cardiovascular disease, REM behavior disorder, 

narcolepsy, Parkinson’s disease and multiple system atrophy[11-14].   

Recent investigations have revealed genetic components of RLS.  Most notably, 13 single 

nucleotide polymorphisms (SNP) were identified as RLS susceptibility markers in a 

genome-wide association study (GWAS) described in 2011[15].  I discuss this study 

further and investigate these SNPs for association to PLM in Chapter 6. 

1.3.3 POSTTRAUMATIC STRESS DISORDER 

PTSD is a disorder that develops in a subset of individuals who have experienced a 

traumatic event [16].  PTSD develops when there is a failure to recover from stress 

induced by such trauma [17].  Estimates have shown that 68% of children [18] and 55-

70% of adults have experienced or witnessed a traumatic event [17, 19, 20].  That is, two-

thirds of the general population is estimated to experience a traumatic event during their 

lifetime [21]. While experiencing a traumatic event does not imply PTSD, it is a 

necessary criterion for its development and it is striking to see the high percentage of 

people who are at risk for developing PTSD.  Recent studies have shown that 5-20% of 

military members serving in combat zones suffer from PTSD [22].  Furthermore the 

prevalence of PTSD in returning combat veterans is likely to increase based on VA 

reports of 33.4% of Operations Iraqi Freedom/Enduring Freedom (OIF/OEF) veterans 

being diagnosed with PTSD [23].  According to epidemiological studies, 7.8-9.2% of the 

population suffers from PTSD with women being twice as likely to be effected as men 

[21, 24, 25].  The cost of this disorder to society and health care as whole is enormous 
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[26-28].  Notable symptoms of PTSD include anger, irritability, isolation, hypervigilance, 

context avoidance, flashbacks, suicidal ideation, and intrusive thoughts [29]. 

The correlation between PTSD and troubled sleeping is well established. In the past, 

sleep problems were viewed as a secondary symptom to PTSD [30], but recent literature 

has greatly elevated the significance of this relationship.  Sleep problems are now 

recognized as a primary component of PTSD [31], with nightmares and insomnia 

included in diagnostic criteria for PTSD as established by the DSM-IV [32].  The 

correlation between sleep problems and exposure to a traumatic event and PTSD has 

been shown numerous times [33, 34].  Roughly 70% of those diagnosed with PTSD 

report co-occurring sleep problems [35].  Reported sleep disturbances associated with 

PTSD include sleep terrors, avoidance of sleep, periodic leg movement disorders, 

vocalizations and acting out behavior, and apnea [36, 37].     

Poor sleep and anxiety are mutually aggravating with each negatively impacting the 

other. Increased anxiety during the day, for example, can lead to poor sleep at night, 

which in turn can lead to increased agitation and anxiety the following day.  The spiraling 

relationship between PTSD and sleep disturbances is a dangerous threat to increased 

depressive severity, drug and alcohol abuse, poor quality of life, and suicidality [38-42].  

While the relationship between sleep and PTSD has been repeatedly investigated using 

PSG-based sleep studies, these studies have provided both conflicting results and limited 

insight to the physiological underpinnings that drive this order.  One reason for this may 

be the historical focus on global power spectral analysis of the EEG or broad sleep 

architecture measures like REM latency in only a single study.  In Chapter 7 I examine 

discrete phasic eye movements in REMS and cross-hemispheric EEG coherence during 

sleep of combat veterans diagnosed with and without PTSD. 
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1.4 SLEEP STUDY COHORTS 

I examine three sleep cohorts over the course of this dissertation.  These are the 

Wisconsin Sleep Cohort (WSC), the Stanford Sleep Cohort (SSC), and the Combat 

Veteran Cohort (CVC).   

1.4.1 WISCONSIN SLEEP COHORT 

The WSC is a longitudinal study of sleep habits and disorders in the general population 

[43]. It was established in 1988 from a sample of employees of four state agencies in 

south central Wisconsin, USA, aged 30-60 years.  NPSGs were initially stored on paper 

until digital collection began in 2000 and the PSG sleep studies were stored to disk at 100 

Hz sampling in European Data Format (EDF), with file sizes ranging from 80 to 100 

megabytes, and paired with scoring files of stages and events.  Sleep was characterized 

using a 16-channel PSG recording system (16-channel Grass-Telefactor Heritage digital 

sleep system Model 15). Arterial oxyhemoglobin saturation was measured by pulse 

oximetry using a 3 sec averaging rate.  Oral and nasal airflow were measured using 

thermocouples (ProTech).  Nasal air pressure was measured with a pressure transducer 

(Validyne, Northridge).  Thoracic and abdominal respiratory motions were measured 

with inductance plethysmography (Respitrace, Ambulatory Monitoring).  These signals 

were used to identify SDB events.  Electrodes placed on the left and right anterior tibialis 

(LAT/RAT) were combined into a single EMG channel and used to determine PLM. 

The first PSGs for each subject that were performed between 2000 and 2004 were used in 

Chapter 4 and Chapter 5.  Table 1.1 describes this WSC sample together, and stratified by 

an AHI of 15.  The reason for stratifying by AHI becomes clear in Chapter 5, which 

describes the design and validation of an automatic PLM detection algorithm.  Chapter 4 

does not utilize the stratified groupings here, but focuses on the visualization of the 

EEG’s power spectrum for the entire set. All PSGs available between 2000 and 2012 

were used in Chapter 6 to show the genetic link to PLM apart from RLS symptoms. 
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Table 1.1 Wisconsin Sleep Cohort (WSC).  Participants selected from 2000-2004 and 
stratified by apnea-hypopnea index (AHI) of 15. 

 All  
(1,073) 

 AHI≤15 
(738) 

AHI>15 
(264) 

Demographics 
Age 56 ±0.24 55.3 ±0.28 57.8 ±0.49 
Sex, Male (%) 53.2% 48.9% 63.3% 
Clinical Data 
BMI (kg/m²) 31.7 ±0.22 29.8 ±0.22 35.4 ±0.45 
AHI 12 ±0.50 (1004) 4.71 ±0.15 32.2 ±1.11 
AHI > 15 (%) 26.5% (1004) 0.0% 100.0% 
Polysomnogram    
TST (hour) 6.15 ±0.03 6.28 ±0.04 6.08 ±0.06 
Stage 1 (%) 10.1 ±0.21 8.88 ±0.18 12 ±0.44 
Stage 2 (%) 69.2 ±0.26 68.8 ±0.30 70.5 ±0.52 
SWS (%) 4.06 ±0.18 4.49 ±0.22 2.96 ±0.27 
REM (%) 16.5 ±0.19 17.6 ±0.21 14.4 ±0.39 

 

1.4.2 STANFORD SLEEP COHORT 

The Stanford Sleep Cohort (SSC) is a naturalistic sample of 760 successive patients 

(Table 1.2), including a wide range of sleep disorders, recruited to the Stanford Sleep 

Disorders Clinic and who had a nocturnal PSG from 1999-2007[44].  The SSC is used as 

a validation population sample for the automatic PLM detector introduced in Chapter 5.  

This cohort was particularly useful in the development of a robust detection algorithm 

because of the diversity of pathophysiologic conditions and poor signal conditions that 

had to be addressed and overcome.  

Table 1.2 reports on summary statistics for the SSC, broken down by diagnostic category. 

The only exclusion criterion was the use of continuous positive airway pressure (CPAP) 

device for previously documented sleep apnea.  PSGs were collected using Sandman 

Elite digital sleep software and Sandman SD32+ amplifiers.  The Stanford Sleep 

Disorders Clinic protocol exceeds the AASM’s clinical guidelines for the assessment of 

SDB by recording extra respiratory signals and using additional precision and processing.  
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Eighteen channels of information are recorded including: EEG, EOG, EMG of the 

submentalis muscle as well as the anterior tibialis muscles of each leg, electrocardiogram 

(ECG), snore using neck vibration, breathing effort using Braebon respiratory inductance 

plethysmography (RIP) system, airflow from Braebon PureFlo Duo Cannula and Nasal 

Pressure sensors and oxygen saturation (SpO2) through Finger PhotoPlethysmography 

Pulse Rate.  EEG was recorded from conventional 10-20 system electrode sites using a 

256 Hz sampling rate.  EMG, ECG and snore signals used a sampling rate of 512 Hz 

while the sampling rates were 64 Hz for breathing effort and airflow and 4 Hz for SpO2, 

pulse rate.  All AC channels used were hardware filtered between 0.1 Hz and 0.45 times 

the sampling rate and leg EMG channels were additionally high pass filtered at 10 Hz.  In 

this cohort, PLM were not consistently scored thus not used.   



 

 

Table 1.2:  Stanford Sleep Cohort (SSC) 

 All (760) Delayed Phase 
Syndrome (14) 

Insomnia (141) Narcolepsy (19) 

Demographics 
Age 45.9 ±0.52 36 ±4.67 46.2 ±1.29 40.2 ±5.09 
Sex, Male (%) 58.8% 64.3% 45.4% 42.1% 
Clinical Data 
BMI (kg/m²) 27.1 ±0.24 

(741) 
25.7 ±2.76 25.7 ±0.39 

(140) 
26.7 ±1.08 

AHI  13.7 ±0.70 9.77 ±2.82 10.9 ±1.37 10.3 ±2.80 
AHI > 15 (%) 33.0% 28.6% 27.0% 21.1% 
PSG 
TST (hour) 6.12 ±0.04 6.18 ±0.34 6.13 ±0.10 6.69 ±0.24 
Stage 1 (%) 11.7 ±0.35 

(754) 
7.57 ±1.37 9.74 ±0.61 

(140) 
12.4 ±2.31 

Stage 2 (%) 62.7 ±0.45 60.6 ±2.75 63.4 ±0.90 57.5 ±3.25 
SWS (%) 11.2 ±0.39 

(622) 
17.5 ±2.52 (13) 12 ±0.76 (116) 13.1 ±2.83 (18) 

REM (%) 16.5 ±0.25 
(753) 

15.4 ±1.50 17.2 ±0.50 
(139) 

17.4 ±1.96 

 
 REM 

Behavior 
Disorder (4) 

 
Restless Legs 
Syndrome (23) 

 
Sleep Disordered 
Breathing (607) 

 
 
Other (39) 

Demographics 
Age 59.3 ±3.84 49.2 ±3.10 45.5 ±0.59 42.2 ±2.62 
Sex, Male (%) 100.0% 52.2% 58.5% 43.6% 
Clinical Data 
BMI (kg/m²) 28.9 ±0.75 24.9 ±1.38 27.3 ±0.27 (599) 27.5 ±1.37 
AHI  43 ±16.83 11.7 ±3.89 15.5 ±0.81 10.1 ±3.01 
AHI > 15 (%) 75.0% 26.1% 36.7% 23.1% 
Polysomnogram 
TST (hour) 6.01 ±0.66 5.96 ±0.26 6.14 ±0.05 5.91 ±0.22 
Stage 1 (%) 20.8 ±5.74 13.6 ±2.51 11.7 ±0.38 (604) 11.7 ±1.53 
Stage 2 (%) 56.2 ±6.47 60.6 ±2.81 62.6 ±0.50 61.4 ±2.65 
SWS (%) 6 ±3.00 (3) 11.3 ±2.95 

(17) 
11.2 ±0.45 (498) 13 ±2.93 (33) 

REM (%) 18 ±1.87 17.4 ±1.55 16.5 ±0.27 (600) 16.1 ±1.25 (38) 
Data are mean ± Standard Error Mean, or percentage. The number of subject used for 
calculations are shown in parentheses.  AHI: Apnea hypopnea index; REM: Rapid Eye 
Movement; TST: Total sleep time; SWS: Slow wave sleep (stages 3 and 4 combined); BMI: Body 
mass index 
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1.4.3 COMBAT VETERAN SLEEP STUDIES 

Combat-related PTSD inpatient subjects were recruited from the Specialized Inpatient 

PTSD Unit at the Veterans Administration Medical Center, Palo Alto, California. 

Potential subjects with evidence of medical disease and/or chronic pain that could 

influence sleep were excluded, as were individuals with risk factors for obstructive sleep 

apnea (frequent snoring, obesity, or partner reports of interrupted breathing during sleep). 

Subjects were further excluded from analysis if, on any laboratory night, there was 

evidence of sleep apnea as indicated by an apnea hypopnea index (AHI) greater than 10 

events per hour or a periodic limb movement arousal index of greater than 10 events per 

hour.  Subjects were excluded if there was a recent history of heavy alcohol use (intake 

greater than 5 oz/day for any 30-consecutive day period during the preceding 6 months). 

All included subjects reported being abstinent from alcohol or illicit drugs for at least 30 

days before hospitalization. These subjects were also free of prescription psychotropic 

medication on admission to the inpatient program and remained off such medications 

before testing. Mean duration of hospitalization before testing was 35 days. Finally, no 

subject was medicated with a selective serotonin reuptake inhibitor within 80 days of 

testing.  Table 1.3 presents summary information for this Combat Veteran Cohort (CVC). 

The final sample consisted of 148 Vietnam era combat veterans: 32 healthy controls, and 

116 PTSD inpatients meeting DSM-IV criteria for current PTSD as the primary diagnosis 

determined through administration of the Structured Clinical Interview for the DSM-III-R 

(SCID; American Psychiatric Association 1994) or the Clinician-Administered PTSD 

Scale (CAPS; Blake et al 1995).  Subjects ranged in age from 42 to 48 years (mean = 

45.2, SD = 3.1).  Of the PTSD sample, 72 subjects were currently diagnosed with major 

depressive disorder.  All subjects gave informed consent. 
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Table 1.3: Combat Veteran Cohort by psychiatric diagnosis: combat with posttraumatic 
stress disorder (PTSD) and major depressive disorder (MDD), combat with PTSD, 
combat only, and all.  

Demographics/Groups Combat with PTSD and 
MDD 

Combat with PTSD 

Male 97.18% (69 of 71) 89.47% (34 of 38) 
Female 2.82% (2 of 71) 10.53% (4 of 38) 
AHI less than 15 100.00% (71 of 71) 100.00% (38 of 38) 
Combat only 100.00% (13 of 13) 100.00% (13 of 13) 
PTSD only 100.00% (38 of 38) 100.00% (38 of 38) 
PTSD and MDD 100.00% (71 of 71) 100.00% (71 of 71) 
Total Sleep Time (TST) 5.23 ±0.13 (71) 5.46 ±0.15 (38) 
TST 1 0.14 ±0.01 (71) 0.15 ±0.01 (38) 
TST 2 0.54 ±0.01 (71) 0.51 ±0.02 (38) 
TST SWS 0.08 ±0.01 (66) 0.10 ±0.02 (32) 
TST NREM 0.77 ±0.01 (71) 0.74 ±0.01 (38) 
TST 5 0.23 ±0.01 (71) 0.26 ±0.01 (37) 
Antidepressants 16.90% (12 of 71) 10.53% (4 of 38) 
REM suppression 18.31% (13 of 71) 10.53% (4 of 38) 
Fluoxetin 7.04% (5 of 71) 2.63% (1 of 38) 
 

Demographics/Groups Combat only All 

Male 89.47% (34 of 38) 94.26% (115 of 122) 
Female 10.53% (4 of 38) 5.74% (7 of 122) 
AHI less than 15 100.00% (38 of 38) 100.00% (122 of 122) 
Combat only 100.00% (13 of 13) 100.00% (13 of 13) 
PTSD only 100.00% (38 of 38) 100.00% (38 of 38) 
PTSD and MDD 100.00% (71 of 71) 100.00% (71 of 71) 
TotalSleepTime 5.46 ±0.15 (38) 5.26 ±0.09 (122) 
TST 1 0.15 ±0.01 (38) 0.14 ±0.01 (122) 
TST 2 0.51 ±0.02 (38) 0.53 ±0.01 (122) 
TST SWS 0.10 ±0.02 (32) 0.09 ±0.01 (110) 
TST NREM 0.74 ±0.01 (38) 0.76 ±0.01 (122) 
TST 5 0.26 ±0.01 (37) 0.24 ±0.01 (121) 
Antidepressants 10.53% (4 of 38) 13.11% (16 of 122) 
REM suppression 10.53% (4 of 38) 13.93% (17 of 122) 
Fluoxetine 2.63% (1 of 38) 4.92% (6 of 122) 

Data are mean ± Standard Error Mean, or percentage. The number of subject used for calculations are 
shown in parentheses.  
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Subjects slept three or four nights in the sleep laboratory located immediately adjacent to 

the inpatient unit. Scheduling was arranged to accommodate subjects’ typical bedtimes. 

Inpatient subjects terminated their sleep at will, but not later than 6:00 AM, the standard 

wake-up time for the inpatient program.  

The recording montage included two channels of bipolar EOG and four channels of scalp 

EEG (F-3, F-4, Cz, and Pz referenced to linked mastoids).  Other channels, not pertinent 

to this study, were also scored.  EOGs and EEGs were filtered to a 0.3-Hz to 30-Hz 

bandwidth.  Electromyograms were filtered to a 30-Hz to 300-Hz bandwidth, then 

rectified and integrated over a 20-msec time constant. After conditioning, all physiologic 

data were digitized at 125 Hz and streamed to disk.  A trained sleep technician manually 

scored sleep stages in 30-s epochs according to standard R&K criteria.   

1.5 MOTIVATION 

Sleep researchers today are faced with the enormous and continually growing problem of 

investigating the plethora of information available in NPSG sleep studies for clinically 

significant biomarkers; markers that will reveal trends and behaviors that can be used to 

understand our own sleep and how it, and by consequence our very lives, may be 

improved.  A recent report estimated 50-70 million adults in the United States suffer from 

a sleep or wakefulness disorder and found those with poor sleep more likely to suffer 

from chronic diseases like hypertension, depression, diabetes and obesity[45].  The 

number of sleep studies performed each year has soared with the growing awareness of 

the risks of chronic insomnia.  Over a million studies are performed yearly in the U.S. 

with NPSG being used as the gold standard for most diagnoses.  However, while PSG 

gives a physiologically rich snapshot into each person studied and so much of it now 

exists, clinicians often evaluate it at broad levels only, quickly searching for indications 

of sleep apnea or other disorder in question and taking a few cursory notes to render 

diagnosis and/or treatment.  I do not mean to say that nothing is being done here.  Indeed, 

people are often receiving the help and care they need, but there is an aspect of sleep 
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research that remains in its infancy and which bears attention.  If separate, large 

collections of NPSG studies exist in sleep cohorts – cohorts that include survey 

responses, medication records, genetic information, psychiatric diagnoses, and various 

demographic information for each participant – then why is there a current dearth of 

literature explaining automatically derived PSG characterizing features of such data?   

I believe the answer to this question lies in the host of challenges that must be overcome 

to develop robust solutions that can interpret and explore large collections of diverse PSG 

data.  First, a large number of people must be found who are willing to participate in a 

large sleep study or cohort, which requires various medical exams and surveys of their 

history, habits, and health. The sleep study must be conducted and then normalized in 

some fashion to account for the variety of different channel identifiers, PSG 

configurations, and storage formats, which often have to be reverse engineered before 

they can be accessed.  The criteria used to manually evaluate and score sleep studies 

changes with time and takes creativity and insight to salvage in light of the most recent 

guidelines.  Furthermore, logistical and technical challenges of de-identifiying the PSGs 

exist to protect patient privacy while simultaneously organizing them in a centralized, 

accessible manner.   

Once the data is collated the work of developing signal processing methods, pattern 

recognition algorithms, and automated computational framework design can begin. 

Methods to reliably extract sleep biomarkers can be developed and in turn used for direct 

analysis, statistical modeling in conjunction with genetic/genomic data, or visually mined 

with other exploratory tools.  

1.6 CONTRIBUTIONS AND THESIS OUTLINE 

There is currently a lack of tools in the sleep field to robustly process, parse, and present 

PSG data in flexible, visual ways that engage sleep scientists and brings their expertise to 

the forefront of sleep related problems facing us today.  The contributions of my thesis 
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consist primarily in the development of such tools and the results obtained by applying 

them to different problems currently faced in the sleep research community.  Apart from 

the introduction and conclusion, each chapter in this thesis represents a contribution to 

research.   

Chapter 2 introduces receiver-operating characteristics and a user directed, iteratively 

bounded, combinatorial approach for optimizing cut-points of diagnostic tests.  These 

methods are implemented in the software program, softROC, and presented in the setting 

of determining optimal diagnostic criteria of narcolepsy with and without cataplexy using 

PSG measures and hypocretin levels.   

Chapter 3 transitions to micro or quantitative PSG analysis, and discusses the SEV 

(Stanford EEG Viewer). The SEV is a multipurpose MATLAB toolbox that I developed 

during this thesis to prototype pattern recognition and classification algorithms of PSG 

data and automate their use across our cohorts.  The SEV provides the groundwork 

necessary for the research presented in Chapters 4 – 7.     

Chapter 4 considers the problem of investigating the sleep EEG’s power spectrum in 

patients of the Wisconsin Sleep Cohort for phenotypes to evaluate by genome-wide 

association study.  Power spectral output of two EEG channels in 1,836 NPSG studies is 

processed by the SEV and then consolidated and visually presented based on design 

decisions from a small user design study with several sleep researchers.  

Chapter 5 begins analysis of time series biomarkers and introduces the problem of 

automatically identifying PLMs in sleep.  Motivation for this topic is provided, as are the 

challenges to automatically identifying PLMs in noisy and variable leg EMG recordings.  

Cardiac interference, noise floor changes, transient or spurious activity, low signal 

strength, and respiratory-related events which interfere with PLM classification are 

presented, resolved, and validated using gold standards from two separate sleep cohorts.  
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In Chapter 6, I utilize the automatic PLM detector to investigate 13 single nucleotide 

polymorphisms (SNP), associated with RLS, for susceptibility to PLM apart from RLS 

symptoms in the Wisconsin Sleep Cohort. 

A mix of cross spectral EEG analysis and time series phasic EOG events is presented in 

Chapter 7 with application to sleep of combat veterans diagnosed with and without post 

traumatic stress disorder as measured during three to four night sleep studies.  In this 

chapter, I first examine the utility of automated detection algorithms for analyzing phasic 

REMS in combat veterans diagnosed with PTSD and matched controls.  Four previously 

published and validated eye movement detection algorithms, and two unpublished eye 

movement detection algorithms, are optimized with reference to our dataset using 

adaptive filtering and wavelet transform techniques which remove noise and increase 

rapid eye movement detections during REMS.  Horizontal and vertical phasic-REM 

activities are compared longitudinally between patient groups by visit sequence and 

NREM/REM cycle.  A new approach to quantifying ocular activity, EOG quadrant 

analysis, is presented which takes advantage of the EOG montage used in this data set.  

Lastly, I test an ethologically-driven hypothesis that PTSD is associated with reduced 

inter-hemispheric EEG coherence during sleep. 

Concluding remarks are given in Chapter 8.



 

 

CHAPTER 2 EXPLORING MEDICAL DIAGNOSTIC PERFORMANCE USING 

INTERACTIVE, MULTI-PARAMETER SOURCED RECEIVER OPERATING 

CHARACTERISTIC SCATTER PLOTS 

This chapter introduces a method I developed for conducting a bounded search of 

receiver operating characteristic space for optimal diagnostic test parameter 

configurations.  It is presented in the context of diagnosing narcolepsy from a selection of 

PSG measures using a program called softROC (see the supplementary section of this for 

further details on obtaining and using softROC). 

I would like to thank Olivier Andlauer and Emmanuel for their encouragement, support, 

and interest in improving the diagnosis of narcolepsy using PSG measures and 

introducing me to this research question.  Their patience with explaining the problem and 

feedback were what led me to investigate new approaches to presenting receiver-

operating characteristics discussed in this chapter.  I would like to thank Noah Simon for 

his assistance with development of the convex optimization and bootstrapping approach 

to reducing bias.  Finally, I would like to thank Ruth O'Hara and Simon Warby for their 

helpful reviews of the initial manuscript, which is currently in review. 

Two other manuscripts were generated during this time that used softROC to investigate 

narcolepsy.  I was second author to Olivier Andlaurer on these manuscripts, and discuss 

portions of our findings in this chapter.  The first manuscript, “Predictors of Hypocretin 

(Orexin) Deficiency in Narcolepsy Without Cataplexy” is published in the journal 

SLEEP.  The second manuscript, “Nocturnal Rapid Eye Movement Sleep Latency for 

Identifying Patients with Narcolepsy/Hypocretin Deficiency” is published in the Journal 

of American Medical Association Neurology.   
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2.1 INTRODUCTION 

Diagnoses are made based on the presence of symptoms or the results of biological or 

physiological tests. No test is perfect, and for continuous variables, it is essential to select 

an optimal cut-off versus a gold standard.  Depending on the application, one may select 

cut-offs with equal specificity and sensitivity, or instead favoring one characteristic at the 

cost of the other.   

ROC curves are typically used to visualize sensitivity and specificity tradeoffs for various 

diagnostic cut-offs.  Points located closer to the ideal test point (100% sensitivity, 100% 

specificity) are often seen as good candidates for cut-off values.  However, sensitivity 

and specificity by themselves provide little meaning, as it is possible to make a test that 

achieves 100% sensitivity or 100% specificity by simply always giving a positive test 

result or always giving a negative test result. In an important variation, the quality 

Receiving Operating Characteristic curves (qROC), sensitivity and specificity values are 

remapped to Kappa values, or quality indices, which provide a measure of the quality of 

the original test ROC (tROC) values.  These weighted Kappa coefficients, the original 

ROC values adjusted to be 0% for a random test and 100% for a perfect test, make it easy 

to identify and lay claim to the test with optimal sensitivity and specificity [46].   

While several ROC software packages exist, few are dedicated to medical diagnostic 

discovery or incorporate the ability to group and combine multiple variables, a critical 

feature optimizing medical diagnostic when multiple parameters are involved.  One 

review of eight ROC programs, commercially available and freeware, showed mixed 

results [47].  While statistically sound, the programs covered (e.g. MedCalc and Chicago 

University's Metz ROC Software) were described as unfriendly or overly complicated to 

use because of the interface or statistical background required.  Little validation of ROC 

results was provided from these programs in terms of generalization and bias, and none 

plotted qROCs.   



 

 60 

Another ROC program, not included in this review, which does incorporate quality 

indices, is ROC5 [48].  This program produces decision trees aimed at providing clinical 

practitioners with a plan of sequential tests to follow based on the outcome at each stage 

of the tree.  This program was the closest to helping us achieve our goals.  Decision trees 

can be helpful in determining the order of tests to provide to a patient and are particularly 

appropriate when tests must be performed in a sequential manner due to increasing costs.  

However, the nature of decision trees to follow one branch while rejecting all others, 

limits evaluation and exploration of simultaneous possibilities when multiple tests are 

simultaneously available.  The limitations we saw in ROC5 were its inability to draw 

multiple ROC plots and its complex interface.  Also, it was not possible to explore the 

entire space of simultaneous and sequential possibilities, relying solely on a hierarchy of 

cut-offs. 

Considering this need, we developed softROC, a MATLAB-based software package for 

exploratory ROC analysis.  Specifically, softROC provides a GUI that allows users to 

quickly configure candidate diagnostic criteria combinations and evaluate them for 

optimal performance using test and quality ROC metrics.  The software uses either 

bootstrapping or training-with-validation techniques to provides generalizability of 

selected diagnostic criteria to other populations.  The developer chose MATLAB because 

of its relatively straightforward, stable, development environment suitable for both 

statistical and graphically-interactive based software programs.  softROC is available in 

the supplementary material section which also includes the instruction manual and 

tutorial dataset.  We provide background on the statistical methods used and an overview 

of narcolepsy diagnosis in Section 2.2.  Section 2.3 covers the design and implementation 

of softROC for investigating diagnostic tests.  Discussion of softROC's application, 

limitations, and extension are covered in Section 2.6, followed by concluding remarks in 

Section 2.7. 
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2.2 BACKGROUND 

Statistical background of receiver operating characteristics and Boolean algebra are 

presented in this section.  Information on narcolepsy and its diagnosis is presented in 

Section 2.3. 

2.2.1 RECEIVER OPERATING CHARACTERISTICS 

The contingency table, or confusion matrix, shown in Table 2.1 contains the collection of 

possible outcomes, as a percentage, for a predicted medical diagnosis of a patient and the 

true diagnosis, or pathology, as revealed through an accepted gold standard.  The 

confusion of Table 2.1 lies on the diagonal where the evaluation is different from the 

“ground truth” - a patient with true disease is missed (i.e. false negative) or one without 

disease is wrongly diagnosed with it (i.e. false positive).   

Table 2.1: The contingency table captures the four possible outcomes when comparing a 
diagnosis based on medical testing to its gold standard (truth): true positive (TP), false 
negative (FN), false positive (FP), and true negative (TN).  The values, given as fractions 
of the whole, sum to produce quality (Q) and prevalence (P) which are necessary to 
calibrate ROC values.  Medical testing is frequently defined as positive or negative 
depending on a threshold biological, symptomatic or physiological value.  For example, 
abnormally high fasting blood sugars used to diagnose diabetes are typically defined as 
above 126 mg/dl (7.0 mmol/L). 

 

Frequently, medical tests give a continuous value that needs to be dichotomized as 

positive and negative for practical reasons based on a threshold or cut off value.  Altering 

this threshold value modifies specificity and sensitivity which can be optimized for a 

given application.  ROCs are frequently used to evaluate these trade-offs.  These and 

other measures, which are derived from Table 2.1 and implemented in softROC, are 

softROC

(a) Contextmenu from selected value.

(b) Unbiased estimate message box. (c) 95% confidence inter-
val message box.

Figure 6: Contextmenu produced when an ROC value is selected and corresponding results.

Table 1: The contingency table captures the four possible outcomes when comparing a
diagnosis based on medical testing to its gold standard (“truth”): true positive (TP), false
negative (FN), false positive (FP), and true negative (TN). The values, given as fractions of
the whole, sum to produce quality (Q) and prevalence (P) which are necessary to calibrate
ROC values. Medical testing is frequently defined as positive or negative depending on
a threshold biological, symptomatic or physiological value. For example, abnormally high
fasting blood sugar used to diagnose diabetes are typically defined as above 126 mg/dl (7.0
mmol/L).

Medical Test
+ -

Ground Truth + TP FN P
(Gold Standard) - FP TN P0 =1-P

Q Q0 = 1 - Q 1

17
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given in Table 2.2.  The derivations require contents of Table 2.1 to be given as fractions 

of the total count ranging in value from 0.0 to 1.0.   

Table 2.2: List and Definition of softROC statistics obtained from Table 2.1. 

 

ROC curves plot sensitivity versus specificity for different thresholds used to classify a 

patient positively or negatively for diagnosis.  When evaluating multiple curves, points 

along the outermost curve -- the ROC convex hull -- are superior to any along the other 

curves.  The area under the ROC curve (AUC) offers insight into a diagnostic test's 

overall ability to discriminate between positive and negative cases and is equivalent to 

the Wilcoxon test of ranks [49].  A random ROC curve, which places a straight line from 

(0,0) to (1,1), has an AUC of 0.5.   A useful diagnostic test will have an AUC between 

0.5 and 1.0.   

Alternative quality indices have also been proposed to optimize the selection of cut-offs.  

In this case, a qROC is created.   Kraemer points out that a sensitivity of 0.99 is 

meaningless on its own.  The measures need to be placed in context.  A random test, with 

Moore, Andlauer, Simon and Mignot

Table 2: List and Definition of softROC statistics obtained from Table 1

Term Notation Definition
Sample Size N0

True Positive TP 1/N0 ·
PN0

i=1(TrueDiagnosis+i \ Test+i )

False Negative FN 1/N0 ·
PN0

i=1(TrueDiagnosis+i \ Test�i )

False Positive FP 1/N0 ·
PN0

i=1(TrueDiagnosis�i \ Test+i )

True Negative TN 1/N0 ·
PN0

i=1(TrueDiagnosis�i \ Test�i )
Prevalence P TP + FN
Quality Q TP + FP

Sensitivity SE TP/P
Specificity SP TN/P0

Positive Predictive Value PPV TP/Q
Negative Predictive Value NPV TN/Q0

E�ciency EFF TP + FN
Quality Index 1,0 (1, 0) (SE-Q)/Q0

Quality Index 0,0 (0, 0) (SP-Q0)/Q
Cohen’s Kappa (0.5, 0) (PQ0 · (1, 0) + P 0Q · (0, 0))/(PQ0 + P 0Q)
Chi-square �2 N0 · (1, 0) · (0, 0)

Table 3: Boolean Logic

AND OR NOT
x y x^y x_y ¬x
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

18
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sensitivity and specificity of 0.5 has  and  values of 0.0.   A test which 

identifies the gold standard diagnosis perfectly has  and  values of 1.0.  

Efficiency, when similarly recalibrated, produces  – Cohen’s Kappa [46].  The 

use of quality indices rather than specificity and sensitivity produces qROC plots, which, 

although less frequently used, have the advantage of showing the best cut-off overall 

independent of the application. 

2.2.2 BOOLEAN ALGEBRA 

Boolean algebra provides a simple framework to combine binary data (Table 2.3).  

Continuous data can easily be broken into two groups by applying a comparison 

operation (e.g. <, ≤, >, ≥, =, ≠) at the desired split.  Dichotomizing data and combining 

with Boolean operations this way produces a useful framework for flattening an 

otherwise hyper-dimensional diagnostic decision space into the visible 2D ROC realm.   

Table 2.3: Boolean operations on binary data.  Binary value pairs combine to form a 
single binary result based on the logic operator used. 

 

The choice of Boolean operator can have significant effect on the relative weight that 

each subtest carries toward forming the final result.  Evaluations combined with AND 

carry less strength together than they do apart, while the opposite is true for evaluations 

combined with OR.  These rules’ impact on the combined test's sensitivity and specificity 

must be assessed by performing each test separately and then combining and comparing 

the predicted result to the gold standard.  Kraemer points out that there is no easy 

mathematical shortcut to reach this result [46]; it is a computational problem and must be 

κ (1, 0) κ (0, 0)

κ (1, 0) κ (0, 0)

κ (0, 0.5)

Moore, Andlauer, Simon and Mignot

Table 2: List and Definition of softROC statistics obtained from Table 1
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True Positive TP 1/N0 ·
PN0

i=1(TrueDiagnosis+i \ Test+i )

False Negative FN 1/N0 ·
PN0

i=1(TrueDiagnosis+i \ Test�i )

False Positive FP 1/N0 ·
PN0

i=1(TrueDiagnosis�i \ Test+i )

True Negative TN 1/N0 ·
PN0

i=1(TrueDiagnosis�i \ Test�i )
Prevalence P TP + FN
Quality Q TP + FP

Sensitivity SE TP/P
Specificity SP TN/P0

Positive Predictive Value PPV TP/Q
Negative Predictive Value NPV TN/Q0

E�ciency EFF TP + FN
Quality Index 1,0 (1, 0) (SE-Q)/Q0

Quality Index 0,0 (0, 0) (SP-Q0)/Q
Cohen’s Kappa (0.5, 0) (PQ0 · (1, 0) + P 0Q · (0, 0))/(PQ0 + P 0Q)
Chi-square �2 N0 · (1, 0) · (0, 0)

Table 3: Boolean Logic

AND OR NOT
x y x^y x_y ¬x
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

18
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calculated directly.  Recognizing the utility of Boolean logic and ROCs, and their 

familiarity with medical practitioners, we developed softROC to provide the flexibility in 

diagnostic test design while off-loading the computational burden. 

2.3 IMPLEMENTATION AND THE EXAMPLE OF NARCOLEPSY 

Medical diagnosis, positive or negative, is often obtained after using not one test, but a 

combination of tests.  Furthermore, these subtests may take on a range of values that must 

first be dichotomized at known cut-points (e.g. low blood sugar, fever, high white blood 

cell count, etc.) before being combined into the final diagnosis.  In this section, we used 

the example of narcolepsy, a diagnosis that can be made based on a gold standards, (low 

cerebral spinal fluid (CSF) hypocretin-1) and physiological measures of sleep 

abnormalities (with each potential diagnostic variable being used as a subtest).  softROC 

could as easily be used to determine cut-offs for a combination of biological measures 

(dementia psychological test thresholds, CSF amyloid levels) versus a pathologically-

based defined gold standard for another disease (Alzheimer disease based on postmortem 

examination). 

2.3.1 NARCOLEPSY: DEFINITION AND DIAGNOSTIC PROCEDURES 

Narcolepsy was introduced and described in Section 1.3.1.  To reiterate briefly, it is a 

rapid eye movement (REM) sleep disorder classically characterized by excessive daytime 

sleepiness, sleep paralysis, cataplexy, and hypnagogic hallucinations.  Furthermore, 

hypocretin levels measured from cerebral spinal fluid (CSF) are greatly diminished and 

provide a gold standard [5].   These cases commonly have the symptom cataplexy.  The 

MSLT (described in Section 1.2) is often used to screen for narcolepsy and to avoid the 

traumatic lumbar puncture that is necessary to obtain CSF. The patient is diagnosed with 

narcolepsy if the mean sleep latency (MSL) during the five naps is less-than-or-equal 

eight minutes and two or more onset into rapid eye movement periods (SOREMPs) are 

observed [6].  In addition to the MSLT, REM latency (REML), the number of minutes 
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elapsed from sleep onset to the first REM period is obtained during the prior night’s 

NPSG and can assist the diagnosis.   

To investigate how sleep tests can be best used to predict narcolepsy/hypocretin 

deficiency, we used softROC to optimize diagnostic cut-offs for PSG REM latency and 

MSLT MSL and number of SOREMPs.  The full analysis, which uses multiple datasets, 

is detailed in [50] and [44].  As a result of this analysis, short REM latency during NSPG 

is now likely to be incorporated in newly revised AASM diagnostic criteria for 

narcolepsy used by clinicians worldwide. In this paper, we are using and providing one 

exemplar dataset from this publication as a training dataset for users interested in using 

softROC for other applications. 

2.3.2 SOFTWARE CONFIGURATION FOR SEARCHING COMBINED BIOMARKERS IN 

MEDICAL DIAGNOSIS 
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Figure 2.1: softROC configured to analyze the diagnostic performance of narcolepsy 
using multiple subtests. Menu choices for subtests are populated using the input data 
file's header column. 

Figure 2.1 shows softROC in one of the preliminary configurations we used to examine 

diagnostic tests of narcolepsy and which will be referred to throughout this section.  The 

accompanying Microsoft Excel input file includes polysomnogram measures Mean Sleep 

Latency and number of SOREMPs on the MSLT and NSPG REM latency as shown in 

Figure 2.2.  The provided tutorial gives specific instruction on configuring softROC in 

this manner and utilizing its various features.   

2.3.2.1 Input 

 

Figure 2.2:  Contents of input Excel file with de-identified patient information, subtests, 
and ground truth diagnosis.  The file is laid out similarly to the ones we used in our 
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investigation of narcolepsy.  softROC uses the header of each column to identify the 
subtest or gold standard grouping.  Each subsequent row represents the patient's 
measured result.  Data may be removed using exclusion rules in the settings.  Here, 
patient data in row seven is excluded from analysis because it contains negative values. 

The input file, once selected, provides all of the information necessary to configure a 

diagnostic test.  It presents the file header names for selection as subtest or gold standard 

(when data is dichotomous) and resizes as necessary.  In the exemplar excel file (Figure 

2.2), narcolepsy is defined biochemically by low CSF hypocretin (gold standard 

diagnosis: 0,1) in each patient and age matched control.   

2.3.2.2 Cut-point ranges 

Candidate cut-points are generated by establishing a range and step-size to iterate through 

from START to STOP.  In the example provided in Figure 2.1, PSG REM latency cut-offs 

are calculated for each REM latency from 1 to 200 minutes, in 1-minute increments.   

2.3.2.3  Dichotomize 

Each cut-point in the established range is split using a comparison operator.  Figure 2.1 

shows the ≤ and ≥ comparison operators selected for use.  For the PSG REM latency 

subtest, measured patient values less-than-or-equal to the cut-points are classified 

negative for narcolepsy while measured values above these cut points are classified 

positively for diagnosis. 

2.3.2.4 Combine 

Subtests are combined using the logic operators AND, OR, AND NOT, and OR NOT 

before they can be collectively compared to the gold standard.  Nesting of subtests is also 

possible in softROC.  For example, the MSL and SOREMPs results in Figure 2.1 are first 

combined using AND before, subsequently, being combined with PSG.REML subtest 

result using the OR operation.   

2.3.3 COMPUTATION 

The softROC configuration shown in Figure 2.1 can be viewed algorithmically as 
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and interpreted in words as “For each combination of values in the established ranges, 

make a positive diagnosis if either the measured PSG.REML is less than the current 

diagnostic test value or if both the measured MSL is less-than-or-equal to its current 

diagnostic value and the measured SOREMPs is greater-than-or-equal to its current 

diagnostic test value.”  The number of cut-points evaluated grows combinatorially as a 

Cartesian-product with each subtest added.  There are 200,000 cut point combinations in 

the current diagnostic configuration.  Each combination is evaluated and compared 

against the selected gold standard's positivity marker (i.e. a Boolean value) to generate 

the contingency table and produce the statistics outlined in Table 2.2.    

Let  represent the diagnostic classification function, evaluated for some patient n 

where  (N is the sample size), whose output is in {0,1} with 0 meaning a 

negative diagnosis and 1 meaning a positive diagnosis.  The diagnostic classification 

function is defined in softROC, and varies in definition and arguments with each unique 

configuration.  Using the current example, let PSG.REML(n), MSL(n), and SOREMPs(n) 

be the corresponding measurements for n, the current patient, as obtained from the input 

file (Figure 2.2).  The diagnostic classification function can be defined as 

 

Defining  as the gold standard diagnosis for patient n (with similar {0,1} output and 

interpretation of ) we generate the contingency table values as follows 

Medical Evaluation =
PSG.REML ≤ [1.0 : 200.0]

OR
(MSL ≤ [1.0 : 20.0] AND SOREMPS≥ [1.0 : 5.0])

#

$
%

&
%

Dn (•)

n ∈ [1,N ]

Dn (i, j,k) = v(n, i)∧{φ(n, j)∨ψ(n,k)}
v(n, i) = PSG.RML(n) ≤ i
φ(n, j) =MSL(n) ≤ j
ψ(n,k) = SOREMPs(n) ≥ k

Gn

Dn (•)
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In order to optimize our implementation, we reshape the standard contingency matrix into 

a single contingency row vector C with elements in the order of [TN, FP, FN, TP].  A 0-

base indexing scheme is then to generate the C with a simple, iterative update 

 

where  is the contingency vector index for patient n defined as 

 

2.3.4 PLOTTING 

 
a. Test	
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b. Zoomed	
  in	
  view	
  of	
  test	
  ROC	
  with	
  the	
  selected	
  point	
  shown	
  with	
  a	
  circle	
  and	
  

the	
  corresponding	
  qROC	
  (right)	
  values	
  shown	
  with	
  the	
  matching	
  subtest	
  
configuration	
  cutoffs.	
  
	
  

Figure 2.3: Interactive plots.  ROC and qROC plots produced using All ROC results 
selection (a), and zoomed in view of the results (b). 

The tROC and qROC plots of every diagnostic test examined in this configuration using 

the sample data set are shown in  

 
c. Test	
  ROC	
  (left)	
  and	
  quality	
  ROC	
  (right).	
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d. Zoomed	
  in	
  view	
  of	
  test	
  ROC	
  with	
  the	
  selected	
  point	
  shown	
  with	
  a	
  circle	
  and	
  

the	
  corresponding	
  qROC	
  (right)	
  values	
  shown	
  with	
  the	
  matching	
  subtest	
  
configuration	
  cutoffs.	
  
	
  

Figure 2.3(a).  tROC results are shown as blue dots and qROC results as red.  Figure 

2.3(b) shows the results of zooming in and selecting a point in the ROC space.  The 

quality indices for the selected points matching cut points are shown simultaneously (and 

vice versa) to avoid possible misperception that tROC and qROC values lay in similar 

locations.   



 

 72 

2.3.5 OPTIMAL DIAGNOSTIC TESTS 

 
a. tROC	
  convex	
  hull	
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b. qROC	
  convex	
  hull	
  

Figure 2.4: ROC convex hull.  Plots of ROC convex hulls are produced using the Optimal 
ROC results selection. 

Clinicians are not generally interested in examining all diagnostic tests, just the best.  But 

what is the best diagnostic test, or, rather, what makes one test better than another?  

Points along the ROC convex hull are superior to others when evaluating curves from 

multiple tests.  These points can be filtered for display as seen in Figure 2.4.  However, 

because there are two criteria of interest, sensitivity and specificity, even on this 

outermost curve there is no uniformly best model.  The answer depends on the desired 

trade-off between these criteria, which must be aggregated to select and validate a single 

model.  The software does this by using a convex combination of the two 

 (1−α) ⋅sensitivity+α ⋅specificity
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for a user selected . One way a user specifies α is explicitly in softROC's 

settings dialog (Figure 2.5).  Here the Sensitivity-Specificity balance is at its default, 

central position with an α of 0.5, but it can easily be adjusted to place proportionally 

more weight on either sensitivity or specificity.    

 

α ∈ [0,1]
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Figure 2.5: softROC's plot settings dialog.  The settings GUI allows users to set the 
desired tradeoff between sensitivity and specificity, the number of bootstrap iterations to 
perform, and various plot and output formatting options. 

The user may decide to define α implicitly by selecting a point from the plot directly and 

letting the software find the α for which this point is optimal (generally there is an 

interval of such α, and the center value of that interval is chosen). If no α exists, it is 

interpolated from the nearest points that are optimal for some α.  Regardless of the 

approach, once α is obtained, the user can select a best model and assess its variability 

and performance.  

2.3.6 GENERALIZATION 

One drawback to a multiple-parameter exhaustive search is the increased potential to 

over-fit the data.  A clinician is generally interested in how well their diagnostic criteria 

will perform on future patients – using the same data to train and evaluate a model can 

lead to an overly optimistic estimate of future performance.  We used split-set validation 

to generate unbiased estimates and bootstrapping to obtain confidence intervals.   

2.3.6.1 Split set validation 

In evaluating and constructing the diagnostic tool, many different combinations of 

candidate cut-points are considered. Because the best set of cut-points is selected, the 

ROC characteristics estimated on the training data are no longer unbiased estimates of the 

ROC characteristics for future patients --- they are potentially overly optimistic.  A 

training-set/test-set split is typically used to address this issue and correctly assess ROC 

characteristics of the selected best point.  The data are divided in two.  The first set 

(training set) contains a random 2/3 of the observations (stratified to include 2/3 of the 

cases and 2/3 of the controls). The second set (test set) contains the remaining 1/3 of the 

observations.  The first sub-dataset is used to train the model: the ROC characteristics of 

all cut-point sets are assessed with these observations, and the best set of cut-points is 

selected.  The second dataset is used to assess the ROC characteristics of this optimal 

model for future data. All of the test patients are then classified with the optimal model to 
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obtain the unbiased estimate.  The 2/3--1/3 split is based on the recommendation in [51], 

though a 1/2--1/2 split may be used instead.   

Because some degree of data exploration was presumably performed on the complete 

dataset before selecting the Boolean settings and ranges of the cutoffs, the estimates 

above are not entirely unbiased.  This bias will increase if the full dataset is more fully 

explored.  This issue is discussed in depth in [52].  In our case however, we are not 

working in the very high-dimensional framework.  The issue is further mitigated by 

variable selection during data exploration being neither automated nor exhaustive on its 

own but driven by the user.   

softROC generates four plots in the split-set validation mode: a tROC-qROC pair 

generated from the training-set, and a tROC-qROC pair generated from the testing-set.  

Clicking on any point in the one of the four produced plots will identify that points 

diagnostic cutoffs and display the matching ROC (test and quality) points in each of the 

remaining three plots.  Estimates may also be taken from selected points as described in 

Section 2.3.7. 

2.3.6.2 Bootstrapping 

In addition to sensitivity and specificity, one may be interested in the diagnostic's 

stability – i.e. if this model were built on a different set of patients from the same 

population, how different might the “optimal” cut-points look?  While one generally 

cannot obtain more datasets from the populations, this can be approximated with the 

bootstrap.  For each of many bootstrap replicates, patients are resampled with 

replacement, and an optimal cut-point replicate is found based on the α value used.  To 

assess the variability of the optimal cut-point estimates, one looks at the histogram of the 

optimal cut-point replicates. The empirical inner 95 percentile of these replicates is used 

as a confidence interval.  The user may set the number of iterations to use when 

bootstrapping in softROC's settings dialog (Figure 2.5).   
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2.3.7 IMPLICITLY DEFINING ALPHA 
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c. Unbiased	
  estimate	
  message	
  box.	
  

Figure 2.6: Context menu produced when an ROC value is selected and corresponding 
results. 

Users may obtain unbiased ROC estimates and confidence intervals directly from 

selected points.  This approach implicitly defines α by using an iterative slope calculation 

method to produce a range of optimal values and associated subtest configuration cut-

points on the outermost ROC curve.  The final α value used is taken from the linear 

interpolation of the selected point’s position within the generated α-range to ROC 

mapping.  The α value obtained in this way is optimal for points along the outermost 

curve, and cannot locate suboptimal points.  Thus a point selected inside the outer curve 

is replaced with the nearest optimal one in the ensuing analysis.  Figure 2.6(b) and Figure 

2.6(c) respectively show the results of choosing to obtain an unbiased estimate and 

bootstrapping a selection (Figure 2.6(a)).  The user can similarly obtain confidence 

intervals for the AUC of the convex hull.  The AUC is calculated using trapezoidal 

integration. 

2.3.1 NARCOLEPSY STUDIES 

Two retrospective studies were conducted to evaluate PSG related diagnostic measures 

for narcolepsy.   
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2.3.1.1 Cut-offs for narcolepsy without cataplexy 

The goal of the first study was to compare clinical, electrophysiologic, and biologic data 

in narcolepsy without cataplexy with low (≤ 100pg/ml), intermediate (110-200 pg/ml), 

and normal (> 200 pg/ml) concentrations of CSF hypocretin-1.  This study used 171 

subjects with narcolepsy, who did not have cataplexy, and 170 subjects without 

narcolepsy as controls.  Patients with narcolepsy without cataplexy, and having CSF 

hypocretin-1 measures, were found from databases at Stanford's Center for Narcolepsy 

and similar ones in collaborative labs located in China.  Narcolepsy without cataplexy 

was determined using the International Classification of Sleep Disorders (ICSD)-2, which 

implies that all cases had excessive daytime sleepiness and a positive MSLT (i.e. MSL ≤ 

8 min, ≥ 2 SOREMPs).   

softROC served two purposes in the study of narcolepsy without cataplexy.  First, it was 

used to determine optimal cut-off of CSF hypocretin-1 concentration for narcolepsy 

without cataplexy as defined by ICSD-2 (n=171), compared to unrelated controls 

(n=170).  Second, it was used to determine best MSLT cutoffs for predicting hypocretin 

deficiency in narcolepsy without cataplexy, that is, CSF hypocretin-1 ≤ 200 pg/ml. 

2.3.1.2 Short REML during NPSG for narcolepsy screening 

The goal of the second narcolepsy study was to determine if short REML during the 

NPSG (i.e. prior to MSLT) could be used as a screening test to predict narcolepsy cases 

associated with hypocretin deficiency.  Four comparisons were made using a total of 

1,749 different participants.  

Comparison 1 examined 516 narcoleptics with either low CSF hypocretin-1 levels or 

clear cataplexy with HLA-DQB1*06:02 positivity to 516 adults age- and gender-matched 

adults randomly selected from the general population.  Comparison 2 used a clinical 

sample of patients referred to the sleep clinic who underwent NPSG (n=749).  Similarly 

characterized cases of narcolepsy were selected from this group as cases (n=14) and all 

others with sleep disorders were used as controls (n=735).  Comparison 3 used a sample 
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of 254 successive patients with hypersomnia and a high pretest probability of narcolepsy.  

Similarly characterized cases of narcolepsy were selected as cases (n=122), while 

remaining patients diagnosed with narcolepsy without hypocretin deficiency, idiopathic 

hypersomnia, or Kleine-Levin syndrome were used as controls (n=118).  This third 

comparison allowed us to evaluate our REML criterion and compare it to those of the 

MSLT in a clinical setting of patients with hypersomnia.  Lastly, comparison 4 examined 

118 narcoleptic patients with low CSF hypocretin-1 levels to 118 age- and gender-

matched narcoleptic patients with normal concentrations CSF hypocretin-1.  In this last 

sample, MSLT positivity (i.e. MSL ≤ 8 min, > 2 SOREMP) was the primary diagnostic 

criterion for narcolepsy, as 62% of the controls with normal CSF hypcretin-1 levels did 

not have cataplexy.   

2.4 RESULTS 

The softROC program was helpful in exploring and determining optimal diagnostic 

measures in two narcolepsy studies. The first study investigated narcolepsy without 

cataplexy, while the second investigated narcolepsy with cataplexy.   
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2.4.1 NARCOLEPSY WITHOUT CATAPLEXY 

Figure 2.7 ROC curve for CSF hypocretin-1 levels as a predictor of narcolepsy without 
cataplexy (96 cases versus 96 controls).  The circle highlights the best CSF-hypocretin-1 
cut-off (201 pg/ml).  Each dot identifies the sensitivity and specificity resulting from a 
different test configuration applied to the cases and controls in conjunction with the gold 
standard. 

 

Using softROC, we found that a CSF hypocretin-1 concentration of approximately 200 

pg/ml was the best cut-off of narcolepsy without cataplexy (Figure 2.7).  This had a high 

specificity of 99%, but a low sensitivity of 33% and reflects the fact that only a minority 
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of patients without cataplexy are hypocretin-deficient.  This cut-off matches that of 

previously used groupings of CSF-hypocretin-1 concentrations mentioned earlier (i.e. 

low, intermediate, and normal).  Using this cut-off of 200 pg/ml, we next found the best 

MSLT cut-offs for predicting hypocretin deficiency in narcolepsy without cataplexy was 

an MSL ≤ 2 min with ≥3 SOREMPs (Figure 2.8).  This had a high specificity of 95%, but 

again a low sensitivity (39%). 

Figure 2.8 Multiple ROC curve for MSLT parameters as a predictor of narcolepsy 
without cataplexy with CSF hypocretin-1 ≤ 200 pg/ml (96 cases versus 96 controls).  The 
circle highlights the best MSLT MSL (≤ 2 min) and MSLT SOREMPs (≥ 3) cut-off 
point. 
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Only 24% of our sample had low or undetectable concentrations, which was in line with 

previous findings showing only minority of narcolepsy without cataplexy cases having 

low concentrations of CSF hypocretin-1.  Reports of subjective symptoms like 

hypnogogic hallucinations, triggers, or severity of atypical cataplexy, when present, or 

number of naps did not differ between the hypocretin-1 subgroups.  However, PSG 

abnormalities were generally more pronounced in patients with low concentrations of 

CSF hypocretin-1 than those with higher levels (e.g. shorter MSL and a higher number of 

SOREMPs by MSLT).   

2.4.2 SHORT REML DURING NPSG 

The goal of the second narcolepsy study was to determine if short REML during the 

NPSG (i.e. prior to MSLT) could be used as a screening test to predict narcolepsy cases 

associated with hypocretin deficiency.  Four comparisons were made using a total of 

1,749 different participants.  The case control sample pairings described in Chapter 1.  

The first comparison examined 516 narcoleptics with either low CSF hypocretin-1 levels 

or clear cataplexy with HLA-DQB1*06:02 positivity to 516 adults age- and gender-

matched adults randomly selected from the general population.  The second comparison 

used a clinical sample of patients referred to the sleep clinic who underwent NPSG 

(n=749).  Similarly characterized cases of narcolepsy were selected from this group as 

cases (n=14) and all others with sleep disorders were used as controls (n=735).  The third 

comparison used a sample of 254 successive patients with hypersomnia and a high pretest 

probability for narcolepsy.  Similarly characterized cases of narcolepsy were selected as 

cases (n=122), while remaining patients diagnosed with narcolepsy without hypocretin 

deficiency, idiopathic hypersomnia, or Kleine-Levin syndrome were used as controls 

(n=118).  This third comparison allowed us to evaluate our REML criterion and compare 

it to those of the MSLT in a clinical setting of patients with hypersomnia.  The fourth and 

final comparison in this particular study examined 118 narcoleptic patients with low CSF 

hypocretin-1 levels to 118 age- and gender-matched narcoleptic patients with normal 
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concentrations CSF hypocretin-1.  In this last sample, MSLT positivity (i.e. MSL ≤ 8 

min, > 2 SOREMP) was the primary diagnostic criterion for narcolepsy, as 62% of the 

controls with normal CSF hypcretin-1 levels did not have cataplexy.   

2.5 RESULTS 

The softROC program was again helpful in exploring and determining optimal diagnostic 

measures in two narcolepsy studies using separate populations of narcoleptics and 

controls. The first study investigated narcolepsy without cataplexy, while the second 

investigated narcolepsy with cataplexy.   
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2.5.1 NARCOLEPSY WITHOUT CATAPLEXY 

Figure 2.9 ROC curve for CSF hypocretin-1 levels as a predictor of narcolepsy without 
cataplexy (96 cases versus 96 controls).  The circle highlights the best CSF-hypocretin-1 
cut-off point (201 pg/ml). 
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low, intermediate, and normal).  Using this cut-off of 200 pg/ml, we next found that the 

best MSLT cut-offs for predicting hypocretin deficiency in narcolepsy without cataplexy 

was an MSL ≤ 2 min with ≥3 SOREMPs (Figure 2.8).  This criterion had a high 

specificity of 95%, but again a low sensitivity (39%). 

Figure 2.10 Multiple ROC curve for MSLT parameters as a predictor of narcolepsy 
without cataplexy with CSF hypocretin-1 ≤ 200 pg/ml (96 cases versus 96 controls).  The 
circle highlights the best MSLT MSL (≤ 2 min) and MSLT SOREMPs (≥ 3) cut-off 
point. 
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low concentrations of CSF hypocretin-1.  Reports of subjective symptoms like 

hypnogogic hallucinations, triggers, or severity of atypical cataplexy, when present, or 

number of naps did not differ between the hypocretin-1 subgroups.  However, PSG 

abnormalities were generally more pronounced in patients with low concentrations of 

CSF hypocretin-1 than those with higher levels (e.g. shorter MSL and a higher number of 

SOREMPs by MSLT).   

2.5.2 SHORT REML DURING NPSG 

ROC curves of comparison 1 are shown in Figure 2.11 which consists of 516 patients 

with narcolepsy with either low CSF hypocretin-1 levels or cataplexy and HLA-

DQB1*06:02 positivity vs 516 age- and gender-matched controls.  An REML of 18 

minutes or less gave best specificity cut-off.  In this case, specificity was 99.2% (95% CI: 

98.5-100.0), sensitivity was 51.6% (95% CI: 47.2-55.9]), and the AUC was 0.799 (95% 

CI: 0.771-0.826).  Further analysis was performed on subsets of this sample.  Patients 

with low CSF hypocretin-1 levels (n=89) had an optimal REML cut-off of 17 minutes or 

less with 97.8% specificity (95% CI: 92.1-99.7), 44.9% sensitivity (95% CI: 34.4-55.9), 

and an AUC of 0.704 (95% CI: 0.625-0.786).  For patients with cataplexy and HLA-

DQB1*06:02 positivity (n=427), the optimal cut-off was an REML of 21 minutes or less 

with 99.5% specificity (95% CI: 98.3-99.9), 53.9% sensitivity (95% CI: 49.0-58.7), and 

an AUC of 0.820 (95% CI, 0.789-0.850).  The results were all very similar. 
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Figure 2.11 ROC curves for REML comparison 1.   

 

ROC curves for comparisons 2, 3, and 4 are shown in Figure 2.12. In comparison 2, an 

REML of 16 minutes or less is the optimal cut-off (specificity, 99.6% [95% CI, 99.1-

100.0]; sensitivity, 42.9% [95% CI, 16.9-68.8]) for the diagnosis of 

narcolepsy/hypocretin deficiency compared to other sleep disorders (AUC, 0.704 [95% 

CI, 0.524-0.907]). In comparison 3, an REML of 17 minutes or less (specificity, 95.5% 

[95% CI, 90.4-98.3]; sensitivity, 58.2% [95% CI, 48.9-67.1]) was the best cut-off for the 

diagnosis of narcolepsy with low CSF hypocretin-1 levels versus narcolepsy with normal 

hypocretin-1 levels, idiopathic hypersomnia, and Kleine-Levin syndrome (AUC, 0.765 
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[95% CI, 0.707-0.831]). In comparison 4, an REML of 8 minutes or less was the optimal 

(specificity, 87.3% [95% CI, 81.3-93.3]; sensitivity, 44.1% [95% CI, 35.1-53.0]) cutoff 

for diagnosing narcolepsy with low CSF hypocretin-1 levels against narcolepsy with 

normal CSF hypocretin-1 levels (AUC, 0.628 [95% CI, 0.558-0.702]). 

Figure 2.12 ROC curves for REML comparisons 2, 3, and 4.   
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2.6 DISCUSSION 

Machine learning continues to play an important part in medical practice and decision 

making; however, it is clear that human expertise is not readily taken out of the equation 

when it comes to diagnosing ailments.  Cooper et al [53] evaluated the performance of 

several machine-learning methods to predict mortality of patients hospitalized with 

pneumonia with the goal of reducing treatment costs (both personal and financial).  In 

this thorough study, a total of 63 variables (continuous and categorical) from each patient 

were used to training (n=9,487) and evaluation (n=4,352) [53].  The authors point out the 

need for feature reduction as the otherwise large feature sets present difficulty to 

implement in practice compared to a smaller set of features, which may be converted into 

a paper-based model that a clinician, who ultimately acts on the diagnosis, can readily 

apply.  Solutions that engage medical expertise and serve as part of the process may gain 

the trust necessary to put into practice as we found in our case using interactive 

combinatorial ROC scatter plots. 

2.6.1 APPLICATION AND EXTENSION 

softROC is a general software tool that can be used for diagnostic discovery for any 

disease or pathology given an input file containing symptom data and “ground truth” 

diagnoses.  Our group has successfully used the software to identify and support new 

diagnostic measures for narcolepsy. 

For example, a CSF cut-off value of hypocretin-1 of 200 pg/ml was found to be optimal 

for identifying narcolepsy without cataplexy, and MSLT measures were found (i.e. MSL 

≤ 8 min, ≥ 2 SOREMPs) for predicting hypocretin deficiency above and below this cut-

off in narcolepsy without cataplexy.  These and other findings from this study may be 

found in the manuscript we published in the journal SLEEP [44].  One drawback to this 

study is that lumbar punctures (used to obtain CSF) are only ordered for severely affected 

patients who have typically shown presence of the disease for an average of ten years.  

The inclusion requirement for patients to have CSF hypocretin-1 measures likely biases 
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patients with normal concentrations in our sample to show greater increase in severity 

than would be found in a randomly selected pool of narcoleptics without cataplexy [44].  

Furthermore, we used softROC to find optimal NPSG REML cutoffs for diagnosing 

narcolepsy and evaluating its performance to the MSLT in several comparisons of 

different samples for narcolepsy and controls [50].  A tutorial Excel file based on one of 

the datasets from this study is included for reference with softROC's instruction manual.  

The strength of our program versus those available in statistical packages is its user 

friendliness and the fact it can easily combine multiple parameters to optimize diagnostic 

criteria.  softROC is filling a niche for medical diagnosis users and we hope to extend its 

use by answering the call for open source machine learning software [54]. 

2.6.2 DIAGNOSTIC DISCOVERY 

Performance evaluation of candidate diagnostic configurations can be done graphically 

within softROC, or offline by outputting the results to a tab-delimited text file.  Graphical 

output produces two separate, interactive plots.  One plot displays test ROC results 

showing sensitivity and specificity of each configuration in the search space, while the 

other plot displays the quality ROC values.  Clicking on any ROC value in either plot 

causes the matching configuration result to be circled in both plots and produces a text 

box showing its ROC and configuration values.  This allows easy selection of ROC 

values and corresponding diagnostic configuration cut-offs that are closest to the ideal 

test point within the range of specificity or sensitivity desired as shown in Figure 2.1.  

Text output includes additional statistical information for each diagnostic configuration 

test against the selected gold standard, including tROC sensitivity and specificity, qROC 

Kappas, Cohen's Kappa, contingency table values, positive and negative predictive 

values, and corresponding diagnostic cut-off parameter values used to produce the results 

in comparison to the gold standard.  These values are defined in Table 2.2. 
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2.6.3 PIGEONHOLING 

softROC's output is shown as a scatterplots and not ROC curves.  ROC curves are not 

displayed because the points plotted are truly multidimensional.  For example, the 

vertical clustering or layering of ROC points shown in Figure 2.3 reflects choices of 

SOREMPs and MSL, while horizontal changes are driven at each layer primarily by 

changes in PSG.REML cut points.  The ROC convex hull thus consists primarily of using 

set cut-points for SOREMPs and MSL and varying the cut-point of PSG.REML.  

Applying thresholds in this manner produces a step-function that can theoretically be 

made smoother and more curve-like with a smaller step-size.  In practice, this is not the 

case.    Aside from computational ceilings, the data simply has a limit to which it can be 

split.  The subtest itself may only offer a limited, discrete number of results (such as the 

case of MSLT SOREMPs in our example whose only outcomes are in the set 

{0,1,2,3,4,5}).  Establishing finer cut points beyond a subtest's range futilely increases 

computation without ROC resolution.  This pigeonholing effect occurs in softROC 

whenever different cut-points produce the same ROC result and prevents generating 

individual curves by simply “connecting-the-dots”.  When duplicate entries occur inside 

the ROC limits of 0 and 1, a many-to-one-to-many relationship exists which cannot be 

visually resolved in ROC space.  These case may be addressed offline by outputting the 

results to a text file from softROC and analyzing them with another program such as R, 

MATLAB, Excel or any text editor.   

2.6.4 LIMITATIONS 

Generating ROC curves by simply varying a threshold across a range of values may be 

viewed as a computationally poor approach [55], however we found it to be a necessary 

burden when evaluating the performance of combined subtests as pointed out by Kraemer 

[46].  Understanding the granularity of one's data makes computational processing a non-

issue in most cases.  A basic laptop computer (Intel Core 2 Duo 2.33GHz) evaluated 

~4,000 candidate configurations per second.  Furthermore, we found computation time to 

be a non-issue in most cases for our research using relatively current issues.  The 
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computation time scales linearly by the number of iterations performed when 

bootstrapping.  In these cases, it may be necessary either to let the simulation run 

overnight or reduce the number of iterations desired.   

Other approaches to evaluating the performance of combined tests exist and include 

bagging, voting, and regression schemes.  Furthermore cross-validation is another useful 

approach that can be taken over the split-set validation method we used.  These methods 

have their place.  The open source community can add them to softROC if they desire.  

Ultimately, we sided with Kraemer's argument for quality indices and chose an approach 

fitting to our research – one we hope others in the medical profession can easily adopt.    

2.7 CONCLUSION 

softROC is a novel, graphical program designed to assist clinical researchers in their 

search for optimal diagnostic configurations and cut-off values according to test and 

quality ROC.  Interactive plots make it easy to quickly select and compare diagnostic 

configurations and verify the quality of each selection.  Bootstrapping and training-test 

split validation methods are available to measure 95% confidence intervals of test cut-

offs and obtain unbiased ROC values. 

softROC's core features include input handling, dynamic search configuration, diagnostic 

exploration and future performance evaluation.  A diagnostic candidate search 

configuration is established by first selecting the gold standard field and positivity value 

used to separate cases from controls.  Next, test or symptom entries are added to the 

search configuration and selected from the drop-down menu.  The user creates a range of 

potential cutoff values for each test by selecting a start and stop range to compare across.  

The range can be broken up by setting the step-size (delta) or by setting the total number 

of divisions to break the range into.  An inequality or equality is selected for comparison 

against the generated test values. Similar entries can be added or removed and are 

compared with one another using Boolean logic (e.g. AND, OR).  A series of entries can 
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be grouped using checkboxes, which explicitly sets the order in which Boolean 

comparisons are made (i.e. how candidate symptoms are combined).  ROC curves 

generated across the configuration space may be explored interactively.  Confidence 

intervals of selected diagnostic configurations are determined by bootstrap while bias is 

dealt with using split-set validation.  softROC provides a flexible, robust setting for 

exploring diagnostic tests and measuring their usefulness.  All these features play a 

critical role in improving the search for ideal diagnostic criteria using ROCs scatterplots, 

derived from user-configured medical subtest combinations and variable thresholds of 

measured results and known outcomes, which would not have been possible using other, 

existing software packages.  

2.8 SUPPLEMENTARY MATERIALS 

Supplementary materials include the following items that can be found online at 

http://www.stanford.edu/~hyatt4/software/softroc/. 

• softROC toolbox for MATLAB (.zip): This package contains the MATLAB 

files necessary to run the softROC software described in this article.  A tab-

delimited text file containing de-identified narcolepsy patient diagnosis and 

biomarker data for user testing are also included. 

• softROC instruction manual (.pdf): This document provides instructions for 

installing and using softROC in conjunction with the included data file. 



 

 

CHAPTER 3 THE STANFORD EEG VIEWER – A TOOLBOX FOR LARGE SCALE 

ANALYSIS AND VISUALIZATION OF POLYSOMNOGRAPHY DATA 

In this chapter, I present the Stanford EEG Viewer.  This is a software package I 

developed to assist in the initial investigation and automation of the different collection 

of sleep studies, or cohorts, mentioned in Chapter 1.  The Stanford EEG Viewer has two 

distinct modes of operation, single study and batch, which provide the framework for the 

investigation of periodic leg movements (and their genetic basis), eye movements, and 

EEG coherency in the following chapters.   

There are several people who helped make this software possible who I want to thank. 

First, Justin Talbot for his instructive insights and data visualization feedback, and Pat 

Hanrahan, Bernard Widrow, and Emmanuel Mignot for the opportunity to start this work 

and their guidance.  Oscar Carrillo and Simon Warby (in particular) provided 

motivational problem statements and hours of critical feedback leading to multiple design 

decisions in context of sleep research needs and practice.  Eileen Leery provided 

feedback for the user interface as a registered polysomnography technician, as did Robin 

Stubbs as an information technologist. 
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3.1 INTRODUCTION 

Polysomnography (PSG) based sleep studies are data-rich yet are typically visually 

interpreted by technicians and medical doctors for very basic parameters such as sleep 

staging, scoring of respiratory events and periodic leg movements. Our laboratory is 

interested in extracting and validating new PSG biomarkers for disease or genetic studies.  

Analysis of this scale requires thousands of human subjects (patients and controls) to 

reach statistical power necessary for genetic analysis or epidemiological relevance.  It 

also requires flexibility in generating new phenotypes that requires specialized 

algorithms.  Open source software packages such as FieldTrip[56], EEGLAB[57], and 

PSGLab[58] are available but slow, do not accommodate large datasets, and/or cater to 

very specific needs (e.g. PSGLab was designed for neonatal analysis).   Commercial 

software packages from companies including Embla (e.g. SandMan), PhiTools (e.g. 

PRANA), Grass Technologies, and Huneo are more user friendly and broadly-purposed, 

but the algorithms used are not reviewable and cannot be customized due to intellectual 

property concerns.  Output format in these is specific for the clinical end user and there is 

no flexibility for use by researchers.   

To fill this need, we developed the Stanford EEG Viewer (SEV), a MATLAB [59] 

toolbox to graphically analyze individual sleep studies and automate analysis of 

collections of sleep studies through a specially designed graphical user interface (GUI).  

As use cases, we have been using sleep studies from three sources, the Wisconsin Sleep 

Cohort (WSC) [43], the Stanford Sleep Clinic (SSC) and the Veteran Affairs (VA) 

Medical Center, Menlo Park Division.  The WSC cohort, designed for longitudinal 

analysis of sleep in a clinical population, comprises approximately 2,400 sleep studies in 

1,090 subjects.  The SSC sample includes 762 sleep studies in adult patients with various 

sleep disorders [44].  The Menlo Park VA sample consists of 422 combat veteran sleep 

studies in controls and Post Traumatic Stress Disorder (PTSD) patients[60].  Sleep 

studies of these cohorts are exported as European Data Format (EDF) [61] and analyzed 

using the SEV for various projects including development of a periodic leg movement 
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detector [62], studies of REM sleep in PTSD and narcolepsy, and studies of spindle 

activity in correlation to genome wide association studies.   

In all these use cases, biomarker classifiers, filters, and power spectral methods are often 

explored and adjusted on individual studies before application to the entire data set is 

possible.  This cycle of improvement is typically repeated to evaluate performance of 

classifiers using receiver-operating characteristics (ROC) against a manually scored data 

set or to investigate interesting and/or atypical results.  Despite progress in the 

development of sleep biomarkers, our judgment is that current methods too often rely on 

small, accrual-biased datasets unrepresentative of the general population.  The SEV 

simplifies the process of adjusting these and other algorithms to different datasets by 

exposing pertinent parameter fields to the user through a GUI interface.  Researchers can 

then optimize preexisting classifiers to their data without having to program.  

The potential for automated batch processing of artifact detection, power spectral 

analysis, and biomarker classification sets the SEV apart from other PSG analysis tools.  

Automated processing tasks of large cohorts can be accomplished within a few hours 

using the SEV on a single desktop computer.  Short processing times allow for more 

rigorous artifact detection and investigation of optimal biomarker classifications.  

Biomarker and artifact classifiers incorporated in the SEV include previously published 

and validated methods as well as new, unpublished methods.  Raw and statistically 

analyzed output from the SEV is exportable to standard, tab-delimited text files or a 

MySQL database. Additional tools exist within the SEV for further analysis of results; 

however, the primary purpose of the SEV is to create a useful, flexible framework to 

prepare large volumes of sleep data for downstream statistical analysis.  This may be 

done using other analytical tools and environments more familiar to the researcher, such 

as Microsoft Excel or R.  The software is freely available for academic use and may be 

downloaded at http://www.stanford.edu/~hyatt4/. 
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This chapter is organized in the following manner.  Section 3.2 discusses the SEV’s 

single study mode, which allows viewing and exploration of individual PSG-based sleep 

studies.  Section 3.3 covers the SEV’s batch mode, which automates signal processing 

and pattern recognition algorithms across cohorts of PSG-based sleep studies.  

Concluding remarks are given in Section 3.4. 

3.2 SINGLE STUDY ANALYSIS 

The SEV’s single study analysis mode begins when an EDF file is loaded from the 

startup screen. In addition, any independent event file (hypnogram/sleep staging, scored 

respiratory and leg movement events constituting the scoring mask), can be loaded, 

proving they are in a pre-specified format file (tab-delimited text files or a MySQL 

database) (see supplementary tutorial video).   The single study mode provides the visual 

thrust of the SEV.  Patient data is presented at several scales for frequency and time 

domain analysis, and classification, filtering, and power spectral analysis performance is 

easily explored using various settings. Analysis made in the single study mode can then 

be automated across a directory of studies in the batch mode.  
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3.2.1 VIEWING 

 

Figure 3.1: The SEV’s main application window for single study analysis.  The large 
center window shows the selected polysomnography channels which may be viewed at 
different scales and manipulated through context menus.  The hypnogram window in the 
bottom-right shows the patients sleep stage and classified biomarker or artifact activity 
progression for the entire night.  The multipurpose window, bottom-left, shows the power 
spectrum of a selected channel for the current time scale, a classifiers distribution by 
sleep stage, or a classifiers performance to a ground truth using ROC metrics. 

The SEV’s home screen is shown in Figure 3.1.  Signal channels, corresponding to the 

polysomnography recordings of a sleep study are loaded from the tool bar or menu bar.  

Widgets, toolbars, menus, and context menus become available once a study is loaded.  

Three interactive subwindows provide the single study analysis component of the SEV 

and are intertwined with one another so that updates in one window are complimentarily 

reflected in another. 
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3.2.1.1 Epoch window 

The channel data is shown in the primary axes and can be manipulated in several ways 

using context menus.  Right clicking with the mouse on the channel or window of interest 

will access the associated context menus.  Channels can be resized, recolored, relabeled, 

hidden, duplicated and moved about the display to visualize similarities and differences 

with other channels.  The user can view data at a variety of time resolutions (default is 

30-seconds epochs) or as entire sleep stage collections (e.g. Stage 2 or all Rapid Eye 

Movement (REM) sleep).  Manually scored events (imported from event files) can be 

added using the mouse, and periods of activity can be selected for plotting or power 

spectral analysis in a pop-out window.   

3.2.1.2 Entire night window 

Manually staged scoring data can be loaded automatically when available in the correct 

pre-specified format and shown in the hypnogram window at the bottom-center of the 

viewer.  The hypnogram shows the progression of sleep stages across the entire night in a 

single view as a compressed collection of 30-s epochs.  Users can identify epochs of 

interest from this view and see the signal data at that time by clicking the corresponding 

point in time in this window.  Epoch adjustment is easily accomplished using the arrow 

keys or the epoch position edit box or slider widget. Sleep events that are loaded or 

produced from the detection toolbox are displayed in the axes above the hypnogram.  

Thicker, longer vertical lines above the staging lines naturally draw the eye to epochs 

with heightened activity while thinner, shorter vertical lines highlight areas of sparse 

activity. Epochs of interest are quickly identified so that a classifier’s performance in 

relation to sleep stages can easily be visualized. 

3.2.1.3 Multipurpose window 

A third window, on the lower left, provides three additional views which the user selects 

using a radio button.  Each view can be further configured using its context menu or the 

settings button.   
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• Power Spectral Analysis 

Power spectral analysis of an epoch, stage, or selected time period is possible using both 

periodogram averaging, with a variety of Fast-Fourier-Transform (FFT) windows of 

selectable size and overlap periods [63], and Multiple Signal Classification (MUSIC) [64] 

methods.  Figure 3.2 shows the configuration screen used to adjust power spectral 

analysis parameters in the SEV’s single-study and batch modes.  Power spectral analysis 

results can be configured to exactly match those of commercial programs like PRANA.  

Of course finer configuration control and the extension of batch processing further 

separates the SEV its counterparts.  

 

Figure 3.2: The Power Spectral Analysis GUI lets a user change the window type, size, 
and interval to use for periodogram averaging.  The GUI can be used to configure 
analysis for a single study, or to establish analysis parameters for many studies processed 
during batch mode. 

• Event distribution 

A simple bar graph shows the distribution of events detected automatically with one of 

the classifiers or loaded from a file.  In terms of classifier development, this histogram 

highlights its ability to distinguish between stages.  It also provides a quick understanding 
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of the relationship between the specified events and sleep physiology determined by 

stage. 

• Receiver Operating Characteristics (ROC) 

A classifier’s performance against another classifier or ground truth dataset is viewed 

using either test ROC (sensitivity and specificity) or quality ROC (weighted kappa 

values) [46].  The user selects two classification methods to determine the level of 

sensitivity and specificity of one classification method versus the other.  A third 

classifier, when selected, serves as an artifact detector.  Events detected during periods of 

artifact are removed from comparison and provide more accurate analysis where artifact 

rejection is employed.  Classifier adjustments made at run time in the epoch window are 

immediately reflected in the ROC view giving researchers instant feedback on the 

performance effect of different parameter values for that study.  

Direct evaluation of ROC performance on a sample-by-sample based confusion matrix 

often reveals inflated specificity or incongruous results when evaluating comparatively 

rare events (e.g. less often than 1/100 of a second), as is the case with many biomarkers 

of interest.  An interaction matrix is first employed to transform classifications from 

digital time domain to an event space more naturally suited for ROC evaluation.  The 

final evaluation is comparable to precision recall analysis. 

3.2.2 EVENT CLASSIFIERS 

Several published and unpublished time series biomarker event and artifact classifiers 

available with the SEV and listed in Table 3.1.  Classifiable biomarkers include slow 

wave activity, spindles, ocular, cardiac activity (e.g. heart rate), and periodic leg 

movements. Artifact detectors, which classify non-biologic activity such as high 

frequency activity, flat line, and electrode-pop are also included and help identify 

unwanted portions of signal.  The filter toolbox provides data cleaning solutions as an 

alternate to data rejection. 
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Table 3.1: SEV features 

FEATURE DESCRIPTION 
Classifiers 
 

Artifact:  Flatline, electrode pop, muscle activity[65], high 
frequency interference 
Biomarker:  Cardiac activity, periodic leg movement[66-68], 
rapid eye movement[69-72], slow eye movement[73],  
spindles[74], slow wave activity[75] 
General:  Amplitude threshold, dual amplitude threshold 

  
Power Spectral Analysis Welch averaging – (FFT based) 

Multiple signal classification (MUSIC) spectrum 
  
Signal processing tools Data cleaning and signal estimation: Empirical mode 

decomposition (EMD), wavelet denoising, adaptive noise 
cancelling [76] 
Finite Impulse Response Filters:  High pass, low pass, band 
pass, band stop 
Moving window methods:  Root mean square, mean, 
median, minimum, maximum, standard deviation, 
exponentiation. 
Arithmetic:  Absolute value, sum, difference 

  
Single study view 
windows 
 

Polysomnogram:  Multichannel; adjustable time scale; event 
selection/annotation 
Entire Study:  Sleep staging (hypnogram); biomarker and 
artifact activity 
Multipurpose:  Power Spectrum; Classification distribution 
by sleep stage; Receiver Operating Characteristics 

  
Batch processing 
Mode 

Automated processing of multiple EDFs 
Configurable parameter search space for biomarker classifiers 
Power spectral analysis with artifact detection 
 

Input formats 
 
 
 
 
 
Output formats 

European Data Format (.EDF) 
Hypnogram sleep stage files (.sta) 
Specialized event files (.sco, apnea or PLM scoring event 
files) 
SEV event files (see below output formats) 
 
Tab delimited text files 
MATLAB .MAT files 
MySQL database 
JPEG or PNG formatted images 
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Classifiers are configured to use single or multiple channels.  Multichannel algorithms 

often provide more robust classifications by incorporating physiological significance to 

further validate or reject initial classifications.  For example, inclusion of oxygen 

saturation measures with detection of channels flat-lining is helpful in artifact detection to 

determine periods where a patient has likely been wakened and disconnected from the 

recording system during the middle of a sleep study in order to use a rest room.  

Similarly, several ocular detection algorithms incorporate two EOG channels to ensure 

movements are synchronous and thus physiologically relevant.   

 

Figure 3.3:  Biomarker and artifact classifier selection and parameter adjustment GUI.  
The classifier of interest is selected from the drop down menu at the top.  Parameters 
associated with the selected classifier are listed with edit boxes for user adjustment.  
Changes take place immediately and are reflected in the viewer window(s). 

A typical detector preprocesses its input signal(s) before applying classification rules.  

New signals can be synthesized using the intermediate, classifier processed data to give 

users a better understanding of the method’s results.  Detection parameters are stored in 

an extensible markup language (XML) file and may be adjusted using a common dialog 

window either directly from the detector toolbox, context menus, or the file itself.  Figure 

3.3 shows the general GUI used for adjusting the parameters of any of the SEV’s 
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classifiers. The viewer instantly updates parameter adjustments made interactively to 

existing detections. 

The event toolbox is easily extended using a simple MATLAB template that provides 

developers immediate access to the raw signal and metadata. Classifiers developed with 

this template interface are immediately accessible within the SEV and benefit from the 

MATLAB’s editable environment. 

3.2.3 FILTER TOOLBOX 

The filter toolbox provides a variety of filtering and decomposition tools for signal 

analysis and algorithm development that are summarized in Table 3.1. 

Filtering methods range from conventional linear Finite-impulse-response (FIR) filters 

(e.g. band pass, high pass, etc.) to moving-window, non-linear filters (e.g. standard 

deviation, median, root mean square, and exponentiation).  Channels can also be de-

noised using wavelet decomposition or adaptive noise cancellation methods. Adaptive 

noise cancelling using recursive least squares with one or more reference channels is 

particularly helpful in removing unwanted ECG artifact or undesirable EEG 

contamination in EOG activity and vice versa.  Simple linear combinations, such as 

summing or subtracting channels, make re-referencing signals easy.  Empirical mode 

decomposition of signals is also possible.  

Filters from the toolbox can be cascaded in any order and applied to one or several 

channels at a time.  Swapping views between the original and filtered data is quickly 

accomplished through a context menu.  The user may return to original, unfiltered data 

using a context menu or the filter toolbox.   Duplicating a channel, and subsequently 

filtering it, provides a way to synthesize new channels for analysis and classification 

development.  Figure 3.4 shows an example of a single horizontal EOG (HEOG) channel 

duplicated several times with different, selected filtering methods applied to each. 
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Figure 3.4:  Output from filter toolbox.  The HEOG channel (top) is duplicated and 
filtered differently to produce four new channels for visualization and analysis. 

3.3 BATCH PROCESSING 

The SEV’s batch processing mode allows users to automate the core functionality 

available in the single study mode across a collection of studies.  This provides a unique 

analysis framework not available in other tools.  Previous to the SEV, scientists resorted 

to scripting mouse events in an effort to automate use of other software programs with 

limited success.  The SEV’s batch mode, initially developed to provide a clean, 

transparent interface to process sleep studies for power spectral analysis and 

identification of artifacts, incorporates biomarker classification for both original and post-

processed (i.e. newly synthesized) PSG channels.  

The batch mode, accessed from the SEV’s main window and shown in Figure 3.5, 

provides a separate configuration GUI for establishing these automated procedures.  This 

GUI is comprised of five sections which are listed from top to bottom: (1) cohort 

selection, (2) output preferences, (3) source channel synthesis, (4) classifier selection and 

configuration, and (5) power spectral analysis configuration.  The GUI adjusts in size to 
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accommodate the number of analyses configured. The batch mode allows concurrent 

importation of EDF files and sleep stage file, but not other event files at this stage. 

 

Figure 3.5:  The SEV’s Batch Mode provides configuration options for automating 
filters, classifiers, and spectral analysis of polysomnography data. 



 

 108 

 

3.3.1 CONFIGURATION 

3.3.1.1 Cohort selection 

Cohort selection is accomplished by selecting the directory that contains the EDF sleep 

studies and their 30-second staging data (hypnogram file).  Automated analysis requires 

staging files to fill event and PSD output fields, and is particularly useful for clustering 

results later.  Channel names, obtained from the EDF header, are used to populate the 

various source channel pull-down menus.  The user chooses which channels to analyze 

from these menus.   

3.3.1.2 Output preferences 

Output preferences, accessed through the settings GUI shown in Figure 3.6, include 

options for file output (e.g. directories, format, naming convention) and selection of 

optional statistical summary and log files.  Classifier events may be exported as tab 

delimited text files, MATLAB binary files, or database records of a configured database.  

Database use requires additional installation steps (i.e. MySQL and   MATLAB interface 

code mym).  Raw power spectral analysis results are exported as tab delimited text files.  

Screenshots of classified events can also be exported in either JPEG or PNG format. 
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Figure 3.6:  Output settings of the Batch Mode are adjusted using a separate GUI.  
Directory placement, file naming conventions, and selection of statistical and raw output 
are made using this GUI. 

3.3.1.3 Channel synthesis 

Additional PSG channels can be synthesized for processing.  A source channel, from the 

EDF or a previously synthesized channel, is first identified and then filtering methods are 

selected using the Filter Toolbox GUI.  Once configured, the synthetic channel is added 

to the source channel dropdown menus through the batch viewer, making it immediately 

available for analysis or processing by any of the classifiers or power spectral analysis 

tools.   

3.3.2 BIOMARKER AND ARTIFACT CLASSIFICATION 

Batch processing of time domain classifications can proceed in two ways that are best 

suited for biomarker versus artifact processing respectively. Classifiers can be selected 
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for use as either biomarker or artifact.  The output from each either may saved as text, 

picture, or database entry, however the methods differ in terms of parameter space 

configuration (biomarkers) and integration with power spectral analysis (artifact). 

Classifiers selected from the biomarker section can have their parameters configured to 

span a range of values.  Automated processing of this parameter search spaces lets users 

explore a range of classifier specific parameter values for each sleep study in the batch 

job.  The performance of these settings is readily evaluated using ROC curves, as 

discussed in the ROC section. 

Classifiers chosen from the artifact section are integrated with power spectral analysis 

and do not incorporate configurable parameter search spaces.  Events classified as artifact 

are flagged in the power spectral analysis output.   In this mode, not only can SEV 

generated artifact files be selected, but other previously available synchronized event 

files, such as files containing respiratory disturbances or scored PLMs can also loaded so 

that data surrounding a respiratory event can flagged for removal. 

3.3.3 POWER SPECTRAL ANALYSIS 

The SEV facilitates power spectral analysis by calculating the power spectral density 

(PSD) of consecutive, fixed-width blocks of selected PSG channel(s) and saving the 

results to a text file.  The settings GUI, shown in Figure 3.2, lets users adjust the window 

type, size, and interval between successive PSD calculations or periodograms.  The 

method to calculate the PSD (i.e. Fast Fourier Transform (FFT) or Multiple Signal 

Classification (MUSIC) is selected from the main batch mode view along with the 

specific channel to analyze (Figure 3.5).   

A separate text file is generated for each channel analyzed, of each patient in the batch-

processed cohort.  Configuration settings included in each file’s header along with a row 

of column labels for the ensuing periodograms that occur in consecutive interval 

succession.  For example, the second output row from an analysis conducted at 1 sec 
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intervals on widows of 2 sec duration corresponds to the power spectrum from 1-3 sec 

from the studies start.  The third row corresponds to the power spectrum from 2-4 sec 

since the studies start, and so on.  Periodogram frequency resolution is determined by the 

window length and sampling rate of the channel.  The sleep stage, frequency bands of 

sleep, and flags for artifact – corresponding to each periodogram – are included as well.  

The files are highly suitable for analysis in other programs, like R or Excel, where 

custom scripts can be run to minimize variance by averaging overlapping periodograms 

[63], exclude artifact, and shape the analysis to a specific research thrust.  For example, 

trends in power spectral activity can be analyzed individually, demographically (when 

known), or longitudinally (successive sleep studies) by time, sleep stage, or even sleep 

stage cycle using output files from the SEV. Database output is readily leveraged by web-

based programs to quickly query and cluster detected biomarker activity, and other 

programs, like the PhenoFinder, can be developed in MATLAB to further visualize 

power spectral trends in a selected cohort[77].  

3.3.4 RECEIVER OPERATING CHARACTERISTICS OPTIMIZATION VIA EXHAUSTIVE 

SEARCH 

In addition to the single study mode, an ROC viewer is provided within the SEV for 

analyzing data produced in the batch mode.  Figure 3.7 shows an example of running the 

ROC viewer on a small set of sleep studies using multiple parameter values and a gold 

standard to compare against.  Sensitivity and specificity performance of a classifier’s 

various parameter values are evaluated visually by selecting the values of interest from 

the drop down menus provided with each adjustable parameter for the ROC input under 

evaluation.  The performance in Figure 3.7 shows the clustered performance of all the 

studies, but individual studies can also be shown simultaneously to spot outliers and 

group effects. 
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Figure 3.7:  The SEV’s Batch Mode ROC Viewer allows users to determine the impact 
of various parameter values on a classifiers performance in terms of quality ROC 
values (e.g. Kappa values) and test ROC values (e.g. sensitivity and specificity).  
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3.3.5  AUDITING 

Several steps are taken to ensure parameter configurations for batch processing are stored 

so that results are easily replicated.  Text files of classified events or power spectral 

analysis include header information identifying the channels run and settings used.  The 

output filenames also identify this information, less the parameters.  A log file is 

generated for each batch run with indication of the channel, methods, and settings used as 

well as the status of each file analyzed and any errors associated with it.  For example, 

studies with missing or corrupt data that fail to load are caught and annotated in the log 

file with information regarding the error for post-hoc investigation as necessary. 

3.4 CONCLUSION 

The SEV is a MATLAB toolbox developed for single and multi-study sleep analysis.  It 

is well suited for epidemiologic and genetic studies evaluating polysomnographic 

biomarkers such as power spectral characteristics and phasic activity in studies with 

relatively few polysomnography channels (e.g. less than 20).  Raw output is provided for 

further statistical analysis based on the end user’s specific goals. The SEV is currently 

being applied to several, large-scale datasets for the investigation of periodic leg 

movements, restless legs syndrome, REM activity in posttraumatic stress disorder, sleep 

duration, and spindle activity [78-82].  It is the cornerstone of the work described in 

subsequent chapters, and will continue to be used and improved by future students in the 

sleep program.  Future work will be directed toward the clinical integration of the 

algorithms developed and validated using the SEV. 

3.5 SUPPLEMENTARY MATERIALS 

Supplementary materials include the following items that can be found online at 

http://www.stanford.edu/~hyatt4/software/sev/ or http://www.github.com/informaton/sev. 

• SEV for MATLAB (.zip): This package contains the MATLAB files 

necessary to run the SEV software described in this chapter. 
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• SEV tutorials (.mp4): Video instruction tutorials for using the SEV are 

available online. 

• Application programming interface (API): Programming instructions for using 

SEV’s MATLAB classes and functions. 

 



 

 

CHAPTER 4 VISUALIZATION OF EEG ACTIVITY FOR STIMULATING SLEEP 

RESEARCH 

This chapter presents both an approach and a related software tool for visualizing EEG 

activity in large samples of sleep studies.  The tool was developed through a user design 

study I conducted for the purpose of evaluating power spectral based phenotypes in the 

Wisconsin Sleep Cohort as processed by the SEV’s batch mode, which is described in the 

preceding chapter.  This chapter is published in the journal Computer Methods in 

Biomechanics and Biomedical Engineering [77].  

There were several people who I would like to thank and acknowledge for their 

contributions to the work described in this project.  Jeffrey Heer and Vadim Ogievetsky 

from Stanford's Department of Computer Science provided much help and guidance with 

the visualization aspects of this work.  Emmanuel Mignot, Simon Warby, Oscar Carrillo, 

and Minae Kawakashina provided valuable assistance and expertise of sleep and genetics 

research, and gave constructive feedback throughout the software's development.  

Emmanuel Mignot and Paul Peppard gave helpful, constructive feedback for the 

submitted manuscript.  Lastly, I want to give a special thanks to all participants of the 

Wisconsin Sleep Cohort.   
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4.1 INTRODUCTION 

Brain-wave activity, monitored using electroencephalography (EEG) during nocturnal 

polysomnography (NPSG) studies, provides an informative view of sleeping individuals.  

The EEG reflects local changes in electrical activity across the scalp and provides insight 

into electric potential differences generated by the cerebral cortex.  This complex activity 

often follows predictable patterns, which are used to stage an individual’s sleep and 

determine abnormal behavior.  Alterations in sleep's EEG power spectral density (PSD) 

have been observed in individuals diagnosed with depression, schizophrenia, Williams 

syndrome, autism, and developmental dyslexia.  Discovering a genetic basis that links 

measured sleep activity between these and other disorders is of tremendous medical and 

societal importance [83-85]. 

A team of scientists at Stanford’s Center for Sleep Sciences and Behavioral Medicine, 

including expertise in sleep medicine, neurology, biology, immunology, and genetics, has 

been exploring genetic contributions to EEG activity in human sleep.  Such investigations 

require large samples to obtain to enable reliable statistics tests and a good “phenotype”.  

A phenotype is any observable and reliable characteristic or trait, and may be produced 

by genetics or the environment.  A genotype is a gene or DNA sequence producing a 

specific phenotype in the host organism.  Links between genotypes and phenotypes are 

tested using a variety of research designs. Genome wide association studies  (GWAS) can 

provide tremendous insight into the genetic bases of phenotypes. To perform such 

studies, our team also has access to advanced DNA-sequencing technology from 

Affymetrix and Taqman.   

4.1.1 CURRENT TOOLS FOR ANALYZING SLEEP 

Commercial sleep analysis programs like PhiTools' PRANA or Embla's Sandman 

currently provide measures for sleep data visualization.  Such tools are typically 

optimized for rapid viewing of polysomnograms (PSG) while offering pseudo diagnostic 

and signal processing modules on a per study basis.  The opaqueness surrounding the 
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inner workings of the software's algorithms and features is a hindrance to phenotype 

selection.  Access to the data at intermediary stages in these programs is seldom given, 

and summary results are nicely presented but leave little room to verify or analyze low 

level results.   

Stanford's researchers expressed concern with using such “black-box” commercial tools 

to select a phenotype.  Discovering that an interesting observation is actually an artifact 

of the software's methodology with no physiological basis is a costly, time-consuming 

mistake surpassed only by not making the discovery at all.   

Alternative, data transparent programs exist for phenotype selection, but come with 

different problems. 

Programs like R or Microsoft's Excel provide means for direct low-level analysis of raw 

data, but offer limited support for spectral analysis.  Data analysis with these programs 

often develops into a series of unique scripts that are continuously altered to produce new 

plots or examinations as new questions or ideas arise, and is a tedious, clunky process.   

Given these concerns, an alternative solution for investigating the sleep EEG's PSD for 

phenotypes was sought and developed over a series of informal user discussions with this 

team of scientists. 

4.1.2 CONTRIBUTION AND ORGANIZATION 

The PhenoFinder, introduced here, is a tool for visualizing EEG activity in large sleep 

cohorts for the purpose of exploring and identifying power spectral sleep phenotypes to 

genotype.  This MATLAB toolbox is transparent in its data manipulation and 

presentation functions, and remains open to adjustment or extension by others.  Its 

graphical interface makes the crucial step of selecting and observing sleep phenotypes 

across a cohort of patients a quick, easy process.  The software, along with a small set of 

anonymized PSD data (n=30), is available online at 

http://www.stanford.edu/~hyatt4/software/phenofinder/. 
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It is the first tool we are aware of that assists users in visualizing the sleeping brain's PSD 

EEG activity for phenotypes in such a large cohort of NPSG studies (n=1,836).  The 

paper’s organization continues in the following manner.  Section 2 introduces dataset and 

gives background information on sleep.  Section 3 presents the approach and methods 

taken to visually investigate sleep for PSD phenotypes.  Section 4 presents the results 

with discussion, and Section 5 the conclusion. 

4.2 BACKGROUND 

This section gives background on the NPSG sleep data set used, its collection and initial 

sleep stage scoring, and its transformation to the frequency domain (i.e. the PSD). 

4.2.1 DATA SET 

The EEG data set examined here comes from the Wisconsin Sleep Cohort (WSC), which 

was introduced in Chapter 1.4.1.  Chapter 1.1.1 describes manual process for scoring 

sleep stages in 30-second intervals or epochs.  To briefly summarize, the WSC includes a 

collection of NPSG based sleep studies taken longitudinally (at four-year increments) 

from a general population of middle-aged adults.  It was established in 1988 from a 

sample of employees of four state agencies in south central Wisconsin, USA.  WSC's 

NPSGs were initially stored on paper until digital collection began in 2000 with a 16-

channel PSG recording system (16-channel Grass-Telefactor Heritage digital sleep 

system Model 15). A total of 1,836 studies, conducted between 2000 and 2008, from the 

WSC are used in this chapter.  The sample represents 1,054 patients: 571 men between 

39 and 78 years of age (mean=56.7 std=7.7), and 502 women between 37 and 78 years of 

age (mean=55.3, std=7.6).    

4.2.2 DATA TRANSFORMATION 

The EEG's PSD is calculated for each study using the Stanford EEG Viewer (SEV) [86].  

The SEV, introduced in Chapter 3, is a PSG processing MATLAB toolbox with a batch 

that automates power spectral analysis along with classification and detection algorithms 
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across arbitrarily sized datasets.  It was configured for two-second periodogram 

averaging with one-second overlap to calculate the PSD with 0.5 Hz resolution [63].  

These periodograms and corresponding sleep stage scoring are saved to text files with 

additional flags to indicate the presence of ocular or muscle artifact, which could 

contaminate the periodograms.  The C-3 and O-1 EEG outputs are saved to separately 

named files for each patient, which the PhenoFinder parses and condenses on initial 

loading for efficient use of either EEG signal.  Power above 30 Hz is less frequently used 

in clinical practice and is not considered here. (The American Association of Sleep 

Medicine recommends low pass filtering the EEG at 30 to 35 Hz [2].)   

4.2.3 RELATED WORK 

Recent approaches to phenotyping EEG include the use of high-density EEG arrays [87], 

mouse models [88], and neonatal examination [89].  Davis et al review of experimental 

findings re delta EEG in animals (e.g. mice, rats, rabbits), neonates, adolescents, and 

adults under numerous conditions and settings [90]. 

Twin studies have shown that across- and within-night variation in NREM frequency 

band measures is highly heritable [85, 91-93].  In addition, certain genetic disorders are 

associated with modification of the sleep EEG.  Bodizs et al found EEG PSD changes (at 

8 and 16 Hz) in Williams Syndrome (See also [94] and [95]).   

4.3 METHODS 

Microsoft's Excel and R were used primarily to analyze and present the PSD data at first.  

However, investigating phenotypes with these tools was a slow, laborious process.  The 

team wanted to ensure the pros and cons of candidate phenotypes were fully addressed 

and considerable time and effort was spent between meetings to analyze the dataset in 

different ways.   Efficient, flexible analysis of the dataset was not possible under this 

workflow and a new solution to streamline the process was needed. 
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4.3.1  DESIGN DEVELOPMENT 

PhenoFinder's design began with a brainstorming session with the end-users that focused 

on how to best visualize and explore the EEG's power spectrum to identify good 

phenotypes.  Two motivating questions from this session were: (1) How can individuals 

be shown similar, and (2) How can they be shown different?  Specific design 

requirements to answer these questions began next by identifying specific phenotypes 

already of interest and then deciding on what core features were necessary to visually 

evaluate their significance.   Stage 2 sigma power, believed to correspond mostly with 

spindle activity, was one of the initially selected phenotypes, and alpha power during 

NREM sleep was another.  Using these specific examples, the following design 

requirements emerged:  

• Normalize and display data in a way that enhances meaningful comparisons of 
patients and encourages exploration of phenotypes 

• Interactive, intuitive interface  
• Multiple phenotype views 
• Data integrity confidence measures 

	
  
The project developed iteratively with working copies of the software provided 

periodically to the users for feedback to the primary designer (HM).  The feedback was 

often shared with supporting members of Stanford's Department of Computer Science 

Department who provided input on data visualization driven responses (see 

acknowledgements). 

4.3.2 NORMALIZE AND DISPLAY DATA TO ASSIST COMPARISON OF PATIENT DATA 

A person's sleep is as unique as their fingerprint and some measure of smoothing or 

grouping must occur to observe the physiological trends and similarities between people.  

Data must be reduced enough to find trends, but not so much that meaningful variability 

is lost.  The dimension of time is collapsed into scored sleep stage.  Periodograms are 

identified and averaged according to sleep stage.  Larger categories for NREM sleep and 

total sleep (NREM + REM sleep) are also provided. 
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Figure 4.1:  PhenoFinder's configuration here displays the power spectral density 
measured across all-subjects’ data provided (n=32).  Views can be further refined by age, 
gender, artifact exclusion, and minimum or maximum of the sleep category selected.  
Sleep categories include All Night, Wake, Non rapid eye movement sleep, rapid eye 
movement sleep, Stage 0, Stage 1, Stage 2, Stage 3-4, and comparisons between them.  
Phenotypes are queried using the drop down menus and checkboxes provided.  Here the 
all night sleep PSD is shown across the frequency spectrum of interest, with the inset 
histogram revealing the patients PSD distribution at 1.0 Hz. 

Users select the sleep stage of interest from the top left, drop-down menu seen in Figure 

4.1where the entire night's sleep PSD is selected in the supplementary dataset (n=32).  

The relationship between sleep stages and groupings can also be visualized.  Selecting 

ratio, difference, or relative difference from this menu activates two additional drop-

down menus for choosing comparison categories.  Figure 4.2 shows the ratio between all 

night power and wake.  The ratio's decay across the frequency spectrum highlights the 

preponderance of lower frequency activity associated with sleep, and higher frequency 

activity seen in wake.  REM sleep exhibits “wake like” EEG activity, and the ratio 

between NREM sleep and wake is even more pronounced.  The relative difference 

phenotype normalizes the difference in power between two selected categories by the 
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sum of their power.  Figure 4.3 shows the relative difference between the power 

measured during sleep to that measured in wake for 1,836 studies.  This gives another, 

macro-level view of differences in frequency activity between sleep and wake.   

 

Figure 4.2:  The ratio of EEG power during sleep (All Night) to wake (Awake) is shown 
for small sample of patients in the frequency range 0 to 30 Hz.  The light gray, dotted 
lines represent this phenotype for each individual patient.  The thick, purple line shows 
the group's average ratio.  The inset histogram gives the power distribution for these 
patients at 1.5Hz.  A vertical, black striped line is placed at this frequency in the main 
plot.  The magenta line traces the average power for these patients across the spectrum 
and highlights the increased low frequency power common to sleep compared to the high 
frequency activity commonly associated with wake and rapid eye movement sleep. 

Queried phenotypes are shown for each individual as small, gray-dotted lines while a 

thick, colored line shows the group mean.  A unique color is assigned to each stage 

category, and the mean line color matches the stage.  Stage colors were picked based on 

user preference and feedback.  A sequential coloring scheme corresponding to sleep stage 

number and color frequency was avoided both because of the poor visual distinction of 

similar color mappings found by Ware [96] and Rogowitz, Treinish, and Bryson [97] and 
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because sleep transitions are rather sporadic.  A separate color was chosen to specify 

stage comparisons (e.g. ratio or difference) and remind users they were not viewing a 

stage in isolation.   

The PSD for known frequency bands may also be selected.  The sigma band (i.e. 12 - 

16.0 Hz) was added to accommodate the users' interest in spindle activity.  The default 

sleep bands defined within the PhenoFinder are defined as follows: 

• Delta: (0.5-4.0 Hz) 
• Theta: (4.0-8.0 Hz) 
• Alpha: (8.0-12.0 Hz) 
• Sigma: (12.0-16.0 Hz)	
  

	
  
The users were content with this breakdown and did not desire grouping the remaining 

frequencies into a band (i.e. remaining Beta band).  Multiple bands may be selected for 

simultaneous display, and a dynamic legend updates relevant descriptors in the main 

window. 

The mean power from previous stage selections can be retained for comparison to newer 
selections.  The previous mean's line color, corresponding to its original stage selection, 
is retained but its thickness decreases with each subsequent query.   

Fgure 4.4(b) shows Stage 2, delta band power.  The mean power line is blue, 

corresponding to the tags Two's color category, and is thickest because it is the most 

current query.  The number of phenotypes to retain for viewing is adjusted in the settings 

menu.  This feature was requested during initial meetings, but not actively used. 
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Figure 4.3:  The relative difference phenotype here shows the difference in power 
measured during all night sleep to power measured during wake divided by their sum.  
The inset histogram shows a non-Gaussian distribution for this group (n=1836 studies) in 
the sigma power band (12-16Hz) at 14.0 Hz. 

4.3.3 INTERACTIVE, INTUITIVE INTERFACE 

Initial interface revolved using the described widgets and mouse interactions with the 
main display.  The PhenoFinder highlights studies selected by the user with the mouse by 
increasing the lines thickness and contrast; darkening it while lightening others.  After an 
informal software review, one user expressed interest in seeing the power distribution of 
patients for selected frequencies, which was hard to quantify from the individual power 
profiles.  An inset histogram, with a context menu for hiding ( 

Fgure 4.4(b)), was added to the main plot window with a thick, black-striped vertical line 

placed at the frequency of interest.  In Figure 4.2, this vertical striped line is placed at 5.5 

Hz, which corresponds to the PSD distribution shown in the inset histogram for this 

frequency.  Black is a relational color coder between the histogram and vertical line.  The 

histogram's title also explicitly states the observed frequency. 
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During a follow-up session showing the added histogram, the same user was observed 

repeatedly pressing the left and right arrow keys in an effort to observe the distribution of 

adjacent frequencies instead of selecting them with the mouse.  Rather than coach them 

out of their intuition, arrow key control was implemented and quickly became the 

standard practice for frequency transitions. 

4.3.4 MULTIPLE WAYS OF EXAMINING QUERIED PHENOTYPES 

PhenoFinder checkboxes, seen on the left side of Figure 4.2, let users view phenotypes on 

linear or logarithmic scales and retain or automatically resize vertical axes limits.  The 

option to select between median or mean result views was originally placed on the left 

side, but later moved to a settings menu accessible from the File menu bar due to limited 

use.  Checkboxes for age and gender provide further filtering of viewed data, as do 

artifact removal checkboxes that allow retention or removal of sections of data 

contaminated by ocular or muscle activity. 

In addition to these checkboxes, MATLAB's standard, toolbar-accessible plot 

manipulation features are retained for viewing phenotypes.  Despite the cognitive load 

claimed by some [98], the zoom-and-pan feature was used heavily by users who preferred 

exploring the frequency spectrum in this manner more than selecting between frequency 

bands from the drop-down widget along the x-axis.  

4.3.5 REVEALING DATA INTEGRITY 

Several steps are taken to address and visualize the data's integrity.  First, the artifact 

removal checkboxes lets users see where the SEV's artifact detectors are working and 

where there is no effect.  This option to examine the presence or absence of artifact led to 

an unexplored line of phenotype examination.  The scientists began considering 

physiological differences, which could lead to excessive ocular or muscle artifact during 

sleep.  Secondly, a slider widget seen at the bottom of the settings panel in sets the 

minimum or maximum observed epochs necessary for phenotype retention.  PSD profiles 

are weighted equally in the PhenoFinder regardless of whether the profile is calculated 
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from one 30 sec epoch of sleep or two hours.  The slider context menu, activated by right 

clicking, gives user the choice of interpreting the slider's value as a minimum or 

maximum value to bifurcate the group and remove unwanted studies.  In Figure 4.1, the 

displayed studies have a minimum of 120 epochs (i.e. one hour) of sleep.  The use of 

animation or blinking to highlight changes between sliders was suggested and discussed, 

but not implemented based on the users’ belief that such features would be more 

distracting than helpful.  

The pie chart and table, both below the PhenoFinder's main view window, provide further 

insight into patient sleep.  The pie chart shows the sleep stage distribution, as a percent of 

total sleep, for the selected patient.  The chart's colors correspond directly to stage color, 

and this color-stage pairing is shown in the legend next to the pie chart.  Standard pie 

exploding gives visual redundancy to selected stages.  The table to the right of the pie 

chart gives the exact time spent in each sleep stage and, in cases with a selected study like 

Figure 4.1, artifact statistics broken down by sleep stage. 

Lastly, a green, transparent patch overlay, showing the standard error of the mean (SEM) 
highlights the selected PSD profile's variability.  The narrow green patch in  

Fgure 4.4(a) shows the selected line to be a stable representation of the patient's power 
profile.   
Fgure 4.4(b), however, shows a large green patch that reveals a high SEM and greater 

uncertainty in the observation. 
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a.  Delta band power for all sleep with power distribution shown (inset) for 1.0 Hz. 

 

 
b.  Delta band power for Stage 2 sleep without inset histogram. 

 
Fgure 4.4:  Data validation methods include the standard error of the mean (green patch), 
histogram distribution (inset), patient meta data, and stage distribution. 
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4.4 RESULTS 

PhenoFinder is a MATLAB toolbox introduced here for visualizing EEG brain activity in 

large data sets for the purpose of exploring and selecting power spectral sleep phenotypes 

to associate with genotype.   

PhenoFinder's design requirements and implementation follow the suggestions of Munzer 

(2008) [99] where, in our case, several informal user studies provided useful, productive 

interactions leading to the final software and selection of Stage 2 sigma power  for 

GWAS.   

Stanford's team of researchers were pleased with the PhenoFinder, especially with 

modifications based on their suggestions and feedback.  Both the software itself and its 

collaborative design were instrumental in assisting the phenotype selection process.  

Initially, only power bands of specific sleep stages were available for selection.  

However, after several end-user discussions with early versions of the software, new 

possibilities began to emerge.  Questions regarding the inter-stage relationships came up 

and led to comparison of the ratios and differences between sleep stages and also 

consideration of artifacts as phenotypes.  Several new phenotypes were investigated 

including the log ratio of sigma power to all night sleep and muscle and ocular activity 

during sleep.  Stage 2 sigma power was selected as one of the best phenotype to pursue 

for genetic analysis based on its stability across time and its correlation with spindle 

activity, a feature of interest to sleep researchers [78].   

4.5 DISCUSSION 

John Tukey's exploratory recommendation was taken to first examine the data and then 

develop hypotheses from the observations [100].  Examining human sleep data as a first 

step to understanding the physiologically mechanisms behind it has both merits and 

drawbacks. 
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Using PhenoFinder, researchers were able to see sleep EEG spectral profiles in nearly 

two thousand sleep studies at a glance.  Hypotheses were quickly confirmed or rejected, 

and new hypotheses were often formed and examined with similar speed.  The flexibility 

and efficiency by which different patterns and profiles could be viewed is a significant 

departure from previous studies in the literature, which have been based on smaller 

samples.  The team also preferred staying close to the data, which they felt possible with 

the PhenoFinder where they had a degree of control in the process.   

A drawback to this approach is the lack of clearly defined boundaries to focus the lines of 

investigation.  While so many observations could be observed quickly, the number of 

phenotypes considered and evaluated grew, which led to increased discussion and 

formulating hypotheses on previously unconsidered phenotypes. 

Toward the end, the number of questions to consider grew to such an extent that selecting 

a final phenotype became difficult given the larger number of choices.  One phenotype 

suggested at the outset, sigma power during Stage 2 sleep, was selected for GWAS.  The 

considerable amount of time spent examining this phenotype prior to the PhenoFinder's 

development, and subsequent to its visual support, made it a natural selection in the midst 

of so many choices. 

4.5.1 ADDITIONAL CONSIDERATIONS 

Data reduction of the time elapsed in each study is accomplished by collapsing the PSD 

into their manually scored sleep stage.  Alternatively, sleep studies could be aligned to 

the point of sleep onset and compared using a linear, per-hour-elapsed basis with a heat-

map to show power normalized by frequency across the night.  This would provide more 

resolution into time-of-night changes in the data, but the users felt it would be harder to 

interpret than categorical sleep stage and was abandoned.  Another possibility, 

representing sequential time with a third dimension was also considered and abandoned.  

Here the problems of occlusion and complexity were believed to outweigh any benefits.  

Arguments for the merits of 2D over 3D in data visualization can be found in [101]. 
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Pattern classification methods are frequently employed to identify biomarkers of interest 

in the EEG.  However, in this case, the users were not interested in automated approaches 

and declined offers to detect and highlight phenotypes of interest in the PhenoFinder, 

such as notable PSD distributions at certain bands or sleep stages.  A primary concern 

expressed by the users was that the indicators would bias their judgment, making them 

less open to exploring alternatives.  Another concern was the increased probability of 

making a poor classification (i.e. something artifactual which would not have been 

considered otherwise) associated with large number of phenotype configurations to test. 

4.5.2 FUTURE WORK 

The PhenoFinder can be extended in several ways.  In addition to selecting frequency 

bands and panning through phenotypes with the mouse, the users wanted a feature that 

would allow the start and end frequencies to be set directly.  Another request was for an 

overview window to see the outside their currently selected view (e.g. when using pan-

and-zoom).  And lastly, other users may want to see power distributions of interest 

highlighted for them automatically instead of manually selecting through the frequency 

spectrum.  A heatmap or binary display along the bottom of the main view would likely 

be helpful here. 

4.6 CONCLUSION 

PhenoFinder is a software tool for visualizing the PSD of EEG recorded during sleep 

across large data sets.  It was developed according to criteria generated from several 

informal interactions with four primary users investigating genetic markers for 

measurable brain wave activity in sleep using GWAS.  The viewer represents a 

collaborative effort between members of Stanford’s Center for Sleep Sciences and 

Departments of Electrical Engineering and Computer Science.  Initial design 

requirements and follow-up interactions led to the consideration of new phenotypes and a 

specialized product targeted for researchers investigating brain activity in sleep as 

characterized by the EEG's PSD. 
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In summary, a data visualization tool, the PhenoFinder, was developed to help 

researchers find clinically meaningful or heritable patterns in brainwave activity during 

sleep in a cohort of 1,836 nocturnal polysomnography studies.  The interactive software 

lets researchers quickly view and explore various electroencephalography power spectral 

density patient profiles and select desired phenotypes for genome wide association or 

sequencing.  The design study addressed here evolved over an iterative process of 

informal studies conducted with end-users from Stanford's Center for Sleep Sciences and 

Behavioral Medicine and focused on highlighting the similarities and differences in 

patient data.  Several new hypotheses were formed and new phenotypes considered 

during the design process.  The software is primarily for domain experts, however a lay 

user may find exploration of demographic changes in sleep insightful.  It was made 

available online with a small companion dataset at 

http://www.stanford.edu/~hyatt4/software/phenofinder/.    A peer-reviewed publication 

was generated and is available in the journal Computer Methods in Biomechanics and 

Biomedical Engineering. 

4.7 SUPPLEMENTARY MATERIALS 

Supplementary materials include the following items that can be found online at 

http://www.stanford.edu/~hyatt4/software/phenofinder/. 

• PhenoFinder	
  for	
  MATLAB	
  (.zip):	
  This	
  package	
  contains	
  the	
  MATLAB	
  files	
  (.m,	
  
.fig)	
  necessary	
  to	
  run	
  the	
  PheonoFinder	
  software	
  described	
  in	
  this	
  chapter.	
  
	
  

• PhenoFinder	
  tutorial	
  (.pdf):	
  Instructions	
  on	
  using	
  the	
  PhenoFinder.	
  
 

• Sample Data (.zip):  The .zip file (~250MB) includes MATLAB .mat file format 
for PSD data and .txt format for deidentified demographic data from 32 studies.	
  

 
Developers wishing to contribute further to this project should use the open source 
repository at http://www.github.com/informaton/phenofinder. 

  



 

 

CHAPTER 5 DESIGN AND VALIDATION OF A PERIODIC LEG MOVEMENT 

DETECTOR 

This chapter introduces and discusses the automatic periodic leg movement (PLM) 

detection algorithm that I built to score periodic leg movements (PLMs) in the general 

population and a clinical setting.  I also investigated the interaction of cardiac activity and 

respiratory events in the context of PLMs with and without sleep-disordered breathing.  

The final detection algorithm, which was designed and validated using both the 

Wisconsin Sleep Cohort and the Stanford Sleep Cohort, is currently being implemented 

at Stanford’s Sleep Disorders Clinic.  

The contents of this chapter are taken from the manuscript, “Design and Validation of a 

Periodic Leg Movement Detector,” which is in submission.  I had eight coauthors for the 

submitted manuscript, all of who contributed to its review and approval.  Eileen Leary 

and Seo-Young Lee contributed to data acquisition by manually scoring periodic leg 

movements to produce the two gold standards used for validation here.  Oscar Carrillo 

and Robin Stubbs contributed to data management, managing technical aspects of the 

cohorts in their charge.  Bernard Widrow gave direction on the adaptive filtering and 

adaptive noise floor thresholding.  Emmanuel Mignot contributed significantly to the 

detector’s design and validation requirements, and supervised my work in meeting those 

requirements.  In addition to my coauthors, I would like to thank all participants of these 

sleep cohorts, the team who scored the data over the years, and especially two staff 

members without whose and care and effort in handling the PSG data and answering 

innumerous questions this project would not have been possible: Amanda Rasmuson, and 

Laurel Finn.   
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5.1 INTRODUCTION 

Periodic Limb Movements (PLMs) are episodic, involuntary muscle contractions that 

occur during sleep.  Restless Legs Syndrome (RLS) is often associated with PLMs, with 

four out of five patients diagnosed with RLS exhibiting PLMs[7].  However, PLMs can 

also occur without RLS symptoms.  Because the movements may be accompanied by an 

arousal or sleep fragmentation, a PLM Index (PLMI) over 15 is likely to have an effect 

on an individual’s overall health and wellbeing[8].  Little is known about the cause of 

PLMs or their impact on daytime sleepiness or insomnia symptoms.  A study review of 

cardiac risk for RLS and PLMD found associations between PLMs and congestive heart 

failure[9].  Additionally, patients with RLS were at higher risk for heart disease and 

hypertension[9].  PLMs are known to be associated with several other disorders and 

pathologies such as depression, cardiovascular disease, rapid eye movement (REM) 

behavior disorder, narcolepsy, Parkinson’s disease and multiple system atrophy[11-14]. 

PLM scoring rules have evolved over time and are based on the amplitude and duration 

of the event as well as the time between limb movements.  In 1993, the Atlas Task Force, 

part of the American Sleep Disorders Association (ASDA, now AASM), defined leg 

movements (LMs) in polysomnograms (PSGs) as increased EMG activity lasting 

between 0.5 and 5.0 seconds (sec), in excess of 25% of the recorded voluntary flexion 

during calibration[102].  LMs associated with respiratory events were scored separately.  

The 2007 AASM Manual for Scoring Sleep, defines a significant LM as a period of 0.5-

10 sec where EMG activity recorded from the left or right anterior tibialis (LAT/RAT) 

exceeds 8 µV above baseline and then falls below 2 µV from baseline for 0.5 sec or 

longer[2].  In both definitions, PLMs are defined by the consecutive sequence of four or 

more LMs whose inter-movement intervals are between 5 and 90 sec. The 2007 

classification excludes all LMs 0.5 sec before, during or 0.5 sec after a respiratory 

event[2].   
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Three other automatic PLM detectors have been created to identify PLMs during sleep.  

These detectors were designed and validated using clean PSG data in relatively small 

groups of RLS patients versus controls.  In 1996, Tauchmann proposed a PLM detection 

algorithm where optimal parameters were determined using a training-validation split of 

1,671 and 1,740 visually scored LMs (respectively) from five PSGs[67].  Wetter adjusted 

this algorithm in 2004 and validated it using 8,300 visually scored LMs from PSGs of 10 

patients diagnosed with RLS[68].  In 2006, Ferri proposed a detector with parameters 

optimized using ROC and validated against visually scored LMs in 15 patients diagnosed 

with RLS and 15 controls[66].  These detectors did not need to address LMs surrounding 

respiratory events because Sleep Disordered Breathing (SDB) was an exclusion criterion. 

In this chapter, I report on the design and validation of a new PLM detector using large 

epidemiological and clinical samples totaling 1,073 subjects.  The chapter is organized as 

follows.  Section 5.2 presents the methods and design decisions taken to build the PLM 

detector in the presence of various problems related to signal quality and sleep disorders, 

such as SDB.  Section 5.3 presents the final PLM detection algorithm and its validation 

by comparison to gold standard, manual scoring.  Discussion of the study is provided in 

Section 5.4, followed by concluding remarks in Section 5.5. 

5.2 METHODS 

5.2.1 COHORTS USED IN THE ANALYSIS 

Nocturnal polysomnograms (PSG) from the WSC[43] and the SSC were used in this 

study.  Electroencephalography (EEG), electrooculography (EOG), and chin 

electromyography (EMG) were used to score sleep stages for each 30 second epoch using 

standard R&K criteria[1].  

As mentioned in Chapter 1.4.1, volunteers were selected from the WSC with PSG files 

available between 2000 and 2004 (n=1,073).  The timeframe was selected to be closest to 

a RLS survey mailing performed in 2003 [103].  Table 1.1 presents demographic data on 
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this selection of subjects all together, and with subjects stratified by SDB (i.e., apnea-

hypopnea index > 15).  In this cohort, LMs in PSGs were originally scored per ASDA 

1993 criteria but using 50% instead of 25% of recorded voluntary flexion during 

calibration as the threshold.  Additionally, the WSC scoring policy counts LMs within 4.0 

sec of each other as one LM.  LMs associated with respiratory events were variably 

scored.  We considered these manually scored LMs as a preliminary standard. 

Table 5.1:  Wisconsin Sleep Cohort (WSC) 

 RLS*, 
AHI≤15 (20) AHI≤15 (20) AHI>15 (20) 

Demographics 
Age 54.7 ±0.67 55.1 ±0.63 54.5 ±0.72 
Sex, Male (%) 50.0% 50.0% 50.0% 
Clinical Data 
BMI (kg/m²) 31.1 ±1.25 31.1 ±1.25 35 ±1.43 
AHI 5.64 ±0.96 5.18 ±0.80 31 ±3.97 
AHI > 15 (%) 0.0% 0.0% 100.0% 
Polysomnogram 
TST (hour) 6.33 ±0.23 6.41 ±0.19 6.21 ±0.24 
Stage 1 (%) 9.2 ±0.96 9.1 ±1.44 11.9 ±1.52 
Stage 2 (%) 69.5 ±1.85 70.5 ±1.69 68.6 ±0.99 
SWS (%) 2.8 ±1.00 4.4 ±1.67 3.8 ±1.00 
REM (%) 18.4 ±1.40 15.6 ±1.09 15.3 ±1.12 

Data are mean ± Standard Error Mean, or percentage. The number of subject used for calculations 
are shown in parentheses. *= Presence of RLS symptoms, as described in the material and 
method section.  AHI is the apnea-hypopnea-index calculated as the number of manually scored 
respiratory events per hour of sleep.  Patients using CPAP were excluded from AHI categories.  
BMI is body mass index.  TST is total sleep time. 

Table 5.1 describes a subset of the WSC data identified to be re-scored to create a PLMI 

gold standard.  The WSC gold standard sample contains sixty age and sex-matched 

patients selected from one of three groups: (1) RLS symptoms without SDB (n=20); (2) 

OSA without RLS symptoms (n=20); (3) neither RLS symptoms nor SDB (n=20).  

Patients in the WSC were identified as having “RLS symptoms” based on responses to a 

questionnaire sent to the entire parent cohort in 2003 as described in a previous 

study[103].  The questionnaire did not address all RLS diagnostic criteria put forth by the 
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National Institutes of Health[104], notably it did not ask for the symptoms to be worse at 

night.  For this reason, we called patients positive for these questions as having “RLS 

symptoms”.  Patients with “RLS symptoms” reported they felt: (a) repeated urge to move 

legs and (b) strange and uncomfortable feelings in the legs weekly or more often plus that 

these feelings (c) got better when they got up and started walking and (d) disrupted their 

sleep.  SDB was defined based on an AHI cut off of 15 events per hour.  In this validation 

subsample, a Registered Polysomnographic Technician (EL) scored PLMs according to 

AASM 2007 criteria with minor modifications based on her professional judgment.  

Collectively, the WSC gold standard contains 5,387 PLMs.  

The SSC, described in Chapter 1.4.2, is a naturalistic sample of 760 successive patients, 

including a wide range of sleep disorders, recruited to the Stanford Sleep Disorders Clinic 

and who had a nocturnal PSG from 1999-2007[44].  Table 1.2 reports on summary 

statistics for the SSC, broken down by diagnostic category.  

A subsample of the SSC data, enriched in specific sleep pathologies was re-scored 

manually by a sleep physician (SL) as a secondary gold standard according to AASM 

2007 criteria.  The SSC gold standard contains 18 studies selected from age- and gender-

matched patients with the following diagnoses (i.e. three patients per group): Insomnia, 

Narcolepsy, REM behavior disorder, RLS, SDB, and other (head trauma with excessive 

daytime sleepiness, depression, and night terrors).  

5.2.2 DESIGN AND PRELIMINARY TESTING OF THE DETECTOR 

The WSC was primarily used to established functionality of the detector, while the SSC 

sample was used both as a validation sample and to check whether the detector was 

robust to the presence of sleep disorders.  To establish the detector, we first used the 

AASM 2007 rules for PLMs[2], but used a duration criterion of less than 5 sec (versus 10 

sec).  To meet the LM criteria, EMG activity recorded from the left or right anterior 

tibialis (LAT/RAT) needed to exceed 8µV for 0.5-10 seconds and then fall below 2 μV 

from baseline for 0.5 sec or longer[2].  PLMs are defined by the consecutive sequence of 
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four or more LMs whose inter-movement intervals are between 5 and 90 sec.  The 2007 

definition excludes all LM 0.5 sec preceding or following a respiratory event.   

Table 5.2: Characteristics of previously published PLM automatic detectors 

 Classification rules Preprocessing Postprocessing 
All Duration between 0.5 and 10.0 s 

(Amplitude criteria in reference to 
baseline) 

Notch filtering for power 
line interference 

 

Tauchmann 
(1996) 

Onset-offset amplitude > 7 µV 
Arithmetic mean > 5 µV 

Low pass filter (fc=16Hz) 
Rectify 

Merge consecutive 
activity within 0.15 
sec 

Wetter  
(2004) 

Continuous burst activity (standard 
deviation of amplitude>0.6 µV) 
for 0.4 s of 0.5 s segments. 

High pass filter (fc=16Hz) 
Rectify 
Truncate to 30 µV 
16 ms standard deviation 
window 

Merge consecutive 
activity within 0.5 
sec 

Ferri 
(2005) 

Onset amplitude > 7 µV 
Offset amplitude < 2 µV 

High pass filter (fc=16Hz) 
0.5 s moving average filter 
for offset amplitude 

 

 

To test a first iteration of these rules, an initial version of the detector was used on the 

entire WSC dataset.  Both the automated and manually scored results were examined to 

identify outliers and potential artifact issues.  We also compared different iterations of 

our detector with other established detectors from Tauchmann[67], Wetter[68], and 

Ferri[66] (Table 5.2). 

5.2.3 TESTING OF OTHER DETECTORS 

The Stanford’s EDF Viewer (SEV) was used to visualize PSG epochs and LMs detected 

by manual scoring and by individual detectors.  SEV is a PSG processing MATLAB 

toolbox with a batch mode that automates power spectral analysis along with 

classification and detection algorithms across arbitrarily sized datasets[86]  The original 

PLM detection algorithms from Tauchmann[67], Wetter[68], and Ferri[66] were 

implemented in the SEV as presented in their publications.  Care was taken to follow the 

same pre-filtering steps when possible.  For example, differences in sampling rates and 

electrical standards between countries were accounted for (e.g. 50 Hz interference vs 60 
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Hz power line interference).  As mentioned earlier, LMs were manually scored as part of 

the original dataset according to WSC 1995 scoring guidelines[105], a modified version 

of ASDA 1993 criteria.  To compare performance of the various detector, ROC curves 

were drawn against 119,277 originally scored LMs.  Sensitivity, specificity and their 

quality indices or weighted Kappa statistics[46], Cohen’s Kappa, positive and negative 

predictive values, and total LM count were explored using ROCs by leg movement and 

by subject (Table 5.3).    

Ferri and Wetter’s detectors looked the most promising in terms of sensitivity (see Table 

5.3), but these detectors identified almost ten times more LMs than manual scoring.  The 

abnormally high performance is a problematic feature of ROC analysis, where a large 

number true negatives (absence of leg movements detected by manual and automatic 

scoring) gives a false impression of high performance[106].  In this context, signal 

detection theory indicates that the positive predictive value (PPV) and Cohen’s Kappa 

offer more insight into true performance.  Using these metrics, our detector outperformed 

the other algorithms (Table 5.3).  Examination of the data did not reveal a failure of the 

other detectors’ methodologies, which were sound, but rather their lack of robustness to 

noisy EMG signal quality.  Indeed, these detectors were typically evaluated and 

developed using high quality EMG data, with limited noise or artifact, from patients 

screened for sleep-disordered breathing (SDB).  

We next examined outlier studies where PLMI scored data differed significantly from 

automatically detected scores on a correlation plot.  Returning to individual studies, the 

following sources of problems were revealed: (1) ECG contamination in leg movement 

channels creating false detections; (2) variable baseline signal noise undermining the 8 

µV rule and leading to over and under detections; (3) delayed LMs following sleep-

disordered breathing events that were not omitted by the restrictive 0.5 sec window of the 

AASM 2007 criteria, while intermediate, respiratory unrelated LM were; and (4) 

fragmentary myoclonus. 
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Table 5.3:  Preliminary detector performance compared to manually scored LM in the 
WSC, during sleep, according to WSC 1995 criteria. 

	
  
 
SE	
  

 
SP	
  

 
PPV	
  

 
NPV	
  

 
K(1,0)	
  

 
K(0,0)	
  

Cohen's 
Kappa	
  

 
ACC	
  

LM  
Count	
  

Detector performance 
for all LM (n=1,073)  

     
   

Tauchmann 0.30 0.98 0.21 0.99 0.29 0.20 0.24 0.97 167,955 
Wetter 0.86 0.95 0.20 1.00 0.85 0.19 0.31 0.95 503,211 
Ferri 0.94 0.87 0.09 1.00 0.93 0.08 0.14 0.87 1,220,765 
SNR+ 0.78 1.00 0.73 1.00 0.78 0.72 0.75 0.99 124,351 
ANC, SNR+ 0.75 1.00 0.74 1.00 0.75 0.74 0.74 0.99 116,335 
ANC, VAT  0.53 1.00 0.80 0.99 0.53 0.80 0.64 0.99 76,585 
ANC, VAT, 
SNR+  

0.72 1.00 0.79 1.00 0.72 0.78 0.75 0.99 106,397 

*WSC manually 
scored 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 119,277 

Detector performance 
per patient (n=1,073) 

   

Tauchmann 0.26 0.98 0.37 0.99 - - 0.25 0.97 156.53 
Wetter 0.85 0.95 0.30 1.00 0.82 0.29 0.39 0.95 468.98 
Ferri  0.93 0.89 0.31 0.96 - - 0.42 0.89 1,137.7

1 
SNR+  0.75 1.00 0.69 1.00 0.74 0.69 0.69 0.99 115.89 
SNR+, ANC 0.71 1.00 0.71 1.00 0.71 0.70 0.67 0.99 108.42 
ANC, VAT 0.44 1.00 0.68 0.99 0.44 0.67 0.50 0.99 71.37 
SNR+, ANC, 
VAT 

0.65 1.00 0.69 1.00 0.64 0.69 0.64 0.99 99.16 

*WSC manually 
scored 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 111.16 

ANC:  adaptive noise cancelling of cardiac interference; SNR+: signal-to-noise-ratio 
enhancement; VAT:  Variable amplitude thresholding; SE: sensitivity; SP: specificity; 
PPV: Positive predictive value; NPV: negative predictive value; ACC: accuracy; LM 
count: total number of leg movements detected. 

5.2.4 FINAL DETECTION ALGORITHM 

As outlined in Figure 5.1, the final PLM detector presented in this manuscript 

incorporates salient features of previously published detectors and adds several key 

innovations, particularly in regard to handling noise and artifact.  Its design followed a 

number of iterations not described in sequence for the sake of simplicity.  The final 
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algorithm applies an adaptive filter to the leg EMG to remove ECG interference.  A two-

pass noise floor calculation is made of the cleaned signal to establish dynamic upper, 

lower, and falloff amplitude detection thresholds for each sample point.  An optional 2 

tap summing filter may be applied to the adaptively cleaned signal in places where the 

noise measurement falls below 2 µV; referred to as the SNR+ option.  The 0.15 sec root 

mean square (RMS) value (i.e. similar to an integration time constant) of the adaptively 

cleaned signal is compared to these amplitude thresholds and a candidate LM is 

registered from the point the RMS first exceeds the upper threshold until the last point it 

is above the falloff amplitude before subsequently falling below the lower threshold for 

0.05 sec (adjusting Ferri’s dual threshold approach).  Candidate classifications within 0.1 

sec are next bridged (similar to Tauchmann), and candidate LMs subsequently less than 

0.75 sec, rejected (i.e. 0.5 sec AASM criteria plus 0.25 sec to account for signal 

stretching caused by the filters).  Remaining LMs within 2.0 sec are then merged a final 

time as done by Wetter [68], and candidate LMs greater than 10.0 sec are rejected.  

Merging within 2.0 sec is helpful in grouping alternating LMs recorded to a single 

channel. 
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Figure 5.1:  Flow chart of ten-step PLM detection algorithm.  First pass LM detections 
are used to update the noise floor and generate the three amplitude thresholds a second 
time.  The second pass LM detections are subsequently classified or rejected using 
AASM 2007 PLM scoring criteria, with our modification for respiratory exclusion. 

The area under the curve (AUC), calculated by trapezoidal integration, is taken from 

cleaned data over the range of points corresponding to each candidate LM.  If the 

candidate LM’s AUC is greater than half the upper amplitude threshold it is retained as a 

LM, otherwise it is rejected.  A final respiratory exclusion window is applied such that 

detected LMs that fall between 5.0 sec before until 0.5 sec following a manually scored 

respiratory event or from 0.5 sec before until 5.0 sec following its offset, are removed 

while any LMs during respiratory events which do not fall in these boundary exclusions 

are not.  Remaining LMs are automatically reviewed by the final detection algorithm to 

determine whether they meet criteria for a string of PLMs according to AASM 2007’s 

inter movement interval and frequency requirements (i.e. four or more consecutive LM 
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filter*ECG**
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Manually*classified*
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and*sleep*staging*

Leg**
EMG*
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with inter-movement interval between 5 and 90 sec).  Explanation of rationale for these 

design decisions is provided in the following sections. 

5.2.5 ADAPTIVE NOISE CANCELLING TO REMOVE ECG ARTIFACTS FROM LEG EMG 

 
Upon inspection, we found that interfering cardiac signal activity contaminated some 

studies and resulted in a large number of false positive detections of LMs.  A low pass 

filter was initially used to remove this interference, however true muscle activity was 

indiscriminately attenuated which led to increased false negative detections.   An 

adaptive recursive least squares filter as described by He et al for filtering EOG artifact 

from EEG signals[76] was deployed with great success.  

To address possible cases where the ECG signal may be missing (e.g. some ambulatory 

configurations), we created a time-advanced copy of the LAT/RAT channel as the 

desired reference channel response as suggested by Widrow et al[107].  A small filter 

size and time advance allows the filter to adapt to the highly periodic cardiac interference 

and not LM.  We found a five weight adaptive filter with a five-sample, duplicate source-

channel, reference signal advance to effectively handle cardiac interference in a solitary 

input channel configuration.  Although this second method was effective, it was less 

optimal and was not used in this particular dataset where ECG is always available.  

Description of the filter and examples of its application to removing cardiac interference 

in the LAT/RAT channel without attenuating true leg muscle activity, as observed with 

conventional finite-impulse response filtering, are provided in Figure 5.2 and Figure 5.3.   



 

 143 

 

Figure 5.2:  Adaptive filtering of cardiac interference compared to conventional finite-
impulse-response filtering.  Cardiac interference is adaptively cancelled from the leg 
EMG channel using a recursive least squares adaptive filter which continually updates its 
weights to minimize the least mean square difference between its output from filtering 
the correlated noise (i.e. the ECG channel) and the desired response (i.e. the leg EMG 
channel).  The filter’s output is tuned to the correlated noise, which when subtracted from 
the desired response of signal and noise leaves the clean signal behind as the error, which 
is the signal less the correlated noise (i.e. the leg EMG without cardiac interference).  The 
lower section shows three examples of leg EMG activity.  The original data is shown at 
the top of each example.  Under the original data is the rectified version followed by high 
pass filtered outputs with cutoff frequencies of 15 Hz, then 30Hz, and finally the 
adaptively filtered data is shown at the bottom for each example.  Blue horizontal bars 
show reveal detections from the classifier using the data shown.  The adaptively filtered 
data provides the best results in each case. 

 

Sum$
(d'y)$Adap-ve$processor$

Signal+Noise$=$s$+$n$ Desired$response$=$d$=$$s+n$
$

Correlated$
Noise$=$n’$

e$=$the$error$,$or$
por-on$that$the$
correlated$noise$
cannot$adapt$to,$is$
the$cleaned$signal$

y=$output$

IV.$Op-miza-on$

Adap-ve$noise$cancella-on$using$the$Least$Mean$Square$offers$significant$
detec-on$improvement$over$conven-onal$preprocessing$approaches$$$

Original$data$

Rec-fied,$highpass$
$$$filtered$(fc=15Hz)$

Rec-fied$data$

Rec-fied,$highpass$
$$$filter$(fc=30Hz)$

Adap-vely$
$filtered$$$

Too$liSle:$False$posi-ve$in$
Rec-fied$and$highpass$
filtered$15Hz)$data$

Too$much:$False$nega-ve$in$
Rec-fied,$high$pass$filtering$
(fc=30Hz)$

Just$right:$Adap-ve$filtering$
correctly$iden-fies$true$leg$
movements$from$noise.$

Cleaned$signal$=$e$

Sum$
(d'y)$Adap-ve$processor$

Signal+Noise$=$s$+$n$ Desired$response$=$d$=$$s+n$
$

Correlated$
Noise$=$n’$

e$=$the$error$,$or$
por-on$that$the$
correlated$noise$
cannot$adapt$to,$is$
the$cleaned$signal$

y=$output$

IV.$Op-miza-on$

Adap-ve$noise$cancella-on$using$the$Least$Mean$Square$offers$significant$
detec-on$improvement$over$conven-onal$preprocessing$approaches$$$

Original$data$

Rec-fied,$highpass$
$$$filtered$(fc=15Hz)$

Rec-fied$data$

Rec-fied,$highpass$
$$$filter$(fc=30Hz)$

Adap-vely$
$filtered$$$

Too$liSle:$False$posi-ve$in$
Rec-fied$and$highpass$
filtered$15Hz)$data$

Too$much:$False$nega-ve$in$
Rec-fied,$high$pass$filtering$
(fc=30Hz)$

Just$right:$Adap-ve$filtering$
correctly$iden-fies$true$leg$
movements$from$noise.$

Cleaned$signal$=$e$

Sum$
(d'y)$Adap-ve$processor$

Signal+Noise$=$s$+$n$ Desired$response$=$d$=$$s+n$
$

Correlated$
Noise$=$n’$

e$=$the$error$,$or$
por-on$that$the$
correlated$noise$
cannot$adapt$to,$is$
the$cleaned$signal$

y=$output$

IV.$Op-miza-on$

Adap-ve$noise$cancella-on$using$the$Least$Mean$Square$offers$significant$
detec-on$improvement$over$conven-onal$preprocessing$approaches$$$

Original$data$

Rec-fied,$highpass$
$$$filtered$(fc=15Hz)$

Rec-fied$data$

Rec-fied,$highpass$
$$$filter$(fc=30Hz)$

Adap-vely$
$filtered$$$

Too$liSle:$False$posi-ve$in$
Rec-fied$and$highpass$
filtered$15Hz)$data$

Too$much:$False$nega-ve$in$
Rec-fied,$high$pass$filtering$
(fc=30Hz)$

Just$right:$Adap-ve$filtering$
correctly$iden-fies$true$leg$
movements$from$noise.$

Cleaned$signal$=$e$

Sum$
(d'y)$Adap-ve$processor$

Signal+Noise$=$s$+$n$ Desired$response$=$d$=$$s+n$
$

Correlated$
Noise$=$n’$

e$=$the$error$,$or$
por-on$that$the$
correlated$noise$
cannot$adapt$to,$is$
the$cleaned$signal$

y=$output$

IV.$Op-miza-on$

Adap-ve$noise$cancella-on$using$the$Least$Mean$Square$offers$significant$
detec-on$improvement$over$conven-onal$preprocessing$approaches$$$

Original$data$

Rec-fied,$highpass$
$$$filtered$(fc=15Hz)$

Rec-fied$data$

Rec-fied,$highpass$
$$$filter$(fc=30Hz)$

Adap-vely$
$filtered$$$

Too$liSle:$False$posi-ve$in$
Rec-fied$and$highpass$
filtered$15Hz)$data$

Too$much:$False$nega-ve$in$
Rec-fied,$high$pass$filtering$
(fc=30Hz)$

Just$right:$Adap-ve$filtering$
correctly$iden-fies$true$leg$
movements$from$noise.$

Cleaned$signal$=$e$

Sum$
(d'y)$Adap-ve$processor$

Signal+Noise$=$s$+$n$ Desired$response$=$d$=$$s+n$
$

Correlated$
Noise$=$n’$

e$=$the$error$,$or$
por-on$that$the$
correlated$noise$
cannot$adapt$to,$is$
the$cleaned$signal$

y=$output$

IV.$Op-miza-on$

Adap-ve$noise$cancella-on$using$the$Least$Mean$Square$offers$significant$
detec-on$improvement$over$conven-onal$preprocessing$approaches$$$

Original$data$

Rec-fied,$highpass$
$$$filtered$(fc=15Hz)$

Rec-fied$data$

Rec-fied,$highpass$
$$$filter$(fc=30Hz)$

Adap-vely$
$filtered$$$

Too$liSle:$False$posi-ve$in$
Rec-fied$and$highpass$
filtered$15Hz)$data$

Too$much:$False$nega-ve$in$
Rec-fied,$high$pass$filtering$
(fc=30Hz)$

Just$right:$Adap-ve$filtering$
correctly$iden-fies$true$leg$
movements$from$noise.$

Cleaned$signal$=$e$

Sum$
(d'y)$Adap-ve$processor$

Signal+Noise$=$s$+$n$ Desired$response$=$d$=$$s+n$
$

Correlated$
Noise$=$n’$

e$=$the$error$,$or$
por-on$that$the$
correlated$noise$
cannot$adapt$to,$is$
the$cleaned$signal$

y=$output$

Adap-ve$noise$removal$

Adap-ve$noise$cancella-on$using$the$Least$Mean$Square$offers$significant$
detec-on$improvement$over$conven-onal$preprocessing$approaches$$$

Original$data$

Rec-fied,$highpass$
$$$filtered$(fc=15Hz)$

Rec-fied$data$

Rec-fied,$highpass$
$$$filter$(fc=30Hz)$

Adap-vely$
$filtered$$$

Too$liSle:$False$posi-ve$in$
Rec-fied$and$highpass$
filtered$15Hz)$data$

Too$much:$False$nega-ve$in$
Rec-fied,$high$pass$filtering$
(fc=30Hz)$

Just$right:$Adap-ve$filtering$
correctly$iden-fies$true$leg$
movements$from$noise.$

Cleaned$signal$=$e$



 

 144 

A. Thirty-second epoch, ECG interference in the leg EMG, and no leg movement 
activity present. 

 B. Thirty-second epoch, ECG interference in the leg EMG, leg movements present and 
noise in ECG channel.  The self-reference adaptive configuration is not disrupted by 
the noise present in the ECG channel here. 

Figure 5.3:  Examples of adaptive filtering to remove cardiac interference found in the 
leg EMG channel (continued on next page).  Panels A, B, C, D show the leg EMG 
channel on top, followed by the ECG channel second, the adaptive noise cancelled EMG 
channel using the ECG as input, and finally the adaptive noise cancelled EMG channel 
using a time shifted copy of the EMG as input (i.e. single channel configuration).  The 
time shifted, self-reference adaptive filter configuration is less effective in cleaning the 
data than the ECG configuration, but still better than the original data.  It is not disrupted 
by noise in the ECG channel as seen in B.  For methodological details, see text.   
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C. Fifteen-second epoch. D. Ten-second epoch. 

E.  Thirty second epoch.  Considerable cardiac noise in the leg EMG channel is 
effectively removed using adaptive filtering and allows leg movement detetion near the 
20 s mark. 

(Figure 5.3 continued) 

5.2.6 VARIABLE AMPLITUDE THRESHOLDING TO ADDRESS VARIABLE OR EXCESSIVE 

BASELINE NOISE 

Patient movement or high electrode impedance levels deter automated detectors that rely 

on a statically calculated baseline noise levels.  In these cases, the mean baseline signal 

may be high, for example 6 µV, and a vey small increase may be sufficient to trigger a 

false detection of a leg movement.  The World Association of Sleep Medicine (WASM) 

standards for recording and scoring PLMs during sleep (PLMS) and wakefulness 
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(PLMW) recommend increasing the baseline in areas where EMG activity is raised due 

to prolonged muscle flexion – a related problem.  The new baseline is taken from the 

average EMG amplitude during this time [108].  This recommendation is not well-suited 

for automated processing and does not help when calibration is not done (e.g. ambulatory 

studies) or is missing. 

Variable amplitude thresholding is used to address this issue.  We created a mathematical 

model of the noise floor from two passes of the LAT/RAT EMG channel in order to 

establish optimal thresholds for PLM detection.  A first-pass measure of noise is taken as 

the 20 sec moving average filter of the data.  An upper and lower threshold are calculated 

from this noise floor, and sections of data deemed LM on the first pass are then set to a 

lower value and a second noise floor measure is made using the adjusted data and 

additional LMs classified using the upper and lower thresholds calculated from the 

second pass noise floor measure.   

Typically, the noise floor is measured during the preflexion calibration step in PSG 

studies, and the LM detection thresholds are adjusted accordingly (i.e. 8 µV above 

baseline followed by a drop below the 2 µV baseline offset).  Unfortunately, establishing 

a constant offset of 8 µV for the entire study is insufficient in separating true signal from 

noise as the noise floor increases.  As the baseline noise floor begins to increase, sporadic 

alterations in amplitude become common along with false detections from the frequent 

transitions between the upper and lower thresholds.  Further noise floor elevation 

effectively shuts the detector off by raising the signal to the point where it either no 

longer falls below the lower threshold or does but will have exceeded the maximum LM 

duration (i.e. 10 sec).  Therefore, a different model is needed to handle dynamic changes 

in the noise floor.   

We developed the following system to determine the noise floor and corresponding upper 

and lower threshold for optimal LM detection.  The noise floor, , is defined for sample 

n as  

η
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where x(n) is the EMG voltage measured at sample n.  Letting U be the original upper 

threshold scalar value (i.e. 8 µV) and L the lower threshold scalar (i.e. 2 µV), the PLM 

detection thresholds for each time sample are defined as 

 

where , , and  correspond to the upper, lower, and offset thresholds at 

sample index n.   

Figure 5.4 shows the three amplitude threshold functions dependent on the noise floor.  

The upper threshold, , increases as a function of the noise floor , which is 

calculated for each sample point n of the leg EMG using a 20 s moving average filter.  

The lower threshold, , is scaled using the ratio of the AASM 2007 Scoring Manuals 

upper and lower constant threshold values (i.e. 2 µV over 8 µV or 0.25).  The cutoff 

threshold, , is the average of the upper and lower thresholds and used to determine 

offset of candidate LMs.  The detector shuts off whenever the noise floor exceeds 50 µV 

(not shown).  Candidate LM detection onset occurs when the cleaned EMG signal first 

exceeds the upper threshold and terminates at the last point the cleaned EMG signal falls 

below the cutoff threshold prior to subsequently falling below the lower threshold for 

0.05 s. 
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Figure 5.4:  Upper, middle, and lower detection thresholds as a function of the noise 
floor.  The noise floor is calculated in two passes using a 20-s moving average of the 
adaptively noise cancelled leg EMG channel on the first pass.  Sections of the input 
signal classified with candidate LM using the first pass thresholds, are adjusted for the 
second and final noise floor and threshold calculations. 

The EMG RMS, y(n) is defined using a 0.15 sec window with sampling rate  as 

 

This is compared to the three thresholds to determine candidate LM onsets and offsets. 

LM onset is defined when y(n) first exceeds .  LM offset is defined as the last point 

y(n) exceeds  after onset and before subsequently falling below  for 0.05 

sec.  Detections separated by 0.1 sec or less are merged. 
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A problem with a single pass noise floor calculation is that the contribution from true 

LMs are not taken into account.  True LMs averaged into the noise floor may elevate the 

detection thresholds to the extent that nearby LMs are missed.  Using a second pass, 

portions of the initial input signal x(n) containing first pass LM are replaced with half the 

lower threshold for that same region (i.e. ).  The noise floor and corresponding 

thresholds are then calculated again before the second, final detection pass is made.  

Additional passes can be defined in the same manner, however doing so may overly 

reduce the noise floor and lead to false positive detections.  Similarly, setting the first 

pass signal sections with detected LMs to zero, instead of , also overly reduces 

the noise floor and results in false positive detections.   

 

Figure 5.5:  First pass thresholds.  A large increase in noise floor is seen in the leg EMG 
channel (top) halfway through the one-minute epoch shown.  The three amplitude 
detection thresholds are adjusted accordingly (bottom). 

Figure 5.5 illustrates the first pass detection threshold adjustments in a one-minute epoch.  

High EMG activity is seen in the middle portion of the leg EMG input signal (top), which 

is likely due to movement loosening the electrode and increasing impedance.  The three 

amplitude detection thresholds calculated from the noise floor are: upper (yellow), lower 

(red), and cutoff (blue).  An LM detection, highlighted by the purple rectangle, is made in 

the first pass where the root mean square (RMS) filtered signal passes the upper threshold 

β(n) 2

β(n) 2

First pass leg EMG input 
 

First pass detection thresholds 
 

First pass detection 

First pass RMS filtered leg 
EMG input 
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until that last moment it falls below the cutoff threshold before subsequently falling 

below the lower threshold for the set duration.    

The second pass threshold adjustments for this example are shown in Figure 5.6.  The 

portion of signal identified as candidate LM from the first pass (Figure 5.5) is adjusted 

according to the previous threshold levels (i.e. half of the lower, first pass detection 

amplitude threshold) to produce the second pass leg EMG input.   The remaining spike of 

activity, which passes the detection thresholds is too short, and only the first pass 

detection is retained.  Had the spike in activity here been long enough to meet candidate 

LM detection, it would have fallen within the 2.0 sec merge window and been combined 

with the first pass detection to make a single, slightly longer candidate LM. 

 

Figure 5.6:  Second pass threshold adjustment.  The portion of signal identified as 
candidate LM in the first pass is adjusted according to the previous threshold levels and 
the leg EMG input signal is adjusted for the second pass.  

Alternatively, EMG signal strength may be attenuated at times from weak recording or 

physiological generation and can be corrected for using a signal-to-noise ratio 

enhancement (i.e. SNR+) option.  We found that in some cases, very low noise at 

baseline allows the clear visualization of LMs that are not captured by our detector 

Second pass leg EMG input 
 

Second pass detection thresholds 
 

Portion of signal identified as 
LM (first pass) is adjusted  

No additional detections are made 
in the second pass here. 

Second pass RMS filtered 
leg EMG input 
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because they are smaller than 8 µV.  This was a particularly common occurrence in the 

WSC Gold Standard where the technician annotated PLM based more on visible 

periodicity seen on a one or two minute time scale than quantitative measures of change 

from baseline.  

The SNR+ option increases signal strength when the noise floor falls below 2 µV by 

application of a two-tap finite impulse response (FIR) summing filter which increases 

signal strength from 0 to 33 Hz while attenuating its strength for frequencies above 33 Hz 

(i.e. high frequency activity commonly associated with noise).  Figure 5.7 describes the 

filter in detail and motivating examples are given in Figure 5.8, Figure 5.9, and Figure 5.8 

outlines the successive signal preparation steps using a one minute epoch of clean leg 

EMG signal.  Figure 5.9 and Figure 5.10 further outline these steps using two minutes of 

noising leg EMG signal (one minute for each figure).  In each case, the SNR+ option 

sufficiently separates the LM activity from the background noise to enable detection. 

 
Figure 5.10.  The rationale for providing the detector both with and without the SNR+ 

option is because the SNR+ is not in strict accordance to the 8 µV criteria of the AASM, 

although as it will be outlined below, it correlated better with technician trained scoring 

of PLMs.  
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A.  

 
B. 
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Figure 5.7:  Frequency response for SNR+ 2-tap summing filter (panel A) and 
normalized magnitude response in cascade with a 10 Hz high pass digital filter (panel B).   

Figure 5.7 shows the 2-tap FIR summing filter used to raise the signal to noise ratio when 

the noise floor is small (i.e. less than 2 µV).  The filter’s frequency response, using a 100 

Hz sampling rate, is shown in panel A.  The filter has linear phase delay (A bottom) and 

increases signal amplitude at frequencies below 33 Hz while further attenuating signal 

strength above 33 Hz - high frequency activity commonly attributed to noise.  Detection 

algorithms that apply low or high pass filters using at 16 Hz cutoffs remove relevant 

portions of the surrounding spectral activity.  Panel B shows the normalized magnitude 

response of the 2-tap filter in cascade with a simulated 10 Hz high pass hardware filter 

that is applied before digitization. 

 

1. Leg EMG 
(input) 

2. Adaptive noise cancelation 

3. Root mean square 

4. SNR+ 
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Figure 5.8:  Clean signal example.  The SNR+ option increases the signal to noise ratio 
so that the periodic leg movements can be properly identified. 

 

Figure 5.9:  One minute, noisy signal example A.   

 

Figure 5.8 outlines the successive signal preparation steps using a one minute epoch of 

clean leg EMG signal.  Figure 5.9 and Figure 5.10 further outline these steps using two 

minutes of noising leg EMG signal (one minute for each figure).  In each case, the SNR+ 

option sufficiently separates the LM activity from the background noise to enable 

detection. 

1. Leg EMG (input) 

2. Adaptive noise cancelation 

3. Root mean square 

4. SNR+ 
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Figure 5.10:  One minute, noisy signal example B. 

In many cases, a low noise floor, defined as 2 µV or less, the leg EMG signal is 

attenuated and observed LM do not meet AASM amplitude criteria. In the study it was 

found that many LM marked for PLM were clearly visible when viewed on the one or 

two minute interval time scale commonly used by technicians.  However, on close 

examination, these LM do not in fact meet the AASM 2007’s amplitude criteria.  Three 

different time scales of stage 2 sleep are shown below: 30 seconds (Figure 5.11), two 

minutes (Figure 5.12), and five minutes (Figure 5.13).  The raw input leg EMG channel is 

shown along the bottom of Figure 5.11, Figure 5.12, and Figure 5.13 with the adaptively 

filtered versions passed as input to the detection configurations directly above.  

Detections made using the SNR+ option are shown as orange boxes along the top 

channel, while detections made without the SNR+ option are shown as magenta colored 

boxes above the middle channel.   
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Figure 5.11:  Thirty second epoch.  The third LM is missed by not using the SNR+ option 
(middle channel).  

 

Figure 5.12:  Two minute epoch.  The third and sixth LM are missed (middle channel) by 
not using using the SNR+ option. 

 

Leg EMG (raw) 

Leg EMG 
(adaptively filtered) Detections using SNR+ 

 

Leg EMG 
(adaptively filtered) 

Detection without SNR+ 

Leg EMG (raw) 

Leg EMG 
(adaptively filtered) 

Detections using SNR+ 
 
  

Leg EMG 
(adaptively filtered) Detection without SNR+ 
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Figure 5.13:  Five minute epoch.  LMs are consistently detected using the SNR+ option 
(top, orange), though four small LM are missed occasionally missed here without it 
(middle, magenta). 

5.2.7 FRAGMENTARY OR TRANSIENT MYOCLONUS AND SPURIOUS NOISE 

Fragmentary myoclonus, brief (<200 msec) spikes of EMG activity[102], and other 

spurious noise are inadvertently smeared by the moving average filter applied to smooth 

the data, and produce false LM.  Smearing effects are minimized by the short 0.15 sec 

RMS filter in combination with our 0.05 sec fall time and merging criteria.  

The 0.05 sec fall time used to identify initial LM offset allows the detector to isolate short 

spikes in EMG activity and quickly reset to make new detections.  Longer fall times 

leave the detector on, prolonging the opportunity to find movement, and making it 

susceptible to lingering, fragmentary activity.  For example, a slowly declining LM 

followed by spurious noise becomes artificially long; possibly to the point of rejection.  

The subsequently applied 0.1 sec merge-window handles cases where the short fall time 

can finely split a true LM in parts, and falls in line with Tauchmann’s approach [67]. 

Despite these tactics, fragmentary myoclonus or other sharp, short duration spikes in leg 

EMG activity may still raise the RMS signal to detection levels.  As a final test against 

false detection, we calculate AUC of the original input signal’s magnitude at each 

Detections using SNR+ 
 
  

Detection without SNR+ 
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candidate LM (i.e. onset to offset) and compare it to the upper detection threshold, .  

LMs are relatively stable.  They do not quickly rise above and then fall below the 

detection thresholds, but remain near or above it as characterized by the movement.  The 

raw signal’s AUC is used as measure of this stability in comparison to the detection 

threshold across the detected region. Candidate LMs with AUC less than half the upper 

noise threshold are rejected from PLM inclusion.  Fragmentary myoclonus can be 

identified, instead of PLMs, by choosing to instead keep candidate LMs with AUC less 

than this value. 

5.2.1 RESPIRATORY EVENTS AND ARTIFACT 

Respiratory events, routinely annotated in nocturnal PSGs, include hypopneas (with 4% 

desaturation) and apneas (central, obstructive or mixed).  The AASM 2007 Scoring 

Manual places a window from 0.5 sec prior until 0.5 sec after respiratory events in which 

LM activity is excluded from PLM criteria.  Using this rule, we found PLMI to be greater 

in individuals AHI above 15, and lesser in those with AHI below 15.  This seemed 

incongruent with the intention of excluding false LMs from PLM criteria due to 

respiratory events.  Assuming PLMs and sleep disordered breathing are not strongly 

correlated at the epidemiological level, removing leg movements secondary to SDB 

should lead to similar PLMI values in subjects with and without sleep apnea.  The AASM 

0.5 sec exclusion rule does not meet its expressed intent of eliminating respiratory related 

LMs from PLM inclusion (Table 5.4). 

We thought this requirement was overly conservative at the respiratory event boundaries 

where the 0.5 sec window is too small to catch the link between breathing event and leg 

movement.  Therefore, we investigated the interaction by comparing manually scored 

respiratory events in the WSC studies (time of onset and offset of hypopneas with 4% 

desaturation and apneas) to leg EMG activity during uninterrupted sleep (i.e. activity 

surrounding respiratory events ending in or immediately followed by wake were not 

considered).  Leg activity events surrounding respiratory events that were shorter than

α(n)



 

 

Table 5.4:  Several respiratory exclusion rules are applied to the PLM detector (adaptive 
filtering) to evaluate and compare their effect on median LM count, and mean and 
median PLMI in patients with AHI ≥ 15 and with AHI < 15 during sleep.  The AASM 
2007 exclusion window (indicated by *) reveals significantly higher median LM count 
and PLMI with increased AHI.  Pathological PLMs should be similar in both groups, and 
onset and offset respiratory exclusion criteria are optimized to this end here.  LM count 
shows the fluctuations caused by different windows prior to application of PLM criteria.  
Several suitable exclusion choices exist for removing activity associated with respiratory 
event that produce equal PLM detections in patients with and without SDB.  We selected 
-5.0 to 0.5 around onset and -0.5 to 5.0 s around offset because of its good performance 
and relative symmetry.   

Onset 
before (sec), 
after (sec) 

Offset 
before (sec), 
after (sec) 

Median LM 
count 

AHI<15, 
AHI≥15 

Median 
PLMI  

AHI<15, 
AHI≥15 

Mean PLMI 
 
AHI<15, 
AHI≥15 

None None 84,154 4.8, 12.6 14.1, 23.6 
-0.5,~* ~, 0.5* 73, 107 3.43, 5.9 12.1, 12.7 
-10, 0.5 -0.5, 5.0 70, 63 3.3, 2.6 12.0, 9.9 
-10, 0.0 -0.5, 3.5 71, 66 3.3, 2.7 12.0, 10 
-5.0, 0.0 -0.5, 3.5 76, 82 3.4, 3.8 12.5, 11.5 
-7.5, 0.0 -0.5, 3.5 74, 72 3.3, 3.2 12.4, 10.7 
-5.0, 0.5 -0.5, 5.0 74, 76 3.34, 3.37 12.5, 11.9 
-5.0, 0.0 -0.5, 5.0 74, 77 3.3, 3.3 12.4, 11.2 
-5.0, 0.0 0.0, 5.0 74, 79 3.3, 3.6 12.5, 11.3  
-3.5, 0.0 -0.5, 3.5  76, 91 3.5, 4.4 12.6, 12.0  
-6.0, 0.0 -0.5, 3.5 75, 77 3.4, 3.8 12.5, 11.1  
-6.0, 0.5 -0.5, 3.5 75, 77 3.4, 3.8 12.4, 11.1  
-6.0, 1.0 -1.0, 3.5 74, 74 3.4, 3.6 12.4, 10.9  
-6.0, 1.0 -1.0, 4.0 73, 73 3.3, 3.3 12.4, 10.8  
-6.0, 1.0 -1.0, 5.0 72, 72 3.3, 3.2 12.3, 10.6  
-5.0, 1.0 -1.0, 5.0 73, 75 3.3, 3.2 12.4, 10.9  
-5.0, 1.0 -1.0, 6.0 72, 72 3.3, 3.1 12.4, 10.7  
-5.0, 1.0 -1.0, 7.5 72, 69 3.3, 2.8 12.3, 10.4  
-5.0, 5.0 -5.0, 5.0 71, 70 3.3, 2.8 12.1, 9.9  
-6.0, 5.0 -5.0, 4.0 71, 68 3.3, 2.9 12.1, 9.8  
-6.0, 2.0 -2.0, 4.0 72, 72 3.3, 3.2 12.2, 10.5  
-6.0, 2.0 -1.0, 5.0 79, 102 4.0, 4.7 13.0, 13.6  
-6.0, 2.0 -0.5, 5.0 79, 102 4.0, 5.1 13.0, 13.8  
-6.0, 2.0 -1.0, 7.5 77, 93 3.9, 4.0 12.9, 12.6  
-6.0, 2.0 -2.0, 7.5 78, 92 3.9, 3.9 12.8, 12.4  
-6.0, 1.0 -2.0, 7.5 79, 100 3.9, 5.8 13.1, 14.9  
-7.5, 1.0 -2.0, 7.5 79, 100 3.9, 5.8 13.1, 14.9  
-10.0, 1.0 -2.0, 7.5 77, 87 3.8, 4.2 12.8, 13.1 
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15 sec or were within 30 sec of another respiratory event were also rejected from 

analysis.  Indeed, a leg movement preceding a respiratory event may be due to the 

nearby, previous respiratory event offset, and vice versa.  

 

Figure 5.14:  Leg EMG activity time locked to manually scored WSC respiratory events.  
Expected mean and median absolute leg EMG voltage is calculated in 0.5 s increments 
starting 30 s prior until 30 s after respiratory event onset (left figure) and each respiratory 
event offset (right figure). Respiratory events followed by wake, less than 15 s in 
duration, or which fall within 30 s of another event are removed.  Leg EMG activity 
increases and then decreases prior to respiratory onset with a peak 4.5 s prior to onset, 
and later decreases before and increases after respiratory offset with a mean peak 2.5 s 
and median peak 3.5 s.   

Figure 5.14 shows the expected mean and median leg EMG activity, calculated on 0.5 sec 

increments time-locked 30 sec prior until 30 sec following respiratory event onset and 
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offset as manually scored in the WSC.  Leg EMG activity increases and then decreases 

prior to respiratory onset with a peak 4.5 sec prior to onset, and later decreases before and 

increases after respiratory offset with a mean peak 2.5 sec and median peak 3.5 sec.  The 

effect of various respiratory exclusion windows on resulting LM and PLM metrics were 

evaluated using our initial detector with adaptive filtering and a new respiratory exclusion 

window was selected.   

The window to exclude LMs due to respiratory events extends 5.0 sec prior to respiratory 

event onset until 0.5 sec after onset, and then again from 0.5 sec before to 5.0 sec after 

the respiratory event’s offset.  LMs occurring during the respiratory event that do not fall 

in the exclusion window may be considered for PLM, which is a departure from the 

AASM 2007 scoring guidelines. 

Examination of respiratory events isolated by 60 sec reveals similar findings, as do 

examinations of time-locked EMG activity in patients with fewer than twenty respiratory 

events.  Additional considerations and details of this analysis are provided in Figure 5.15 

through Figure 5.21, and Table 5.4.  

Figure 5.15 shows a preliminary analysis of leg EMG activity time locked to manually 

scored WSC respiratory events.  Mean and median measures are taken of absolute leg 

EMG voltage at 0.5-second increments starting 30 s prior until 30 s after respiratory 

event onset (left panel) and each respiratory event offset (right panel). Leg EMG activity 

increases and then decreases prior to respiratory onset with a peak seen 5.5 s prior to 

onset.  Leg EMG activity decreases and then increases at respiratory offset with a peak at 

2.5 s (mean) or 3.5 s (median) following the exact point scored as offset. The pre-onset 

bump in EMG activity could be due to time-locking of respiratory events with short inter-

event intervals (e.g. a five second lapse between the end of one respiratory event and the 

start of the next) or short duration (e.g. less than 15 s).  Because of this uncertainty, the 

onset-to-onset and offset-to-onset interval distributions for successive respiratory events 

in the WSC were investigated. 
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Figure 5.15: Preliminary analysis of leg EMG activity time-locked to manually scored 
WSC respiratory events.  Mean and median measures are taken of absolute leg EMG 
voltage at 0.5-second increments starting 30 s prior until 30 s after respiratory event onset 
(left panel) and each respiratory event offset (right panel) 
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Figure 5.16:  Interval distributions for all manually scored WSC respiratory events shown 
in 5 s increments.  (a) Left plot is of onset to onset interval (b) Right plot is offset-to-
onset interval (i.e. from the end of one respiratory event until the beginning of the next).   

Figure 5.16 shows the interval distributions for all manually scored WSC respiratory 

events in 5 s increments.  The onset-to-onset interval peak occurs at 35 s, while the 

offset-to-onset interval peaks around 5-seconds. These distributions do not clarify 

whether the rise in EMG activity seen at time-locked respiratory events is related to the 

offset of a respiratory event or the occurrence of the following respiratory event (which is 

often 5.0-10 s later in SDB).  We removed this uncertainty by only considering 

respiratory events scored in excess of 15 sec and that are at least 30 sec from neighboring 

respiratory events.  The onset-to-onset and offset-to-onset interval distributions for this 

configuration are shown in Figure 5.17.  We used this setup to obtain the results shown in 

Figure 5.14, which in turn formed the basis of our newly proposed respiratory related 

PLM exclusion criteria. 
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Figure 5.17:  Interval distributions (5 s bins) for manually scored respiratory events 
greater than 15 s duration and separated from other by more than 30 s from other 
respiratory events are used for time-locking leg EMG activity.  The left histogram shows 
the onset-to-onset interval distribution of these respiratory events, while the right 
histogram shows their onset-to-offset interval distribution. 

Another concern with this analysis is that the scoring technicians may not report all 

respiratory events.  In the case where a patient has an excessive number of apneas and or 

hypopneas the technician may become tired of scoring all of the events.  I constrained my 

analysis to only those with twenty or fewer respiratory events (Figure 5.18), ten or fewer 

(Figure 5.19), five or fewer (Figure 5.20) and finally studies with only a single score 

respiratory event (Figure 5.21). The observed effect became less smooth and more 

dominant at offset, but is still visible around onset even in the case of a single respiratory 

event scored. 



 

 165 

 

Figure 5.18: 30-second isolated, 15-s minimum duration respiratory time locked EMG 
activity in patients with between 1 and 20 scored respiratory events (after exclusion rules 
are applied). 
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Figure 5.19:   Per patient EMG average in 1 to 10 scored respiratory events. 

 

Figure 5.20: Per patient EMG average in studies with 1 to 5 respiratory events scored. 

 



 

 167 

 

 

 

Figure 5.21:  Per event EMG average in studies with only a single scored respiratory 
events (mean).  Increased activity is still observed in this small patient sample, though the 
spike in activity following respiratory offset (right) is significantly higher than pre-onset 
activity (left). 

 

5.2.2 PLM DISTRIBUTION AND CHARACTERISTICS 

Beside PLMI and total PLM counts, we also reported LM counts (not necessarily 

periodic but after removal of any secondary to respiratory events).   The Periodicity 

Index, known to differentiate RLS versus non RLS cases and first introduced by Ferri et 

al [7], was also reported as is PLM and LM night ratio, reflecting the ratio of leg 
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movements during the first part versus the second part of the night.  Ratios were not 

calculated for individuals with zero event occurrences in either part of the night.  These 

measures follow previous observations on the circadian effect and clustering of PLM 

[109, 110]. 

One advantage of computer-based methods is the flexibility with which it is possible to 

investigate events after those have been detected.  For example, cardiac accelerations 

preceding PLM have been reported consistently with manual, or manually assisted 

detection methods of PLM [111-113].   For each event detected as a PLM in a given 

subject, we computed cardiac activation measures in the ECG surrounding PLM using 

the method presented by Winkelmann [112].  Heart rate (HR) for the ten cycles prior to 

and following each PLM is calculated using the R-R interval measured from the ECG at 

these points and using the heart rate directly before PLM onset as a baseline.  That is, the 

heart rate calculated for the cycle just prior to PLM onset is subtracted from all twenty 

instantaneous HR calculations made for the PLM.  We report two PLM associated 

cardiac measures: (1) heart rate delta which is the difference between the largest 

normalized HR of the ten cycles HR following PLM onset less the smallest normalized 

HR in the ten cycles preceding PLM onset, and (2) heart rate slope which is the heart 

delta divided by the number of cycles between the minimum and maximum detected HR 

values.  Finally, these metrics were computed both during sleep and sleep plus 

intermittent wake (i.e. wake after sleep onset). 

5.3 RESULTS  

The complete flow chart of the final PLM detection algorithm is shown across Figure 

5.22, Figure 5.23, and Figure 5.24 as three consecutive parts. 
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Figure 5.22: Complete PLM detection algorithm flow chart (part 1). 
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Figure 5.23: Complete PLM detection algorithm flow chart (part 2). 
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Figure 5.24:  Complete PLM detection algorithm flow chart (part 3). 

5.3.1 VALIDATION OF THE PLMI DETECTOR BY INDEPENDENT SCORERS  

In Table 5.5, individual correlations of PLMI values during sleep as derived from AASM 

2007 manual scoring (gold standard) are correlated with PLMI as computed with our 

detectors (with and without SNR).  Table 5.5 also compares correlations to other 

previously published detectors. The tables give squared correlation coefficients (r2) across 



 

 172 

groupings of 20 subjects with and without RLS symptoms and SDB within the WSC, and 

overall for all 18 subjects selected from the SSC.  

Table 5.5:  PLMI comparisons between automatic methods and manually scoring.  The 
squared correlation coefficient (r2) between PLMI determined automatically versus 
manually is shown in the table for previously published detectors and our PLM calculator 
with and without the SNR+ option.  PLM are classified according to AASM 2007 scoring 
criteria with adjustment to LM classification for our classifier as described in the text. 

 Wisconsin Sleep Cohort Stanford 
Sleep Clinic 

 RLS*, 
AHI≤15 
(n=20) 

AHI≤15 
(n=20) 

AHI>15 
(n=20) 

 
All 

(n=60) 

 
All 

(n=18) 
Tauchmann 0.64 0.42 0.54 0.55 0.49 
Wetter 0.12 0.74 0.24 0.25 0.15 
Ferri 0.93 0.66 0.85 0.86 0.41 
PLM calculator 0.93 0.74 0.84 0.89 0.93 
PLM calculator (SNR+) 0.95 0.78 0.94 0.93 0.94 

 
As can be seen, our PLMI detectors had the best correlations overall and in individual 

subgroups, with a slight improvement when the SNR+ step was included in the detector. 

Overall correlation in Figure 5.25 and Figure 5.26 clearly shows that the detector did not 

produce outliers and was thus functioning well in all groups.  The correlation seen in 

Figure 5.26 (SSC sample) is important as diagnoses were enriched for rare diagnosis that 

we felt could be problematic such as narcolepsy, hypersomnia, REM behavior disorder, 

obstructive sleep apnea, delayed sleep phase syndrome and insomnia.  
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Figure 5.25:  Gold standard PLMI evalution in the Wisconsin Sleep Cohort (n=60).  
Comparison of PLMI derived from manual scoring (y-axis) and our automatic PLM 
calculator using SNR+ (x-axis). 
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Figure 5.26:  Gold standard PLMI evalution in the Stanford Sleep Clinic (n=18).  
Comparison of PLMI is derived from manual scoring (y-axis) and our automatic PLM 
calculator using SNR+ (x-axis). 

5.3.2 PLM CHARACTERISTICS IN THE WSC AND SSC COHORTS 
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Table 5.6,   
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Table 5.7, and Table 5.8 show summary statistics for PLM metrics in the WSC and SSC, 

first using PLM detected during sleep, and then using PLM detected during sleep and 

intermittent wake. The motivation for including intermittent wake comes from the 

observation of PLM continuing, without change, during wake-scored arousals in our 

sleep studies.  Intermittent wake sections last for 30 sec or longer and often fragment 

otherwise continuous PLM series. 
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Table 5.6:  Automatically obtained PLM biomarkers in Wisconsin Sleep Cohort.  PLM 
metrics are calculated from PLM classified using our detector (SNR+) in (A) sleep and 
(B) sleep with intermittent wake (wake occurring after sleep onset and before final 
arousal).  Patients not using CPAP and having more two hours of evaluation were 
grouped according to their apnea-hypopnea index (AHI).  A circadian effect is seen with 
PLMs which occur almost four times as frequently in the first half of the night compared 
to the second half, while LMs occur with equal probability across both halves of the night 
in patients with respiratory difficulty during sleep.  The periodicity index is artificially 
affected by excluding intermittent wake and produces a statistically significant higher 
value in patients with AHI≤15 when examining sleep only.  

A. PLM measures taken from sleep only 
  

AHI≤15 
(738) 

 
AHI>15 
(264) 

 
All 
(1069) 

AHI≤15  
vs 
AHI>15 

PLMI 9.78 ±0.70 8.30 ±0.87 9.72 ±0.57 p=0.188 
PLM count 60.0 ±4.3 49.5 ±5.2 58.0 ±3.3 p=0.118 
LM count 102 ±5 101 ±6 103 ±4 p=0.924 
Periodicity Index 0.41 ±0.01 (449) 0.33 ±0.02 (175) 0.39 ±0.01 (669) p=0.000 
Hours evaluated 6.28 ±0.04 6.08 ±0.06 6.17 ±0.03 p=0.004 
Heart rate (delta) 21.2 ±0.7 (449) 20.1 ±1.12 (175) 20.6 ±0.6 (669) p=0.401 
Heart rate (slope) 2.08 ±0.07 (449) 1.98 ±0.12 (175) 2.02 ±0.06 (669) p=0.502 
PLM night ratio 3.65 ±0.61 (247) 4.95 ±1.26 (69) 3.77 ±0.52 (340) p=0.356 
LM night ratio 1.20 ±0.18 (706) 0.81 ±0.05 (254) 1.09 ±0.13 (1013) p=0.035 

 
B. PLM measures taken from sleep and intermittent wake 
  

AHI≤15 
(738) 

 
AHI>15 
(264) 

 
All 
(1072) 

AHI≤15  
vs 
AHI>15 

PLMI 13.0 ±0.70 13.3 ±0.9 13.6 ±0.6 p=0.807 
PLM count 94.5 ±5.0 97.6 ±6.8 98.5 ±4.1 p=0.721 
LM count 158 ±5 171 ±8 165 ±4 p=0.163 
Periodicity Index 0.36 ±0.01 (674) 0.36 ±0.01 (243) 0.36 ±0.01 (983) p=0.981 
Hours evaluated 7.37 ±0.03 7.38 ±0.05 7.35 ±0.02 p=0.911 
Heart rate (delta) 38.84 ±0.93 (674) 30.92 ±1.27 (243) 36.45 ±0.74 (983) p<0.001 
Heart rate (slope) 3.97 ±0.10 (674) 3.11 ±0.14 (243) 3.72 ±0.08 (983) p<0.001 
PLM night ratio 4.58 ±0.86 (494) 4.18 ±0.47 (147) 4.34 ±0.62 (692) p=0.685 
LM night ratio 1.17 ±0.16 (723) 1.00 ±0.05 (258) 1.11 ±0.11 (1048) p=0.325 

Data are mean ± Standard Error Mean, or percentage. The number of subject used for calculations are 
shown in parentheses.  Count is the total number of individual PLM or LM counted per study.  Night ratio 
is the ratio of events classified in the first half of each study divided by the number of events classified in 
the second half. Heart rate is the normalized cardiac change (beats per minute) time locked to PLM as 
described in the text.  P-values are calculated from the student t-test with significance level of 0.05.  
Periodicity index, heart rate, and PLM ratio is only calculated in the presence of PLM.  PLM and LM night 
ratios are only calculated in cases where PLM or LM occur during both the first and second half of the 
study. 
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Comparing herwise continuous PLM series. 
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Table 5.6 (A and B) with   
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Table 5.7 and Table 5.8 and the two samples overall, PLMIs were higher in WSC versus 

SSC, likely reflecting age differences.  Other differences appear (notably in PLM night 

ratio, a reflection of diurnal or circadian control of PLM) and could be explained by age 

or the nature of the cohort, population-based sample versus clinical sample.  Further 

analysis, outside of the scope of this manuscript may reveal the source for these 

differences, which overall were relatively modest.   

A key feature of our detector in comparison to others is removal of LM in association 

with SDB.  The algorithm was successful as evidenced by PLMI that were not 

statistically different in subjects with AHI≤15 versus >15 in the WSC and between 

patients with and without SDB in the SSC.   Problematically, the periodicity index varied 

with SDB status when PLMs were only assessed during sleep but not wake (herwise 

continuous PLM series. 
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Table 5.6 A versus B). This suggests that the periodicity index cannot be properly 

calculated if intermittent wake is removed, especially in cases with sleep apnea where 

arousals are common.   

Another difference was in the HR slope and delta, which were significantly smaller in 

patients with SDB.  A sub-analysis after exclusion of patients taking beta-blockers 

suggested this result was not secondary to medication effects.  We also computed 

numbers of PLMs per sleep stages, and found increased occurrence of PLM during Stage 

2 sleep (data not shown).  This observation follows that of Ferri et al, who used an 

automatic detection followed by human confirmation and adjustment [111]. 
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Table 5.7:  Automatically obtained PLM biomarkers in Stanford Sleep Cohort from sleep 
only.  PLM metrics are calculated from PLM classified using our detector (SNR+).  
Patients having more two hours of evaluation were grouped according to sleep pathology 
as determined by formal medical diagnosis.  The circadian effect is reversed in 
narcolepsy, with PLM more likely to occur during the second half of the sleep study, and 
less extreme in insomnia where PLM are only slightly more frequent (i.e. 33%) in the 
first half of the study. 

  
All (756) 

Delayed Phase 
Syndrome (14) 

Insomnia 
(140) 

Narcolepsy 
(17) 

PLMI 8.1 ±0.65 4.48 ±1.80 6.06 ±1.20 12.9 ±4.18 
PLM count 48.1 ±3.85 27.3 ±10.7 33.3 ±6.05 82.4 ±26.7 
LM count 95.1 ±4.20 70.9 ±13.6 73.8 ±6.84 139 ±32.5 
Periodicity Index 0.31 ±0.01 

(478) 
0.29 ±0.07 (10) 0.30 ±0.03 

(76) 
0.40 ±0.07 
(12) 

Hours evaluated 6.14 ±0.04 6.18 ±0.34 6.12 ±0.10 6.71 ±0.27 
Heart rate (delta) 20.7 ±0.66 

(478) 
15.1 ±1.64 (10) 21 ±3.01 (76) 18.5 ±2.02 

(12) 
Heart rate (slope) 2.07 ±0.07 

(478) 
1.40 ±0.12 (10) 2.12 ±0.33 

(76) 
1.90 ±0.22 
(12) 

PLM night ratio 2.48 ±0.19 
(188) 

1.70 ±1.07 (3) 1.33 ±0.25 
(25) 

0.49 ±0.20 
(7) 

LM night ratio 0.54 ±0.10 
(610) 

0.66 ±0.41 (10) 0.41 ±0.08 
(111) 

0.32 ±0.06 
(13) 

 
  

REM 
Behavior 
Disorder (4) 

Restless 
Legs 
Syndrome 
(24) 

Sleep 
Disordered 
Breathing 
(597) 

 
 
 
Other (37) 

 
 
 

p 
PLMI 32.2 ±21.9 10.2 ±4.31 7.71 ±0.71 6.09 ±2.60 0.091 
PLM count 186 ±131 53 ±20.8 46.3 ±4.29 34.5 ±14.25 0.073 
LM count 254 ±140 106 ±22 93.1 ±4.67 82.1 ±17.16 0.021 
Periodicity Index 0.43 ±0.14 0.28 ±0.06 

(20) 
0.30 ±0.01 
(376) 

0.22 ±0.05 
(23) 

0.564 

Hours evaluated 6.01 ±0.66 5.97 ±0.25 6.15 ±0.05 5.97 ±0.19 0.573 
Heart rate (delta) 7.94 ±1.86 26.6 ±7.17 

(20) 
20.2 ±0.95 
(376) 

21 ±2.09 
(23) 

0.663 

Heart rate (slope) 0.74 ±0.17 2.89 ±0.90 
(20) 

2.03 ±0.11 
(376) 

2.1 ±0.22 
(23) 

0.556 

PLM night ratio 1.47 ±0.78 
(2) 

9.36 ±8.07 
(4) 

2.49 ±0.46 
(149) 

2.84 ±1.43 
(6) 

0.301 

LM night ratio 0.51 ±0.19 
(3) 

0.42 ±0.19 
(15) 

0.55 ±0.05 
(487) 

0.45 ±0.10 
(26) 

0.888 
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Table 5.8:  Automatically obtained PLM biomarkers in Stanford Sleep Cohort measured 
in sleep with intermittent wake (wake occurring after sleep onset and before final 
arousal).  Patients having more two hours of evaluation were grouped according to sleep 
pathology as determined by formal medical diagnosis.   

  
All (757) 

Delayed Phase 
Syndrome (14) 

Insomnia 
(140) 

Narcolepsy 
(17) 

PLMI 12.9 ±0.67 8.62 ±1.78 9.68 ±1.18 20.1 ±5.5 
PLM count 96.4 ±5.0 63.4 ±13.8 70.5 ±8.2 167 ±46 
LM count 167 ±5 132 ±20 136 ±9 240 ±51 
Periodicity Index 0.32 ±0.01 

(714) 
0.29 ±0.04 0.28 ±0.02 

(134) 
0.43 ±0.06 
(15) 

Hours evaluated 7.44 ±0.04 7.29 ±0.32 7.39 ±0.08 8.19 ±0.22 
Heart rate (delta) 27.4 ±0.73 

(714) 
18.9 ±2.11 30.3 ±2.07 

(134) 
22.4 ±2.17 
(15) 

Heart rate (slope) 2.78 ±0.08 
(714) 

1.78 ±0.19 3.06 ±0.23 
(134) 

2.38 ±0.25 
(15) 

PLM night ratio 1.83 ±0.20 
(474) 

2.14 ±0.72 (10) 1.09 ±0.14 
(78) 

0.603 
±0.16 (14) 

LM night ratio 0.62 ±0.03 
(702) 

0.89 ±0.26 (13) 0.47 ±0.05 
(126) 

0.406 
±0.08 (16) 

 
  

REM 
Behavior 
Disorder (4) 

Restless 
Legs 
Syndrome 
(24) 

Sleep 
Disordered 
Breathing 
(597) 

 
 
 
Other (38) 

 
 
 

p 
PLMI 40.9 ±20.2 17.9 ±4.4 12.5 ±0.7 11.3 ±2.5 0.006 
PLM count 280 ±139 131 ±29 94.5 ±5.6 80.1 ±17.0 0.006 
LM count 367 ±140 209 ±31 165 ±6 156 ±20 0.003 
Periodicity Index 0.53 ±0.12 0.37 ±0.05 

(23) 
0.31 ±0.01 
(563) 

0.28 ±0.03 
(37) 

0.026 

Hours evaluated 7.39 ±0.74 7.52 ±0.21 7.46 ±0.04 7.26 ±0.15 0.089 
Heart rate (delta) 11.1 ±2.04 31.8±6.3 

(23) 
27.2 ±0.85 
(563) 

28.8 ±2.22 
(37) 

0.191 

Heart rate (slope) 1.08 ±0.18 3.34±0.71(
23) 

2.76 ±0.10 
(563) 

2.94 ±0.26 
(37) 

0.240 

PLM night ratio 0.72 ±0.23 1.35 ±0.42 
(18) 

1.83 ±0.22 
(382) 

1.37 ±0.39 
(24) 

0.772 

LM night ratio 0.57 ±0.18 0.41 ±0.07 
(21) 

0.63 ±0.03 
(553) 

0.43 ±0.08 
(31) 

0.107 
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The data in   
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Table 5.7 and Table 5.8 is shown as the mean ± standard error of the mean, or as a 

percentage. The number of subject used for calculations are shown in parentheses.  Count 

is the total number of individual PLM or LM counted per study.  Night ratio is the ratio 

of events classified in the first half of each study divided by the number of events 

classified in the second half. Heart rate is the normalized cardiac change (beats per 

minute) time locked to PLM as described in the text. Probabilities (p) are calculated using 

one-way analysis of variance between groups with a 0.05 significance level.  Periodicity 

index, heart rate, and PLM ratio is only calculated in the presence of PLM.  PLM and LM 

night ratios are only calculated in cases where PLM or LM occur during both the first and 

second half of the study. 

5.3.3 PLM BY DIAGNOSTIC GROUPS 
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Table 5.7 and Table 5.8 report on PLMs across diagnostic groups at the Stanford Sleep 

Clinic.  As expected, PLMI (and periodicity index, when computed during sleep and 

wake, see above) was highest in narcolepsy and RLS; these pathologies are known to 

have the highest association with PLMs.  Data from REM behavior disorder subjects was 

difficult to interpret, as our sample included only 4 subjects.  Insomnia and delayed sleep 

phase syndrome had the lowest PLMI and periodicity indices, while sleep-disordered 

breathing was intermediate.  A statistical difference was found using a one-way analysis 

of variance between groups for PLMI, PLM count, and periodicity index in examination 

of sleep with intermittent wake that was not seen in sleep only. 

5.3.4 CODE FOR THE STANFORD PLM DETECTOR 

The detector uses the SEV.  Source code for both the SEV and the Stanford PLM detector 

are freely available online at http://www.stanford.edu/~hyatt4.  The online repository for 

open source development is available at http://www.github.com/informaton/sev. 

5.4 DISCUSSION 

In this chapter, I described a novel PLM detector and its validation in two independent 

adult samples (patients-based and population-based cohorts).  My goal was to create a 

robust detector that would closely approximate manual scoring by an experienced 

technician using AASM 2007 PLM scoring rules.  The detector was optimized to remove 

false signals from leg channels, such as ECG contamination, or fragmentary myoclonus-

like patterns. It may use one or two leg channels, although in our cases, two combined leg 

channels were used in both cohorts examined.   

Although we started with the AASM 2007 criteria, two modifications of the rules were 

necessary to improve detection.  First, we found that defining a LM as a having EMG 

signal exceeding 8 µV above baseline and then falling below 2 µV from baseline was 

difficult to use if background noise was either very high or very low. In the former case, 

leg movements may still be detectable above baseline, but if starting from a high 
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baseline, may be scored spuriously when the total signal crossed the 8-µV threshold even 

following a small rise in signal or an artifact.  In the later cases, small leg movements 

may be obvious and periodic, but do not reach the 8 µV threshold.  To accommodate 

these cases, we created the SNR+ option and continually account for changes to the noise 

floor as it varies from almost none to high (for example 6 µV, see Figure 5.4 to Figure 

5.13). 

Second, there has been much discussion regarding exclusion of LM secondary to SDB 

but no clear science based consensus.  At one end of the spectrum, some authors have 

argued that almost all PLM events are secondary or connected to SDB.  At the other end 

of the spectrum, investigators in the RLS field do not score SDB and remove LM events 

that could be secondary to SDB and associated arousal.  To address this issue, the AASM 

2007 Scoring Manual excludes LM activity 0.5 sec prior until 0.5 sec after respiratory 

events from PLM. Interestingly, however, we found this rule to be arbitrary and not 

reflecting reality.  Indeed, using this rule, computed PLMI was greater in individuals with 

AHI above 15, and lesser in those with AHI below 15, suggesting false detections (see 

methods).  Examination of EMG activity reflecting LM time-locked with respiratory 

events was next performed, and the 0.5 sec window applied to respiratory event 

boundaries inadequate to remove LM secondary to SDB, as EEG activity peaks 

approximately 3 sec following SDB.  More surprisingly, we also found increased EMG a 

few seconds before the initiation of a SDB event.  Whereas jerking activity of the body is 

commonly known to accompany the recovery breath at respiratory event offset, increased 

activity prior to respiratory event onset was not anticipated and several steps were taken 

to examine the results for error or explanation.  For example, we only included isolated 

events without SDB immediately prior each event analyzed to avoid cofounding effects 

of prior events, but this did not change the signal.  Not finding any artificial explanation, 

we conclude the finding to be physiological, perhaps reflecting a brief jerk when the 

airway is first obstructed or the leg jerk may precipitate a sharp inspiration sufficient to 

close or narrow a (pathologically) compliant airway. Alternatively, LM and SDB may be 
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connected in a more complex way in some cases, for example via changes in arousal 

threshold that are known to be associated with LM generation.  It is notable that PLMs 

are associated with heart rate changes prior to the event, and that K-complexes and 

arousals associated with PLMs have been shown to occur periodically without the motor 

event, for example when patients with RLS are treated with dopamine agonists.  

These results notwithstanding, the new exclusion window proposed, 5 sec before 

initiation (plus 0.5 sec within the SDB event) and 5 sec after termination (plus 0.5 sec 

before termination), is based on empirical examination of leg EMG activity time locked 

to manually scored respiratory events that shows the strongest association at the ends (i.e. 

onset and offset) (see Figure 5.14).  Using this rule, PLMI did not differ between subjects 

with and without SDB, indicating success of the algorithm for this purpose.   

A second controversial issue pertains to the inclusion of leg movements during 

intermittent wakefulness.  PLM are known to continue during intermittent wake, thus 

removing these movements may break a PLM series.  On another hand, wake may be 

contaminated with LM secondary to voluntary movements that can also confound the 

issue.  Studying cases with various sleep disorders in the SSC, results were similar, but 

the periodicity index, a measure that is known to best differentiate true PLM, was less 

reliably measured, thus we advocate use of PLMI during sleep plus intermittent wake.   

In the course of this study, we found that heart rate activation in association with PLMs 

was lower in subjects with SDB versus without. This preliminary result may reflect 

decreased cardiovascular response in these subjects or increased arousal threshold due to 

sleepiness.  Indeed, it is striking to note that most patients with SDB do not recall the 

severe sleep disruption associated with breathing events and have attenuate respiratory 

occlusion related evoked potentials.  Still there are several nuances with measuring 

cardiac activity with PLM that affect the outcome as presented by Ferri’s excellent 

commentary [111].  Our goal here is not to provide definite explanation on the matter, but 
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rather how our detector may be used to further explore these and other avenues of 

research related to PLM. 

In comparison with other detectors, the Stanford PLM detector fared best. Validation of 

the detector in two independent cohorts in comparison with gold standard, manual 

scoring using AASM 2007 criteria, revealed a very high correlation (Figure 5.25 and 

Figure 5.26).  The fact the validation samples were enriched in complex associations such 

as unusual pathologies (REM behavior disorder, narcolepsy etc.) or SDB gives 

confidence that this detector should perform well in multiple clinical settings. We hope 

that dissemination of the detector will ensure widespread use and help comparative 

studies of PLMs.   

5.5 CONCLUSION 

This chapter presented a robust, automated algorithm for scoring PLMs in both a general 

population and also a sleep clinic sample.  The PLM detector was designed and validated 

using NPSG-based sleep studies taken adult participants from the WSC (n=1,073, 2000-

2004) and a sample of successive SSC patients undergoing baseline nocturnal 

polysomnography (n=760, 1999-2007). 

NPSGs from the WSC were first used to develop the algorithm to identify PLMs using 

AASM 2007 criteria (e.g. 8 µV above baseline, 0.5-10 seconds (sec) duration, exclusion 

of LMs adjacent to respiratory events), and minor modifications were made to optimize 

performance.  LMs (n=119,277) manually scored using the 1995 AASM guidelines were 

used as a first guide to test performance of this detector and other published algorithms 

using ROCs.  Outlier scores were examined, and rules were modified when appropriate to 

accommodate problems, notably ECG interference, exclusion of movements adjacent to 

respiratory events and adjustment of noise floor/amplitude ratio.   

To further test the algorithm, the PLMI mean and range during sleep as well as other 

metrics were compared in subjects reporting RLS symptoms or SDB (i.e., an AHI > 15).  
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A registered PSG technologist scored PLMs using the AASM 2007 criteria in 60 

randomly selected WSC subjects with RLS symptoms (n=20), SDB (n=20), and normal 

sleepers (n=20).  The manually scored PLMI was correlated with the automatically 

computed PLMI.  To extend on these findings, the same detector was applied to the SSC, 

and validated in 18 subjects with various sleep disorders (SDB, RLS, REM sleep 

behavior disorder, narcolepsy-cataplexy, insomnia, delayed sleep phase syndrome, 3 of 

each) by parallel blind human scoring (n=1,733 PLMs).  The detector’s performance was 

also compared using all manually scored studies with that of other known detectors.  

The final detector provided a PLMI for sleep and sleep and wake, plus periodicity index 

and other LM metrics (if PLMI>0).  The optimized PLM detector incorporated adaptive 

noise cancelling of cardiac interference, noise-floor adjustable detection thresholds, 

removes leg movements secondary to SDB within 5 sec of respiratory events and deletes 

popping electrodes or fragmentary myoclonus.  The detector exhibited higher sensitivity 

and specificity than other detectors and correlated well with gold standard calculated 

PLMI in both cohorts (r2=0.93 in WSC and r2=0.94 in SSC).  Its performance was much 

improved in comparison to other existing detectors, and showed that automated detection 

of PLM is possible in controls and patients with various sleep disorder diagnosis.  The 

following chapter will use the PLM detection algorithm introduced here to identify single 

nucleotide polymorphisms with increased susceptibility for PLMs.   

As mentioned in the introduction, the contents of this chapter are taken from the 

manuscript, “Design and Validation of a Periodic Leg Movement Detector,” which has 

been submitted for publication. 



 

 

CHAPTER 6 SINGLE NUCLEOTIDE POLYMORPHISM SUSCEPTIBILITY FOR 

PERIODIC LEG MOVEMENT 

In this chapter, I investigate thirteen single nucleotide polymorphisms (SNPs) previously 

associated with Restless Legs Syndrome (RLS) for susceptibility of periodic leg 

movements (PLMs) in 1,090 adult participants from the Wisconsin Sleep Cohort (WSC) 

(2,394 observations, 2000-2012).  PLMs were enumerated using the automated detector 

discussed in the previous chapter.   

I would like to acknowledge the contribution and help of those who collaborated with me 

in this research.  First, I would like to thank Emmanuel Mignot who had the vision for 

this project and caught its “scent” well in advance.  Laurel Finn and Paul Peppard 

provided helpful feedback and corrections to the writing of this chapter.  Laurel also 

provided invaluable expertise in discussing various statistical approaches for modeling 

the PLM and RLS symptoms phenotypes.  Juliane Winkelmann was very helpful in 

lending her expertise and aid in investigating RLS and its genetic basis.  
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6.1 INTRODUCTION 

As mentioned in the prior chapter, periodic leg movements (PLMs) are episodic, 

involuntary muscle contractions that occur during sleep.  Restless Legs Syndrome (RLS) 

is often associated with PLMs, with four out of five patients diagnosed with RLS 

exhibiting PLMs[7].  However, as discussed in Section 1.3.2, PLMs can also occur 

without RLS symptoms. 

In this chapter, I report on the comparative frequencies of these SNPs across persons with 

PLMs with and without RLS symptoms drawn from the Wisconsin Sleep Cohort (WSC), 

The SNP and sleep data were obtained between 2000 to 2012 as described in Chapter 

1.4.1. 

Recent investigations have revealed genetic associations with RLS.  Most notably, 13 

single nucleotide peptides (SNPs) were identified as RLS susceptibility markers in a 

genome-wide association study (GWAS) described in 2011[15].  The study examined 

922 RLS cases and 1,526 controls with replication in 3,935 RLS cases and 5,754 controls 

(all of European ancestry).  Association of the BTBD9 and MEIS1 genes with RLS and 

end stage renal disease was reported in another study of Germans (200 RLS cases, 443 

controls) with replication in a Greek sample (141 RLS cases, 393 controls)[114].  

Another team, using an Icelandic discovery sample with replications in Icelandic and 

U.S. samples found association of BTBD9 in PLM in sleep (PLMS)[115] apart from RLS 

diagnosis as adopted from a 1995 criteria[116].  PLMs were measured using a small tri-

axial accelerometer worn on the ankle.  The ambulatory device could not distinguish 

sleep from wake and so the researchers classified participants with PLMs if during any of 

the five nights of sleep, the ambulatory device detected five or more PLM during an hour 

while recumbent during their major rest period[115].  These studies did not use PSG 

measures of PLMs or account for additional effects on PLMs like use of medication that 

can aggravate or inhibit factors contributing to RLS.  
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In this chapter I examine the 13 SNPs mentioned above for susceptibility to PLMs with 

and without RLS symptoms.  Section 6.2 presents the cohort, the process for selecting 

RLS symptoms and PLM phenotypes, and the statistical models to evaluate SNP 

susceptibility to the phenotypes.  Section 6.3 gives the results of this analysis, and is 

followed by a discussion of the results and concluding remarks in Section 6.4. 

6.2 METHODS 

6.2.1 COHORT USED IN THE ANALYSIS 

A total of 2,394 Nocturnal PSG (NPSG) studies from 1,086 WSC participants were used 

in this study.  Electroencephalography (EEG), electrooculography (EOG), and chin 

electromyography (EMG) were used to score sleep stages for each 30 second epoch using 

standard R&K criteria[1].   The WSC and its NPSG collection montage are described in 

Chapter 1.4.1. 

6.2.2 RLS SYMPTOMS PHENOTYPE 

WSC participants were stratified according to RLS symptoms based on questionnaire 

responses from a previous study of the cohort in 2003[103].  Figure 6.1 shows the survey 

questions used to identify RLS symptoms.  Patients were asked to provide the frequency 

with which they felt (a) repeated urge to move legs, (b) strange and uncomfortable 

feelings in the legs, and/or (c) periods of several leg jumps or jerks.  The response 

answers were never, less than once a month, monthly, weekly, and nightly. Two 

additional yes/no questions were (d) Do you these feelings just mentioned get better 

when you get and start walking? (e) Do these feelings just mentioned disrupt your sleep?  

The questionnaire did not completely address all RLS diagnostic criteria put forth by the 

National Institutes of Health (NIH)[104].  Notably it did not ask for the symptoms to be 

worse at night; hence our use of the term RLS symptoms rather than RLS. 
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Figure 6.1: Question 13 from WSC survey mailing in early 2000.  

Table 6.1:  Questionnaire response criteria RLS symptoms category. 

RLS symptoms category Questionnaire response 
Category A: Definite RLS symptoms (a) Weekly or more often 

(d) Yes 
(e) Yes. 

Category B: Possible RLS symptoms (a) Monthly or more frequent 
(d) Yes.   
Category B could not include members 
already in Category A 

Category C: No RLS symptoms (a) Less than monthly 
(b) Less than monthly or missing 

Category D: Unknown or uncertain Responses not categorized as A, B, or C 
to include missing responses. 

 

RLS symptoms were split into three categories using the response criteria listed in Table 

6.1. Category A (n=186, observations=360), definite RLS symptoms, is defined as 

response to (a) as weekly or more often, (d) yes, and (e) yes.  Category B (n=190, 

observations=384), moderate RLS symptoms, is defined as response (a) monthly or more 

frequent, and (d) yes.  Category B does not include members already in Category A.  

Q13.	
  	
  How	
  often,	
  when	
  you	
  are	
  sitting	
  or	
  lying	
  
down,	
  do	
  you	
  have	
  any	
  of	
  the	
  following	
  feelings	
  
in	
  your	
  legs?	
  	
   
a. Repeated	
  urge	
  to	
  move	
  your	
  legs	
  
b. Strange	
  and	
  uncomfortable	
  feelings	
  in	
  your	
  
legs	
  

c. Periods	
  of	
  several	
  leg	
  jerks	
  or	
  jumps	
  in	
  a	
  
row	
  

d. Do	
  these	
  leg	
  feelings	
  just	
  mentioned	
  get	
  
better	
  when	
  you	
  get	
  up	
  and	
  start	
  
walking?	
  	
  (Yes;	
  No)	
  

e. Do	
  these	
  leg	
  feelings	
  just	
  mentioned	
  disrupt	
  
your	
  sleep?	
  (Yes,	
  some;	
  Yes,	
  a	
  great	
  deal;	
  No)	
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Category C (n=523, observations=997), no RLS symptoms, is defined by responses to (a) 

as less than monthly and (b) as either missing or less than monthly.  Remaining subjects 

(n=171, observations=321) were excluded from RLS symptom stratification (i.e. missing 

responses or responses that did not fit into Category A, B, or C). (See Table 6.1.) 

Categories A and B are merged to form Category AB, the positive RLS symptoms 
phenotype, RLS+.  Category C defines the control group, RLS-.    
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Table 6.2 shows demographic, polysomnograms sleep measures, and medication use in 

the WSC stratified by RLS symptoms.  The difference in choosing Category AB as the 

RLS+ phenotypes instead of Category A only is negligible. 
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Table 6.2 :  Demographic, polysomnograms, and medication information for Wisconsin 
Sleep cohort stratified by RLS symptoms.  

 

RLS(A) 
(n=188, 
o=417) 

RLS(B) 
(n=192, 
o=443) 

RLS(AB) 
(n=380, 
o=860) 

RLS(C)  
(n=535, 
o=1169) 

Demographics     

Age 
58.8 ±0.62 

(188) 
58.3 ±0.64 

(191) 
58.6 ±0.44 

(379) 59.0 ±0.34 (535) 
Sex, Male (%) 47.9% (188) 51.8% (191) 49.9% (379) 55.2% (534) 
Clinical Data     

Body Mass Index 
(kg/m²) 

33.7 ±0.57 
(186) 

30.3 ±0.44 
(191) 

32.0 ±0.37 
(377) 31.3 ±0.30 (532) 

Apnea Hypopnea 
Index (AHI) 

15.6 ±1.36 
(179) 

13.2 ±1.15 
(187) 

14.4 ±0.89 
(366) 12.4 ±0.59 (516) 

AHI > 15 (%) 33.5% (179) 28.9% (187) 31.1% (366) 27.5% (516) 

PLMI 
18.7 ±1.79 

(188) 
15.3 ±1.20 

(191) 
17.0 ±1.07 

(379) 10.8 ±0.64 (535) 
Polysomnogram     

TST (hour) 
5.98 ±0.07 

(188) 
6.13 ±0.07 

(191) 
6.06 ±0.05 

(379) 6.11 ±0.04 (535) 

Stage 1 (%) 
11.4 ±11.39 

(418) 
9.86 ±9.86 

(444) 
10.6 ±10.62 

(861) 
10.7 ±10.65 

(1170) 

Stage 2 (%) 
65.5 ±65.47 

(418) 
65.7 ±65.73 

(444) 
65.7 ±65.68 

(861) 
66.0 ±66.01 

(1170) 

SWS (%) 
7.01 ±7.01 

(418) 
7.92 ±7.92 

(444) 
7.49 ±7.49 

(861) 
6.81 ±6.81 

(1170) 

REM (%) 
15.6 ±15.64 

(418) 
16.1 ±16.10 

(444) 
15.9 ±15.89 

(861) 
16.3 ±16.25 

(1170) 

WASO (hour) 
1.35 ±0.06 

(188) 
1.19 ±0.04 

(191) 
1.27 ±0.04 

(379) 1.22 ±0.03 (535) 
Medication     

RLS symptom 
aggravators 40.00% 38.10% 39.10% 33.00% 

RLS symptom 
inhibitors 15.10% 9.70% 12.30% 7.50% 

 
  



 

 198 

Table 6.3: Student t-test comparisons between RLS symptoms categories in the 
Wisconsin Sleep Cohort. 

  
RLS(A) vs 
RLS(C) 

RLS(B) vs 
RLS(C) 

RLS(AB) vs 
RLS(C) 

p 
(ANOVA) 

Demographics         
Age p=0.700 p=0.330 p=0.382 p=0.592 

Sex, Male (%) 
OR=0.74 
p=0.081 

OR=0.87 
p=0.417 

OR=0.81 
p=0.109 

X²=3.17 
p=0.075 

Clinical Data      
Body Mass Index 

(kg/m²) p<1e-3 p=0.064 p=0.144 p<1e-5 
Apnea Hypopnea Index 

(AHI) p=0.032 p=0.535 p=0.065 p=0.050 

AHI > 15 (%) 
OR=1.33 
p=0.128 

OR=1.07 
p=0.723 

OR=1.19 
p=0.242 

X²=2.33 
p=0.127 

PLMI p<1e-4 p<1e-3 p<1e-6 p<1e-6 
Polysomnogram         

TST (hour) p=0.126 p=0.819 p=0.391 p=0.214 
Stage 1 (%) p=0.962 p=0.957 p=0.998 p=0.997 
Stage 2 (%) p=0.995 p=0.998 p=0.997 p=1.000 

SWS (%) p=0.983 p=0.915 p=0.946 p=0.995 
REM (%) p=0.978 p=0.994 p=0.987 p=1.000 

WASO (hour) p=0.028 p=0.621 p=0.231 p=0.030 
Medication         

RLS symptom 
aggravators 

OR=1.36 
p=0.010 

OR=1.25 
p=0.053 

OR=1.30 
p=0.005 

X²=8.25 
p=0.004 

RLS symptom 
inhibitors 

OR=2.19 
p<1e-5 

OR=1.32 
p=0.153 

OR=1.73 
p<1e-3 

X²=20.44 
p<1e-5 
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Table 6.3 shows student t-test comparisons between A and C, B and C, and AB and C.  

The gender difference between A and C is closest to RLS epidemiology, where 

approximately two-thirds are female.  PLMI and medication use decrease from category 

A to B to C and show statistically significant (i.e. p<0.05) differences between categories.  

The difference in PLMI is greater between AB and C than A and C because of the 

additional power gained by adding B.  Prescription medications are classified as RLS 

symptom aggravators and RLS symptom inhibitors.  Aggravators include antidepressants 

(e.g. selective seritonin reuptake inhibitors, tricyclics), antipsychotics, antiseizure 

medication, and antihistamines.  Inhibitors include benzodiazepines, opiates, and 

medication for Parkinson’s disease. Body mass index (BMI) and apnea-hypopnea index 

(AHI) are statistically significant between Category A and Category C, but not Category 

AB vs. Category C. 

6.2.3 PLM PHENOTYPE 

PLMI, the average number of PLMs per hour of sleep plus wake after sleep onset 

(WASO), was calculated automatically using the detection method we described in 

Chapter 5.  First, the algorithm removes cardiac interference from the EMG channel 

using an adaptive filter that reduces false positive detections.  Next, a two-pass noise 

floor calculation is performed and variable amplitude thresholds generated to account for 

changes in the baseline noise.  Candidate LMs are identified where the filtered signal (i.e. 

adaptively cleaned and root-mean-square filtered) meets the amplitude and duration 

which fall in line with AASM 2007 criteria for significant LM as described in the original 

manuscript [62].  LMs whose area under the curve is too small or that fall within the 

respiratory exclusion window of respiratory events described above1 are removed from 

candidacy.  Remaining LMs are deemed significant and scored for PLM using AASM 

2007 criteria. 

                                                
1 LM that occur 5.0 seconds before to 0.5 seconds after an apnea or hypopnea starts or 

which occur 0.5 seconds before until 5.0 seconds after the respiratory events end are 
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WSC PLM metrics for the RLS symptoms phenotype (i.e. RLS+) are given in Table 6.4. 

Statistically significant (p<0.05) differences are observed for PLMI, periodicity index, 

PLM distribution by sleep stage and WASO, and cardiac changes measured from the 

ECG channel time locked to all PLM detections.  The periodicity index is the number of 

inter-PLM-movement intervals greater than 10 s divided by the total number of inter- 

movement intervals (i.e. the elapsed time between consecutive LM onsets (i.e. the total 

LM count less one).  It is based on the observation that RLS patients exhibit longer inter- 

movement intervals than non-RLS patients[7].  The PLM night ratio quantifies the



 

 

Table 6.4: Wisconsin Sleep Cohort PLM metrics stratified by RLS symptoms. 

 RLS(+) (860) RLS(-) (1169) All (2394) 
RLS(+) vs 
RLS(-) 

Hours evaluated 7.32 ±0.03 7.33 ±0.02 7.32 ±0.02 p=0.743 
PLMI 20.89 ±0.86 13.94 ±0.55 16.96 ±0.45 p<1e-10 
Periodicity Index 0.44 ±0.01 (807) 0.35 ±0.01 (1098) 0.39 ±0.01 

(2244) 
p<1e-14 

PLM stage 1 11.43 ±0.73 (807) 7.63 ±0.52 (1098) 9.05 ±0.38 
(2244) 

p<1e-4 

PLM stage 2 82.67 ±4.31 (807) 53.11 ±2.76 (1098) 66.92 ±2.31 
(2244) 

p<1e-8 

PLM SWS 8.53 ±0.82 (807) 5.45 ±0.50 (1098) 6.64 ±0.41 
(2244) 

p=0.001 

PLM REM 5.88 ±0.47 (807) 3.93 ±0.31 (1098) 4.95 ±0.27 
(2244) 

p<1e-3 

PLM WASO 54.28 ±2.38 (807) 37.78 ±1.29 (1098) 44.32 ±1.15 
(2244) 

p<1e-8 

PLM night ratio 
(first half/second 
half) 

2.69 ±0.25 (663) 2.28 ±0.16 (854) 2.44 ±0.13 
(1784) 

p=0.166 

Attrition 
(PLM/hour) 

-4.05 ±0.23 -2.80 ±0.15 (1167) -3.30 ±0.12 
(2392) 

p<1e-5 

Heart rate (delta) 29.55 ±0.78 (807) 30.86 ±0.67 (1098) 30.48 ±0.48 
(2244) 

p=0.199 

Heart rate (slope) 3.00 ±0.09 (807) 3.13 ±0.08 (1098) 3.09 ±0.05 
(2244) 

p=0.263 

PLMI > 5% 63.2 49.45 55.79 X²=35.538 
p<1e-8 

OR=1.755 
PLMI > 10% 55.14 40.16 46.88 X²=41.947 

p<1e-10 
OR=1.831 

PLMI > 15% 45.11 31.6 37.25 X²=36.251 
p<1e-8 

OR=1.778 
PLMI > 30% 25.65 15.12 19.52 X²=32.767 

p<1e-7 
OR=1.937 

 

circadian or diurnal effect observed in PLM26, 27 and is presented here as the PLM count 

from the first half of the PSG sleep study divided by the PLM count measured in the 

second half.  The PLM ratio uses sleep onset to define a study’s start and total sleep time 
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plus WASO to determine the study’s mid point.  PLM attrition is the per hour change in 

PLM as determined by linear regression.  Because PLMI is readily accepted and 

understood in the sleep community we examined several PLMI cut-points in selecting the 

PLM phenotype.   

The positive PLM phenotype (PLMI+) is defined as PLMI≥15 and the control group or 

negative PLM phenotype (PLMI-) is PLMI<15.  We also considered PLMI>5 and 

PLMI<15 vs. PLMI≥15 as our control vs. phenotype grouping (not shown), but the 

results were not as significant as PLMI≥15 vs. PLMI<15. 

Table 6.5 compares PLM+ and controls (PLMI-) in the WSC.  PLM+ observations are 

predominantly male (60.0%) and older (62.2 years) than controls (54.0% male and 59.7 

years of age).  PLMI+ shows less total sleep time (5.85 vs. 6.20 hours, p<10-13) and 

greater WASO duration (1.45 hours vs. 1.13 hours, p<10-inf) than controls.  Lastly, RLS+ 

is more prevalent in PLM+ (44.3% vs. 31.7%, p<10-8) and RLS- less prevalent (40.3% 

vs. 53.1%, p<10-8). 
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Table 6.5:  Student t-test comparisons between PLM+ phenotype and controls in the 
Wisconsin Sleep Cohort. 

 PLMI>=15 PLMI<15 All  

 
(797 

observations) 
(1597 

observations) 
(2394 

observations) 
PLMI≥15 vs 

PLMI<15 
Demographics       

Age 62.2 ±0.30 58.4 ±0.20 59.7 ±0.17 p<1e-Inf 
Sex, Male (%) 60.70% 50.70% 54.00% OR=1.51 p<1e-5 
Clinical Data       

Body Mass Index 
(kg/m²) 

31.5 ±0.24 
(762) 

31.7 ±0.19 
(1570) 

31.6 ±0.15 
(2332) 

p=0.538 

Apnea Hypopnea 
Index (AHI) 

12.8 ±0.56 
(728) 

12.5 ±0.41 
(1506) 

12.6 ±0.33 
(2234) 

p=0.625 

AHI > 15 (%) 
29.0% (728) 27.5% (1506) 28.0% (2234) OR=1.08 

p=0.461 
PLMI 32.0 ±0.95 1.99 ±0.08 12.0 ±0.43 p<1e-Inf 

RLS(A) (%) 21.20% 15.50% 17.40% OR=1.46 p<1e-3 
RLS(B) (%) 23.10% 16.20% 18.50% OR=1.55 p<1e-4 

RLS(AB) (%) 44.30% 31.70% 35.90% OR=1.71 p<1e-8 
RLS(C) (%) 40.30% 53.10% 48.80% OR=0.60 p<1e-8 

Polysomnogram       
TST (hour) 5.85 ±0.04 6.20 ±0.02 6.08 ±0.02 p<1e-13 
Stage 1 (%) 11.5 ±0.24 10.1 ±0.17 10.6 ±0.14 p<1e-5 
Stage 2 (%) 66.9 ±0.33 65.6 ±0.23 66.0 ±0.19 p=0.002 

SWS (%) 6.33 ±0.25 7.54 ±0.20 7.13 ±0.16 p<1e-3 
REM (%) 15.1 ±0.22 16.5 ±0.16 16.0 ±0.13 p<1e-6 

WASO (hour) 1.45 ±0.03 1.13 ±0.02 1.24 ±0.02 p<1e-Inf 
Medication       
RLS symptom 

aggravators 
39.40% 35.30% 36.70% OR=1.19 

p=0.051 
RLS symptom 

inhibitors 
10.70% 9.20% 9.70% OR=1.18 

p=0.255 

 

6.2.4 GENOTYPES 

Thirteen SNPs from six genes are examined.  SNPs from BTBD9 on chromosome six 

include rs935271, rs9296249, and rs392809.  LOC643714 (chromosome 16) SNPs 

include rs3104767, rs3104774, and rs3104788.  Two genes from chromosome 2 are 



 

 204 

examined: MEIS1 (rs6710341, rs12469063, rs2300478), and “no gene” (rs6747972).  

Also examined are chromosome 15 gene MAP2K5 (rs649469) and chromosome 9 gene 

PTPRD (rs4626664 and rs1975197).   

6.2.5 ANALYSIS 

PSGs were processed for PLM using our described method that uses manually scored 

staging and respiratory event files in determining PLMI. The PLM detector was 

implemented in the SEV, a MATLAB toolbox for automating pattern recognition and 

biomarker classification algorithms in NPSG sleep cohorts[86, 117].   

The OR of each SNP is determined for the RLS symptoms phenotype (i.e. RLS+/-), the 

PLM phenotypes (i.e. PLMI+/-), and combinations of both (e.g. PLMI+ and RLS+) using 

generalized estimating equations (GEEs) with repeated measures as implemented in 

GEEQBOX, a MATLAB toolbox[118].  Statistically significant differences between 

phenotypes and controls (see Table 1 and Table 2) are included as covariates in each 

model. 

6.3 RESULTS 

SNP OR’s, calculated by risk allele frequency, are greater and more significant for PLM+ 

(Table 2) than RLS+ phenotype (Table 6.6).  

6.3.1 RLS(+) PHENOTYPE 

BTBD9 SNP rs392809 shows borderline significance for RLS+ in Table 6.6 (OR=1.24, 

p=0.051).  Estimating the OR with repeated measure logistic regression (i.e. GEEs) and 

accounting for RLS inhibiting and RLS aggravating medication as covariates increases its 

significance to p=0.029; however, this association was rendered insignificant (p=0.053) 

after adjustment for PLMI. Table 6.7 gives the ORs and p-values of each SNP.  None 

were statistically significant. 
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Table 6.6: Risk allele frequency for SNPs in RLS+ phenotypes. 

 
RLS(+) 

(n=380,o=860) 
RLS(-) 

(n=535,o=1169) RLS(+) vs RLS(-) 
BTBD9(6)    

rs9357271(T) 0.796 (357) 0.765 (493) OR=1.20 p=0.132 
rs9296249(T) 0.792 (336) 0.761 (464) OR=1.19 p=0.145 
rs3923809(A) 0.721 (356) 0.680 (490) OR=1.22 p=0.071 

LOC643714(16)    
rs3104767(G) 0.586 (359) 0.569 (495) OR=1.08 p=0.466 
rs3104774(G) 0.588 (359) 0.575 (481) OR=1.05 p=0.596 
rs3104788(T) 0.588 (360) 0.575 (495) OR=1.05 p=0.598 

MEIS1(2)    
rs6710341(G) 0.132 (357) 0.148 (495) OR=0.87 p=0.325 

rs12469063(A) 0.772 (359) 0.750 (494) OR=1.13 p=0.303 
rs2300478(T) 0.767 (346) 0.753 (476) OR=1.08 p=0.507 

no gene(2)    
rs6747972(A) 0.460 (359) 0.436 (494) OR=1.10 p=0.338 

MAP2K5(15)    
rs6494696(G) 0.692 (356) 0.693 (492) OR=1.00 p=0.976 

PTPRD(9)    
rs4626664(A) 0.155 (358) 0.163 (489) OR=0.95 p=0.675 
rs1975197(A) 0.157 (356) 0.161 (492) OR=0.98 p=0.856 
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Table 6.7  Genotype  values and odds ratios for RLS+ (n=860) phenotype versus 
controls (RLS-, n=1169) calculated by generalized estimating equations with PLMI and 
use of RLS effecting medications as covariates. 

	
   	
   OR p 
BTBD9(6)      

rs9357271(T) 0.16 1.17 (0.97, 1.38) 0.132 
rs9296249(T) 0.14 1.15 (0.95, 1.36) 0.171 
rs3923809(A) 0.18 1.20 (1.01, 1.39) 0.061 

LOC643714(16)      
rs3104767(G) 0.02 1.02 (0.85, 1.19) 0.819 
rs3104774(G) 0 1.00 (0.83, 1.17) 0.981 
rs3104788(T) 0 1.00 (0.83, 1.17) 0.973 

MEIS1(2)      
rs6710341(G) -0.12 0.89 (0.65, 1.14) 0.352 

rs12469063(A) 0.16 1.17 (0.97, 1.37) 0.121 
rs2300478(T) 0.12 1.13 (0.93, 1.33) 0.233 

no gene(2)      
rs6747972(A) 0.07 1.07 (0.90, 1.25) 0.43 

no	
  gene/MAP2K5(15)	
   	
  	
   	
   	
  	
  
rs6494696(G)	
   -­‐0.01	
   0.99	
  (0.80,	
  1.19)	
   0.954	
  

PTPRD(9)	
   	
  	
   	
  	
   	
  	
  
rs4626664(A)	
   -­‐0.01	
   0.99	
  (0.77,	
  1.22)	
   0.964	
  
rs1975197(A)	
   -­‐0.06	
   0.94	
  (0.72,	
  1.17)	
   0.622	
  

 

6.3.2 PLM(+) PHENOTYPE 

Table 6.8 shows statistically significant ORs, by allelic frequency, for PLM+ in BTBD9 

(rs3923809: OR=1.57, p<10-4), MEIS1 (rs12469063: OR=0.77, p=0.009), and PTPRD 

(rs1975197: OR=1.29, p=0.048).  Table 6.9 shows SNP ORs for PLM+, calculated with 

GEEs, covarying for age, gender, RLS+, RLS-, total sleep time, and WASO duration.  

SNPs in BTBD9, MEIS1, and MAP2K5 remain statistically significant with lower p-

values, and LOC643714 SNPs become statistically significant (e.g. rs104788: OR 1.35, 

p<10-4).  Interestingly, the MEIS1 genotypes show opposite effect for the RLS+ and 

PLM+ phenotypes.  For example, rs12469063 allele A shows increased odds of RLS+ 

(not statistically significant), but decreased, protective odds for PLM+. 

€ 

ˆ β 

€ 
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Table 6.8:  Risk allele frequency for SNPs in PLM+ phenotype and controls. 

 PLMI>=15 PLMI<15 All 
 (797 observations) (1597 observations) (2394 observations) 

BTBD9(6)    
rs9357271(T) 0.796 (357) 0.765 (493) OR=1.20 p=0.132 
rs9296249(T) 0.792 (336) 0.761 (464) OR=1.19 p=0.145 
rs3923809(A) 0.721 (356) 0.680 (490) OR=1.22 p=0.071 

LOC643714(16)    
rs3104767(G) 0.586 (359) 0.569 (495) OR=1.08 p=0.466 
rs3104774(G) 0.588 (359) 0.575 (481) OR=1.05 p=0.596 
rs3104788(T) 0.588 (360) 0.575 (495) OR=1.05 p=0.598 

MEIS1(2)    
rs6710341(G) 0.132 (357) 0.148 (495) OR=0.87 p=0.325 

rs12469063(A) 0.772 (359) 0.750 (494) OR=1.13 p=0.303 
rs2300478(T) 0.767 (346) 0.753 (476) OR=1.08 p=0.507 

no gene(2)    
rs6747972(A) 0.460 (359) 0.436 (494) OR=1.10 p=0.338 

MAP2K5(15)    
rs6494696(G) 0.692 (356) 0.693 (492) OR=1.00 p=0.976 

PTPRD(9)    
rs4626664(A) 0.155 (358) 0.163 (489) OR=0.95 p=0.675 
rs1975197(A) 0.157 (356) 0.161 (492) OR=0.98 p=0.856 
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Table 6.9:  Genotype  values and odds ratios for PLM+ (n=797) phenotype versus 
controls (PLM-, n=1597) calculated by generalized estimating equations with gender, 
RLS+, RLS-, TST, and WASO duration as covariates. 

	
   	
   OR p 
BTBD9(6)      

rs9357271(T) 0.36 1.43 (1.27, 1.59) <1e-4 
rs9296249(T) 0.39 1.47 (1.31, 1.64) <1e-5 
rs3923809(A) 0.43 1.54 (1.39, 1.69) <1e-7 

LOC643714(16)      
rs3104767(G) 0.26 1.30 (1.16, 1.43) <1e-3 
rs3104774(G) 0.28 1.33 (1.19, 1.46) <1e-4 
rs3104788(T) 0.3 1.34 (1.21, 1.48) <1e-4 

MEIS1(2)      
rs6710341(G) 0.04 1.04 (0.85, 1.23) 0.664 

rs12469063(A) -0.31 0.74 (0.58, 0.89) <1e-4 
rs2300478(T) -0.26 0.77 (0.61, 0.92) <1e-3 

no gene(2)      
rs6747972(A) 0.03 1.03 (0.89, 1.16) 0.687 

MAP2K5(15)      
rs6494696(G) 0.23 1.26 (1.10, 1.41) 0.003 

PTPRD(9)      
rs4626664(A) -0.03 0.97 (0.78, 1.15) 0.721 
rs1975197(A) 0.29 1.34 (1.16, 1.51) 0.001 

 

6.3.3 COMBINED PHENOTYPES 

RLS+ and PLM+ phenotypes are combined into three phenotypes: (1) RLS+ with PLM+ 

(RLS+/PLM+), (2) RLS+ with PLM- (RLS+/PLM-), and (3) RLS- with PLM+ (RLS-

/PLM+).  Table 6.10 lists genotype ORs calculated with GEEs using RLS- with PLM- 

(RLS-/PLM-) as the control group.  Covariates include age, gender, TST, WASO 

duration, use of RLS inhibiting medication, and RLS aggravating medication.  BTBD9 

and LOC643714 SNPs show increased OR for RLS+/PLM+, while MEIS1 SNPs show 

increased OR for RLS-/PLM+.  BTBD9 SNP rs392809 shows increased risk for RLS-

/PLM+ (OR=1.31, p=0.021) and also RLS+/PLM+ (OR=1.71, p<10-3). 
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Finally, SNP ORs for PLM+/RLS+ vs. PLM-/RLS+ and for PLM+/RLS- vs. PLM- are 

estimated by GEEs, covering for age, gender, TST, WASO duration, and use of RLS 

effecting medications. Table 6.11 shows the results.  Two statistically significant 

differences arise from these results that are not captured by Table 6.8 or Table 6.9.  

PTRD SNP rs1975197 is a significant risk for PLM+ given RLS+ (OR=1.50, p=0.006), 

as is MAP2K5’s SNP rs6494696 (OR=1.32, p=0.032).   

Table 6.10:  Genotype  values and odds ratios for (A) PLM+ RLS+ (n=353), (B) RLS+ 
PLM- (n=507), and (C) RLS- PLM+ (n=321) versus controls (PLM- RLS-, n=848).  
Results are calculated using generalized estimating equations with age, gender, TST, 
WASO duration, and RLS effecting medication use as covariates. 

	
   	
   OR p 
BTBD9(6)      

rs9357271(T) 0.57 1.77 (1.46, 2.08) <1e-3 
rs9296249(T) 0.57 1.76 (1.46, 2.07) <1e-3 
rs3923809(A) 0.53 1.70 (1.43, 1.97) <1e-3 

LOC643714(16)      
rs3104767(G) 0.29 1.33 (1.10, 1.57) 0.015 
rs3104774(G) 0.3 1.35 (1.12, 1.58) 0.012 
rs3104788(T) 0.28 1.32 (1.08, 1.55) 0.021 

MEIS1(2)      
rs6710341(G) -0.03 0.97 (0.64, 1.29) 0.836 

rs12469063(A) -0.07 0.93 (0.67, 1.20) 0.612 
rs2300478(T) -0.08 0.93 (0.66, 1.20) 0.581 

no gene(2)      
rs6747972(A) 0.16 1.17 (0.93, 1.41) 0.192 

MAP2K5(15)      
rs6494696(G) 0.09 1.09 (0.83, 1.35) 0.512 

PTPRD(9)      
rs4626664(A) -0.14 0.87 (0.55, 1.18) 0.378 
rs1975197(A) 0.07 1.07 (0.77, 1.37) 0.655 

 
(A) RLS+ PLM+ (n=353) vs RLS- PLM- (n=848) 
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   OR p 
BTBD9(6)      

rs9357271(T) 0 1.00 (0.78, 1.23) 0.974 
rs9296249(T) 0.01 1.01 (0.79, 1.24) 0.898 
rs3923809(A) 0.1 1.11 (0.90, 1.32) 0.336 

LOC643714(16)      
rs3104767(G) -0.13 0.88 (0.69, 1.07) 0.194 
rs3104774(G) -0.15 0.86 (0.67, 1.05) 0.117 
rs3104788(T) -0.13 0.88 (0.69, 1.07) 0.172 

MEIS1(2)      
rs6710341(G) -0.14 0.87 (0.59, 1.15) 0.339 

rs12469063(A) 0.12 1.12 (0.89, 1.35) 0.325 
rs2300478(T) 0.08 1.08 (0.85, 1.31) 0.515 

no gene(2)      
rs6747972(A) 0 1.00 (0.80, 1.20) 0.972 

MAP2K5(15)      
rs6494696(G) -0.06 0.94 (0.72, 1.16) 0.573 

PTPRD(9)      
rs4626664(A) -0.03 0.97 (0.71, 1.23) 0.816 
rs1975197(A) -0.19 0.83 (0.56, 1.10) 0.171 

 
(B) RLS+ PLM- (n=507) vs RLS- PLM- (n=848) 

  

€ 

ˆ β 
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   OR p 
BTBD9(6)      

rs9357271(T) 0.04 1.04 (0.80, 1.27) 0.764 
rs9296249(T) 0.15 1.16 (0.92, 1.39) 0.231 
rs3923809(A) 0.28 1.32 (1.09, 1.54) 0.017 

LOC643714(16)      
rs3104767(G) 0.07 1.07 (0.88, 1.27) 0.487 
rs3104774(G) 0.11 1.11 (0.91, 1.31) 0.294 
rs3104788(T) 0.13 1.14 (0.94, 1.34) 0.194 

MEIS1(2)      
rs6710341(G) 0.01 1.01 (0.73, 1.29) 0.947 

rs12469063(A) -0.34 0.71 (0.49, 0.94) 0.004 
rs2300478(T) -0.3 0.74 (0.51, 0.98) 0.013 

no gene(2)      
rs6747972(A) -0.13 0.88 (0.67, 1.09) 0.221 

MAP2K5(15)      
rs6494696(G) 0.04 1.04 (0.81, 1.27) 0.74 

PTPRD(9)      
rs4626664(A) -0.06 0.95 (0.68, 1.21) 0.687 
rs1975197(A) 0.18 1.19 (0.93, 1.45) 0.18 

 
(C) RLS- PLM+ (n=321) vs RLS- PLM- (n=848) 
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Table 6.11: Genotype  values and odds ratios for (A) PLM+ RLS+ (n=353) versus 
controls (PLM- RLS-, n=507) and (B) PLM+ RLS- (n=321) versus controls (PLM- 
RLS+, n=848).  Results are calculated using generalized estimating equations with age, 
gender, TST, WASO duration, and RLS effecting medications as covariates. 
 

 
PLM(+) RLS+ (n=353) vs 

Controls (n=507) 
PLM(+) in RLS- (n=321) vs 

Controls (n=848) 
  OR p  OR p 

BTBD9(6)             
rs9357271(T) 0.68 1.97 (1.68, 2.25) <1e-5 0.04 1.04 (0.80, 1.28) 0.763 
rs9296249(T) 0.67 1.96 (1.67, 2.25) <1e-5 0.15 1.16 (0.92, 1.39) 0.23 
rs3923809(A) 0.5 1.64 (1.39, 1.89) <1e-4 0.28 1.32 (1.09, 1.54) 0.017 

LOC643714(16)       
rs3104767(G) 0.51 1.67 (1.45, 1.90) <1e-5 0.07 1.07 (0.88, 1.27) 0.486 
rs3104774(G) 0.53 1.70 (1.48, 1.92) <1e-5 0.11 1.11 (0.91, 1.31) 0.294 
rs3104788(T) 0.51 1.67 (1.44, 1.89) <1e-5 0.13 1.14 (0.94, 1.34) 0.195 
MEIS1(2)       
rs6710341(G) 0.08 1.08 (0.77, 1.39) 0.618 0.01 1.01 (0.73, 1.29) 0.947 

rs12469063(A) -0.15 0.86 (0.61, 1.10) 0.224 -0.34 0.71 (0.49, 0.94) 0.004 
rs2300478(T) -0.09 0.92 (0.67, 1.16) 0.487 -0.3 0.74 (0.51, 0.98) 0.013 

no gene(2)       
rs6747972(A) 0.17 1.18 (0.96, 1.40) 0.138 -0.13 0.88 (0.67, 1.09) 0.226 

MAP2K5(15)       
rs6494696(G) 0.27 1.32 (1.07, 1.57) 0.032 0.04 1.04 (0.81, 1.27) 0.741 
PTPRD(9)       
rs4626664(A) 0.03 1.03 (0.73, 1.33) 0.834 -0.06 0.94 (0.67, 1.21) 0.675 
rs1975197(A) 0.4 1.50 (1.21, 1.79) 0.006 0.18 1.19 (0.93, 1.45) 0.181 

 

6.3.4 TREND ANALYSIS 

Genotypes are evaluated for a linear trend of increasing PLMI by linear regression.  

Table 6.12(A) shows each SNP’s effect coefficients for PLMI in the unadjusted model, 

while Table 6.12(B) shows the coefficients in the adjusted model which accounts for age, 

gender, use of RLS inhibiting medication, use of RLS aggravating medication, AHI, 

BMI, TST, WASO duration, RLS+, and RLS-.    
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BTBD9 and MEIS1 SNPs are significant before adjustment and increase in statistical 

significance after adjustment.  LOC643714 SNPs are statistically significant after 

covariate adjustment.  MEIS1 shows the greatest trend (rs21469063  =-3.5, p<0.001), 

followed by BTBD9 (rs3923809 =2.85, p<0.001) and LOC643714 (rs3104767 =1.78, 

p=0.022). 

Table 6.12:  Genotype linear trend for PLMI calculated by regression (A) without 
adjustment, and (B) adjusting for age, gender, RLS effecting medication use, apnea 
hypopnea index, body mass index, TST, WASO duration, RLS+, and RLS-. 

 
(A) PLMI for All (n=2394), 

unadjusted model 
(B) PLMI for All (n=2394) 

adjusted for covariates 
  OR p  OR p 

BTBD9(6)             

rs9357271(T) 2.73 15.28 (13.25, 17.30) 0.008 2.92 
18.52 (17.16, 

19.89) <1e-4 

rs9296249(T) 2.38 10.80 (8.80, 12.80) 0.02 3.06 
21.31 (19.97, 

22.66) <1e-5 

rs3923809(A) 2.83 16.98 (15.13, 18.82) 0.003 3.01 
20.19 (18.96, 

21.43) <1e-5 
LOC643714(16)           

rs3104767(G) 1.16 3.18 (1.51, 4.85) 0.175 1.62 5.04 (3.92, 6.17) 0.005 
rs3104774(G) 1.02 2.78 (1.09, 4.47) 0.235 1.67 5.30 (4.17, 6.44) 0.004 
rs3104788(T) 1.17 3.23 (1.54, 4.91) 0.172 1.74 5.68 (4.55, 6.82) 0.003 
MEIS1(2)           
rs6710341(G) -0.35 0.71 (-1.69, 3.10) 0.776 -0.42 0.66 (-0.98, 2.30) 0.618 

rs12469063(A) -3.12 0.04 (-1.90, 1.99) 0.002 -3.17 0.04 (-1.28, 1.36) <1e-5 
rs2300478(T) -2.9 0.05 (-1.92, 2.03) 0.004 -2.81 0.06 (-1.31, 1.43) <1e-4 

no gene(2)           
rs6747972(A) 0.69 2.00 (0.27, 3.72) 0.431 0.96 2.60 (1.42, 3.79) 0.113 

MAP2K5(15)           
rs6494696(G) 1.31 3.71 (1.81, 5.61) 0.177 1.74 5.67 (4.39, 6.95) 0.008 
PTPRD(9)           
rs4626664(A) -1.44 0.24 (-2.08, 2.55) 0.221 -0.45 0.64 (-0.92, 2.20) 0.574 
rs1975197(A) 0.7 2.02 (-0.24, 4.27) 0.542 1.73 5.65 (4.11, 7.20) 0.028 
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6.4 DISCUSSION 

6.4.1 ALLELE MEASURES 

The allelic OR and frequencies in RLS cases and controls for rs3923809 fall in line with 

those shown previously by Steffansen et. al [115], but do not reach the statistical 

significance necessary to state replication without model adjustment. Population 

attributable risk is also much lower in our sample than theirs (0.104 vs. 0.46). 

The allelic frequencies and odds ratios for RLS symptoms are lower than those put forth 

by Winkelmann et. al for RLS [15].  And in the case of rs2300478, the risk allele is 

different (T instead of G).  It may appear that these differences are due to the definition of 

RLS symptoms, which is less stringent than the criteria used by Winkelmann.  However, 

the similarities between Winkelmann’s SNP measures for RLS and ours for PLMI≥15 

(Table 4) are striking.  The OR and allele frequencies closely follow each other now for 

the two phenotypes (i.e. PLMI≥15 in our study and RLS in Winkelmann [15]), and the 

rs2300478 risk alleles match (i.e. G).  PLMI is an accurate manifestation of several SNPs 

identified for RLS and will likely prove a more stable, and physiologically verifiable 

measure for RLS than current assessments (e.g. interview response).  If we used 

PLMI≥15 as the definition of RLS, our assessments would replicate the genetic findings 

of Winkelmann et al [15] for SNPs in BTBD9, LOC643714, MEIS1, MAP2K5, and 

PTPRD.   

6.4.2 SUMMARY 

In summary, thirteen SNPs known to increase susceptibility to RLS were examined for 

susceptibility of PLM with and without RLS symptoms.  PLM+ was defined as PLMI≥15 

where PLMI was automatically scored during sleep and WASO using the PLM detector 

described in Chapter 5. RLS symptoms were determined by mailed survey response with 

questions that closely followed RLS diagnostic guidelines, though not specifying if 

symptoms worsen at night [104].  ORs calculated by risk allele frequency and GEE were 

examined in several comparisons of PLM+ and RLS+ while taking into account 
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statistically significant differences between phenotypes (e.g. age, gender, TST, WASO 

duration, and use of medication).  SNPs in BTBD9, LOC643714, MEIS1, MAP2K5, and 

PTPRD were associated with heightened risk for PLMs.  Several SNPs in MEIS1 were 

associated with heightened risk for PLMs without RLS symptoms, while SNPs in 

BTBD9, LOC64714, MAP2K5, and PTPRD9 were associated with higher risk for PLMs 

in the presence of RLS symptoms  (i.e. RLS+).  A linear increase of PLMI by risk allele 

is observed in these SNPs as well.  A publication discussing these findings is currently in 

revision. 

 



 

 

CHAPTER 7 SLEEP IN COMBAT VETERANS WITH POSTTRAUMATIC STRESS 

DISORDER 

This chapter investigates two aspects of sleep in a cohort of Vietnam era combat veterans 

diagnosed with and without posttraumatic stress disorder.  Rapid eye movements are 

investigated first and a new technique for measuring and characterizing ocular position is 

introduced.  Second, inter-hemispheric EEG coherence is measured during a sleep and a 

significant reduction is seen in combat veterans with PTSD. 

Steve Woodward was instrumental in getting this research going and providing 

exceptional help with the dataset and having the vision for investigating EEG coherence 

in this cohort.  Bernard Widrow was very helpful in talking through many of the 

questions relating to rapid eye movements and cognitive activity during sleep in subjects 

with PTSD.  Also, Emmanuel Mignot was very supportive in letting me pursue this line 

of research under such guidance.  

7.1 INTRODUCTION 

There has been limited characterization of phasic eye movement activity during rapid eye 

movement (REM) sleep in patients diagnosed with posttraumatic stress disorder.  Sleep 

disturbances are a core component of post-traumatic stress disorder (PTSD), a syndrome 

that develops when a person is unable or fails to recover from the stress induced by a 

specific traumatic event [17, 119].  Common symptoms of PTSD, such as nightmares, 

insomnia, and hyper-vigilance or hyper-arousal can aggravate sleep problems, which may 

in turn perpetuate PTSD [120-122]. 

Emotional memory consolidation [123], as well as dreams and nightmares [124, 125], are 

thought to occur most during REMS.  Inability to recover from trauma-induced stress has 

been viewed as a failure to learn from and re-integrate trauma-related events during 
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sleep[120, 126-128].  And, without positive intervention, emotional memory attached to 

the traumatic event may be maintained rather than stored during sleep [123].   

Nocturnal polysomnography (NPSG) based-sleep studies involving PTSD have 

historically focused either on global power spectral analysis of the EEG or on sleep 

architecture changes (e.g. time spent in REM sleep versus non-REM) [30].  Despite 

numerous published and validated algorithms for quantifying phasic eye movement 

activity [69-73], the sleep community has been slow to incorporate such measures in their 

investigations of PTSD.   

This chapter investigates phasic eye movements (EM) and hemispheric correlation in the 

EEG of sleep in Vietnam era combat veterans diagnosed with PTSD and matched 

controls.  Chapter 1 describes this Combat Veteran Cohort (CVC) and its collection 

procedure in detail.  Background information on PTSD, and different electrooculogram 

(EOG) montages are mentioned in section 7.2.  Section 7.3 presents several rapid eye 

movement (REM) detectors that are optimized for analysis in the data set using a 

physiologically based criteria.  A new approach to measuring EMs which takes advantage 

of the EOG montage used in this dataset is given in Section 7.4.  Section 7.4 shows, for 

the first time, the hemispheric breakdown in sleep EEG of combat veterans diagnosed 

with PTSD.  Alternating hemispheric EEG activity is found in some prey animals, and is 

found in combat veterans as well when examining the magnitude squared coherency of 

left and right EEG electrodes.  Concluding remarks are given in Section 7.7. 

7.2 BACKGROUND 

This section provides background information on PTSD and motivation for analysis of 

REM and inter-hemispheric EEG coherency. 

7.2.1 POSTTRAUMATIC STRESS DISORDER 

Sleep disturbances are a core component of posttraumatic stress disorder (PTSD), a 

syndrome that develops when a person is unable or fails to recover from a traumatic 
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experience as discussed in Section 1.3.3.  Common symptoms of PTSD, such as 

nightmares, insomnia, and hyper-vigilance or hyper-arousal can aggravate and impose 

sleep problems, which may in turn perpetuate PTSD. NPSG based-sleep studies 

involving PTSD have historically focused on global power spectral analysis of the EEG 

or on sleep architecture changes. 

7.2.2 EYE MOVEMENTS IN SLEEP 

Aserinsky and Kleitman discovered groupings of rapid eye movements with wake-like 

electroencephalograhy (EEG) readings and large heart rate variations in sleep [129, 130], 

which led to sleep’s two state division: rapid eye movement sleep (REMS) and non-rapid 

eye movement sleep (NREMS). REMS may be further divided based on ocular activity. 

Phasic activity in REMS consists of REM, muscle twitches, and increased heart rate 

variability.  These behaviors are absent in tonic REMS [69].  Tonic activity is described 

in terms of its timing and duration of REM sleep, while activity or total counts, mean 

duration, incidence, and rotation of EMs is useful for describing phasic activity [71]. 

7.2.3 ELECTROOCULAGRAPHY  

EMs are measured by electrooculagraphy (EOG) during nocturnal polysomnography 

(NPSG) sleep studies.  The EOG models the eye as a dipole with positive polarity at the 

pupil and negative polarity at the retina.  Placing electrodes near the eye allow changes in 

pupil position to be measured as changes in voltage with respect to a distal cephalic 

reference.   
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Figure 7.1:  Electrooculagraphy montages for measuring eye movements. 

Figure 7.1 shows several EOG montages used in NPSG.  A two channel, EOG montage, 

following that of Uenoyama’s VEOG configuration [131], was used on the left eye as 

shown in Figure 7.2.  The Woodward configuration allows detection of horizontal, 

vertical, and oblique EMs by treating the horizontal and vertical input channel voltages as 

X and Y vectors from which ocular direction can be determined.  The setup provides 

greater fidelity than the traditional montage setup proposed by Rechtschaffen and Kales 

[1], but less than the double eye, double channel montage proposed by Schneider [132, 

133] which takes into account the possibility of non-conjugate EMs during REMS [134, 

135]. 
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Figure 7.2: Woodward EOG montage.  Ocular position can be estimated from the vertical 
and horizontal EOG signal data as shown here. 

7.3 PHASIC RAPID EYE MOVEMENT DETECTORS 

REMS abnormalities are considered a core component of PTSD and likely reflect a 

patient’s hindered ability to process traumatic memory.  Four previously published, and 

three unpublished eye movement detection algorithms are considered for phasic REMS 

analysis here.  Published eye movement detection methods are from Gopal and Haddad 

[69], Takahashi and Atsumi [71], McPartland and Kupfer [70], and Tan, Campbell, and 

Feinberg [72].  These methods fall into the categories of power spectral analysis (Tan), 

slope and amplitude detection (Takahashi, Gopal), and ocular synchrony (McPartland).  

Two new methods, dual threshold, and simple slope are developed as baseline measures 

 

 

 

Tonic REM – no eye 
movements 

H_EOG 

V_EOG 

              
 

 

Woodward montage 
Pros: (1) Measures horizontal, 
vertical, and oblique eye 
movements. 
  (2) Horizontally robust to EEG     
contamination. 
Cons: Conjugative synchrony 
assumed 

            
H_EOG 

V_EOG 
            

H_EOG 

V_EOG 

Vertical, slow eye movements Horizontal eye movement 

                  

Phasic REM with possible non-conjugative 
eye movements  

Oblique, rapid eye movement 



 

 221 

of amplitude and slope base detection methods.  A third method, quadrant detection, 

takes advantage of the Woodward montage and combines both vertical and horizontal 

EOG inputs to determine ocular activity in a two dimensional plane. 

7.3.1 POWER SPECTRAL ANALYSIS 

Tan implements a power spectral method for detecting eye movement potentials using a 

single channel EOG with the lead placed on the left outer canthus and reference placed 

mid-forehead.  Spectral analysis by Welch averaging was performed on 5.120s blocks at 

2.620 s increments.  The majority of spectral power of EM activity during REM was 

found in the 0.3 - 2.0 Hz frequency range [72].    

7.3.2 AMPLITUDE 

Detector Dual Threshold applies a lower and upper threshold to the EOG channel 

followed by a duration criteria to determine eye movement. Voltage must exceed an 

upper threshold of 30 µV and then fall below 10 µV within 0.1 seconds for detection to 

occur.  Detections less than 0.05 seconds apart are combined.  

7.3.3 SLOPE AND AMPLITUDE 

Detector Simple Slope uses a four-point, first derivative slope of the EOG signal to obtain 

peaks of interest.  Peaks whose raw data exceeds 30 µV are classified as eye movement.  

Gopal determines a series of decision points based on local maxima and minima and then 

applies a series of rules – slope threshold and amplitude threshold – to determine 

presence of “eye movement waveforms (EMW)”.  The method was applied to the EOGs 

of babies with leads placed on the outer canthus of each eye and referenced to the 

forehead [69].  The optimal thresholds discovered by Gopal were adjusted to more 

appropriately fit our adult dataset.  A 25 µV/sec threshold was set for the slope and a 30 

µV threshold for amplitude.  Their low-pass frequency cutoff of 6.5 Hz was changed to 

8.0 Hz to match the other detection algorithms.  
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Takahashi applies three rules to first and second order derivatives of smoothed EOG data 

to determine EMs.  Smoothing is done via a seven point moving average filter, and EMs, 

recognized by abrupt changes in slope, are detected if the signal amplitude exceeds 30 

µV, the slope exceeds 248.3 µV/second, and the duration is less than 0.5 seconds.  

7.3.4 SIGNAL ESTIMATION AND DENOISING 

The eye movement detection algorithms described above were implemented in the SEV 

and visually spot-checked for correctness.  The previously published methods 

performance appeared much poorer in our dataset than those described the authors.  False 

positive detection of EMs were frequently seen in NREM sleep due to interfering EEG 

activity, such as K-complexes (waveforms that transition sharply once between a 

negative and positive deflection), or transient noise picked up in the EOG channel.  

Similar to the PLM detectors tested in Chapter 5, the EM detectors here were biased by 

the specific patient data sets and montage configurations they were developed for and not 

robust to our dataset.  The EM detectors appeared logically sound given clean data, so I 

resolved to clean the data and use the distribution of detected EMs per hour in REM and 

NREM sleep as a measure of performance.  A data cleaning method that results in higher 

REM to NREM detections per hour sleep is more suitable than one without or with a 

smaller REM/NREM classification ratio.  Wavelet denoising and adaptive filtering are 

considered for preparatory EOG cleaning. 

7.3.4.1 Adaptive Filtering  

The least mean squares (LMS) algorithm adaptively updates filter weights to minimize 

the mean square error between two signal inputs.  Let s(n) be defined as  

 

where x(n) is the true signal of interest and  is the unwanted noise.  Given a 

reference signal r(n) that is correlated with  but independent of x(n) an adaptive 

filter may be constructed to remove the unwanted noise  from the signal s(n) by 

s(n) = x(n)+η(n)

η(n)

η(n)

η(n)
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minimizing the mean square error.  The block diagram in Figure 7.3 shows the adaptive 

filter with the vertical EOG channel as the signal with noise (s(n)) and the EEG channel 

as the correlated noise reference signal (r(n)).  The error, e(n), is the difference between 

the primary input signal and the adaptively filtered reference signal output y(n) 

 

where h is an M length vector of filter coefficients.  Mathematically, the error is 

 

Dropping the (n) sample notation, the expected value of the error squared is 

 

Assuming x to be a zero-mean, stationary random variable, uncorrelated with  the 

mean-squared-error (MSE) can be reduced to  

 

Minimizing the mean-squared error involves minimizing .  The adaptive 

filter has no effect on the signal x(n), and determining the least mean squared (LMS) 

error is found by minimizing .  Adjusting the filter coefficients to bring y 

toward . 

y(n) = h(m)
m=1

M
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Here, the EOG channel is the first signal and consists of true eye movement and noise 

and the EEG channel is the reference signal that correlates with noise in the EOG.  The 

recursive least squares (RLS) implementation presented by He [76] to remove unwanted 

EOG signal from EEG signal is used here with the opposing purpose of removing 

unwanted EEG from EOG data by simply swapping the input and reference channel in 

the adaptive algorithm.  Figure 7.3 shows a K-complex from the EEG removed from the 

vertical EOG channel by adaptive RLS filtering.  

 

Figure 7.3: Adaptive noise cancelling of EEG interference in the EOG channel. 

7.3.4.2 Wavelet Denoising 

Wavelets are used to de-noise a signal by decomposing the signal into low and high 

frequency components using a specified kernel.  The components, details and 

approximate, represent different frequency bands of the signal that may individually 

cleaned by zeroing unwanted parts (e.g. places where the components fall below some 

threshold) and then resynthesizing with cleaned (zeroed) components.  

The SEV’s wavelet denoising function, denoise_wavelet, allows users to specify the 

number of wavelet decompositions to use, set the threshold T, and determine whether 

soft-thresholding should be used.  I used five decomposition levels (four details and one 

approximation) and selected soft-thresholding at 50 µV.  The SEV function pads the 

input signal data, if necessary, so its final length N is evenly divisible by  where J is the 

number of decomposition levels.  MATLAB’s swt function performs the stationary 

2J
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wavelet decomposition of the padded input data and returns W, a JxN matrix of wavelet 

coefficients.  The denoise_wavelet method then goes through the first J-1 levels (i.e. the 

detail coefficients) and compares each sample to the threshold and changes the value 

according to the soft-threshold selection.  W(j,n), the nth wavelet coefficient of detail level 

j, is updated as 

 

wherever T is exceeded.  MATLAB’s iswt function resynthesizes the denoised 

coefficients into a single N length vector, which denoise_wavelet crops to the original 

input signal length as necessary.  The Haar kernel is used for wavelet decomposition and 

synthesis.  Further information on wavelet de-noising can be found in [136] and [137].   

 

Figure 7.4: Comparison of finite impulse response filtering and wavelet denoising for 
cleaning EOG signal. 

Figure 7.4 shows wavelet denoising as a suitable option compared to standard low, high, 

and band pass finite-impulse-response filtering techniques.  Decomposing the EOG 

signal by wavelet transform, thresholding its detail components, and finally synthesizing 

the selected components together produces a smoothed version of the original signal that 

is less susceptible to false detections due to noise.     

W ( j,n) =
0 hard thresholding

sgn(W ( j,n)) ⋅ (W ( j,n) −T ) soft thresholding
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7.3.5 PHYSIOLOGICAL BASED PATTERN RECOGNITION OPTIMIZATION 

One of the most challenging aspects of machine learning is obtaining a gold standard data 

set to train with.  Having an expert to identify different categories as we did for PLMs in 

the previous chapters is often a rare occurrence or an expensive undertaking.  A popular 

alternative to this currently is to outsource the task to a general population at a smaller 

cost as recently done with spindle detections using Amazon’s Mechanical Turks (AMT) 

service [138].  While this is often a good and acceptable solution, a considerable amount 

of overhead is required – setting up the service, creating instructions for the users, 

obtaining the training dataset, and cleaning the results to remove errors caused by poor or 

nefarious performers.  Various strategies exist for removing bad results from the training 

sample, and many utilize information from the other scorers to determine some measure 

of collective reliability.  However, rather than pursue these lines of investigation, we 

consider a physiological based approach that takes advantage of the information we have.   

REMs, the namesake feature of REMS, are required for identifying and scoring REMS 

by R&K criteria [1]; the criteria used to score the CVC.  While we do not have a gold 

standard of the exact positions or number of EMs in each study, we can infer their 

distribution from the record of manual scored sleep stages.  Because REM occur 

predominantly during REMS (and also wake) a REM detector’s performance can be 

roughly gauged from the distribution of its detections across manually scored sleep 

stages.  A random, naïve detector will have a flat distribution with events scored equally 

across all sleep stages. A detector that is better than random will favor REMS over Stage 

1, Stage 2, and Slow Wave Sleep.  This approach is particularly helpful in determining 

which preprocessing steps are best for each REM detector. 

Two ratios, the REM:NREM activity ratio and the REM:NREM density ratio, are used to 

quantify distribution performance of the adaptive noise cancellation and wavelet 

denoising preprocessing techniques as applied to each REM detector.  
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7.3.5.1 REM:NREM activity ratio 

The REM:NREM activity ratio is the total number of events detected in REM divided by 

the total number of events detected in NREM sleep (NREMS).  It is defined as 

 

for K detections with discrete epoch start locations stored in the K element vector v.  In 

practice, the vector v is obtained using a sample to epoch conversion formula based on 

the underlying signal’s sample rate and the defined epoch length (e.g.  30 s).  The 

function s=stage(n) returns the manually scored sleep stage s for the input epoch n.   

Possible values for s include 0 for wake, 1,2,3 or 4 for NREM, 5 for REM, and 7 for 

unknown cases.  In the above, and following expressions,  is a Boolean 

operation which is true, and given a value of 1, if stage(y) is in the set S.  Otherwise the 

expression is false and returns 0.  The summation of Boolean values is done using the 

decimal, not binary, system (i.e. true + true + false = 1 + 1 + 0 = 2). 

7.3.5.2 REM:NREM density ratio 

The REM:NREM density ratio is the ratio of the detection density in REMS to the 

detection density in NREM sleep.  The density ratio accounts for unequal distributions of 

REM and NREM sleep during a study and is the activity ratio normalized by the duration 

of REM and NREM sleep measured in epochs. 
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∑
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7.3.6 OPTIMIZATION RESULTS 

Table 7.1 and Table 7.2 show the REM:NREM density ratios for each EM detector 

preprocessing configuration as applied to the horizontal and vertical EOG channels 

respectively.  The Tan filter does not improve with preprocessing of either HEOG or 

VEOG signals.  The dual threshold method improves with wavelet denoising of the 

VEOG channel, but does not improve with preprocessing of the HEOG channel.  

Takahashi’s detector improves with adaptive filtering of the VEOG channel, and wavelet 

denoising of the HEOG.  The remaining detectors improve with wavelet denoising of the 

VEOG and HEOG channels.  

Gopal’s EM detector shows the highest REM:NREM density for both EOG channels with 

wavelet denoising, followed by the simple slope and amplitude method, then the dual 

threshold, and lastly Tan’s detector.  The Tan detector shows the lowest (i.e. worst) 

REM:NREM densities for every EOG configuration evaluated and does not warrant 

further investigation here.  The remaining methods are still hindered by their separate 

application to each EOG channel (i.e. vertical and horizontal), which leaves the question 

of combining EMs.  For example, if a horizontal EM is detected shortly after, and also 

during a vertical EM detection, should it be counted as a single EM, or two separate 

EMs?  I wanted to address this problem in a way that combines the EOG channels so that 

EMs can be detected directly and not require a post-combination synthesis of EMs 

detected from the separate channels.  The approach taken is discussed in the next section. 
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Table 7.1: Horizontal EOG REM:NREM density ratios for EM classification methods 
under preprocessing configurations: none, wavelet denoising, adaptive filtering of EEG 
(F-4 position), and both wavelet denoising and adaptive filtering.  Results are shown as 
the mean, plus or minus the SEM, and number of subjects in parenthesis. 

 None Wavelet 
denoising 

Adaptive 
filtering of F-4 

EEG 

Wavelet 
denoising with 

Adaptive filtering 
Tan 2.41 ±0.14 (120) 1.08 ±0.02 (120) 2.34 ±0.15 (120) 1.07 ±0.02 (120) 
Simple 
Slope + 
Amplitude 

16.6 ±2.60 (119) 19.9 ±3.9 (113) 13.3 ±2.2 (118) 18.1 ±4.6 (115) 

Gopal 22.3 ±2.9 (118) 25.0 ±3.4 (114) 18.7 ±2.8 (119) 18.0 ±2.7 (113) 
Takahashi 3.01 ±0.29 (120) 11.8 ±1.6 (116) 4.24 ±0.37 (120) 11.3 ±1.5 (118) 
Dual 
Threshold 15.1 ±2.6 (119) 14.2 ±1.9 (115) 13.7 ±2.0 (119) 11.9 ±1.9 (115) 

 

Table 7.2: Vertical EOG REM:NREM density ratios for EM classification methods under 
preprocessing configurations: none, wavelet denoising, adaptive filtering of EEG (F-4 
position), and both wavelet denoising and adaptive filtering.  Results are shown as the 
mean, plus or minus the SEM, and number of subjects in parenthesis. 

 None Wavelet 
denoising 

Adaptive filtering 
of F-4 EEG 

Wavelet 
denoising with 
adaptive filtering 

Tan 1.61 ±0.09 (119) 1.03 ±0.01 (120) 1.21 ±0.05 (119) 1.03 ±0.01 (120) 
Simple 
Slope + 
Amplitude 

7.38 ±1.01 (119) 7.60 ±1.20 (117) 4.96 ±0.72 (119) 4.48 ±1.19 (114) 

Gopal 8.59 ±0.97 (119) 9.34 ±1.22 (117) 7.00 ±1.32 (118) 6.38 ±1.36 (116) 
Takahashi 2.05 ±0.18 (119) 4.90 ±0.60 (119) 5.19 ±0.44 (119) 4.45 ±0.53 (119) 
Dual 
Threshold 6.36 ±0.72 (118) 6.72 ±0.81 (118) 4.48 ±0.85 (119) 4.37 ±1.57 (118) 

7.4 QUADRANT DETECTION 

The quadrant detector determines ocular position directly from the vertical and 

horizontal EOG channels, which allows for separate EM detections from each channels.  

Figure 7.2 shows estimates of pupil position and corresponding HEOG and VEOG signal 

segments.  Placing HEOG samples on the x-axis and VEOG values on the y-axis, we can 

map the pupil’s position for each instance of time  where N is the total n ∈ [0,N −1]
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number of samples.  Using the HEOG and VEOG channel values as x and y coordinates 

of a Cartesian system we estimate the pupil’s position directly for each digital sample in 

time.  We can use Euler’s formula  

 

to describe the pupil’s position in Polar coordinates where , radius r defined as 

, 

and the angle , 

, 

which is obtained by the trigonometry relations 

 and . 

Tracking the pupil in Polar coordinates, while enticing, is only a remapping of the data 

taken directly from Cartesian coordinates and does not reduce the data.  There is still too 

much data to examine given the number of subjects with multiple studies each.  

Furthermore, there is no foundation yet, from other research, on how to interpret angular 

patterns of EMs in sleep.  To this point, evaluating EMs in sleep has primarily focused on 

identifying their occurrence and evaluating derived metrics (e.g. count, activity, density, 

etc.).  As a compromise to simply detecting eye movement occurrence and flooding 

myself with every pupil position and orientation through the study, I introduce the 

quadrant detector.   

The quadrant detector classifies EM based on magnitude and duration of ocular 

deflection.  The Pythagorean theorem defines the deflection magnitude r at sample index 

n as 
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, 

which is combined with the EM classification rule  

 

for amplitude threshold T and duration threshold .  The classification rule sets T to 30 

µV, which follows amplitude thresholds of previously published EM detectors, and Dmin 

to one sample and Dmax to N.  The quadrant detector quantizes and stores the pupil angle 

into one of four quadrants 

 

when an EM is classified.  The quadrant detector can be used simply to classify any 

radial EM, as opposed to horizontal and vertical EMs, by determining when r≥T, while 

simultaneously providing flexibility for state space analysis of detected quadrants. 

7.4.1 QUADRANT DETECTOR OPTIMIZATION 

I obtain the quadrant detector’s optimal preprocessing configuration using the 

REM:NREM density ratio described in Section 7.3.6.  Table 7.3 presents this ratio for the 

quadrant detector after both EOG channels are preprocessed with nothing, wavelet 

denoising, adaptive filtering of the EEG (F-4 electrode position), or adaptively filtering 

the EEG and then wavelet denoising. 

Adaptively removing F-4 EEG interference from both HEOG and VEOG channels and 

then applying wavelet denoising gives the highest REM:NREM density.  I also examined 

the performance of preprocessing the HEOG and VEOG channels differently, but none 

were better than the combined adaptive filtering and wavelet denoising result.  For 

€ 

rn = xn
2 + yn

2

rn,n+Δ ≥ T,Δ ∈ {Dmin,..,Dmax}

€ 

Δ

Q1 = x > 0∩ y > 0
Q2 = x < 0∩ y > 0
Q3 = x < 0∩ y < 0
Q4 = x > 0∩ y < 0
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example, wavelet denoising the HEOG channel and both adaptively filtering and wavelet 

denoising the VEOG channel gives the next highest REM:NREM density mean of 3.28 

±0.26 for 120 subjects. 

Table 7.3: Quadrant detector REM:NREM density ratios without preprocessing (none), 
and with HEOG and VEOG channel preprocessing.  The preprocessing methods shown 
are applied to both channels and the mean results given with SEM and number of 
subjects tested in parenthesis. 

 None Wavelet 
denoising 

Adaptive 
filtering of 

EEG 

Wavelet 
Denoising+Adaptive 

filtering of EEG 
Quadrant 
detector 

1.14 ±0.06 
(120) 

2.00 ±0.14 
(120) 

2.66 ±0.17 
(120) 

3.88 ±0.32  
(120) 

 

7.5 EXPLORING EYE MOVEMENTS IN SLEEP OF PTSD 

This section first introduces three ways EM metrics can be clustered or grouped across a 

sleep study, and then describes a new visual analytics software program for exploring 

phasic events and complements the SEV’s batch mode processing.   

7.5.1 EYE MOVEMENT CLUSTERING IN SLEEP 

Sleep research has seen limited analysis of phasic events in context of macro level sleep 

architecture changes.  Clustering EMs in sleep by stage, cycle, or elapsed time gives 

greater insight into physiology around EMs and differences between combat veterans 

with and without PTSD.  These measures, described next, are included as meta-data with 

each EM detected as output by the SEV. 

7.5.1.1 Sleep stages 

Human sleep is characterized in terms of REM and NREM sleep (with NREM sleep 

broken further into Stage 1, Stage 2, and Stages 3 and 4).   The CVC was manually 

scored for sleep stage in 30 sec epochs according to R&K guidelines.   
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7.5.1.2 NREM/REM cycles 

Healthy, nocturnal sleep cycles from NREM sleep to REMS and back again with NREM 

sleep occurring in greater length at the beginning of the night and lessening toward the 

morning, while REMS occurs in shorter duration at first and increases with ensuing 

cycles.  Currently, there is no standard method for measuring NREM/REM sleep cycles, 

so I developed an algorithm to do so.  The sleep cycle classification algorithm takes a 

vector of consecutive sleep stage scores, by epoch, as input and returns a same size vector 

with the NREM/REM cycle corresponding to each.  The algorithm models the transition 

between NREM/REM cycles by assigning different weights for wake, NREM and REM 

epochs and determines the point at which enough NREM and REM pressure has been 

alleviated in one cycle and the next cycle begins (see Figure 7.5 for MATLAB code). 

7.5.1.3 Time elapsed 

Diurnal and circadian effects are often observed in sleep.  Clustering biomarker 

observations into hourly blocks allows evaluation of the changes directly by elapsed 

sleep, apart from explicit sleep cycle changes.  This can be done easily with the SEV, 

which attaches the sleep stage, epoch, and elapsed time to each detected event.  



 

 234 

Figure 7.5: NREM/REM sleep cycle classification algorithm in MATLAB.  The 
algorithm takes a vector of consecutive sleep epochs scored by stage and returns a same 
length vector representing the NREM/REM sleep cycle of the corresponding epoch 
index. 

REM_weight = 0; 
lastREM_index = []; 
curCycle = 0; 
start_index = find(stages~=7&stages~=0,1); 
stop_index = numStages; 
if(start_index>1) 
    sleepCycles(1:start_index)=curCycle; 
end 
curCycle=1; 
wake_delta = 10; 
nrem_delta = 25; 
rem_delta = 300; 
cycle_start_index = start_index; 
for s=start_index:stop_index 
    if(stages(s) == 5) 
        lastREM_index = s; 
        REM_weight = rem_delta; 
    else 
        if(~isempty(lastREM_index)) 
            if(stages(s)==0||stages(s)==7) 
                REM_weight = REM_weight - wake_delta; 
            else  
                REM_weight = REM_weight - nrem_delta; 
            end 
            if(REM_weight < 0) 
                sleepCycles(cycle_start_index:lastREM_index) … 

= curCycle; 
                cycle_start_index = lastREM_index+1; 
                lastREM_index = []; 
                REM_weight = 0; 
                curCycle = curCycle+1; 
            end 
        end 
    end 
end 
 
if(sleepCycles(s)~=curCycle) 
    sleepCycles(cycle_start_index:s) = curCycle; 
end 
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7.5.1 BUILDING A DATA MOUNTAIN FOR MINING 

The large amount of data and equally large number of ways it can be clustered make 

analyzing and exploring it a difficult task by conventional means such as direct 

spreadsheet viewing in a program like Excel or repetitive scripting (where slight changes 

are used to generate new plots) in R or MATLAB.  The CVC consists of four consecutive 

sleep studies from approximately 100 combat veterans who are diagnosed with PTSD, 

PTSD and MDD, or with neither PTSD or MDD.  EMs are detected on two separate EOG 

channels and represent vertical and horizontal activity, and also by the quadrant detector 

which detects EMs and also quadrants from the combined EOG channels.  Furthermore, 

all six detectors have been evaluated with four preprocessing configurations.   

Classifying EMs for each patient, visit, detector, EOG channel, and preprocessing option 

is straightforward in the SEV.  However, the work is not done.  The data must still be 

evaluated.  This situation does not fall cleanly into the domain of data mining.  

Processing the EOGs and classifying EMs by various detectors is more akin to building 

the mountain than mining it.  Because I am the one building the mountain of data, I have 

flexibility in its design, which I use to make the mining easier.  Specifically, I create a 

MySQL database to store the SEV’s output and the CVC’s demographic information.  

This gives a flexible framework for investigating the data in parts (e.g. EMs from 

quadrant detector by elapsed hour), alleviates the tedious task of managing output data 

storage directly (e.g. creating folders of specifically named flat files), and reduces load 

time required to place everything into working memory. 

7.5.2 VISIT VIEW – VISUAL ANALYTICS SOFTWARE FOR CONSECUTIVE SLEEP STUDIES 

Visit View is the visual analytics software program I developed to CVC biomarkers as 

output by the SEV.  Initially, I parsed the SEV’s EM classifications output and associated 

metadata (e.g. elapsed time of occurrence, sleep stage, etc.) to produce EM metrics (e.g. 

activity, density, mean duration, etc.) and store as one large, consolidated file.  I used 

several smaller scripts to parse this file for metrics of interest (e.g. NREM EM density) 
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and then plot the results for each visit of each patient group (e.g. with and without PTSD) 

by sleep cycle or elapsed time and categorized by NREM, REM, or all sleep.  The 

number of EM configurations and metrics to examine made this a tedious, time 

consuming task, and I found it easier and more productive to write a graphical user 

interface (GUI) to explore the data.  Instead of updating and rerunning new scripts, I tied 

the possible query options to various control widgets (e.g. drop down menus) that the 

program populates.  At first, the software parsed the single flat file with stored EM 

metrics for the data and to populate the GUI’s controls, but this required the file to be 

rebuilt from the database whenever the SEV was used to produce new biomarkers.  The 

single file option was removed and Visit View’s design changed to query the database 

directly for data and produce metrics on the fly and keep solutions in working memory so 

that different metrics derived from the same classification method selected (e.g. quadrant 

detector) could be selected quickly without repeated queries of the source biomarker 

events (e.g. mean EM activity and mean EM duration can be produced using the same 

database query for EM events). 

A screenshot of Visit View is shown in Figure 7.6.  The duration of REMS in minutes is 

shown by elapsed hour for each visit in the lower window of Visit View, and the total 

duration of REMS (in minutes) for each visit is shown in the upper window.  Each EM 

detector may be selected in combination with the preprocessing options available (i.e. 

none, adaptive noise cancelling of EEG, wavelet denoising, or adaptive noise cancelling 

and wavelet denoising) for either the horizontal or vertical EOG channels using the pull 

down menus.  Per visit metrics are shown in the legend on the lower left corner with the 

number of studies evaluated per demographic group in parenthesis.  
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Figure 7.6:  Visit View screenshot.  Visit View is a visual analytics tool for exploring 
Combat Veteran Cohort biomarkers by visit as output from SEV’s batch processing mode 
and stored in a MySQL database.  Total REMS duration is shown in the upper window 
per visit, while REMS duration is shown by elapsed hour for each visit in the lower 
window.  Each stratified group (e.g. PTSD with MDD) is identified by a unique color, 
and placed at a different offset in the lower window with the group name directly to the 
left.  The legend in the lower left further identifies the groups and provides per visit 
measurement values and sample sizes for each.  The top window reveals differences 
between the PTSD and non PTSD groups, which converge on the second visit, but 
otherwise drift in opposite directions with PTSD showing increased REMS overall.  

A major benefit of visually exploring data is the ease in which it is to find problems 

because outlier values are so easy to see.  I added context menus to Visit View’s elapsed 

time plots (lower window) so that users can select and reveal the patient database key and 

associated metric values of a selected, problematic point of interest.   For example, Figure 

7.7 reveals a major shift in non PTSD group measures (REM activity by quadrant 

detector) during the third visit, which are significantly elevated due to an outlier 

measurement in the fourth hour.  Right clicking on this point open the context menu 

shown in the bottom window (Figure 7.7).  Selecting “Show patient values” causes Visit 

View to display the patient keys and values in the MATLAB console and identifies key 



 

 238 

433 to be the problem with 15,600 events (30-50 times higher than the other studies at 

this same point in time).   

 

Figure 7.7 Identifying outliers with Visit View.  The selected context menu above allows 
a user to see the non PTSD patient database keys and associated values for the fourth 
hour of the third visit to isolate the outlier study for investigation with the SEV.   

The SEV shows significant interference at 25 Hz at the time of question for the outlier 

study (i.e. fourth elapsed hour of study ID 433).  The artifact is relatively short, 

approximately 12 minutes (likely identified and corrected quickly during the study), but 

must be addressed and removed considering its strong impact on the overall results.  

Automatically detecting and removing this type of artifact is an issue that can be 

addressed using the SEV’s power frequency artifact detector.  However, this is issue is 

representative of the general problem of handling outlier data, regardless of the source, 

and a more general solution should be available within Visit View itself to handle 

unforeseen outlier problems directly, and immediately.   
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Figure 7.8:  SEV display of VEOG and HEOG channels during REM period of a patient 
study identified with Visit View.  The abrupt, strong, 25 Hz interference in the VEOG 
channel during REMS here causes the outlying EM activity seen in Figure 7.6. 

 

Figure 7.9: Visit View’s outlier selection dialog.  Visit View removes any studies 
selected from this dialog and recalculates the current detectors metrics by visit and 
elapsed time or NREM/REM sleep cycle.   

I created a simple dialog to present the sleep study database keys and associated measure 

currently being evaluated in Visit View to the user and which is also activated through a 

context menu selection.  Figure 7.9 shows the dialog for our current example.  In this 

case, I selected study 433 and its current REM activity of 15,600 REMs (for visit three, 
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elapsed hour four).  Once the dialog is closed, Visit View removes the selected study 

from the group (i.e. visit three combat veterans without PTSD diagnosis) and re-queries 

and recalculates the ocular detector REM metrics for visit three and updates the display.  

Figure 7.10 shows Visit View with the outlier removed.  Tabular results are provided in 

the following section (i.e. Section 7.5.3). 

 

Figure 7.10: Visit View after using the selection dialog in Figure 7.9 to remove the 
outlier study that caused the erroneous results seen in Figure 7.8. 

Visit View includes a unique visualization built specifically for EM quadrant detector 

events, which in addition to time, stage, epoch, and duration of occurrence also include 

the quadrant of occurrence.  These metrics are shown using a circle divided into four 

quadrants with the radius and color encoding the normalized mean value of each quadrant 

relative to the other three.  Figure 7.11 shows the Visit View with the quadrant detector 

selected for analysis of ocular distributions elapsed by hour (i.e. EM duration per 

quadrant) for each visit in the lower window and the average distribution by visit in the 

upper window.  Circle radii are normalized in the upper and lower axes by the greatest 
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mean metric observed in the respective axes of each.  This visualization provides a global 

observation of each measure relative to others (e.g. between visits or PTSD categories). 

The symmetry of a measures four quadrants is calculated as mean quadrant value (i.e. 

sum of all quadrant values divided by four) normalized by the maximum quadrant value 

for that observation.  An observation whose quadrant values are all very similar will have 

a symmetry score close to one, while an observation with a single high quadrant value 

and three other, relatively smaller quadrant values will have a score close to 0.25.  

 

 

Figure 7.11:  Quadrant detector ocular patterns.  The Visit View program offers a unique 
visual display of the quadrant detector parameters that lets users see each EM metric’s 
distribution by quadrant across the night by visit.  Combat, combat with PTSD, and 
combat with PTSD and MDD groups are shown here. 

Locally, per observation, the relative time spent in each quadrant is color-coded.  Blue 

represents the greatest occupancy duration, red the second most, yellow third most, and 

black for the quadrant with the least time occupied.  There are 24 possible combinations 

for relative quadrant duration, which are arbitrarily identified by letters A through X (ties 

are not allowed).     



 

 242 

7.5.3 RESULTS 

PSG hypnogram measures are shown in Table 7.4 for the PTSD+ and controls.  This 

includes total sleep time (TST), duration of NREMS, REMS, and WASO, and the total 

number of NREM/REM cycles determined by the cycle detection algorithm discussed in 

7.5.1.2.    REMS duration converges to similar levels on the second visit, but is otherwise 

much higher in PTSD (see also Figure 7.6).  Often several consecutive sleep studies are 

conducted to alleviate first night effects related to sleeping in a new setting; however the 

second night data here is least representative by comparison to the three other visits.  

Single trial studies may be sufficient for research not directly investigating night-to-night 

changes in sleep.   

Table 7.4 Hypnogram based measures of the CVC stratified by PTSD+ (patients 
diagnosed with PTSD) and controls (combat veterans without PTSD diagnosis).  Total 
sleep time (TST) and duration of REMS, NREMS, and WASO are given in minutes.  
Cycles refers to the total number of NREM/REM cycles in a study as determined by the 
cycle detection algorithm.  
	
   	
  	
   Visit	
  1	
   Visit	
  2	
   Visit	
  3	
   Visit	
  4	
  

	
  	
   	
  T
ST
	
   PTSD+	
   295.6±4.5	
  (101)	
   311.0±4.9	
  (101)	
   306.5±6.0	
  (92)	
   309.1±6.3	
  (48)	
  

Controls	
   280.2±13.1	
  (12)	
   322.8±5.2	
  (12)	
   303.0±13.6	
  (10)	
   297.3±14.3	
  (9)	
  
p	
   0.265	
   0.100	
   0.817	
   0.454	
  

	
   	
  
N
RE

M
S	
   PTSD+	
   228.8±3.9	
  (101)	
   240.7±4.0	
  (101)	
   230.5±5.0	
  (92)	
   235.0±6.0	
  (48)	
  

Controls	
   221.2±11.7	
  (12)	
   250.7±4.9	
  (12)	
   238.4±12.3	
  (10)	
   239.8±10.3	
  (9)	
  

p	
   0.533	
   0.117	
   0.552	
   0.685	
  

	
   	
  
RE

M
S	
   PTSD+	
   66.8±2.3	
  (101)	
   70.2±2.5	
  (101)	
   76.0±2.8	
  (92)	
   74.1±3.5	
  (48)	
  

Controls	
   59.0±9.3	
  (12)	
   72.1±7.0	
  (12)	
   64.6±7.0	
  (10)	
   57.5±8.9	
  (9)	
  
p	
   0.416	
   0.805	
   0.133	
   0.086	
  

	
   	
  
W
AS

O
	
   PTSD+	
   27.9±2.1	
  (101)	
   21.8±2.0	
  (101)	
   18.7±1.9	
  (92)	
   16.1±2.1	
  (48)	
  

Controls	
   38.8±10.9	
  (12)	
   23.7±4.2	
  (12)	
   18.3±6.9	
  (10)	
   29.2±6.4	
  (9)	
  
p	
   0.328	
   0.674	
   0.953	
   0.055	
  

	
   	
  
Cy
cl
es
	
   PTSD+	
   4.22±0.14	
  (101)	
   4.50±0.13	
  (101)	
   4.24±0.14	
  (92)	
   4.46±0.15	
  (48)	
  

Controls	
   4.00±0.46	
  (12)	
   5.00±0.33	
  (12)	
   4.40±0.31	
  (10)	
   4.33±0.58	
  (9)	
  
p	
   0.651	
   0.151	
   0.633	
   0.835	
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Table 7.5 and Table 7.6 give REM activity (i.e. total number of REMs in REMS) 

determined by Takahashi, Gopal, dualthreshold, and SHW detectors for wavelet denoised 

EOG channels (VEOG and HEOG respectively).  Wavelet denoising was selected for 

preprocessing to keep comparisons consistent and because in some cases adaptive 

filtering increased the number of REM detections because of uncertain, corresponding 

EEG activity.     

The Takahshi method detects the most REM activity for VEOG and HEOG channels, 

followed next by the dual threshold method, and finally SHW and Gopal methods, which 

perform similarly with conservative REM activity detection levels by each. PTSD 

without MDD (i.e. PTSD MDD-) shows the highest vertical (i.e. VEOG channel) REM 

activity.  PTSD with MDD (i.e. PTSD MDD+) shows the next highest REM activity 

levels, and combat veterans without PTSD or MDD (i.e. PTSD-) predominantly show the 

lowest activity levels.   While PTSD MDD- remains relatively high across all four visits 

(Takahashi visit 3 is a small exception), PTSD MDD+ remains second highest only 

through visits one through three and then shows similar to lower activity levels than 

PTSD- in visit four.  It should be noted that the fourth night consisted of a much smaller, 

distinct subset of the cohort.  PTSD+ shows significantly more vertical REM activity 

than PTSD- for visits one and two with p-values less than 0.01 for t-test comparisons.  

Takahashi’s method also reveals significant differences between PTSD+ and PTSD- for 

visit three, but this is the only method that reaches significance less than 0.01.   

Horizontal EOG REM activity levels (Table 7.6) do not reach statistical significant 

(p<0.01) for the various groups, but PTSD MDD- shows a similar trend with the highest 

activity for all visits.  PTSD MDD- however alternates each visit with PTSD- for the 

second most horizontal REM activity (i.e. PTSD with MDD is higher on visit one, PTSD- 

is higher on visit two, PTSD with MDD is higher on visit three, and PTSD- is higher on 

visit four).   
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Table 7.5 VEOG REM activity for Takahashi, Gopal, dual threshold, and SHW 
algorithms in wavelet denoised VEOG channel.  Mean results are shown with SEM and 
number of samples (in parenthesis) for PTSD with MDD (PTSD MDD+), PTSD without 
MDD (PTSD MDD-), PTSD regardless of MDD (PTSD+), and combat veterans without 
PTSD (PTSD-).  Statistically significant differences (p<0.01) between PTSD+ and 
PTSD- are shown in bold. 

	
   	
  	
   Visit	
  1	
   Visit	
  2	
   Visit	
  3	
   Visit	
  4	
  

Ta
ka
ha
sh
i	
   PTSD	
  MDD+	
   224.8±28.38	
  (64)	
   226.5±30.49	
  (63)	
   277.2±36.48	
  (59)	
   177.1±29.35	
  (30)	
  

PTSD	
  MDD-­‐	
   244.5±28.27	
  (31)	
   239.9±33.47	
  (33)	
   262.9±57.62	
  (28)	
   327.9±65.15	
  (16)	
  
PTSD+	
   236.3±20.9	
  (100)	
   237.7±22.4	
  (101)	
   274.8±30.03	
  (90)	
   228.9±29.85	
  (48)	
  
PTSD-­‐	
   119.0±31.19	
  (9)	
   131.7±19.44	
  (11)	
   151.4±38.8	
  (9)	
   221.3±79.68	
  (9)	
  

	
   	
   	
  	
   	
   	
   	
  	
  

Go
pa
l	
  

PTSD	
  MDD+	
   66.3±8.65	
  (64)	
   61.9±7.17	
  (63)	
   80.6±9.78	
  (59)	
   62.9±9.04	
  (30)	
  
PTSD	
  MDD-­‐	
   71.2±10.41	
  (31)	
   80.8±13.46	
  (33)	
   94.1±18.64	
  (28)	
   89.6±19.93	
  (16)	
  
PTSD+	
   69.2±6.57	
  (100)	
   71.6±6.78	
  (101)	
   86.4±8.93	
  (90)	
   71.3±8.80	
  (48)	
  
PTSD-­‐	
   36.7±6.95	
  (9)	
   47.9±13.67	
  (11)	
   66.2±18.59	
  (9)	
   63.6±23.97	
  (9)	
  	
  

	
   	
  	
   	
   	
   	
  	
  

Du
al
	
  

th
re
sh
ol
d	
   PTSD	
  MDD+	
   120.0±13.64	
  (64)	
   112.7±14.48	
  (63)	
   145.3±18.50	
  (59)	
   108.0±15.70	
  (30)	
  

PTSD	
  MDD-­‐	
   137.4±20.18	
  (31)	
   149.8±24.16	
  (33)	
   167.3±29.89	
  (28)	
   165.4±32.34	
  (16)	
  
PTSD+	
   130.1±11.5	
  (100)	
   130.3±12.6	
  (101)	
   154.9±15.78	
  (90)	
   127.1±14.90	
  (48)	
  
PTSD-­‐	
   61.8±11.88	
  (9)	
   69.4±15.71	
  (11)	
   106.1±29.94	
  (9)	
   113.9±41.27	
  (9)	
  

	
   	
   	
  	
   	
   	
   	
  	
  

SH
W
	
  

PTSD	
  MDD+	
   66.7±10.60	
  (64)	
   61.5±9.14	
  (63)	
   74.9±9.77	
  (59)	
   59.8±9.93	
  (30)	
  
PTSD	
  MDD-­‐	
   71.1±10.52	
  (31)	
   82.8±14.28	
  (33)	
   88.5±17.20	
  (28)	
   84.7±18.78	
  (16)	
  
PTSD+	
   70.6±7.90	
  (100)	
   72.5±7.93	
  (101)	
   82.1±9.08	
  (90)	
   67.8±8.87	
  (48)	
  
PTSD-­‐	
   29.4±6.48	
  (9)	
   34.1±8.36	
  (11)	
   58.8±19.02	
  (9)	
   62.7±26.49	
  (9)	
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Table 7.6 HEOG REM activity for Takahashi, Gopal, dual threshold, and SHW 
algorithms in wavelet denoised HEOG channel.  Mean results are shown with SEM and 
number of samples (in parenthesis) for PTSD MDD+, PTSD MDD-, PTSD+, and PTSD-. 

	
   	
  	
   Visit	
  1	
   Visit	
  2	
   Visit	
  3	
   Visit	
  4	
  

Ta
ka
ha
sh
i	
   PTSD	
  MDD+	
   297.4±40.16	
  (64)	
   294.0±35.40	
  (63)	
   377.3±51.73	
  (59)	
   330.9±61.8	
  (30)	
  

PTSD	
  MDD-­‐	
   321.4±48.22	
  (31)	
   328.8±47.78	
  (33)	
   412.4±62.39	
  (28)	
   474.2±113.5	
  (16)	
  
PTSD+	
   317.8±30.8	
  (100)	
   320.2±30.1	
  (101)	
   394.2±39.40	
  (90)	
   377.5±54.34	
  (48)	
  
PTSD-­‐	
   187.8±43.87	
  (9)	
   320.5±85.20	
  (11)	
   292.1±105.97	
  (9)	
   402.3±115.03	
  (9)	
  

	
   	
   	
  	
   	
   	
   	
  	
  

Go
pa
l	
  

PTSD	
  MDD+	
   102.0±14.04	
  (64)	
   94.3±12.35	
  (63)	
   118.8±16.57	
  (59)	
   99.7±19.25	
  (30)	
  
PTSD	
  MDD-­‐	
   106.3±14.59	
  (31)	
   106.7±17.06	
  (33)	
   152.9±27.06	
  (28)	
   157.2±36.85	
  (16)	
  

PTSD+	
   106.2±10.3	
  (100)	
   102.2±9.86	
  (101)	
   131.6±14.01	
  (90)	
   118.6±17.42	
  (48)	
  
PTSD-­‐	
   62.7±18.50	
  (9)	
   98.9±25.59	
  (11)	
   104.7±32.83	
  (9)	
   126.9±37.01	
  (9)	
  	
  

	
   	
  	
   	
   	
   	
  	
  

Du
al
	
  

th
re
sh
ol
d	
   PTSD	
  MDD+	
   208.0±27.51	
  (64)	
   190.6±22.48	
  (63)	
   245.9±32.55	
  (59)	
   211.7±36.52	
  (30)	
  

PTSD	
  MDD-­‐	
   230.5±33.17	
  (31)	
   236.5±37.05	
  (33)	
   320.7±52.13	
  (28)	
   339.9±75.54	
  (16)	
  
PTSD+	
   222.8±21.2	
  (100)	
   214.4±19.4	
  (101)	
   273.6±27.40	
  (90)	
   255.1±34.65	
  (48)	
  
PTSD-­‐	
   138.0±38.15	
  (9)	
   211.0±49.09	
  (11)	
   224.7±66.66	
  (9)	
   275.9±73.67	
  (9)	
  

	
   	
   	
  	
   	
   	
   	
  	
  

SH
W
	
  

PTSD	
  MDD+	
   108.6±18.51	
  (64)	
   94.8±16.05	
  (63)	
   128.0±22.10	
  (59)	
   107.6±27.95	
  (30)	
  
PTSD	
  MDD-­‐	
   107.9±17.94	
  (31)	
   105.6±18.90	
  (33)	
   159.4±34.19	
  (28)	
   179.4±49.30	
  (16)	
  

PTSD+	
   112.0±13.4	
  (100)	
   103.4±12.4	
  (101)	
   140.8±18.33	
  (90)	
   130.7±24.20	
  (48)	
  
PTSD-­‐	
   65.4±22.02	
  (9)	
   90.1±28.12	
  (11)	
   112.4±41.17	
  (9)	
   145.2±49.95	
  (9)	
  

 

The quadrant detector provides another perspective on eye movement activity during 

REMS.  The quadrant detector is not optimized to detect REM, but rather determines and 

tracks the pupil’s estimated quadrant when the voltage magnitude of both VEOG and 

HEOG channels exceeds the set threshold (i.e. 30 µV).  We limit our analysis of quadrant 

detector EMs to REMS, and again use wavelet denoising for both EOG channels to 

remain consistent with the previous REM detector configurations.  Figure 7.12 shows the 

ocular quadrant patterns for each visit in PTSD+ and PTSD-.  Interestingly, despite the 

large number of possibilities (i.e. 24) only two patterns are observed in each group.  

Furthermore both PTSD+ and PTSD- change or adjust their pattern on the second visit 

from the first, and then return to the initial ocular pattern for visits three and four.  The 

circles in Figure 7.12 can be thought of as the average amount of time patients spent in 
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REMS looking in the respective quadrant relative to other quadrants; locally based on 

quadrant color, and globally based on quadrant size (i.e. radius).  The highest symmetry 

score of 0.97 occurs in visit two for those without PTSD.  This represents an interesting 

change compared to the otherwise more elliptical, cross quadrant patterns seen by both 

groups elsewhere. 

 
 
Figure 7.12  Ocular quadrant patterns, per visit, in PTSD (i.e. PTSD+) and combat 

veterans without PTSD.  Both groups show a change in pattern on visit two, however the 

non PTSD shift in pattern is more unusual and highly symmetric (0.97 symmetry score). 

In visits one, three, and four patients with PTSD follow pattern D, looking primarily to 

the bottom right, then the upper left, then upper right and lastly bottom left.  In visit two, 

the first two quadrant’s orders reverse, now going from upper left to lower right first.  

The last two quadrant’s ordering remains the same.   Patients without PTSD (PTSD-) 

follow pattern P for visits one, three, and four looking lower right most, then upper left, 

then lower left, and lastly upper right.  Pattern P is like pattern D but with the last two 

quadrants’ ordering reversed.  Like the PTSD group, the PTSD- ocular pattern changes 

on the second visit, but the change is more unusual.  Ocular pattern U is not elliptically 
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shaped with cross quadrant activity, but rather PTSD- patients look predominantly down 

first (bottom left, then bottom right) and then up (right, then left).  If there is added 

pressure to perform well on the second visit for some reason, this break in pattern may 

reflect some neurological or cognitive adjustment.  It may also reflect a catch-up 

mechanism given the particularly low level of REM activity seen by this group on visit 

one.  Further research is needed. 

7.6 REDUCED INTER-HEMISPHERIC COHERENCE OF SLEEP EEG IN 

COMBAT VETERANS DIAGNOSED WITH PTSD 

This section examines the magnitude squared coherence between the F-3 and F-4 EEG 

channels as a measure of inter-hemispheric synchrony during sleep. This analysis is 

driven by a hypothesis drawn from ethological work on animal sleep under the threat of 

predation[139].  In brief, a number of species appear to employ unihemispheric sleep in 

order to achieve sleep while maintaining vigilance.  A residuum of this functionality in 

humans could be manifested as reduced inter-hemispheric coherence during sleep.   

Reduced EEG synchrony has been observed in MDD [140] and Alzheimer’s disease 

(AD) [141, 142] compared to controls.  EEG synchrony has been explored in the context 

of epilepsy and schizophrenia [143] as well.  Dauwels et al. provides an excellent 

comparative study of several approaches they used to measure EEG synchrony in an 

effort to predict early stages of AD [144].  The magnitude-squared coherence will be 

used instead to measure hemispheric symmetry in the CVC and is described next. 

7.6.1 MAGNITUDE SQUARED COHERENCE 

The following derivations are taken from Therrien [145].  The cross-power density 

spectrum or cross-spectrum is a helpful measure of correlation between to random signal 

at a particular frequency .  It is the Fourier transform of the cross-correlation function 

 between two random signals x and y, 

ω

Rxy
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If x and y are real values (i.e. not complex) then  is real and  

. 

Thus the cross-spectrum magnitude is even and its phase odd for real random signals.  

The inverse relation  

 

allows the cross-correlation  to be obtained from the cross spectrum .   

The coherence function is the normalized cross-spectrum 

 

The magnitude squared coherence (MSC) 

 

has the useful property of ranging from 0 to 1 

. 

Furthermore, the band-averaged MSC can be calculated across a range of frequencies as  

Sxy (e
jω ) = Rxy[l]e

− jω

l=−∞

∞

∑

Rxy

Sxy (e
jω ) = Syx

* (e jω )
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1
2π

Sxy−π

π

∫ (e jω )e jωldω
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jω )
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2
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.
 

I have taken some liberty in the above notation to simply define the band of interest as 

discrete steps from  which are defined by the sampling rate, the bands start 

and stop frequencies, and the number of samples used.   

The SEV’s detection_mscohere function calculate the average MSC between the F-3 and 

F-4 EEGs on 30-sec intervals or epochs.  The function calculates the MSC, using 

MATLAB’s mscohere2 function, for consecutive, overlapping, user-specified length 

blocks of the two input signals for each epoch.  I specified a block length of 6-sec and an 

overlap interval of 3-sec overlap, which results in nine MSC’s calculated and averaged 

together each epoch for a single mean MSC with frequencies from 0 to 50 Hz (fs= 100 

Hz) at 1/6 Hz resolution (ie. ).   

In addition to the standard information included with each SEV event (e.g. onset, offset, 

stage and epoch of occurrence) the band-average MSC is calculated for the following 

frequency bands 

• Delta	
  –	
  	
  	
  	
  	
  [0,	
  	
  4)	
  Hz	
  
• Theta	
  –	
  	
  	
  	
  [4,	
  8	
  )	
  Hz	
  
• Alpha	
  –	
  	
  	
  	
  [8,	
  12)	
  Hz	
  
• Sigma	
  –	
  	
  	
  	
  [12,	
  16)	
  Hz	
  
• Beta	
  –	
  	
  	
  	
  	
  	
  	
  [16,	
  30)	
  Hz	
  
• Gamma	
  –	
  [30,	
  50)	
  Hz	
  

	
  

                                                
2 mscohere uses modified periodogram Welch averaging to calculate both the individual 

spectrums and the cross spectrum in obtaining the MSC 

Cxy (e
jω )

2
≡

Sxy (e
jω )

ω=ωo

ω1

∑
2

Sx (e
jω )

ω=ωo

ω1

∑ ⋅ Sxy (e
jω )

ω=ωo

ω1

∑

ω0 ≤ω ≤ω1

fs
6s⋅ fs
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The SEV outputs these 30-sec interval events and parameters to the MySQL database I 

setup for the CVC. 

Fein et al. show that EEG spectral coherency data is confounded by power and phase 

effects when calculated from channels that use a common reference whose observed 

power is relatively large [146].  CVC uses a “linked ears” montage that uses the mastoids 

to obtain a common reference.  Fein suggests using digitally linking the ears for 

appropriate EEG coherency studies.  

7.6.2 EXPLORING MEAN MAGNITUDE SQUARED COHERENCY WITH VISIT VIEW 

Visit View, previously described for exploring eye movements, can be adjusted to 

consider the cross EEG channel MMSC in different bands in a manner similar to the eye 

movement detections (i.e. by visit number and by elapsed duration, or cycle) with some 

modification.  Specifically, we want to examine the frequency band parameters.  It would 

suffice to directly call these parameters by name (since we have defined them) from 

within our query and then present them to the user.   A more general solution however is 

to query the parameter field of one detector event, use MATLAB’s fieldnames function to 

determine the names of the available parameters, and present these names as selections 

for the user.  This allows further frequency bands to be defined and modified in the SEV 

as well as completely new parameters, without requiring further modification to Visit 

View.  The only changes needed to be made to the viewer are which detection methods to 

allow the user to query, and this can also be handled in a similar manner by querying the 

MySQL detector information table which lists all detectors with events available in the 

CVC database.  I also added a control button to dump on-screen results to a tab delimited 

table for easy cut-and-paste transfer to a document or spreadsheet editor. 
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Figure 7.13 PTSD View screenshot showing magnitude squared coherence as a delta 
band sum (0, 4 Hz) by visit (top portion) and by elapsed hour per visit (bottom portion).  
Visit 1 and Visit 3 show statistically significant differences (p < 0.05) between combat 
veterans diagnosed with posttraumatic stress disorder and those without.   

7.6.3 RESULTS 

SEV processed and Visit View interpreted band-average MSC values (F-3 and F-4 EEGs) 
for all sleep (NREMS and REMS) are shown in   
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Table 7.7 for the CVC’s PTSD+ and control groups.  PTSD+ shows lower band-average 

MSC values than controls in every band, in every visit.  Significant differences (i.e. 

student t-test with p<0.05) are observed in delta, theta, and alpha frequency bands, 

compatible with a residuum of unihemispheric sleep in PTSD.  
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Table 7.7  Magnitude squared coherency between F-3 and F-4 EEG leads in sleep 
(REMS and NREM sleep) of combat veterans diagnosed with posttraumatic stress 
disorder (PTSD+) or without (Controls).  Coherency is shown by frequency band for 
each group by visit, as are the p-values for t-test comparisons between groups by visit.   

	
   	
  	
   Visit	
  1	
   Visit	
  2	
   Visit	
  3	
   Visit	
  4	
  

	
  	
   	
  	
   De
lta

	
   PTSD+	
   0.739±0.01	
  (101)	
   0.725±0.01	
  (101)	
   0.726±0.01	
  (92)	
   0.721±0.01	
  (48)	
  
Controls	
   0.775±0.01	
  (12)	
   0.754±0.01	
  (12)	
   0.774±0.02	
  (10)	
   0.760±0.02	
  (9)	
  

p	
   0.005	
   0.042	
   0.013	
   0.077	
  

	
   	
  
Th
et
a	
  

PTSD+	
   0.735±0.01	
  (101)	
   0.719±0.01	
  (101)	
   0.722±0.01	
  (92)	
   0.718±0.01	
  (48)	
  
Controls	
   0.777±0.01	
  (12)	
   0.758±0.01	
  (12)	
   0.775±0.02	
  (10)	
   0.763±0.02	
  (9)	
  

p	
   0.003	
   0.019	
   0.006	
   0.031	
  

	
   	
  
Al
ph

a	
   PTSD+	
   0.709±0.01	
  (101)	
   0.695±0.01	
  (101)	
   0.697±0.01	
  (92)	
   0.692±0.01	
  (48)	
  
Controls	
   0.735±0.02	
  (12)	
   0.717±0.02	
  (12)	
   0.747±0.02	
  (10)	
   0.724±0.02	
  (9)	
  

p	
   0.168	
   0.297	
   0.012	
   0.216	
  

	
   	
  
Si
gm

a	
   PTSD+	
   0.636±0.01	
  (101)	
   0.620±0.01	
  (101)	
   0.626±0.01	
  (92)	
   0.621±0.01	
  (48)	
  
Controls	
   0.658±0.02	
  (12)	
   0.641±0.03	
  (12)	
   0.668±0.03	
  (10)	
   0.649±0.03	
  (9)	
  

p	
   0.376	
   0.508	
   0.144	
   0.441	
  

	
   	
  
Be

ta
	
   PTSD+	
   0.576±0.01	
  (101)	
   0.569±0.01	
  (101)	
   0.570±0.01	
  (92)	
   0.574±0.01	
  (48)	
  

Controls	
   0.613±0.03	
  (12)	
   0.587±0.03	
  (12)	
   0.621±0.03	
  (10)	
   0.597±0.04	
  (9)	
  
p	
   0.168	
   0.613	
   0.141	
   0.577	
  

	
   	
  
Ga

m
m
a	
   PTSD+	
   0.502±0.01	
  (101)	
   0.500±0.01	
  (101)	
   0.499±0.01	
  (92)	
   0.504±0.01	
  (48)	
  

Controls	
   0.535±0.02	
  (12)	
   0.507±0.03	
  (12)	
   0.513±0.03	
  (10)	
   0.523±0.03	
  (9)	
  
p	
   0.118	
   0.803	
   0.651	
   0.57	
  

 

Table 7.8 and   
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Table 7.9 show the band-average MSC during REMS and NREMS respectively.  Inner 

frequency bands theta, alpha, sigma, and beta show higher coherency levels in REMS, 

while the outer delta and gamma bands show higher coherency levels in NREMS for both 

PTSD+ and controls.  Higher coherency levels in these bands are likely representative of 

the increased ocular activity during REMS.  Statistical difference of theta is lost in REMS 

of visit-4 as is delta for visit-2 and visit-3.  The statistical difference found in alpha-band 

MSC during visit-3 sleep – NREMS and REMS together and separately – is likely 

coincidental given since similar results are not seen during the other three visits.  

Table 7.8  Magnitude squared coherency between F-3 and F-4 EEG leads in REMS of 
combat veterans diagnosed with posttraumatic stress disorder (PTSD+) or without 
(Controls).  Coherency is shown by frequency band for each group by visit, as are the p-
values for t-test comparisons between groups by visit.   

	
   	
  	
   Visit	
  1	
   Visit	
  2	
   Visit	
  3	
   Visit	
  4	
  

	
  	
   	
  	
   De
lta

	
   PTSD+	
   0.720±0.01	
  (99)	
   0.700±0.01	
  (100)	
   0.700±0.01	
  (92)	
   0.699±0.01	
  (48)	
  
Controls	
   0.760±0.02	
  (11)	
   0.723±0.01	
  (12)	
   0.741±0.03	
  (10)	
   0.725±0.03	
  (9)	
  

p	
   0.028	
   0.174	
   0.138	
   0.435	
  

	
   	
  
Th
et
a	
  

PTSD+	
   0.782±0.01	
  (99)	
   0.767±0.01	
  (100)	
   0.773±0.01	
  (92)	
   0.776±0.01	
  (48)	
  
Controls	
   0.820±0.01	
  (11)	
   0.814±0.01	
  (12)	
   0.836±0.02	
  (10)	
   0.805±0.02	
  (9)	
  

p	
   0.009	
   0.006	
   0.001	
   0.173	
  

	
   	
  
Al
ph

a	
   PTSD+	
   0.749±0.01	
  (99)	
   0.735±0.01	
  (100)	
   0.742±0.01	
  (92)	
   0.746±0.01	
  (48)	
  
Controls	
   0.779±0.02	
  (11)	
   0.772±0.02	
  (12)	
   0.788±0.02	
  (10)	
   0.763±0.03	
  (9)	
  

p	
   0.191	
   0.119	
   0.036	
   0.527	
  

	
   	
  
Si
gm

a	
   PTSD+	
   0.690±0.01	
  (99)	
   0.672±0.01	
  (100)	
   0.680±0.01	
  (92)	
   0.679±0.01	
  (48)	
  
Controls	
   0.698±0.03	
  (11)	
   0.702±0.03	
  (12)	
   0.734±0.03	
  (10)	
   0.691±0.04	
  (9)	
  

p	
   0.781	
   0.339	
   0.057	
   0.752	
  

	
   	
  
Be

ta
	
   PTSD+	
   0.590±0.01	
  (99)	
   0.575±0.01	
  (100)	
   0.578±0.01	
  (92)	
   0.574±0.01	
  (48)	
  

Controls	
   0.633±0.03	
  (11)	
   0.601±0.04	
  (12)	
   0.639±0.03	
  (10)	
   0.584±0.04	
  (9)	
  
p	
   0.187	
   0.485	
   0.081	
   0.807	
  

	
   	
  
Ga

m
m
a	
   PTSD+	
   0.485±0.01	
  (99)	
   0.475±0.01	
  (100)	
   0.479±0.01	
  (92)	
   0.470±0.01	
  (48)	
  

Controls	
  
0.526±0.03	
  (11)	
   0.484±0.03	
  (12)	
   0.507±0.03	
  (10)	
   0.470±0.03	
  (9)	
  

p	
   0.167	
   0.743	
   0.358	
   0.982	
  
 

  



 

 255 

Table 7.9  Magnitude squared coherency between F-3 and F-4 EEG leads in NREMS of 
combat veterans diagnosed with posttraumatic stress disorder (PTSD+) or without 
(Controls).  Coherency is shown by frequency band for each group by visit, as are the p-
values for t-test comparisons between groups by visit.   

	
   	
  	
   Visit	
  1	
   Visit	
  2	
   Visit	
  3	
   Visit	
  4	
  

	
  	
   	
  	
   De
lta

	
   PTSD+	
   0.745±0.01	
  (101)	
   0.733±0.01	
  (101)	
   0.735±0.01	
  (92)	
   0.729±0.01	
  (48)	
  
Controls	
   0.779±0.01	
  (12)	
   0.763±0.01	
  (12)	
   0.780±0.02	
  (10)	
   0.768±0.02	
  (9)	
  

p	
   0.007	
   0.039	
   0.017	
   0.063	
  

	
   	
  
Th
et
a	
  

PTSD+	
   0.721±0.01	
  (101)	
   0.706±0.01	
  (101)	
   0.706±0.01	
  (92)	
   0.701±0.01	
  (48)	
  
Controls	
   0.765±0.01	
  (12)	
   0.741±0.01	
  (12)	
   0.758±0.02	
  (10)	
   0.751±0.02	
  (9)	
  

p	
   0.006	
   0.03	
   0.008	
   0.016	
  

	
   	
  
Al
ph

a	
   PTSD+	
   0.697±0.01	
  (101)	
   0.684±0.01	
  (101)	
   0.683±0.01	
  (92)	
   0.676±0.01	
  (48)	
  
Controls	
   0.721±0.02	
  (12)	
   0.700±0.02	
  (12)	
   0.735±0.02	
  (10)	
   0.712±0.02	
  (9)	
  

p	
   0.231	
   0.452	
   0.012	
   0.2	
  

	
   	
  
Si
gm

a	
   PTSD+	
   0.620±0.01	
  (101)	
   0.604±0.01	
  (101)	
   0.609±0.01	
  (92)	
   0.603±0.01	
  (48)	
  
Controls	
   0.649±0.02	
  (12)	
   0.624±0.03	
  (12)	
   0.651±0.03	
  (10)	
   0.639±0.03	
  (9)	
  

p	
   0.247	
   0.531	
   0.151	
   0.321	
  

	
   	
  
Be

ta
	
   PTSD+	
   0.572±0.01	
  (101)	
   0.567±0.01	
  (101)	
   0.569±0.01	
  (92)	
   0.573±0.01	
  (48)	
  

Controls	
   0.608±0.03	
  (12)	
   0.581±0.03	
  (12)	
   0.615±0.03	
  (10)	
   0.597±0.04	
  (9)	
  
p	
   0.184	
   0.684	
   0.182	
   0.567	
  

	
   	
  
Ga

m
m
a	
   PTSD+	
   0.506±0.01	
  (101)	
   0.506±0.01	
  (101)	
   0.507±0.01	
  (92)	
   0.514±0.01	
  (48)	
  

Controls	
   0.538±0.02	
  (12)	
   0.512±0.03	
  (12)	
   0.511±0.03	
  (10)	
   0.531±0.03	
  (9)	
  
p	
   0.132	
   0.847	
   0.873	
   0.635	
  

 

7.7 SUMMARY 

This chapter investigates automatically detected eye movements and EEG coherence 

from CVC sleep studies and introduces Visit View to analyze these measures across each 

study visits as well as between study visits.  Several different eye movement detectors 

were examined and optimized for increased REM:NREM detection density by applying 

wavelet denoising, adaptive noise cancellation of the EEG, and the combination of 

adaptive noise cancellation and wavelet denoising.  The spectral classification method for 

classifying REM density performed poorly in all cases and has limited utility for eye 

movement analysis as is.  A new method, quadrant detector, was introduced to take 



 

 256 

advantage of the CVC’s EOG montage by combining the vertical and horizontal EOG 

channels to obtain a single set of eye movement detections which include the ocular 

quadrant that each EM occurs in.  The Visit View software was updated to provide 

specific visualizations for investigating the possible ocular transition states for future 

state space analysis work.   

A method for obtaining the band-average MSC for two EEG channels was implemented 

in the SEV and used to investigate inter-hemisheric coherence in the CVC using Visit 

View.  A statistically significant decrease in this coherency measure is seen in combat 

veterans with PTSD compared to healthy combat veterans for the delta, theta, and alpha 

bands.   These differences were particularly prominent in the theta band, which 

consistently showed decreased MSC for the PTSD group across all four studies.   

The SEV and Visit View can easily be updated to investigate other measures of 

coherency in the data set of interest by following an approach similar to the one described 

in this chapter. 

 

 



 

 

CHAPTER 8 CONCLUSION 

In this dissertation, I have shown how signal estimation and classification techniques, 

combined with visual interaction and the medical community accepted receiver operating 

characteristics (ROC) can be used to investigate PSG based sleep studies (and measures) 

from large, diverse populations for genetic, medical, and clinically relevant purposes.  I 

did this by considering six problems currently faced by the sleep research community and 

developed the signal processing, classification, optimization, and visualization measures 

needed for each.  This was specifically accomplished by: (1) extending ROC theory to 

improve diagnostic criteria for narcolepsy using clinical and PSG measures from 1,000 

narcoleptics and 1,000 controls in Chapter 2; (2) developing visualization tools for 

identifying electroencephalogram (EEG) power spectral density (PSD) phenotypes from 

1,836 studies for genome wide association (GWAS) in Chapter 4; (3) developing, 

validating, and implementing a robust periodic leg movement (PLM) detector with 

improved criteria for handling respiratory related events in Chapter 5; (4) identifying 

single nucleotide polymorphisms (SNP) with susceptibility for PLM using 2,396 PSG 

sleep studies in Chapter 6; (5) applying wavelet denoising and least mean square adaptive 

filtering and also developing a new eye movement detection method to improve rapid eye 

movement recognition and characterization in 457 PSG studies of combat veterans 

diagnosed with PTSD in Chapter 7; and (6) used magnitude squared coherence of EEG 

channels to show reduced inter-hemispheric coherence in the sleep EEG in PTSD in 

Chapter 7.  

Much of the research that began or was developed during the course of this dissertation 

has continued into the research of others.  For example, the PLM classification algorithm 

introduced in Chapter 4 is being used to investigate the relationship to PLM and 

excessive daytime sleepiness by Eileen Leery, the relationship to iron deficiency and 

PLM by Jason Li, and as a feature for analysis for narcolepsy by Emil Munk.  Laurel 
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Finn, at the University of Wisconsin Madison, is also investigating PLM within the WSC. 

Furthermore, the PLM detector is currently being implemented for use at Stanford’s 

Sleep Clinic in Redwood City, CA.  The softROC program discussed in Chapter 2 

continues to find use in analyzing narcolepsy as recently seen acknowledged in a 

manuscript submitted to the journal Science.  And the SEV, introduced in Chapter 3, 

continues to fill a niche in ongoing sleep research.  Ear nose and throat surgeons at 

Stanford are hoping to find predictive links, using the SEV, between PSG quantifiable 

obstructive breathing patterns and what type and degree of surgery will be necessary for 

patients.  At the University of Wisconsin Madison, researchers are now using the SEV to 

investigate changes in EEG delta power during sleep in women before and after 

menopause.   

The sleeping brain provides a window to the brain apart from sensory input noise.  

Understanding the brain’s behavior during this relatively isolated state can reveal new 

things.  Searching for and understanding new biomarkers of brain health will lead to 

greater insight, both individually and collectively as part of societies and culture.  We are 

making progress, but a long journey remains ahead.  

Polysomnography (PSG) based sleep studies are data-rich yet often just visually 

interpreted by technicians and doctors for basic parameters to define sleep architecture 

and highlight sleep disordered breathing events.  Human sleep is a complex process that 

plays a significant role in our health and wellbeing that PSG can give insight to.  

Unfortunately, while the number of devices used to monitor sleep continues to grow and 

allow digital collection of this data to reach proportions necessary for genetic and 

epidemiological level analysis, the growth in algorithms and analytic frameworks 

necessary to examine it has not.  

Fortunately, it is not too late to catch up, particularly with the continued advancement in 

more general, collaborative aspects of software design and development.  Open source 

software projects present a huge opportunity for sharing with and helping others with 
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their sleep related inquiries.  Publicly available software repositories widen the gates of 

collaborative candidates.  The SEV, PhenoFinder, and softROC programs, all software 

developed over the course of this thesis, are now available online (e.g. 

http://www.github.com/informaton) for the research community to use, modify, and 

enhance for their own inquiries (sleep related or not).  These repositories provide built in 

support for tracking changes to software, forums for discussing problems or features, and 

wikis to easily update documentation of the software in step with changes.   This type of 

openness and flexibility is necessary for projects like the SEV to continue to grow and 

find new applications under the guidance and motivation of new graduate students, 

research laboratories, and industry supported efforts.  Many of the ideas that began and 

flourished over the course of this dissertation, now have the ability continue living on. 

There are additional challenges faced by the medical research community where, 

fortunately treatment and safeguarding of human life is of the highest priority.  This 

brings necessary oversight to ensure compliance with current measures for protecting 

patients and their privacy.  However, the placement and existence of such protective 

measures does not necessitate a slow-down in algorithm development and software 

design for robust large scale processing of human collected data.  The process must be 

done smartly so that robust development, design, and testing can be done within 

applicable data constraints (e.g. de-identification and proper safeguarding of human 

subject data) in parallel with efforts to bring compliance to larger data storage 

frameworks.  For example, at the start of my thesis I was provided a very small number 

of sleep studies to work with (i.e. less than five) and develop specific algorithms on a 

small scale (e.g. high frequency artifact detection).  However, using just a few studies it 

was possible to begin developing an automation framework for the forthcoming studies 

that would continue to arrive from our collaborators at the University of Wisconsin 

Madison, and hopefully from new opportunities (e.g. the PTSD cohort).  Typically, these 

NPSG-based sleep studies were transferred to encrypted hard drives that required special 

care and handling to exchange.  Once these studies are obtained they must be 
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preprocessed to a form suitable for automation.  PSG montage configurations and 

collection technology is continually evolving and these changes must be addressed and 

accounted for in order to utilize the software processing pipelines that are in place.  

Adjusting the pipeline to handle a variety of cases adds complexity and the likelihood of 

processing errors.  Still, normalizing different PSG configurations so that as many as 

possible can be analyzed together remains somewhat of an art.   

I expect and hope that as time continues, a more flexible, open standard for collection and 

storage of PSG-based sleep studies will arrive to remove this current bottleneck in 

researching sleep data on a large scale.  Another bottleneck is the exchange of this data.  

Fortunately, commercial vendors have recognized the need for safeguarding data like 

this.  Companies like Amazon already provide Health Insurance Portability and 

Accountability Act (HIPAA) compliant services for the storage and exchange of patient 

data.  Soon, it will no longer be necessary to mail hard drives between collaborators to 

exchange information, or develop local software solutions that must then be specially 

configured at other sites.  Instead, PSG-based sleep cohorts will exist in the cloud, in 

online servers, which will simultaneously provide privacy protection and accessibility for 

continued research development.  Database frameworks will be utilized to optimize 

access to these databases and software will be developed within this context.  Web based 

tools will continue to grow in value and the statistical tools of the future will be those that 

are able to keep up with and even lead this trend toward decentralized storage and 

automated analysis.   

The number of sleep studies performed each year, already in the millions, will continue to 

rise.  And for the sake of cost, more and more of these studies will be conducted at home 

using ambulatory devices, which the primary care physician or caretaker must understand 

(or trust the software or trained technician’s interpretation of) to effectively care for his or 

her patient.  The field of medicine is changing.  With so much digital information 

available, automatic, assistive scoring and recognition of health biomarkers will play a 
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more, commonly accepted role in medical practice.  There is a huge need for electrical 

engineers and medical doctors to continue working together so that we can better 

understand the data stored on computers without losing sight of the patient in front of us.  

Today, when so much continues to remain unknown about our health and sleep, it is 

imperative to engage medical experts and provide useful tools, methods, and theory to 

move forward together.  The integration of signal processing methods with visual 

analytics has the potential of accelerating this partnership. 



 

 

LIST OF ABBREVIATIONS 

AASM 
 

American Association Of Sleep Medicine 
ACC 

 
Accuracy 

AHI 
 

Apnea Hypopnea Index 
ANC  

 
Adaptive Noise Cancellation 

API 
 

Application Programming Interface 
ASDA 

 
American Sleep Disorders Association 

AUC  
 

Area Under The Curve 
BMI 

 
Body Mass Index 

C-3 
 

Central EEG Position 3 
CAPS 

 
Clinician-Administered PTSD Scale 

CPAP 
 

Continuous Positive Air Pressure 
CSF 

 
Cerebral Spinal Fluid 

CVC 
 

Combat Veteran Cohort 
DNA 

 
Deoxyribonucleic Acid 

DPS 
 

Delayed Phase Syndrome 
DSM 

 
Diagnostics And Statistics Manual 

ECG 
 

Electrocardiography 
EDF 

 
European Data Format 

EEG 
 

Electroencephalography 
EM 

 
Eye Movement 

EMG 
 

Electromyography 
EOG 

 
Electrooculagraphy 

F-3 
 

Frontal EEG Position 3 
F-4 

 
Frontal EEG Position 4 

FFT 
 

Fast Fourier Transform 
FN 

 
False Negative 

FP 
 

False Positive 
GEE 

 
Generalize Estimating Equations 

GUI 
 

Graphical User Interface 
GWA 

 
Genome Wide Association 

GWAS 
 

Genome Wide Association Study 
HEOG 

 
Horizontal Electroencephalography 

LAT 
 

Left Anterior Tibialis 
LM 

 
Leg Movement 

LMS 
 

Least mean square 
MDD 

 
Major Depressive Disorder 
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MMSC 
 

Mean Magnitude Squared Coherence 
MSC 

 
Magnitude Squared Coherence 

MSE 
 

Mean-Squared-Error 
MSL 

 
Mean Sleep Latency 

MSLT 
 

Multiple Sleep Latency Test 
MUSIC 

 
Multiple Signal Components 

NPSG 
 

Nocturnal Polysomnography 
NPV 

 
Negative Predictive Value 

NREM 
 

Non-Rapid Eye Movement Sleep 
NREMS 

 
Non-Rapid Eye Movement Sleep 

O-1 
 

Occipital EEG Position 1 
OR 

 
Odds Ratio 

PLM 
 

Periodic Leg Movement 
PLMD 

 
Periodic Limb Movement Disorder 

PLMI 
 

Periodic Leg Movement Index 
PLMS 

 
Periodic Leg Movements In Sleep 

PLMW 
 

Periodic Leg Movements In Wake 
PPV 

 
Positive Predictive Value 

PSD 
 

Power Spectral Density 
PSG 

 
Polysomnography 

PTSD 
 

Posttraumatic Stress Disorder 
qROC 

 
Quality Receiver Operating Characteristics 

R&K 
 

Rechtschaffen and Kales 
RAT 

 
Right Anterior Tibialis 

REM 
 

Rapid Eye Movement 
REMBD  

 
Rapid Eye Movement Behavior Disorder 

REML  
 

Rapid Eye Movement Latency 
REMS 

 
Rapid Eye Movement Sleep 

RIP 
 

Respiratory Inductance Plethysmography 
RLS 

 
Restless Legs Syndrome 

RMS 
 

Root Mean Square 
ROC 

 
Receiver Operating Characteristic 

SCID 
 

Structured Clinical Interview For The DSM-III-R 
SDB 

 
Sleep Disordered Breathing 

SE  
 

Sensitivity 
SEI 

 
Sleep Efficiency 

SLAT 
 

Sleep Latency 
SNP 

 
Single Nucleotide Polymorphism 

SNR  
 

Signal-To-Noise-Ratio 



 

 264 

SNR+  
 

Signal-To-Noise-Ratio Enhancement 
SOREMP 

 
Sudden Onset Rapid Eye Movement Period 

SP  
 

Specificity 
Spo2  

 
Oxygen Saturation 

SSC 
 

Stanford Sleep Cohort 
SWS 

 
Slow Wave Sleep 

TN 
 

True Negative 
TP 

 
True Positive 

tROC 
 

Test Receiving Operating Characteristics 
TRT 

 
Total Recording Time 

TRT 
 

Total Recording Time 
TST 

 
Total Sleep Time 

VA 
 

Veteran Affairs (Department Of Veteran Affairs) 
VAT  

 
Variable Amplitude Thresholding 

VEOG 
 

Vertical Electroencephalography 
WASM 

 
World Association Of Sleep Medicine 
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Wake After Sleep Onset 
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Wake After Sleep Onset 
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Wisconsin Sleep Cohort 
 

 

 

 



 

 

LIST OF REFERENCES 

[1] K. A. Rechtschaffen A, editors. Los Angeles: Brain Information Service/Brain 
Research Institute, "A manual of standardized terminology, techniques and 
scoring system of sleep stages in human subjects," ed: University of California, 
1968. 

[2] A.-I. S. Iber C, Chesson A, Quan SF, "The AASM Manual for the Scoring of 
Sleep and Associated Events: Rules, Terminology and Technical Specifications," 
American Academy of Sleep Medicine, Westchester, Ill2007. 

[3] S. a. B. Noachtar, C and Ebersole, J and Mauguiere, F and Sakamoto, A and 
Westmoreland, B, "A glossary of terms most commonly used by clinical 
electroencephalographers and proposal for the report form for the EEG findings. 
The International Federation of Clinical Neurophysiology," 
Electroencephalography and clinical neurophysiology. Supplement, vol. 52, p. 21, 
1999. 

[4] W. R. Ruehland, P. D. Rochford, F. J. O'Donoghue, R. J. Pierce, P. Singh, and A. 
T. Thornton, "The new AASM criteria for scoring hypopneas: impact on the 
apnea hypopnea index," Sleep, vol. 32, pp. 150-7, Feb 2009. 

[5] E. Mignot, G. J. Lammers, B. Ripley, M. Okun, S. Nevsimalova, S. Overeem, J. 
Vankova, J. Black, J. Harsh, C. Bassetti, H. Schrader, and S. Nishino, "The role of 
cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and 
other hypersomnias," Archives of neurology, vol. 59, pp. 1553-62, Oct 2002. 

[6] M. A. Carskadon, W. C. Dement, M. M. Mitler, T. Roth, P. R. Westbrook, and S. 
Keenan, "Guidelines for the multiple sleep latency test (MSLT): a standard 
measure of sleepiness," Sleep, vol. 9, pp. 519-24, Dec 1986. 

[7] R. Ferri, M. Zucconi, M. Manconi, G. Plazzi, O. Bruni, and L. Ferini-Strambi, 
"New approaches to the study of periodic leg movements during sleep in restless 
legs syndrome," Sleep, vol. 29, pp. 759-69, Jun 2006. 

[8] H. Scofield, T. Roth, and C. Drake, "Periodic limb movements during sleep: 
population prevalence, clinical correlates, and racial differences," Sleep, vol. 31, 
pp. 1221-7, Sep 2008. 

[9] A. S. Walters and D. B. Rye, "Review of the relationship of restless legs 
syndrome and periodic limb movements in sleep to hypertension, heart disease, 
and stroke," Sleep, vol. 32, pp. 589-97, May 2009. 

[10] Y. Li, W. Wang, J. W. Winkelman, A. Malhotra, J. Ma, and X. Gao, "Prospective 
study of restless legs syndrome and mortality among men," Neurology, vol. 81, 
pp. 52-9, Jul 2 2013. 

[11] D. B. Boivin, J. Montplaisir, and G. Poirier, "The effects of L-dopa on periodic 
leg movements and sleep organization in narcolepsy," Clinical 
neuropharmacology, vol. 12, pp. 339-45, Aug 1989. 



 

 266 

[12] O. Lapierre and J. Montplaisir, "Polysomnographic features of REM sleep 
behavior disorder: development of a scoring method," Neurology, vol. 42, pp. 
1371-4, Jul 1992. 

[13] S. Ancoli-Israel, D. F. Kripke, W. Mason, and O. J. Kaplan, "Sleep apnea and 
periodic movements in an aging sample," Journal of gerontology, vol. 40, pp. 
419-25, Jul 1985. 

[14] T. C. Wetter, V. Collado-Seidel, T. Pollmacher, A. Yassouridis, and C. 
Trenkwalder, "Sleep and periodic leg movement patterns in drug-free patients 
with Parkinson's disease and multiple system atrophy," Sleep, vol. 23, pp. 361-7, 
May 1 2000. 

[15] J. Winkelmann, D. Czamara, B. Schormair, F. Knauf, E. C. Schulte, C. 
Trenkwalder, Y. Dauvilliers, O. Polo, B. Hogl, K. Berger, A. Fuhs, N. Gross, K. 
Stiasny-Kolster, W. Oertel, C. G. Bachmann, W. Paulus, L. Xiong, J. Montplaisir, 
G. A. Rouleau, I. Fietze, J. Vavrova, D. Kemlink, K. Sonka, S. Nevsimalova, S. 
C. Lin, Z. Wszolek, C. Vilarino-Guell, M. J. Farrer, V. Gschliesser, B. Frauscher, 
T. Falkenstetter, W. Poewe, R. P. Allen, C. J. Earley, W. G. Ondo, W. D. Le, D. 
Spieler, M. Kaffe, A. Zimprich, J. Kettunen, M. Perola, K. Silander, I. Cournu-
Rebeix, M. Francavilla, C. Fontenille, B. Fontaine, P. Vodicka, H. Prokisch, P. 
Lichtner, P. Peppard, J. Faraco, E. Mignot, C. Gieger, T. Illig, H. E. Wichmann, 
B. Muller-Myhsok, and T. Meitinger, "Genome-wide association study identifies 
novel restless legs syndrome susceptibility loci on 2p14 and 16q12.1," PLoS 
genetics, vol. 7, p. e1002171, Jul 2011. 

[16] A. Y. Samson, S. Bensen, A. Beck, D. Price, and C. Nimmer, "Posttraumatic 
stress disorder in primary care," The Journal of family practice, vol. 48, pp. 222-
7, Mar 1999. 

[17] R. C. Kessler, A. Sonnega, E. Bromet, M. Hughes, and C. B. Nelson, 
"Posttraumatic stress disorder in the National Comorbidity Survey," Archives of 
general psychiatry, vol. 52, pp. 1048-60, Dec 1995. 

[18] W. E. Copeland, G. Keeler, A. Angold, and E. J. Costello, "Traumatic events and 
posttraumatic stress in childhood," Archives of general psychiatry, vol. 64, pp. 
577-84, May 2007. 

[19] H. S. Resnick, D. G. Kilpatrick, B. S. Dansky, B. E. Saunders, and C. L. Best, 
"Prevalence of civilian trauma and posttraumatic stress disorder in a 
representative national sample of women," Journal of consulting and clinical 
psychology, vol. 61, pp. 984-91, Dec 1993. 

[20] F. H. Norris, "Epidemiology of trauma: frequency and impact of different 
potentially traumatic events on different demographic groups," Journal of 
consulting and clinical psychology, vol. 60, pp. 409-18, Jun 1992. 

[21] N. Breslau, R. C. Kessler, H. D. Chilcoat, L. R. Schultz, G. C. Davis, and P. 
Andreski, "Trauma and posttraumatic stress disorder in the community: the 1996 
Detroit Area Survey of Trauma," Archives of general psychiatry, vol. 55, pp. 626-
32, Jul 1998. 



 

 267 

[22] A. Germain, M. K. Shear, M. Hall, and D. J. Buysse, "Effects of a brief 
behavioral treatment for PTSD-related sleep disturbances: a pilot study," 
Behaviour research and therapy, vol. 45, pp. 627-32, Mar 2007. 

[23] H. Kang. (2006). VA health care utilization among Operation Iraqi Freedom / 
Operation Enduring Freedom Veterans  [electronic]. Available: 
http://www.iom.edu 

[24] N. Breslau, G. C. Davis, P. Andreski, and E. Peterson, "Traumatic events and 
posttraumatic stress disorder in an urban population of young adults," Archives of 
general psychiatry, vol. 48, pp. 216-22, Mar 1991. 

[25] N. Breslau, "The epidemiology of posttraumatic stress disorder: what is the extent 
of the problem?," The Journal of clinical psychiatry, vol. 62 Suppl 17, pp. 16-22, 
2001. 

[26] D. F. Zatzick, C. R. Marmar, D. S. Weiss, W. S. Browner, T. J. Metzler, J. M. 
Golding, A. Stewart, W. E. Schlenger, and K. B. Wells, "Posttraumatic stress 
disorder and functioning and quality of life outcomes in a nationally 
representative sample of male Vietnam veterans," The American journal of 
psychiatry, vol. 154, pp. 1690-5, Dec 1997. 

[27] L. Amaya-Jackson, J. R. Davidson, D. C. Hughes, M. Swartz, V. Reynolds, L. K. 
George, and D. G. Blazer, "Functional impairment and utilization of services 
associated with posttraumatic stress in the community," Journal of traumatic 
stress, vol. 12, pp. 709-24, Oct 1999. 

[28] S. D. Solomon and J. R. Davidson, "Trauma: prevalence, impairment, service use, 
and cost," The Journal of clinical psychiatry, vol. 58 Suppl 9, pp. 5-11, 1997. 

[29] K. A. Babson and M. T. Feldner, "Temporal relations between sleep problems and 
both traumatic event exposure and PTSD: a critical review of the empirical 
literature," Journal of anxiety disorders, vol. 24, pp. 1-15, Jan 2010. 

[30] A. Hefez, L. Metz, and P. Lavie, "Long-term effects of extreme situational stress 
on sleep and dreaming," The American journal of psychiatry, vol. 144, pp. 344-7, 
Mar 1987. 

[31] V. I. Spoormaker and P. Montgomery, "Disturbed sleep in post-traumatic stress 
disorder: secondary symptom or core feature?," Sleep medicine reviews, vol. 12, 
pp. 169-84, Jun 2008. 

[32] A. P. Association, "Diagnostic and statistical manual of mental disorders (DSM-
IV)," ed. Washington, DC: American Psychiatric Association, 1994. 

[33] G. Pillar, A. Malhotra, and P. Lavie, "Post-traumatic stress disorder and sleep-
what a nightmare!," Sleep medicine reviews, vol. 4, pp. 183-200, Apr 2000. 

[34] M. A. Schuster, B. D. Stein, L. Jaycox, R. L. Collins, G. N. Marshall, M. N. 
Elliott, A. J. Zhou, D. E. Kanouse, J. L. Morrison, and S. H. Berry, "A national 
survey of stress reactions after the September 11, 2001, terrorist attacks," The 
New England journal of medicine, vol. 345, pp. 1507-12, Nov 15 2001. 

[35] M. M. Ohayon and C. M. Shapiro, "Sleep disturbances and psychiatric disorders 
associated with posttraumatic stress disorder in the general population," 
Comprehensive psychiatry, vol. 41, pp. 469-78, Nov-Dec 2000. 



 

 268 

[36] A. Germain, M. Hall, B. Krakow, M. Katherine Shear, and D. J. Buysse, "A brief 
sleep scale for Posttraumatic Stress Disorder: Pittsburgh Sleep Quality Index 
Addendum for PTSD," Journal of anxiety disorders, vol. 19, pp. 233-44, 2005. 

[37] B. Krakow, D. Melendrez, B. Pedersen, L. Johnston, M. Hollifield, A. Germain, 
M. Koss, T. D. Warner, and R. Schrader, "Complex insomnia: insomnia and 
sleep-disordered breathing in a consecutive series of crime victims with 
nightmares and PTSD," Biological psychiatry, vol. 49, pp. 948-53, Jun 1 2001. 

[38] B. Krakow, A. Artar, T. D. Warner, D. Melendrez, L. Johnston, M. Hollifield, A. 
Germain, and M. Koss, "Sleep disorder, depression, and suicidality in female 
sexual assault survivors," Crisis, vol. 21, pp. 163-170, 2000. 

[39] B. Krakow, D. Melendrez, L. Johnston, T. D. Warner, J. O. Clark, M. Pacheco, B. 
Pedersen, M. Koss, M. Hollifield, and R. Schrader, "Sleep-disordered breathing, 
psychiatric distress, and quality of life impairment in sexual assault survivors," 
The Journal of nervous and mental disease, vol. 190, pp. 442-52, Jul 2002. 

[40] G. A. Clum, P. Nishith, and P. A. Resick, "Trauma-related sleep disturbance and 
self-reported physical health symptoms in treatment-seeking female rape victims," 
The Journal of nervous and mental disease, vol. 189, pp. 618-22, Sep 2001. 

[41] M. E. Saladin, K. T. Brady, B. S. Dansky, and D. G. Kilpatrick, "Understanding 
comorbidity between PTSD and substance use disorders: two preliminary 
investigations," Addictive behaviors, vol. 20, pp. 643-55, Sep-Oct 1995. 

[42] P. Nishith, P. A. Resick, and K. T. Mueser, "Sleep difficulties and alcohol use 
motives in female rape victims with posttraumatic stress disorder," Journal of 
traumatic stress, vol. 14, pp. 469-79, Jul 2001. 

[43] T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, "The 
occurrence of sleep-disordered breathing among middle-aged adults," The New 
England journal of medicine, vol. 328, pp. 1230-5, Apr 29 1993. 

[44] O. M. Andlauer, H.; Jouhier,L.; Drake, C.; Peppard,P.; Han, F.; Hong, S.; Poli, F.; 
Plazzi, G.; O’Hara, R.; Haffen, E.; Roth, T.; Young, T.; Mignot, E. , "Nocturnal 
REM sleep latency for identifying patients with narcolepsy/hypocretin 
deficiency.," JAMA Neurology, 2013. 

[45] in Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem, H. 
R. Colten and B. M. Altevogt, Eds., ed Washington (DC), 2006. 

[46] H. C. Kraemer, Evaluating Medical Tests. Newbury Park: Sage Publications, 
1992. 

[47] C. Stephan, S. Wesseling, T. Schink, and K. Jung, "Comparison of eight computer 
programs for receiver-operating characteristic analysis," Clinical chemistry, vol. 
49, pp. 433-9, Mar 2003. 

[48] J. Savage, "ROC5," ed: Department of Veterean's Affairs and the National 
Institute of Aging of the United States, 2008, pp. Decision based receiver-
operating characteristics software program. 

[49] D. J. Hand and R. J. Till, "A simple generalisation of the area under the ROC 
curve for multiple class classification problems," Machine Learning, vol. 45, pp. 
171-186, 2001. 



 

 269 

[50] O. Andlauer, H. t. Moore, S. C. Hong, Y. Dauvilliers, T. Kanbayashi, S. Nishino, 
F. Han, M. H. Silber, T. Rico, M. Einen, B. R. Kornum, P. Jennum, S. Knudsen, 
S. Nevsimalova, F. Poli, G. Plazzi, and E. Mignot, "Predictors of hypocretin 
(orexin) deficiency in narcolepsy without cataplexy," Sleep, vol. 35, pp. 1247-
55F, Sep 2012. 

[51] K. K. Dobbin and R. M. Simon, "Optimally splitting cases for training and testing 
high dimensional classifiers," BMC medical genomics, vol. 4, p. 31, 2011. 

[52] R. Simon, M. D. Radmacher, K. Dobbin, and L. M. McShane, "Pitfalls in the use 
of DNA microarray data for diagnostic and prognostic classification," Journal of 
the National Cancer Institute, vol. 95, pp. 14-18, Jan 1 2003. 

[53] G. F. Cooper, C. F. Aliferis, R. Ambrosino, J. Aronis, B. G. Buchanan, R. 
Caruana, M. J. Fine, C. Glymour, G. Gordon, B. H. Hanusa, J. E. Janosky, C. 
Meek, T. Mitchell, T. Richardson, and P. Spirtes, "An evaluation of machine-
learning methods for predicting pneumonia mortality," Artificial intelligence in 
medicine, vol. 9, pp. 107-38, Feb 1997. 

[54] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. 
LeCun, K. R. Muller, F. Pereira, C. E. Rasmussen, G. Ratsch, B. Scholkopf, A. 
Smola, P. Vincent, J. Weston, and R. C. Williamson, "The need for open source 
software in machine learning," Journal of Machine Learning Research, vol. 8, pp. 
2443-2466, Oct 2007. 

[55] T. Fawcett, "An introduction to ROC analysis," Pattern Recognition Letters, vol. 
27, pp. 861-874, Jun 2006. 

[56] R. Oostenveld, P. Fries, E. Maris, and J. M. Schoffelen, "FieldTrip: Open source 
software for advanced analysis of MEG, EEG, and invasive electrophysiological 
data," Computational intelligence and neuroscience, vol. 2011, p. 156869, 2011. 

[57] A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of 
single-trial EEG dynamics including independent component analysis," Journal of 
neuroscience methods, vol. 134, pp. 9-21, Mar 15 2004. 

[58] V. D. V. Gerla, L. Lhotska, V. Krajca, "PSGLab Matlab Toolbox for 
Polysomnographic Data Processing: Development and Practical Application," in 
10th Internation Conference on Information Technology and Applications in 
Biomedicine, 2010. 

[59] I. The MathWorks. (2011). MATLAB -- The Language of Technical Computing.  
[60] S. H. Woodward, M. J. Friedman, and D. L. Bliwise, "Sleep and depression in 

combat-related PTSD inpatients," Biological psychiatry, vol. 39, pp. 182-92, Feb 
1 1996. 

[61] B. Kemp, "European data format (EDF): current availability and additional 
applications," Journal Sleep Research, vol. 11, p. 120, 2002. 

[62] H. Moore, E. Leery, S. Lee, O. Carrillo, R. Stubbs, P. Peppard, T. Young, and E. 
Mignot, "Design and Validation of a Periodic Leg Movement detector " SLEEP, 
2013 (submitted). 



 

 270 

[63] P. Welch, "The use of fast Fourier transform for the estimation of power spectra: 
A method based on time averaging over short, modified periodograms," Audio 
and Electroacoustics, IEEE Transactions on, vol. 15, pp. 70-73, 1967. 

[64] R. Schmidt, "Multiple emitter location and signal parameter estimation," 
Antennas and Propagation, IEEE Transactions on, vol. 34, pp. 276-280, 1986. 

[65] D. P. Brunner, R. C. Vasko, C. S. Detka, J. P. Monahan, C. F. Reynolds, 3rd, and 
D. J. Kupfer, "Muscle artifacts in the sleep EEG: automated detection and effect 
on all-night EEG power spectra," Journal of sleep research, vol. 5, pp. 155-64, 
Sep 1996. 

[66] R. Ferri, M. Zucconi, M. Manconi, O. Bruni, S. Miano, G. Plazzi, and L. Ferini-
Strambi, "Computer-assisted detection of nocturnal leg motor activity in patients 
with restless legs syndrome and periodic leg movements during sleep," Sleep, vol. 
28, pp. 998-1004, Aug 1 2005. 

[67] N. P. T. Tauchmann, "Automatic Detection of Periodic Leg Movements," Journal 
of sleep research, vol. 5, pp. 273-275, 1996. 

[68] T. C. Wetter, G. Dirlich, J. Streit, C. Trenkwalder, A. Schuld, and T. Pollmacher, 
"An automatic method for scoring leg movements in polygraphic sleep recordings 
and its validity in comparison to visual scoring," Sleep, vol. 27, pp. 324-8, Mar 15 
2004. 

[69] I. S. Gopal and G. G. Haddad, "Automatic detection of eye movements in REM 
sleep using the electrooculogram," The American journal of physiology, vol. 241, 
pp. R217-21, Sep 1981. 

[70] R. J. McPartland and D. J. Kupfer, "Computerised measures of electro-
oculographic activity during sleep," International journal of bio-medical 
computing, vol. 9, pp. 409-19, Nov 1978. 

[71] K. Takahashi and Y. Atsumi, "Precise measurement of individual rapid eye 
movements in REM sleep of humans," Sleep, vol. 20, pp. 743-52, Sep 1997. 

[72] X. Tan, I. G. Campbell, and I. Feinberg, "A simple method for computer 
quantification of stage REM eye movement potentials," Psychophysiology, vol. 
38, pp. 512-6, May 2001. 

[73] E. Magosso, F. Provini, P. Montagna, and M. Ursino, "A wavelet based method 
for automatic detection of slow eye movements: a pilot study," Medical 
engineering & physics, vol. 28, pp. 860-75, Nov 2006. 

[74] F. Ferrarelli, R. Huber, M. J. Peterson, M. Massimini, M. Murphy, B. A. Riedner, 
A. Watson, P. Bria, and G. Tononi, "Reduced sleep spindle activity in 
schizophrenia patients," The American journal of psychiatry, vol. 164, pp. 483-92, 
Mar 2007. 

[75] J. Carrier, I. Viens, G. Poirier, R. Robillard, M. Lafortune, G. Vandewalle, N. 
Martin, M. Barakat, J. Paquet, and D. Filipini, "Sleep slow wave changes during 
the middle years of life," The European journal of neuroscience, vol. 33, pp. 758-
66, Feb 2011. 



 

 271 

[76] P. He, G. Wilson, and C. Russell, "Removal of ocular artifacts from electro-
encephalogram by adaptive filtering," Medical & biological engineering & 
computing, vol. 42, pp. 407-12, May 2004. 

[77] H. Moore, "Visualization of EEG activity for stimulating sleep research," 
Computer Methods in Biomechanics and Biomedical Engineering: Imagine & 
Visualization, 2013. 

[78] S. M. Warby, HE; Carrillo, O; Faraco, J; Lin, L; Peppard, PE; Young, T; Mignot, 
E, "Genome Wide Association Study and Confounders of Sigma Power and Sleep 
Spindles," Sleep, vol. 35, 2012. 

[79] H. W. Moore, S. ; Mignot E., "High resolution detection of polysomnography 
based phasic events of REM sleep in postraumatic stress disorder," Sleep, vol. 35, 
2012. 

[80] H. W. Moore, S; Woodward, S; Peppard, P; Young, T; Mignot, E, "Leg 
movement detection software and period leg movement index calculator," Sleep, 
vol. 35, 2012. 

[81] E. W. Agustsson, S; Welinder, P; Carrillo, O; Moore, HE; Mignot, E; Perona, I, 
"Reliability of Sleep Spindle Identification by Experts non-Experts and 
Automated Methods," Sleep, vol. 34, 2011. 

[82] S. C. Warby, O; Moore, HE; Kawashima, M; Apple, R; Faraco, J; Lin, L; 
Peppard, PE; Young, T; Mignot E, "Genetic Analysis of Sleep Duration," Sleep, 
vol. 34, 2011. 

[83] L. De Gennaro, C. Marzano, F. Fratello, F. Moroni, M. C. Pellicciari, F. Ferlazzo, 
S. Costa, A. Couyoumdjian, G. Curcio, E. Sforza, A. Malafosse, L. A. Finelli, P. 
Pasqualetti, M. Ferrara, M. Bertini, and P. M. Rossini, "The 
Electroencephalographic Fingerprint of Sleep Is Genetically Determined: A Twin 
Study," Annals of neurology, vol. 64, pp. 455-460, Oct 2008. 

[84] J. Buckelmuller, H. P. Landolt, H. H. Stassen, and P. Achermann, "Trait-like 
individual differences in the human sleep electroencephalogram," Neuroscience, 
vol. 138, pp. 351-6, 2006. 

[85] L. De Gennaro, M. Ferrara, F. Vecchio, G. Curcio, and M. Bertini, "An 
electroencephalographic fingerprint of human sleep," NeuroImage, vol. 26, pp. 
114-22, May 15 2005. 

[86] H. W. Moore, S; Mignot E, "The Stanford EEG Viewer: A High-Throughput 
Platform for the Visualization and Analysis of Sleep Data," presented at the 
Biomedical Computation at Stanford, 2010, Stanford, CA, 2010. 

[87] F. J. Langheim, M. Murphy, B. A. Riedner, and G. Tononi, "Functional 
connectivity in slow-wave sleep: identification of synchronous cortical activity 
during wakefulness and sleep using time series analysis of 
electroencephalographic data," Journal of sleep research, vol. 20, pp. 496-505, 
Dec 2011. 

[88] G. M. a. F. Mang, Paul, "Sleep and EEG phenotyping in mice," Current Protocols 
in Mouse Biology, pp. 55-74, 2012. 



 

 272 

[89] M. S. Scher and K. A. Loparo, "Neonatal EEG/sleep state analyses: a complex 
phenotype of developmental neural plasticity," Developmental neuroscience, vol. 
31, pp. 259-75, 2009. 

[90] C. J. Davis, J. M. Clinton, K. A. Jewett, M. R. Zielinski, and J. M. Krueger, 
"Delta wave power: an independent sleep phenotype or epiphenomenon?," 
Journal of clinical sleep medicine : JCSM : official publication of the American 
Academy of Sleep Medicine, vol. 7, pp. S16-8, Oct 15 2011. 

[91] I. Feinberg, G. Fein, and T. C. Floyd, "Period and amplitude analysis of NREM 
EEG in sleep: repeatability of results in young adults," Electroencephalography 
and clinical neurophysiology, vol. 48, pp. 212-21, Feb 1980. 

[92] X. Tan, I. G. Campbell, L. Palagini, and I. Feinberg, "High internight reliability of 
computer-measured NREM delta, sigma, and beta: biological implications," 
Biological psychiatry, vol. 48, pp. 1010-9, Nov 15 2000. 

[93] U. Ambrosius, S. Lietzenmaier, R. Wehrle, A. Wichniak, S. Kalus, J. 
Winkelmann, T. Bettecken, F. Holsboer, A. Yassouridis, and E. Friess, 
"Heritability of sleep electroencephalogram," Biological psychiatry, vol. 64, pp. 
344-8, Aug 15 2008. 

[94] R. Godbout, C. Bergeron, E. Limoges, E. Stip, and L. Mottron, "A laboratory 
study of sleep in Asperger's syndrome," Neuroreport, vol. 11, pp. 127-30, Jan 17 
2000. 

[95] O. Bruni, R. Ferri, L. Novelli, M. Terribili, M. Troianiello, E. Finotti, V. Leuzzi, 
and P. Curatolo, "Sleep Spindle Activity Is Correlated With Reading Abilities in 
Developmental Dyslexia," Sleep, vol. 32, pp. 1333-1340, Oct 1 2009. 

[96] W. C., "Information Visualization: Perception for Design," 2nd ed: Morgan 
Kaufmann/Academic Press, 2004. 

[97] B. E. a. T. Rogowitz, L.A. and Bryson, S., "How not to lie with visualization," 
Computers in Physics 

, vol. 10, pp. 268--273, 1996. 
[98] M. D. Plumlee and C. Ware, "Zooming Versus Multiple Window Interfaces: 

Cognitive Costs of Visual Comparisons," ACM Transactions on Computer-
Human Interaction (TOCHI), vol. 13, pp. 179-209, 2006. 

[99] T. Munzner, "Process and pitfalls in writing information visualization research 
papers 

," Information visualization, pp. 134--153, 2008. 
[100] L. T. Fernholz, S. Morgenthaler, J. W. Tukey, and E. Tukey, "A conversation 

with John W. Tukey and Elizabeth Tukey," Statistical Science, vol. 15, pp. 79-94, 
Feb 2000. 

[101] M. Tory, A. E. Kirkpatrick, M. S. Atkins, and T. Moller, "Visualization task 
performance with 2D, 3D, and combination displays," Ieee Transactions on 
Visualization and Computer Graphics, vol. 12, pp. 2-13, Jan-Feb 2006. 



 

 273 

[102] AtlasTaskForce, "Recording and scoring leg movements.," Sleep, vol. 16, pp. 
748-59, Dec 1993. 

[103] J. W. Winkelman, L. Finn, and T. Young, "Prevalence and correlates of restless 
legs syndrome symptoms in the Wisconsin Sleep Cohort," Sleep medicine, vol. 7, 
pp. 545-52, Oct 2006. 

[104] R. P. Allen, D. Picchietti, W. A. Hening, C. Trenkwalder, A. S. Walters, and J. 
Montplaisi, "Restless legs syndrome: diagnostic criteria, special considerations, 
and epidemiology. A report from the restless legs syndrome diagnosis and 
epidemiology workshop at the National Institutes of Health," Sleep medicine, vol. 
4, pp. 101-19, Mar 2003. 

[105] U. o. Wisconsin-Madison, "Policies & Procedures Sleep Cohort Study: Scoring 
Guidelines," April, 1995 1995. 

[106] M. Kubat, R. C. Holte, and S. Matwin, "Machine learning for the detection of oil 
spills in satellite radar images," Machine Learning, vol. 30, pp. 195-215, Feb-Mar 
1998. 

[107] B. Widrow, J. R. Glover, J. M. Mccool, J. Kaunitz, C. S. Williams, R. H. Hearn, 
J. R. Zeidler, E. Dong, and R. C. Goodlin, "Adaptive Noise Cancelling - 
Principles and Applications," Proceedings of the Ieee, vol. 63, pp. 1692-1716, 
1975. 

[108] M. Zucconi, R. Ferri, R. Allen, P. C. Baier, O. Bruni, S. Chokroverty, L. Ferini-
Strambi, S. Fulda, D. Garcia-Borreguero, W. A. Hening, M. Hirshkowitz, B. 
Hogl, M. Hornyak, M. King, P. Montagna, L. Parrino, G. Plazzi, and M. G. 
Terzano, "The official World Association of Sleep Medicine (WASM) standards 
for recording and scoring periodic leg movements in sleep (PLMS) and 
wakefulness (PLMW) developed in collaboration with a task force from the 
International Restless Legs Syndrome Study Group (IRLSSG)," Sleep medicine, 
vol. 7, pp. 175-83, Mar 2006. 

[109] C. Trenkwalder, W. A. Hening, A. S. Walters, S. S. Campbell, K. Rahman, and S. 
Chokroverty, "Circadian rhythm of periodic limb movements and sensory 
symptoms of restless legs syndrome," Movement disorders : official journal of the 
Movement Disorder Society, vol. 14, pp. 102-10, Jan 1999. 

[110] K. P. Parker and D. B. Rye, "Restless legs syndrome and periodic limb movement 
disorder," The Nursing clinics of North America, vol. 37, pp. 655-73, Dec 2002. 

[111] R. Ferri, M. Zucconi, F. Rundo, K. Spruyt, M. Manconi, and L. Ferini-Strambi, 
"Heart rate and spectral EEG changes accompanying periodic and non-periodic 
leg movements during sleep," Clinical neurophysiology : official journal of the 
International Federation of Clinical Neurophysiology, vol. 118, pp. 438-48, Feb 
2007. 

[112] J. W. Winkelman, "The evoked heart rate response to periodic leg movements of 
sleep," Sleep, vol. 22, pp. 575-80, Aug 1 1999. 

[113] C. Medigue, C. Vermeiren, P. Bourgin, C. Debouzy, and P. Escourrou, 
"Cardiovascular perturbations involved in periodic leg movements during sleep," 
Computers in Cardiology 1995, pp. 477-480, 1995. 



 

 274 

[114] B. Schormair, J. Plag, M. Kaffe, N. Gross, D. Czamara, W. Samtleben, P. 
Lichtner, A. Strohle, I. Stefanidis, A. Vainas, E. Dardiotis, G. K. Sakkas, C. 
Gieger, B. Muller-Myhsok, T. Meitinger, U. Heemann, G. M. Hadjigeorgiou, K. 
Oexle, and J. Winkelmann, "MEIS1 and BTBD9: genetic association with restless 
leg syndrome in end stage renal disease," Journal of medical genetics, vol. 48, pp. 
462-6, Jul 2011. 

[115] H. Stefansson, D. B. Rye, A. Hicks, H. Petursson, A. Ingason, T. E. Thorgeirsson, 
S. Palsson, T. Sigmundsson, A. P. Sigurdsson, I. Eiriksdottir, E. Soebech, D. 
Bliwise, J. M. Beck, A. Rosen, S. Waddy, L. M. Trotti, A. Iranzo, M. 
Thambisetty, G. A. Hardarson, K. Kristjansson, L. J. Gudmundsson, U. 
Thorsteinsdottir, A. Kong, J. R. Gulcher, D. Gudbjartsson, and K. Stefansson, "A 
genetic risk factor for periodic limb movements in sleep," The New England 
journal of medicine, vol. 357, pp. 639-47, Aug 16 2007. 

[116] A. S. Walters, "Toward a better definition of the restless legs syndrome. The 
International Restless Legs Syndrome Study Group," Movement disorders : 
official journal of the Movement Disorder Society, vol. 10, pp. 634-42, Sep 1995. 

[117] E. L. Hyatt Moore IV, Seo-Young Lee, Oscar Carrillo, Robin Stubbs, Paul 
Peppard, Terry Young, Bernard Widrow, Emmanuel Mignot, "Design and 
Validation of a Periodic Leg Movement detector," Sleep, 2013. 

[118] J. S. Sarah J. Ratcliffe, "GEEQBOX: A MATLAB Toolbox for Generalized 
Estimating Equations and Quasi-Least Squares," Journal of statistical software, 
vol. 25, 2008. 

[119] R. K. Singareddy and R. Balon, "Sleep in posttraumatic stress disorder," Annals 
of clinical psychiatry : official journal of the American Academy of Clinical 
Psychiatrists, vol. 14, pp. 183-90, Sep 2002. 

[120] T. A. Mellman, V. Bustamante, A. I. Fins, W. R. Pigeon, and B. Nolan, "REM 
sleep and the early development of posttraumatic stress disorder," The American 
journal of psychiatry, vol. 159, pp. 1696-701, Oct 2002. 

[121] R. J. Ross, W. A. Ball, K. A. Sullivan, and S. N. Caroff, "Sleep disturbance as the 
hallmark of posttraumatic stress disorder," The American journal of psychiatry, 
vol. 146, pp. 697-707, Jun 1989. 

[122] T. A. Mellman, A. Kumar, R. Kulick-Bell, M. Kumar, and B. Nolan, 
"Nocturnal/daytime urine noradrenergic measures and sleep in combat-related 
PTSD," Biological psychiatry, vol. 38, pp. 174-9, Aug 1 1995. 

[123] R. Stickgold, "EMDR: a putative neurobiological mechanism of action," Journal 
of clinical psychology, vol. 58, pp. 61-75, Jan 2002. 

[124] L. Wittmann, M. Schredl, and M. Kramer, "Dreaming in posttraumatic stress 
disorder: A critical review of phenomenology, psychophysiology and treatment," 
Psychotherapy and psychosomatics, vol. 76, pp. 25-39, 2007. 

[125] E. Fukuma and T. Okuma, "[Dream and mental function--psychological 
development and dreams in children]," Saishin igaku. Modern medicine, vol. 26, 
pp. 35-40, Jan 1971. 



 

 275 

[126] T. A. Mellman and M. M. Hipolito, "Sleep disturbances in the aftermath of 
trauma and posttraumatic stress disorder," CNS spectrums, vol. 11, pp. 611-5, 
Aug 2006. 

[127] T. A. Mellman, R. Kulick-Bell, L. E. Ashlock, and B. Nolan, "Sleep events 
among veterans with combat-related posttraumatic stress disorder," The American 
journal of psychiatry, vol. 152, pp. 110-5, Jan 1995. 

[128] T. A. Mellman, W. R. Pigeon, P. D. Nowell, and B. Nolan, "Relationships 
between REM sleep findings and PTSD symptoms during the early aftermath of 
trauma," Journal of traumatic stress, vol. 20, pp. 893-901, Oct 2007. 

[129] E. Aserinsky and N. Kleitman, "Regularly occurring periods of eye motility, and 
concomitant phenomena, during sleep," Science, vol. 118, pp. 273-4, Sep 4 1953. 

[130] E. Aserinsky and N. Kleitman, "Two types of ocular motility occurring in sleep," 
Journal of applied physiology, vol. 8, pp. 1-10, Jul 1955. 

[131] K. Uenoyama, N. Uenoyama, and I. Iinuma, "Vector-Electro-Oculography and Its 
Clinical Application. Two-Dimensional Recording of Eye Movements," The 
British journal of ophthalmology, vol. 48, pp. 318-29, Jun 1964. 

[132] D. Schneider, "Spatiotemporal properties of rapid eye movements in human REM 
sleep 1. Qualitative analysis," Waking & Sleeping, vol. 2, pp. 63-67, 1978. 

[133] D. Schneider, "Spatiotemporal properties of rapid eye movements in human REM 
sleep. 2. Quantitative analysis," Waking & Sleeping, vol. 2, pp. 63-67, 1978. 

[134] V. Gabersek and H. Ghiloni, "[Electrooculographic study of eye movements 
during the paradoxical phase of sleep]," Revue neurologique, vol. 123, pp. 251-5, 
Oct 1970. 

[135] V. Gabersek, "[Eye movements during sleep]," Revue d'oto-neuro-ophtalmologie, 
vol. 44, pp. 69-78, Jan-Feb 1972. 

[136] D. L. Donoho, "De-Noising by Soft-Thresholding," Ieee Transactions on 
Information Theory, vol. 41, pp. 613-627, May 1995. 

[137] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, "Wavelet 
Shrinkage - Asymptopia," Journal of the Royal Statistical Society Series B-
Methodological, vol. 57, pp. 301-337, 1995. 

[138] W. S. Agustsson EP, Welinder P, Carrillo O, Moore HE, Mignot E, Perona I, 
"Reliability of sleep spindle identification by experts, non-experts and automated 
methods," Sleep, 2011. 

[139] S. L. Lima, N. C. Rattenborg, J. A. Lesku, and C. J. Amlaner, "Sleeping under the 
risk of predation," Animal Behaviour, vol. 70, pp. 723-736, Oct 2005. 

[140] R. Armitage and R. F. Hoffmann, "Sleep EEG, depression and gender," Sleep 
medicine reviews, vol. 5, pp. 237-246, Jun 2001. 

[141] J. S. Jeong, "EEG dynamics in patients with Alzheimer's disease," Clinical 
Neurophysiology, vol. 115, pp. 1490-1505, Jul 2004. 

[142] P. J. Uhlhaas and W. Singer, "Neural synchrony in brain disorders: relevance for 
cognitive dysfunctions and pathophysiology," Neuron, vol. 52, pp. 155-68, Oct 5 
2006. 



 

 276 

[143] V. Sakkalis, T. Oikonomou, E. Pachou, I. Tollis, S. Micheloyannis, and M. 
Zervakis, "Time-significant wavelet coherence for the evaluation of schizophrenic 
brain activity using a graph theory approach," Conference proceedings : ... 
Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 
vol. 1, pp. 4265-8, 2006. 

[144] J. Dauwels, F. Vialatte, T. Musha, and A. Cichocki, "A comparative study of 
synchrony measures for the early diagnosis of Alzheimer's disease based on 
EEG," NeuroImage, vol. 49, pp. 668-93, Jan 1 2010. 

[145] C. W. Therrien, Discrete random signals and statistical signal processing. 
Englewood Cliffs, NJ: Prentice Hall, 1992. 

[146] G. Fein, J. Raz, F. F. Brown, and E. L. Merrin, "Common Reference Coherence 
Data Are Confounded by Power and Phase Effects," Electroencephalography and 
clinical neurophysiology, vol. 69, pp. 581-584, Jun 1988. 

 

 

 


