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Achieving SK Capacity in the Source Model:
When Must All Terminals Talk?

Manuj Mukherjeé Navin Kashyap Yogesh Sankarasubramaniam

Abstract—In this paper, we address the problem of character- of interest to us is the followingcharacterize the instances
izing the instances of the multiterminal source model of Cszr  of the multiterminal source model in which omnivocality is
and Narayan in which communication from all terminals is necessary for maximal-rate SK generatidn this paper, we

needed for establishing a secret key of maximum rate. We give t tial de t d h h texizati
an information-theoretic sufficient condition for identif ying such report partial progress made towards such a charactenmzall

instances. We believe that our sufficient condition is in facan The paper is organized as follows. After establishing the
exact characterization, but we are only able to prove this inthe required notation and background in Sectioh I, we give, in

case of the three-terminal source model. We also give a relaely  Sectior{TIl, a sufficient condition under which omnivocalis
simple criterion for determining whether or not our conditi on necessary for achieving SK capacity in a source model with
holds for a given multiterminal source model. . . L . .
m > 3 terminals. This condition is satisfied, for example, in
. INTRODUCTION the case of the complete graph pairwise independent network
PIN) model of Nitinawarat and Narayah| [7]. We conjecture

We are concerned with the multiterminal source model at our sufficient condition is also necessary, but at prese

Csiszar and Narayanl[3], which can be briefly described &% can only prove this in then — 3 case. Finally, in

follows. Th(_ere are a certaln_ n_umbefz, > 2, of terminals, Sectior 1V, we give a useful criterion for checking whether o

each of which observes a distinct component of a source rfgt our condition holds for a given source model.

correlated randomness. The terminals must agree on a shared

SK by communicating over a noiseless public channel. This Il. PRELIMINARIES

key must be protected from a passive eavesdropper havinq_ L

access to the public communication. The SK capacity, which hrougho_ut, we USel to denote the set of positive integers.

is the supremum of the rates of SKs that can be generatgb,the multiterminal sourAce mode[][3], a set @b > 2

has been characterized in various ways [2], [3], [7]. What }grmlnals,nderloted by’:f] =1{L2,.. .,m},nhas access 10 a

less well-understood is the nature of public communicatioﬁ‘lm_rce(x1 X3y ’Xm?' n €N, wher_eXi denot_esn "'.'d.'

that is needed to achieve SK capacity in this model. In GOPIeS of a random variable (rJ; .taklng values in a finite

companion papel 6], we gave a lower bound on the minimu L. The rvsXth, e ").(’” are in general correlated, and

rate of communication required to generate a maximal-r %;Leachz € [m], thesth terminal observes only the component

(i.e., capacity-achieving) SK, building upon the prior warf A qu any subsett g [m], we will use X4 to denqte_ the

Tyagi [9] on the two-terminal model. In this paper, we adgre$°!ection of vs(X; : i € A), andpyx, to denote their joint

a related question: when must allterminals necessarily have'orObalblllty mass function. . . .

to communicate in order to generate a maximal-rate SK? The terminals com_mur_ucate through a n_msgless puphc
It is well known that, in order to generate a maximal—rat‘éhannel’ any communication gent through which is accessibl

SK in the two-terminal modeb — 2), it is sufficient for only to all terminals and to potential eavesdroppers as well. The

one terminal to communicatel[1[./[5[][3]. All this terminaas termlna}!s cc:jmn;u;ncate n Z round-ropln_ fashlonbfo:;z:vmg
to do is convey its local observations to the other terminal the cyclic order(1,2,...,m). Any transmission sent by t

the least possible rate of communication required to do §8'rminal ?S a_deterministic fun_ction ot} a_nd z_;\II_the p_re_zvious
Thus, whenm = 2, it is never necessarfor both terminals communication. Formally, galid communicatiors a finitely-

to communicate to generate a capacity-achieving SK. Evl'i,prortQ(.j random vectc}? " (F1, By, ..., ), 7 < N with
whenm > 2, there are examples wherein not all terminalb’ d('anotllng a communication sent by the teLm|maet [m]
need to communicate — see remark following Theorem 1 Yﬁ'th i = j (mod m), _and_H(l_?j | F1,..., By, X7) = 0. The
[3]. However, as we will show in this paper, there are plerity jate of Fh_e communication Is taken to b}lelog2|j-"|,'wheref
other examples where all terminasistcommunicate in order IS _the f|n|te_set on WhicfF" is ;upported._ _Termlnal N [”?] 'S
to achieve SK capacity. We coin the term “omnivocality” te deSald to besilentif F; = 0 (with probability 1) for all j = i

scribe the state when all terminals communicate. The pmblégrll?nqng):S,Asql(ec)nr?n|vocalcommun|cat|on is one in which no
inal is silent.
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Definition 1. For anye > 0, ane-SK for [m] is an rv K = allowed to communicate, while terminals jm] \ 7" must
K™ (X[’;n]), for somen € N, such that there exists a validremain silent. Thus, we are restricted to valid communicesi

communicatiorF with the following properties: F in which the terminals irim]\ T" are silent, but which allow

() I(K;F) <¢ and all m terminals to agree upon a weak SK. In other words, we
(i) K is e-recoverable from X F) for eachi € [m]. only consider weak-SKs for [m] that are obtainable through
Therateof this e-SK is given byt H (K). valid communication& in which all terminals infm] \ T" are

_ _ ) silent. The supremum of rates achievable by such SKs will be
A real numberR > 0 is an achievable SK rataf for denoted byC([m]||T).

any e > 0, there exists ar-SK of rate greater thak — . (emin)
The SK capacityC/([m]) is defined as the supremum of allTheorem 1([4], Theorem 6) C([m]||T) = H(X7)—R;™",
achievable SK rates. The SK capacity can be expresséd asx\[ﬁereRgrm’“) = Rmi%l ZRi’ the rate regionR+ being the
ERr
ieT

Theorem 1.1] (see als6][3, Eq. (26)]) _ ic
set of all pointsR = (R;, € T') such that

. 1
C([m]) = 1(Xpp) = min R (px[m] ITI pr> S Ri> H(Xanr|Xa) YAC[m], ANT #0.
AeP (1) i€ANT

the minimum being taken over all partitiofs of [m], of size ) .

IP| > 2. The quantityD(-|-) denotes relative entropy, and Note that if C([m]) > C([m]||T) for all T C [m] of size

for a partiion® = {Ay,..., A}, the notation[] s p px . IT| =m - 1, then omnivocality is necessary for achuaymg
represents the produgty,, x --- x px, . Note that when SK capa_cny.. Th_us, our ap_proach .for show_mg that omnivocal
m =2, the quantityI(X[m]) defined in ID_) simply reduces to communication is needed in certain cases is to use Thddrem 1

the mutual informationl (X1; X»). Thus,I(Xj,,) should be f© Prove thatC([m]) > C([m]||T) for all (m — 1)-subsets

(min)

viewed as a multiparty extension of mutual information. ' C [m]. For this, we will need a lower bound oR;,

Before proceeding further, a couple of clarifications coﬁ(‘-’hen 7 - m- 1. To prove.th|s pound, we use a simpler
cerning Definitio Il are needed. We have adopted the noti%hgractenzatmn (than that given in Theoréin 1) of the rate
of strong secrecyproperty (i) in the definition), as opposedeg'onRT when|T| =m — L.
to weak secrecywhich only requirest I(K;F) < e. All the Lemma 2. Let T = [m] \ {u} for someu € [m]. The rate
results proved in this paper would hold just as well undeggion R+ is the set of all point§R;, i € T') such that
either type of secrecy. In particular, our main result shows
that omnivocal communication is necessary for achieving ZRZ' > H(Xp|Xr\5) VBCT,B#0, )

SK capacity if a certain condition on the singleton partitio i€B

S is satisfied. Our proof of this result relies only on th%ndZRi > H(X7|X,).

expression for SK capacity given il (1), which remains the -
same under both forms of secre¢y [3], and on a theorem of
Gohari and Anantharaml[4], which is stated and proved und((;'frth
the weak secrecy notion. Thus, our proof in fact shows th%t:

omnivocal communication is necessary even under a WeaI(NOW consider any non-empt C 7. From Theorenfll

secrecy requwem_e_nt qn SKs. ) o ) we see that constraints on,,.; R; arise as constraints on
A second clarification concerning Definitionl 1 is thatg~ g Ri in two ways: whend = B and whenA = B U
usually, the definition of ane-SK includes an additional {uz}e 'Iohus we have two constraints on

requirement thatX be almost uniformly distributed over its

i€T
Proof: Observe thak  is defined by constraints on sums
e form ZieB R; for non-empty subset® C 7. When
T, the constraint is simplp . R; > H(X7|X.,).

i€B R;:

alphabetk’, i.e., H(K) > log|K|—e [3]. However, this can ZRi > H(XB|Xm)\B),
always be dropped without affecting SK capacity — see e.g., i€B
the discussion on p. 3976 inl[4]. obtained whend = B, and

As mentioned above, we make use of a result of Gohari and
Anantharam([4, Theorem 6] in some of our proofs. To state this Z Ri > H(Xp|X1\p),
result, we explicitly define aveake-SK for [m] to be an rvi ieb

as in Definitior[l, except that the strong secrecy conditipn pbtained whend = B U {u}. The latter constraint is clearly
is replaced by the weak secrecy conditidﬁn[(K;F) < e. stronger, so we can safely discard the former.
Then, R > 0 is anachievable weak-SK rati¢ for any ¢ > 0, We can now prove the desired lower boundl&)&i‘““).
there exists a weak-SK of rate _greater thaR — e. It is_ hemma 3. Letm > 3 be given. ForT C [m] with |T| =
known that the supremum of achievable weak-SK rates is tme_ 1 we have

same as the SK capacity given by (1). The Gohari-Anantharam ™’

result concerns achievable weak-SK rates under the additio Rgrmin) > 1
assumption that some fixed subset of terminals remaing silen T m—2

throughout. LetT" C [m] be such that terminals i’ are

> H(Xp\j31X)).
JjET



Proof: Consider anyl’ C [m] with |T| = m—1. Foreach ~ The pairwise independent network (PIN) model of Niti-
jeT, letB; =T\ {j}. Now, let (R;,i € T)) be any point nawarat and Narayanl[7] is defined on an underlying graph

in Re. Applying (2) with B = B;, we get G = (V,E) with V = [m]. Forn € N, let G be the
multigraph (V,£(), where £ is the multiset of edges
Z Ri > H(Xr\(531X5), formed by takingn copies of each edge df. Associated
€B; with each edge € £ is a Bernoull{1/2) rv &.; the rvs¢,
for eachj € T. Summing over allj € T', we obtain associated with distinct edges &™) are independent. With
this, the rvsX?, i € [m], are defined as\]* = (& : e €
Z Z Ri 2 ZH(XT\{J‘}|XJ)' () & ande is incident oni). WhenG = K., the complete
JeTieB; jet graph onm vertices, we have theomplete graph PIN model

Exchanging the order of summation in the double sum onWe show in the next section (Corollafy I7.2) that for the
the left-hand side (LHS) above, we haneT Yicn, Ri = complete graph PIN model, the singleton partitiSnis the
Sier Yien, Bi = Yier(m — 2)R; = (m — 2) Z;T R;. unique minimizer forl(X[,,). The result below then imme-
Putting this back into[{3), we get diately follows from Theorerfil4.
. 1 . Corollary 4.1. In the PIN model defined on the complete
ZRZ = m—2 ZH(XT\U}|X-7)' graph K,,, m > 3, omnivocal communication is necessary
icT JjeT L
for achievingC(X|,,)).

Since this holds for anyR;,: € T') € R, the lemma follows.

- In conjunction with Theorem 6 in_[6], we now have the

following picture for a capacity-achieving communication
I1l. OMNIVOCAL COMMUNICATION the complete graph PIN model: the communication must be

As pointed out in the Introduction, in the source model witRmnivocal, and if it is constrained to be a linear function
two terminals, omnivocality is never necessary for geriegat ©f the observatlonsXé%], then it must have rate at least
a maximal-rate SK. However, the situation is different whef(m — 2)/2. It should be noted that the capacity-achieving
there are three or more terminals. In this section, we givec@Mmmunication in the proof of [7, Theorem 1] is an omnivocal,
sufficient condition for omnivocality being needed for ashi linear communication of rate:(m — 2)/2.
ing SK capacity when there are > 3 terminals, and give an  For the proof of Theoremi]4, we need some convenient
example where the sufficient condition is met. The sufficiembtation. ForT c [m], |T| = m — 1, define Ar(S) £
condition also turns out to be necessary when there arelgxactl [~ . H(X;) — H(X7)].
three terminals.

To state our results, we need a few definitions. The partiti
{{1},{2},...,{m}} consisting ofm singleton cells will play
a special role in our results; we call this thiagleton partition

é_ﬁmma 5. For m > 3 terminals, if the singleton partitios
is the unique minimizer faf(X[,,,;), thenAr(S) < A(S) for
all T C [m] with |T| =m — 1.

and denote it byS. For any partitionP of [m] with |P| > 2, Proof: For anyu € [m], considerT” = [m] \ {u}. Using
define A(S) = [0 H(X;) — H(X[,,)] and the definition of
1 Ar(S) above, it is easy to verify the identity
A(P)& —— H(XA) — H X 4

(P) 2 i | 2 HXa) — X, ”} @ BELA(S) = Ar(S) + 7igl (Xi X1

Equivalently, Re-arranging the above, we obtain
1 A7(S) = A(S) = 75[A(S) — I(Xu: X7)]

A(P)=——D ,

( ) |P|—1 (pX[m] ” EDPXA> _ ﬁ[A(S) . A(P)], (5)
the notation being as i(1). Thug([m]) = I(X},) = WhereP is the 2-cell partition{{u},T} of [m]. By assump-
minp A(P). In all that follows, we say that the singletontion, the expression iri(5) is strictly negative. u
partition S is a minimizer forI(X,,)) if A(S) = I(X[y,), With this, we are ready to prove Theorém 4.
and thatS is theunigue minimizer fol (X, ) if the minimum Proof of Theorenf]4: We will show that C([m]) >
in (@) is uniquely achieved by, i.e., A(S) < A(P) for all  C([m]||T) for any T C [m] with |T| = m — 1. First, note
partitionsP of [m], P # S, with |P| > 2. that sinceS is, by assumption, a minimizer fdi(X(,,)), we

We can now state the main result of this section. have C([m]) = I(X,,)) = A(S). Next, by Theoreni]l and

Theorem 4. For m > 3 terminals, ifS is the unique minimizer Lemmal3, we have

for I(X|,,), then omnivocal communication is necessary f@([m]HT) < H(Xrp)— ﬁ ZH(XT\{i}|Xi)7

achieving the SK capacit§/'([m]). T
Before proving the theorem, we give an example where the — 1 {(m —2)H(Xr) — Z[H(XT) — H(X))]
condition of the theorem is met. me2 Pt



= Ap(S). a communication in which terminalsand3 are both silent.

Therefore, C(Im]|T) < Ar(S) < A(S) = C([m]), the ~ Now, consider Case Il, in which we obviously have
second inequality coming from Lemrh& 5. B C(3]) = I(Xq1,2y;X3). The idea here is to show that a

For the three-terminal source model, it turns out th%\/ta“d communication of rateif (X, »|Xs) exists in which

: L - . . erminal 3 is silent, and which allows-recoverability of
the unigue minimizer condition in Theoredl 4 is alsO-,, ~ . . . . -
. 1, X% at all three terminals. Given this, an application
necessary for the conclusion of the theorem to hol

f [3, Lemma B.3] shows that an SK rate &f(Xy; oy) —
Note that whenm = 3, (I) reduces tocéxm)_ = H(X{12y|X3) = I(X{1.2); X3) is achievable. Th(us,{thc}eZe is a
?ﬁ;nijn(iéﬁé’zr]a’ir)]i(r:’;])i’zé(r)i‘ghﬁi’tg;)i’sjgéa?i\fa}l’e)rf;2[6 (8)} so C([3])-achieving communication in which terminziis silent.
To show that the desired communication exists, we argue
A(S) < min{I(Xy1,2y; X3), I(Xq1,33: X2), [(Xq23: X1)}. s follows. Fori = 1,2, let R; be the rate at which terminal
communicates. A standard random binning argument shows

Theorem_ 6._In t_he three-terminal so_ur<_:e model, om_nlv_oca{hat an achievabléR,, R,) region, with terminal3 silent,
communication is necessary for achieving SK capacity €f thy, 5 communication intended to allow-recoverability of

singleton partitionS is the unique minimizer fok( X[, ). (X7, X7) at all terminals is given by

Proof: The “if” part is by Theorem [H4. R > H(X1|X2), Re> H(Xs|X))
For the “only if" part, suppose thatA(S) > B ’ - ’ 9)
min{7(Xq1 013 X3), I(X{1,335 X2), [ (X(23;: X1)}. Then, Bt Rz 2 H(X (9] Xs).
A(S) is either (a) greater than or equal to at least two of the Now, using the assumption in Case Il tha&(S) >
three terms in the minimum, or (b) greater than or equal I Xy, 5,; X3), we will prove that the inequality
exactly one term. Up to symmetry, it suffices to distinguish
between two cases: H(X1[X2) + H(Xo|X1) < H(X(1.2)|X5) (10)

Case LA(S) > max{I(Xyy2y; X3), [(X11,3y; X2)} holds. It would then follow from[{9) that there exist achible
Case Il: min{/(X{13); X2), [(Xq23;; X1)} > A(S) = rate pairs(Ry, Re) with Ry + Ry = H(X(10]X3), thus
I(X (1,25 X3) completing the proof for Case II.
In each case, we demonstrate a capacity-achieving communiso, let us provd{10). We havk(S) = 1[H(X1)+H(X2)+
cation in which at least one terminal remains silent. H(X3) — H(Xpg)] apd I(X{1,2y; X3) = H(X{L?}) +
We deal with Case | first. Observe thatH(X3) — H(X(3)). Using these expressions in the inequality

A(S) =
as $[I(X1;Xs) + I(X{12);X3)]. Thus, the assumption Lrprovy o oy Zopix > Yigoxay — mix
A(S) > I(X{1,2y; X3), upon some re-organization, yields2[ (X) (X2) Kyl 2 2[ (X) Kl
I(X1; X2) > (X123 X3), i.e., which is equivalent to[{10). This completes the proof of the
theorem. [ ]
[(X; X3) 2 I(X05 Xs) + (X3 X5 | Xn). ©® " We in fact conjecture that the result of TheorEm 6 should
Similarly, using the identity A(S) 1[I(X1;X;3) + extend to more than three terminals as well.

éé‘i;{.;? 3‘?2_);('” t>h§ z;?sum'p;omgi) > I(X 1.3y X2), we Conijecture 1. In the multiterminal source model with > 3
INI(X3; X3) 2 I(Xq1,3; X2), 1.8, terminals, omnivocal communication is necessary for achie

I(X1; X3) > I(X1; Xo) + (X715 X3/ X2). (7) ing SK capacity iff the singleton partition is the unique
minimizer forI(Xj,,).

L 2321 H(X,) - H(X[g])j| can also be written 2(S) = I(X{1,23; X3), and re-arranging terms, we obtain

The equalities in[{6) and}7) can simultaneously hold iff
I(Xl,XQ):I(Xl,Xg) and
I(Xl;X3|X2) = I(Xg; X3|X1) =0.

From [8), it is not hard to deduce that the quantities
I(X(1,9y: X3), I(X(1,3y; X2), I(X{231;X1) and A(S) are  The condition that the singleton partition be a unique
all equal tol(X1; X»). In particular,C(X3)) = I(X1; X2). minimizer for I(X[,,) plays a key role in the results of
From the first equality in[{8), we also havé(X;|X,) = Section[dll. Thus, it would be very useful to have a way of
H(X:|X3). Now, it can be shown by a standard randorahecking whether this condition holds for a given soukgg,,
binning argument that there exists a communication from > 3. The brute force method of comparin(S) with
terminal 1 of rate H(X;|Xs) = H(X;|X3) such thatx® A(P) for all partitionsP with at least two parts requires
is e-recoverable at both terminal and 3. It then follows an enormous amount of computation. Indeed, the number
from the “balanced coloring lemma”|[3, Lemma B.3] that aof partitions of anm-element set is thenth Bell number,
SK rate of H(X,) — H(X|Xs) = I(X;; X,) is achievable. B,,, an asymptotic estimate for which {®g w)'/2w™*e®,
Thus, the SK capacity)'([3]) = I(X1; X), is achievable by wherew = - [1 + o(1)] is the solution to the equation

At this point, we do not have a systematic approach for
(8) proving the “only if” part of the conjecture fom > 4.

IV. SINGLETON PARTITIONS



m = wlog(w + 1) [8, Example 5.4]. The proposition belowgraph K,,, (as defined in Section]ll) are not exchangeable

brings down the number of comparisons required for vergyirvhenm > 3, but they are isentropic.

the unique minimizer condition to a “mer&™ — m — 2.
For any non-empty subsé® = {b1,bo,...,b;p} of [m]

with |B| < m, definePp £ {B¢, {b1},{b2},...,{bp}} to

Corollary 7.1. If Xy,X5,...,X,, , m > 3, are isentropic
rvs, thenS is a minimizer forl( Xy, ).

be the partition ofmn] consisting ofl B|+1 cells, of which| B Proof: For a partitior/P of [m] with |P| > 2, let us define

cells are singletons comprising the elementsBofNote that N

if [B| =m— 1, thenPp =&. 6(P) |7>| Z H(Xac|Xa) = H(Xpm)) — A(P).
AeP

Proposition 7. For m > 3, letQ = {B C [m] : 1 < |B| <
m — 2}. The singleton partitiorS is
(2) @ minimizer for(X,,.)) iff A(S) < A(Py) vBeq; O foral Beq.

. S . For isentropic rvs, the quantityd (Xg|Xp:), for any
(vb])gtgegunlque minimizer fo(Xp,,)) iff A(S) < A(Ps) B C [m], depends only onB|. Hence, definingg(k) £

H(X[k | Xmp\e) for 1 < & < m, we can write&(PB) =
Proof: We prove (b); for (a), we simply have to replacq—g (|B]) + g(m — 1) and 5( ) = ="59(m —1). Thus, we

By virtue of Propositiori17(a), we need to show théPs) <

the *>"in (II) below with a >". have to show tharf(l— < 9L for all B € Q. This follows
The “only if" part is obvious. For the “if part, SUPPOSefrom the fact that for |sentrop|c rvs, the functigrik)/k is
that A(S) < A(Pp) for all B C [m] with 1 < [B| <m —2. pon-decreasing it — see Appendix A. [
Consider any partition? of [m], P # S, with [P| > 2. We  oyr second application of Propositigh 7 is to the PIN model.
wish to show thatA(P) > A(S). Recall from Sectior 1]l that this model is defined on an
The following identity can be obtained from the definitionngerlying graphg = (Jm],€). From the way that the rvs
in (@) by some re-grouping of terms: X;, i € [m], are defined, it is not difficult to verify that for
Z |AS| A(Pac) = (|P|=D[A(P) + (m — )A(S)]. any partition? of [m] with |7?||2 2,)\|Ne have
Aep E(P
A(P) = ,
Thus, we have ®) IPl-1
. o where|€(P)| denotes the number of edges- {i,j} € £ such
A(P) = Z [ AT A(Pac) = (m = 1)A(S) that: and j are in different cells ofP. This, in conjunction

|7’|
Aep with Propositior[V7, gives us a relatively simple criteriar f
> |7>|——1 Z AT A(S) — (m —1)A(S)  (11) verifying whetherS is a (unique) minimizer fol(X[,,)). As

AeP an illustration, we apply this to the complete graph PIN miode

=mAS) — (m = 1DA(S) = A(S). (12) Corollary 7.2. For the PIN model on the complete graph,,,
The inequality in [(IN) is due to the fact that at least one > 3, the singleton partitionS is the unique minimizer for
A € P is not a singleton cell, so thaPs. # S, and I(Xpy)).
hence, A(PEE% > A(S) by@a:ssun}pti(rn 2150 verg:y the first Proof: It is easy to see that for any non-emgbyC [m]
equality in [12), observe that) , »|A°[= > 1cp gal= < o |B¢| =0
i Pg)l= = z|B|(2m — |B|—1). Hence,
ST Yacmaga = mi(PI-1) n EPRIEE) - o) =alBEm 1By

Next, we apply the above proposition to some interesting A(Pg) = |5(|ZT)| = 2 |23| ! 2 % =A(S),
special cases.

Random variablesX,, Xa, ..., X,,, m > 2, are called With equality iff |B| =m —1, i.e.,, Pg = S. The result now
isentropicif H(X,) = H(Xp) for any pair of non-empty follows from Propositior 17 (b). u
subsets4, B C [m] having the same cardinality. Equivalently, APPENDIX A
Xi,...,X,, are isentropic if, for all non-emptyd C [m)],
the entropyH (X 4) depends only onA|. One obvious conse- Here, we prove that for isentropic rv&,,..., X,,, the

guence of this definition is that for disjoint non-empty setiss function + H (X )| X[\ 1), defined forl < k < m, is non-

A, B C [m], the conditional entropy/ (X 4| X 5) only depends decreasmg ink. Define g(k) = H (X Xmp\x)). We show

on |A| and|B|. that the differencesg(k + 1) — (k + 1)g(k) is always non-
Clearly, i.i.d. rvs are isentropic. More generally, exhegative, from which the result follows.

changeable rvs are isentropic — %, X,...,X,, are  We haveg(k + 1) = H(X},) — H(X{k12,..m}) and

exchangeableif for all permutationsc of [m], the joint g(k) = H(X4m) — H(Xjy1,..my) = gk + 1) —
distribution of (X1, Xs,...,X,,) is the same as that of H(Xx+1|X{rt2,...,m}). Thus,

(Xo(1), Xo(2) -+ s Xo(m)). However, isentropic rvs need _

not be exchangeable. It may be verified that the rvs kgk +1) = (k+ 1)g(k)

X1, Xo,...,Xm in the PIN model defined on the complete = (k+1) H(Xpep1| X r2,.my) — 9(k + 1)



We need to show that the RHS of the equality is non-negative.
This is straightforward:

g(k+1) = H( X1 Xrt2,....m})
k41

< Z H(Xi| X (kv2,...om})

=1

= (k+1)H(Xpq1| X (g2, ,m} )

since, for1 < i < k + 1, HXi|Xpq2,..my) =
H(Xpq1| X (kg2,...,m}) DY isentropy.

REFERENCES

[1] R. Ahlswede and I. Csiszar, “Common randomness in mfation theory
and cryptography, part I: Secret sharintFEE Trans. Inf. Theoryvol.
39, pp. 1121-1132, July 1993.

[2] C. Chan and L. Zheng, “Mutual dependence for secret kegeagent,”
Proc. 44th Annu. Conf. Inf. Sci. Syst. (CIS3)10.

[3] I. Csiszar and P. Narayan, “Secrecy capacities for ipleltterminals,”
IEEE Trans. Inf. Theoryvol. 50, pp. 3047-3061, Dec. 2004.

[4] A.A. Gohari and V. Anantharam, “Information-theoretiey agreement
of multiple terminals—Part |, JEEE Trans. Inf. Theoryvol. 56, no. 8,
pp. 3973-3996, Aug. 2010.

[5] U.M. Maurer, “Secret key agreement by public discusgimm common
information,” IEEE Trans. Inf. Theoryvol. 39, pp. 733-742, May 1993.

[6] M. Mukherjee and N. Kashyap, “On the communication cosmpl
ity of secret key generation in the multiterminal source Bidd
arXiv:1401.1117.

[7] S. Nitinawarat and P. Narayan, “Perfect omnisciencefege secrecy
and Steiner tree packinglEEE Trans. Inf. Theoryvol. 56, no. 12, pp.
6490-6500, Dec. 2010.

[8] A.M. Odlyzko, “Asymptotic enumeration methods,” iHlandbook of
Combinatorics R.L. Graham et al., eds., 1995, pp. 1063-1229.

[9] H. Tyagi, “Common information and secret key capacit{fEE Trans.
Inf. Theory vol. 59, no. 9, pp. 5627-5640, Sep. 2013.


http://arxiv.org/abs/1401.1117

	I Introduction
	II Preliminaries
	III Omnivocal Communication
	IV Singleton Partitions
	References

