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Achieving SK Capacity in the Source Model:
When Must All Terminals Talk?

Manuj Mukherjee† Navin Kashyap† Yogesh Sankarasubramaniam‡

Abstract—In this paper, we address the problem of character-
izing the instances of the multiterminal source model of Csisźar
and Narayan in which communication from all terminals is
needed for establishing a secret key of maximum rate. We give
an information-theoretic sufficient condition for identif ying such
instances. We believe that our sufficient condition is in fact an
exact characterization, but we are only able to prove this inthe
case of the three-terminal source model. We also give a relatively
simple criterion for determining whether or not our conditi on
holds for a given multiterminal source model.

I. I NTRODUCTION

We are concerned with the multiterminal source model of
Csiszár and Narayan [3], which can be briefly described as
follows. There are a certain number,m ≥ 2, of terminals,
each of which observes a distinct component of a source of
correlated randomness. The terminals must agree on a shared
SK by communicating over a noiseless public channel. This
key must be protected from a passive eavesdropper having
access to the public communication. The SK capacity, which
is the supremum of the rates of SKs that can be generated,
has been characterized in various ways [2], [3], [7]. What is
less well-understood is the nature of public communication
that is needed to achieve SK capacity in this model. In a
companion paper [6], we gave a lower bound on the minimum
rate of communication required to generate a maximal-rate
(i.e., capacity-achieving) SK, building upon the prior work of
Tyagi [9] on the two-terminal model. In this paper, we address
a related question: when must allm terminals necessarily have
to communicate in order to generate a maximal-rate SK?

It is well known that, in order to generate a maximal-rate
SK in the two-terminal model (m = 2), it is sufficient for only
one terminal to communicate [1], [5], [3]. All this terminalhas
to do is convey its local observations to the other terminal at
the least possible rate of communication required to do so.
Thus, whenm = 2, it is never necessaryfor both terminals
to communicate to generate a capacity-achieving SK. Even
when m > 2, there are examples wherein not all terminals
need to communicate — see remark following Theorem 1 in
[3]. However, as we will show in this paper, there are plenty of
other examples where all terminalsmustcommunicate in order
to achieve SK capacity. We coin the term “omnivocality” to de-
scribe the state when all terminals communicate. The problem
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of interest to us is the following:characterize the instances
of the multiterminal source model in which omnivocality is
necessary for maximal-rate SK generation. In this paper, we
report partial progress made towards such a characterization.

The paper is organized as follows. After establishing the
required notation and background in Section II, we give, in
Section III, a sufficient condition under which omnivocality is
necessary for achieving SK capacity in a source model with
m ≥ 3 terminals. This condition is satisfied, for example, in
the case of the complete graph pairwise independent network
(PIN) model of Nitinawarat and Narayan [7]. We conjecture
that our sufficient condition is also necessary, but at present,
we can only prove this in them = 3 case. Finally, in
Section IV, we give a useful criterion for checking whether or
not our condition holds for a given source model.

II. PRELIMINARIES

Throughout, we useN to denote the set of positive integers.
In the multiterminal source model [3], a set ofm ≥ 2
terminals, denoted by[m] , {1, 2, . . . ,m}, has access to a
source(Xn

1 , X
n
2 , . . . , X

n
m), n ∈ N, whereXn

i denotesn i.i.d.
copies of a random variable (rv)Xi taking values in a finite
setXi. The rvsX1, X2, . . . , Xm are in general correlated, and
for eachi ∈ [m], theith terminal observes only the component
Xn

i . For any subsetA ⊆ [m], we will useXA to denote the
collection of rvs(Xi : i ∈ A), andpXA

to denote their joint
probability mass function.

The terminals communicate through a noiseless public
channel, any communication sent through which is accessible
to all terminals and to potential eavesdroppers as well. The
terminals communicate in a round-robin fashion, following
the cyclic order(1, 2, . . . ,m). Any transmission sent by theith
terminal is a deterministic function ofXn

i and all the previous
communication. Formally, avalid communicationis a finitely-
supported random vectorF = (F1, F2, . . . , Fr), r ∈ N, with
Fj denoting a communication sent by the terminali ∈ [m]
with i ≡ j (mod m), andH(Fj | F1, . . . , Fj−1, X

n
i ) = 0. The

rate of the communication is taken to be1n log2|F|, whereF
is the finite set on whichF is supported. Terminali ∈ [m] is
said to besilent if Fj = 0 (with probability 1) for all j ≡ i
(mod m). An omnivocalcommunication is one in which no
terminal is silent.

Given anǫ > 0, we say that an rvU is ǫ-recoverablefrom
an rv V if there exists a functiong of V such that Pr[U =
g(V )] ≥ 1− ǫ.
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Definition 1. For any ǫ > 0, an ǫ-SK for [m] is an rv K =
K(n)(Xn

[m]), for somen ∈ N, such that there exists a valid
communicationF with the following properties:
(i) I(K;F) ≤ ǫ; and
(ii) K is ǫ-recoverable from(Xn

i ,F) for eachi ∈ [m].
The rateof this ǫ-SK is given by1nH(K).

A real numberR ≥ 0 is an achievable SK rateif for
any ǫ > 0, there exists anǫ-SK of rate greater thanR − ǫ.
The SK capacityC([m]) is defined as the supremum of all
achievable SK rates. The SK capacity can be expressed as [2,
Theorem 1.1] (see also [3, Eq. (26)])

C([m]) = I(X[m]) , min
P

1

|P|−1
D

(

pX[m]
‖
∏

A∈P

pXA

)

(1)
the minimum being taken over all partitionsP of [m], of size
|P| ≥ 2. The quantityD(·‖·) denotes relative entropy, and
for a partitionP = {A1, . . . , Ak}, the notation

∏

A∈P pXA

represents the productpXA1
× · · · × pXAk

. Note that when
m = 2, the quantityI(X[m]) defined in (1) simply reduces to
the mutual informationI(X1;X2). Thus,I(X[m]) should be
viewed as a multiparty extension of mutual information.

Before proceeding further, a couple of clarifications con-
cerning Definition 1 are needed. We have adopted the notion
of strong secrecy(property (i) in the definition), as opposed
to weak secrecy, which only requires1nI(K;F) ≤ ǫ. All the
results proved in this paper would hold just as well under
either type of secrecy. In particular, our main result shows
that omnivocal communication is necessary for achieving
SK capacity if a certain condition on the singleton partition
S is satisfied. Our proof of this result relies only on the
expression for SK capacity given in (1), which remains the
same under both forms of secrecy [3], and on a theorem of
Gohari and Anantharam [4], which is stated and proved under
the weak secrecy notion. Thus, our proof in fact shows that
omnivocal communication is necessary even under a weak
secrecy requirement on SKs.

A second clarification concerning Definition 1 is that,
usually, the definition of anǫ-SK includes an additional
requirement thatK be almost uniformly distributed over its
alphabetK, i.e., H(K) ≥ log|K|−ǫ [3]. However, this can
always be dropped without affecting SK capacity — see e.g.,
the discussion on p. 3976 in [4].

As mentioned above, we make use of a result of Gohari and
Anantharam [4, Theorem 6] in some of our proofs. To state this
result, we explicitly define aweakǫ-SK for [m] to be an rvK
as in Definition 1, except that the strong secrecy condition (i)
is replaced by the weak secrecy condition,1

nI(K;F) ≤ ǫ.
Then,R ≥ 0 is anachievable weak-SK rateif for any ǫ > 0,
there exists a weakǫ-SK of rate greater thanR − ǫ. It is
known that the supremum of achievable weak-SK rates is the
same as the SK capacity given by (1). The Gohari-Anantharam
result concerns achievable weak-SK rates under the additional
assumption that some fixed subset of terminals remains silent
throughout. LetT ⊆ [m] be such that terminals inT are

allowed to communicate, while terminals in[m] \ T must
remain silent. Thus, we are restricted to valid communications
F in which the terminals in[m]\T are silent, but which allow
all m terminals to agree upon a weak SK. In other words, we
only consider weakǫ-SKs for [m] that are obtainable through
valid communicationsF in which all terminals in[m] \T are
silent. The supremum of rates achievable by such SKs will be
denoted byC([m]‖T ).

Theorem 1 ([4], Theorem 6). C([m]‖T ) = H(XT )−R
(min)
T ,

whereR(min)
T = min

R∈RT

∑

i∈T

Ri, the rate regionRT being the

set of all pointsR = (Ri, i ∈ T ) such that
∑

i∈A∩T

Ri ≥ H(XA∩T |XAc) ∀A ( [m], A ∩ T 6= ∅.

Note that ifC([m]) > C([m]‖T ) for all T ⊂ [m] of size
|T | = m − 1, then omnivocality is necessary for achieving
SK capacity. Thus, our approach for showing that omnivocal
communication is needed in certain cases is to use Theorem 1
to prove thatC([m]) > C([m]‖T ) for all (m − 1)-subsets
T ⊂ [m]. For this, we will need a lower bound onR(min)

T

when |T | = m − 1. To prove this bound, we use a simpler
characterization (than that given in Theorem 1) of the rate
regionRT when |T | = m− 1.

Lemma 2. Let T = [m] \ {u} for someu ∈ [m]. The rate
regionRT is the set of all points(Ri, i ∈ T ) such that

∑

i∈B

Ri ≥ H(XB|XT\B) ∀B ( T,B 6= ∅, (2)

and
∑

i∈T

Ri ≥ H(XT |Xu).

Proof: Observe thatRT is defined by constraints on sums
of the form

∑

i∈B Ri for non-empty subsetsB ⊆ T . When
B = T , the constraint is simply

∑

i∈T Ri ≥ H(XT |Xu).
Now, consider any non-emptyB ( T . From Theorem 1,

we see that constraints on
∑

i∈B Ri arise as constraints on
∑

i∈A∩T Ri in two ways: whenA = B and whenA = B ∪
{u}. Thus, we have two constraints on

∑

i∈B Ri:
∑

i∈B

Ri ≥ H(XB|X[m]\B),

obtained whenA = B, and
∑

i∈B

Ri ≥ H(XB|XT\B),

obtained whenA = B ∪ {u}. The latter constraint is clearly
stronger, so we can safely discard the former.

We can now prove the desired lower bound onR
(min)
T .

Lemma 3. Let m ≥ 3 be given. ForT ⊂ [m] with |T | =
m− 1, we have

R
(min)
T ≥

1

m− 2

∑

j∈T

H(XT\{j}|Xj).



Proof: Consider anyT ⊂ [m] with |T | = m−1. For each
j ∈ T , let Bj = T \ {j}. Now, let (Ri, i ∈ T ) be any point
in RT . Applying (2) with B = Bj , we get

∑

i∈Bj

Ri ≥ H(XT\{j}|Xj),

for eachj ∈ T . Summing over allj ∈ T , we obtain
∑

j∈T

∑

i∈Bj

Ri ≥
∑

j∈T

H(XT\{j}|Xj). (3)

Exchanging the order of summation in the double sum on
the left-hand side (LHS) above, we have

∑

j∈T

∑

i∈Bj
Ri =

∑

i∈T

∑

j∈Bi
Ri =

∑

i∈T (m − 2)Ri = (m − 2)
∑

i∈T Ri.
Putting this back into (3), we get

∑

i∈T

Ri ≥
1

m− 2

∑

j∈T

H(XT\{j}|Xj).

Since this holds for any(Ri, i ∈ T ) ∈ RT , the lemma follows.

III. O MNIVOCAL COMMUNICATION

As pointed out in the Introduction, in the source model with
two terminals, omnivocality is never necessary for generating
a maximal-rate SK. However, the situation is different when
there are three or more terminals. In this section, we give a
sufficient condition for omnivocality being needed for achiev-
ing SK capacity when there arem ≥ 3 terminals, and give an
example where the sufficient condition is met. The sufficient
condition also turns out to be necessary when there are exactly
three terminals.

To state our results, we need a few definitions. The partition
{{1}, {2}, . . . , {m}} consisting ofm singleton cells will play
a special role in our results; we call this thesingleton partition
and denote it byS. For any partitionP of [m] with |P| ≥ 2,
define

∆(P) ,
1

|P|−1

[

∑

A∈P

H(XA)−H(X[m])

]

. (4)

Equivalently,

∆(P) =
1

|P|−1
D

(

pX[m]
‖
∏

A∈P

pXA

)

,

the notation being as in (1). Thus,C([m]) = I(X[m]) =
minP ∆(P). In all that follows, we say that the singleton
partition S is a minimizer for I(X[m]) if ∆(S) = I(X[m]),
and thatS is theunique minimizer forI(X[m]) if the minimum
in (1) is uniquely achieved byS, i.e., ∆(S) < ∆(P) for all
partitionsP of [m], P 6= S, with |P| ≥ 2.

We can now state the main result of this section.

Theorem 4. For m ≥ 3 terminals, ifS is the unique minimizer
for I(X[m]), then omnivocal communication is necessary for
achieving the SK capacityC([m]).

Before proving the theorem, we give an example where the
condition of the theorem is met.

The pairwise independent network (PIN) model of Niti-
nawarat and Narayan [7] is defined on an underlying graph
G = (V , E) with V = [m]. For n ∈ N, let G(n) be the
multigraph (V , E(n)), where E(n) is the multiset of edges
formed by takingn copies of each edge ofG. Associated
with each edgee ∈ E(n) is a Bernoulli(1/2) rv ξe; the rvsξe
associated with distinct edges inE(n) are independent. With
this, the rvsXn

i , i ∈ [m], are defined asXn
i = (ξe : e ∈

E(n) ande is incident oni). When G = Km, the complete
graph onm vertices, we have thecomplete graph PIN model.

We show in the next section (Corollary 7.2) that for the
complete graph PIN model, the singleton partitionS is the
unique minimizer forI(X[m]). The result below then imme-
diately follows from Theorem 4.

Corollary 4.1. In the PIN model defined on the complete
graph Km, m ≥ 3, omnivocal communication is necessary
for achievingC(X[m]).

In conjunction with Theorem 6 in [6], we now have the
following picture for a capacity-achieving communicationin
the complete graph PIN model: the communication must be
omnivocal, and if it is constrained to be a linear function
of the observationsXn

[m], then it must have rate at least
m(m − 2)/2. It should be noted that the capacity-achieving
communication in the proof of [7, Theorem 1] is an omnivocal,
linear communication of ratem(m− 2)/2.

For the proof of Theorem 4, we need some convenient
notation. ForT ⊂ [m], |T | = m − 1, define ∆T (S) ,

1
m−2 [

∑

i∈T H(Xi)−H(XT )].

Lemma 5. For m ≥ 3 terminals, if the singleton partitionS
is the unique minimizer forI(X[m]), then∆T (S) < ∆(S) for
all T ⊂ [m] with |T | = m− 1.

Proof: For anyu ∈ [m], considerT = [m] \ {u}. Using
∆(S) = 1

m−1 [
∑m

i=1 H(Xi)−H(X[m])] and the definition of
∆T (S) above, it is easy to verify the identity

m−1
m−2∆(S) = ∆T (S) +

1
m−2I(Xu;XT ).

Re-arranging the above, we obtain

∆T (S) −∆(S) = 1
m−2 [∆(S) − I(Xu;XT )]

= 1
m−2 [∆(S) −∆(P)], (5)

whereP is the 2-cell partition{{u}, T } of [m]. By assump-
tion, the expression in (5) is strictly negative.

With this, we are ready to prove Theorem 4.
Proof of Theorem 4: We will show that C([m]) >

C([m]‖T ) for any T ⊂ [m] with |T | = m − 1. First, note
that sinceS is, by assumption, a minimizer forI(X[m]), we
haveC([m]) = I(X[m]) = ∆(S). Next, by Theorem 1 and
Lemma 3, we have

C([m]‖T ) ≤ H(XT )−
1

m−2

∑

i∈T

H(XT\{i}|Xi),

= 1
m−2

[

(m− 2)H(XT )−
∑

i∈T

[H(XT )−H(Xi)]

]



= ∆T (S).

Therefore,C([m]‖T ) ≤ ∆T (S) < ∆(S) = C([m]), the
second inequality coming from Lemma 5.

For the three-terminal source model, it turns out that
the unique minimizer condition in Theorem 4 is also
necessary for the conclusion of the theorem to hold.
Note that whenm = 3, (1) reduces toC(X[3]) =
min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1),∆(S)}; so
the unique minimizer condition is equivalent to

∆(S) < min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1)}.

Theorem 6. In the three-terminal source model, omnivocal
communication is necessary for achieving SK capacity iff the
singleton partitionS is the unique minimizer forI(X[m]).

Proof: The “if” part is by Theorem 4.
For the “only if” part, suppose that ∆(S) ≥
min{I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1)}. Then,
∆(S) is either (a) greater than or equal to at least two of the
three terms in the minimum, or (b) greater than or equal to
exactly one term. Up to symmetry, it suffices to distinguish
between two cases:

Case I:∆(S) ≥ max{I(X{1,2};X3), I(X{1,3};X2)}
Case II: min{I(X{1,3};X2), I(X{2,3};X1)} > ∆(S) ≥

I(X{1,2};X3)
In each case, we demonstrate a capacity-achieving communi-
cation in which at least one terminal remains silent.

We deal with Case I first. Observe that
∆(S) = 1

2

[

∑3
i=1 H(Xi)−H(X[3])

]

can also be written

as 1
2 [I(X1;X2) + I(X{1,2};X3)]. Thus, the assumption

∆(S) ≥ I(X{1,2};X3), upon some re-organization, yields
I(X1;X2) ≥ I(X{1,2};X3), i.e.,

I(X1;X2) ≥ I(X1;X3) + I(X2;X3|X1). (6)

Similarly, using the identity∆(S) = 1
2 [I(X1;X3) +

I(X{1,3};X2)] in the assumption∆(S) ≥ I(X{1,3};X2), we
obtainI(X1;X3) ≥ I(X{1,3};X2), i.e.,

I(X1;X3) ≥ I(X1;X2) + I(X1;X3|X2). (7)

The equalities in (6) and (7) can simultaneously hold iff

I(X1;X2) = I(X1;X3) and

I(X1;X3|X2) = I(X2;X3|X1) = 0.
(8)

From (8), it is not hard to deduce that the quantities
I(X{1,2};X3), I(X{1,3};X2), I(X{2,3};X1) and ∆(S) are
all equal toI(X1;X2). In particular,C(X[3]) = I(X1;X2).

From the first equality in (8), we also haveH(X1|X2) =
H(X1|X3). Now, it can be shown by a standard random
binning argument that there exists a communication from
terminal 1 of rate H(X1|X2) = H(X1|X3) such thatXn

1

is ǫ-recoverable at both terminals2 and 3. It then follows
from the “balanced coloring lemma” [3, Lemma B.3] that an
SK rate ofH(X1) −H(X1|X2) = I(X1;X2) is achievable.
Thus, the SK capacity,C([3]) = I(X1;X2), is achievable by

a communication in which terminals2 and3 are both silent.

Now, consider Case II, in which we obviously have
C([3]) = I(X{1,2};X3). The idea here is to show that a
valid communication of rateH(X{1,2}|X3) exists in which
terminal 3 is silent, and which allowsǫ-recoverability of
(Xn

1 , X
n
2 ) at all three terminals. Given this, an application

of [3, Lemma B.3] shows that an SK rate ofH(X{1,2}) −
H(X{1,2}|X3) = I(X{1,2};X3) is achievable. Thus, there is a
C([3])-achieving communication in which terminal3 is silent.

To show that the desired communication exists, we argue
as follows. Fori = 1, 2, let Ri be the rate at which terminali
communicates. A standard random binning argument shows
that an achievable(R1, R2) region, with terminal3 silent,
for a communication intended to allowǫ-recoverability of
(Xn

1 , X
n
2 ) at all terminals is given by

R1 ≥ H(X1|X2), R2 ≥ H(X2|X1),

R1 +R2 ≥ H(X{1,2}|X3).
(9)

Now, using the assumption in Case II that∆(S) ≥
I(X{1,2};X3), we will prove that the inequality

H(X1|X2) +H(X2|X1) ≤ H(X{1,2}|X3) (10)

holds. It would then follow from (9) that there exist achievable
rate pairs(R1, R2) with R1 + R2 = H(X{1,2}|X3), thus
completing the proof for Case II.

So, let us prove (10). We have∆(S) = 1
2 [H(X1)+H(X2)+

H(X3) − H(X[3])] and I(X{1,2};X3) = H(X{1,2}) +
H(X3) −H(X[3]). Using these expressions in the inequality
∆(S) ≥ I(X{1,2};X3), and re-arranging terms, we obtain

1

2
[H(X1) +H(X2)− 2H(X{1,2})] ≥

1

2
[H(X3)−H(X[3])],

which is equivalent to (10). This completes the proof of the
theorem.

We in fact conjecture that the result of Theorem 6 should
extend to more than three terminals as well.

Conjecture 1. In the multiterminal source model withm ≥ 3
terminals, omnivocal communication is necessary for achiev-
ing SK capacity iff the singleton partition is the unique
minimizer forI(X[m]).

At this point, we do not have a systematic approach for
proving the “only if” part of the conjecture form ≥ 4.

IV. SINGLETON PARTITIONS

The condition that the singleton partition be a unique
minimizer for I(X[m]) plays a key role in the results of
Section III. Thus, it would be very useful to have a way of
checking whether this condition holds for a given sourceX[m],
m ≥ 3. The brute force method of comparing∆(S) with
∆(P) for all partitions P with at least two parts requires
an enormous amount of computation. Indeed, the number
of partitions of anm-element set is themth Bell number,
Bm, an asymptotic estimate for which is(logw)1/2wm−wew,
wherew = m

logm [1 + o(1)] is the solution to the equation



m = w log(w + 1) [8, Example 5.4]. The proposition below
brings down the number of comparisons required for verifying
the unique minimizer condition to a “mere”2m −m− 2.

For any non-empty subsetB = {b1, b2, . . . , b|B|} of [m]

with |B| < m, definePB , {Bc, {b1}, {b2}, . . . , {b|B|}} to
be the partition of[m] consisting of|B|+1 cells, of which|B|
cells are singletons comprising the elements ofB. Note that
if |B| = m− 1, thenPB = S.

Proposition 7. For m ≥ 3, let Ω = {B ⊂ [m] : 1 ≤ |B| ≤
m− 2}. The singleton partitionS is
(a) a minimizer forI(X[m]) iff ∆(S) ≤ ∆(PB) ∀B ∈ Ω;
(b) the unique minimizer forI(X[m]) iff ∆(S) < ∆(PB)
∀B ∈ Ω.

Proof: We prove (b); for (a), we simply have to replace
the ‘>’ in (11) below with a ‘≥’.

The “only if” part is obvious. For the “if” part, suppose
that∆(S) < ∆(PB) for all B ⊂ [m] with 1 ≤ |B| ≤ m− 2.
Consider any partitionP of [m], P 6= S, with |P| ≥ 2. We
wish to show that∆(P) > ∆(S).

The following identity can be obtained from the definition
in (4) by some re-grouping of terms:

∑

A∈P

|Ac|∆(PAc) = (|P|−1)[∆(P) + (m− 1)∆(S)].

Thus, we have

∆(P) =
1

|P|−1

∑

A∈P

|Ac|∆(PAc)− (m− 1)∆(S)

>
1

|P|−1

∑

A∈P

|Ac|∆(S)− (m− 1)∆(S) (11)

= m∆(S)− (m− 1)∆(S) = ∆(S). (12)

The inequality in (11) is due to the fact that at least one
A ∈ P is not a singleton cell, so thatPAc 6= S, and
hence,∆(PAc) > ∆(S) by assumption. To verify the first
equality in (12), observe that

∑

A∈P |A
c|=

∑

A∈P

∑

i/∈A 1 =
∑m

i=1

∑

A∈P:i/∈A 1 = m(|P|−1).

Next, we apply the above proposition to some interesting
special cases.

Random variablesX1, X2, . . . , Xm, m ≥ 2, are called
isentropic if H(XA) = H(XB) for any pair of non-empty
subsetsA,B ⊆ [m] having the same cardinality. Equivalently,
X1, . . . , Xm are isentropic if, for all non-emptyA ⊆ [m],
the entropyH(XA) depends only on|A|. One obvious conse-
quence of this definition is that for disjoint non-empty subsets
A,B ⊂ [m], the conditional entropyH(XA|XB) only depends
on |A| and |B|.

Clearly, i.i.d. rvs are isentropic. More generally, ex-
changeable rvs are isentropic — rvsX1, X2, . . . , Xm are
exchangeableif for all permutationsσ of [m], the joint
distribution of (X1, X2, . . . , Xm) is the same as that of
(Xσ(1), Xσ(2), . . . , Xσ(m)). However, isentropic rvs need
not be exchangeable. It may be verified that the rvs
X1, X2, . . . , Xm in the PIN model defined on the complete

graphKm (as defined in Section III) are not exchangeable
whenm ≥ 3, but they are isentropic.

Corollary 7.1. If X1, X2, . . . , Xm , m ≥ 3, are isentropic
rvs, thenS is a minimizer forI(X[m]).

Proof: For a partitionP of [m] with |P|≥ 2, let us define

δ(P) ,
1

|P|−1

∑

A∈P

H(XAc |XA) = H(X[m])−∆(P).

By virtue of Proposition 7(a), we need to show thatδ(PB) ≤
δ(S) for all B ∈ Ω.

For isentropic rvs, the quantityH(XB|XBc), for any
B ⊆ [m], depends only on|B|. Hence, definingg(k) ,

H(X[k]|X[m]\[k]) for 1 ≤ k ≤ m, we can writeδ(PB) =
1
|B|g(|B|) + g(m − 1) and δ(S) = m

m−1g(m − 1). Thus, we

have to show thatg(|B|)
|B| ≤ g(m−1)

m−1 for all B ∈ Ω. This follows
from the fact that for isentropic rvs, the functiong(k)/k is
non-decreasing ink — see Appendix A.

Our second application of Proposition 7 is to the PIN model.
Recall from Section III that this model is defined on an
underlying graphG = ([m], E). From the way that the rvs
Xi, i ∈ [m], are defined, it is not difficult to verify that for
any partitionP of [m] with |P|≥ 2, we have

∆(P) =
|E(P)|

|P|−1
,

where|E(P)| denotes the number of edgese = {i, j} ∈ E such
that i and j are in different cells ofP . This, in conjunction
with Proposition 7, gives us a relatively simple criterion for
verifying whetherS is a (unique) minimizer forI(X[m]). As
an illustration, we apply this to the complete graph PIN model.

Corollary 7.2. For the PIN model on the complete graphKm,
m ≥ 3, the singleton partitionS is the unique minimizer for
I(X[m]).

Proof: It is easy to see that for any non-emptyB ( [m],
|E(PB)|=

(

m
2

)

−
(

|Bc|
2

)

= 1
2 |B|(2m− |B|−1). Hence,

∆(PB) =
|E(PB)|

|B|
=

2m− |B| − 1

2
≥

m

2
= ∆(S),

with equality iff |B| = m − 1, i.e., PB = S. The result now
follows from Proposition 7(b).

APPENDIX A

Here, we prove that for isentropic rvsX1, . . . , Xm, the
function 1

kH(X[k]|X[m]\[k]), defined for1 ≤ k ≤ m, is non-
decreasing ink. Define g(k) = H(X[k]|X[m]\[k]). We show
that the differencekg(k + 1) − (k + 1)g(k) is always non-
negative, from which the result follows.

We have g(k + 1) = H(X[m]) − H(X{k+2,...,m}) and
g(k) = H(X[m]) − H(X{k+1,...,m}) = g(k + 1) −
H(Xk+1|X{k+2,...,m}). Thus,

kg(k + 1)− (k + 1)g(k)

= (k + 1)H(Xk+1|X{k+2,...,m})− g(k + 1).



We need to show that the RHS of the equality is non-negative.
This is straightforward:

g(k + 1) = H(X[k+1]|X{k+2,...,m})

≤
k+1
∑

i=1

H(Xi|X{k+2,...,m})

= (k + 1)H(Xk+1|X{k+2,...,m}),

since, for 1 ≤ i ≤ k + 1, H(Xi|X{k+2,...,m}) =
H(Xk+1|X{k+2,...,m}) by isentropy.
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