
Convolutional Coding for Resilient Packet Header Compression

Vijay A Suryavanshi and Aria Nosratinia

Multimedia Communications Laboratory, The University of Texas at Dallas
Richardson, TX 75083-0688, USA

E-mail: {vas021000, aria}@utdallas.edu
Phone: (972) 883-2894

Keywords: Header compression, forward error correction, convolutional codes,

Abstract:
This paper proposes a system using convolutional codes to mitigate error
propagation in packet header compression. Convolutional codes are a class of
Forward Error Correction (FEC) codes, and their use is motivated because on uni-
directional links loss of even one packet can render subsequent packets useless. A
combination of two interleavers is used to address channel memory and increase
the power of the code, and the optimum yet computationally efficient Viterbi
algorithm is used for decoding at the receiver. Simulation results demonstrate the
advantages of the proposed scheme.

Convolutional Coding for Resilient Packet Header
Compression

Vijay A Suryavanshi and Aria Nosratinia
Multimedia Communications Laboratory, The University of Texas at Dallas

Richardson, TX 75083-0688, USA
E-mail: {vas021000, aria}@utdallas.edu

Abstract— This paper proposes a system using convolutional
codes to mitigate error propagation in packet header com-
pression. Convolutional codes are a class of Forward Error
Correction (FEC) codes, and their use is motivated because
on uni-directional links loss of even one packet can render
subsequent packets useless. A combination of two interleavers
is used to address channel memory and increase the power of
the code, and the optimum yet computationally efficient Viterbi
algorithm is used for decoding at the receiver. Simulation results
demonstrate the advantages of the proposed scheme.

I. INTRODUCTION

Recent investigations [1] indicate that 55% of packets have
length less than 200 bytes. The current overhead of 40 bytes
per RTP/UDP/IPv4 packet is thus inefficient. IPv6 introduces
a higher overhead of 60 bytes, which further motivates packet
header compression. In any header compression scheme, the
header fields are differentially encoded and transmitted as a
compressed packet header. Due to differential nature of the
system, a single packet loss can render subsequent packets
useless. On uni-directional links the receiver has to discard
compressed headers unless it receives an uncompressed packet.
Several schemes have been proposed that try to improve error
resilience in header compression schemes.

We propose to use convolutional codes to improve the
error resilience of header compression scheme. Packet headers
are convolutionally encoded and the resulting parity bits are
equally divided among the compressed packet headers. At
the receiver side, the optimum yet computationally efficient
Viterbi algorithm [2] is used for decoding the received bits.
Simulation results indicate that our proposed scheme shows
improvement over other existing schemes.

The present work extends and continues the work in [3],
where a block coding scheme using Reed-Solomon codes was
proposed for resilient packet header compression. That work
demonstrated that encoding for packet header compression
is a good idea, however, Reed-Solomon decoding can be
computationally complex (O(N 2) in the length of the code
word) and does not provide a means of trading complexity
for performance and vice versa. Convolutional codes are
linear complexity in the length of the code word, and their
performance can be adjusted by changing the memory of the
code (number of states in the Viterbi trellis) without interfering
with other system parameters. Unfortunately the block code

DECOMPRESSOR
Channel

Header

CONTEXT CONTEXT

Header COMPRESSOR

feedback

Fig. 1. Basic Header Compression Scheme: CONTEXT buffer stores the
current uncompressed packet header

design is not suitable for convolutional codes, therefore this
paper is dedicated to the new design that uses convolutional
codes, and evaluating its performance.

This paper is organized as follows. In the next section
we describe the basic operations involved in any header
compression scheme. In Section II we briefly discuss the
existing schemes and techniques to mitigate error propagation.
Section III gives a brief overview of convolutional codes and
the Viterbi algorithm along with the interleaver to be used.
Our scheme is discussed in Section IV. Finally we present
simulation results in Section V and conclude in Section VI

A. Header Compression Basics

Packet header compression techniques can be understood
by a quick look at the method of Van Jacobson [4], which
successfully compresses a 40 byte TCP/IPv4 header to 4 bytes.
The basic ideas behind this technique are:

• Do not re-transmit fully static fields, e.g. address fields
• Transmit dynamic fields, e.g., checksum fields
• For slowly varying fields, e.g., sequence number, transmit

only the difference from last known value.

The same principles can be applied to compress a RTP/UDP/IP
packet [5]. In fact RTP/UDP/IP packets are more compressible
due to the fact that differences among header fields often
remain constant or change by small amount. This leads to
a compressed header of 2-4 bytes. For a brief overview of
existing header compression schemes the reader is referred
to [3], [6].

A basic header compression system has a CONTEXT buffer
on each side of the link as shown in Figure 1. At the transmitter

and receiver, the last available header (uncompressed) is kept
in the CONTEXT buffer as a reference. Compression or
decompression takes place with respect to that reference, and
the CONTEXT is updated regularly.

Some header fields stay static throughout a session whereas
some header fields can be inferred from header fields belong-
ing to a previous packet. Other fields such as the checksum
are almost random in the sense that they cannot be inferred
easily from other available information. At the start of a
session the transmitter sends an uncompressed header which
initializes the decompressor. Static fields are not included in
the compressed header whereas random fields are included
verbatim. The remaining fields are differentially encoded or
not transmitted at all (e.g., inferred fields). On an average a
40 byte IPv4 (RTP/UDP or TCP) header can be compressed
down to 3 bytes.

As long as the compressor and decompressor are synchro-
nized, i.e., both CONTEXT buffers are identical in contents,
packet headers can be decompressed correctly. The differential
nature of the scheme, however, makes the system particularly
vulnerable to packet losses. A lost packet desynchronizes the
decompressor and subsequent packets are rendered useless,
as shown in Figure 2. An uncompressed packet needs to be
transmitted so that both sides are synchronized with each other
again.

If a feedback link exists (bi-directional link) then the
compressor can be informed about the status of the receiver,
and upkeep of the CONTEXT is easier. On uni-directional
links, however, the only thing that can be done is to period-
ically transmit uncompressed headers. Our contributions are
especially targeted to help the vulnerable uni-directional links.

II. EXISTING ERROR RESILIENT METHODS

As mentioned in previous section, feedback from the de-
compressor can force the compressor to send refresh packets.
Different schemes have been proposed which address the
problem of error propagation [7], [8], [9]. These schemes work
in conjunction with information provided by the feedback path.
On unidirectional links, periodic packets with uncompressed
headers are transmitted to reduce error propagation. A longer
refresh period gives better efficiency in terms of overhead, but
on average it increases the packet discard rate when losses
occur [3]. Even if feedback is possible, a long RTT can reduce
the benefits of having feedback in first place.

When feedback is not possible, the decompressor can try
to repair the CONTEXT locally. This involves some form of
smart processing on part of decompressor to try and establish
synchronization with the compressor. In [10] a mechanism
is proposed wherein the decompressor tries to locally correct
the desynchronized CONTEXT. The decompressor adds delta
values of the last correctly received header TWICE to a
correctly received compressed header if a packet is loss in
between. The sanctity of the update after applying TWICE
is verified by computing the checksum of the decompressed

header at the transport layer. This algorithm is very effective in
reducing error propagation only when the differences between
the compressed headers is fairly constant and is thus heavily
dependent on characteristic of the stream. Next we discuss
two existing methods which try to achieve robustness against
packet losses their own way.

A. W-LSB Encoding: ROHC U-mode

In LSB encoding of the header fields, only one reference
value Vref is stored in the CONTEXT. Incoming packet
headers are compressed with respect to this Vref . Therefore
a single packet loss desynchronizes the decompressor. Instead
of caching only one Vref value, in RFC 3095 the compressor
CONTEXT maintains a sliding window of previously com-
pressed packet headers. Let us denote the maximum among
these values in the window as vmax and similarly vmin is the
minimum. When the compressor receives v (an uncompressed
header which needs to be compressed), it calculates the range
r as follows:

r = max(|v − vmax|, |v − vmin|) (1)

The number of LSB bits, k that need to be conveyed are
then calculated as:

k = d(log2(2r + 1))e (2)

Next, the compressor adds this v to the existing window and
updates vmax and vmin accordingly. The window is moved
upwards by removing older Vref ’s and adding newer v’s to
the window.

The decompressor chooses the last correctly decompressed
header as its reference value (say) vref . When the decompres-
sor receives k LSB bits for a particular v, it chooses one as
the decompressed value which is closest to vref and has the
same k LSB bits. Obviously higher the value of k is, even if
some packets are lost in between, with high probability the
next correct packet is decompressed correctly. Hence, there is
a trade-off involved in terms of value of k i.e., the window
length, and resilience against error propagation. A longer
window ensures better performance against packet losses but
increases the number of bits k that need to be transmitted. Also
on uni-directional links RFC 3095 recommend all compressed
headers carry a CRC to verify correct decompression.

B. Multiple Updates: RFC 3545-ECRTP

Enhanced Compressed RTP (ECRTP), as explained in RFC
3545, proposes sending changes in header fields multiple
times to maintain synchronization between the compressor and
decompressor. The basic idea is to send updates in (say) N
packets so that at least receiving one correct packet will main-
tain synchronization. This scheme heavily relies on TWICE in
case packets are lost. Again use of TWICE entails inclusion
of the UDP checksum field to verify correct decompression.

Compressed-header packets

Regular packet

Missing packet

Unusable

Fig. 2. Error Propagation due to single packet loss

We propose use of FEC to prevent error propagation on
lossy uni-directional links. In the next section we discuss
briefly our previous work in this area and explain the scheme
proposed in this paper.

III. CONVOLUTIONAL CODING FOR ERROR RESILIENCE

In [3] the authors introduced an FEC based scheme to
prevent error propagation over uni-directional links involving
header compression. Systematic Reed-Solomon (RS) codes are
used to encode packet headers and the resulting parity bytes
are equally divided among the compressed headers. Depending
upon the rate of the code, varying performance is achieved.
The decoding at the receiver side is accomplished using
standard techniques such as the Berlekamp-Massey algorithm
or Peterson-Gorenstein-Zierler algorithm [11]. The decoding
complexity of RS codes is at least quadratic in block length
of the code. Thus a very large block length requires high
computational complexity at the decoder side.

Convolutional codes on the other hand have decoding com-
plexity that is only linear in block length using the Viterbi
algorithm. This motivates the idea of using convolutional
codes for improving error resilience in header compression
schemes. The Viterbi algorithm [2] is a maximum likelihood
decoding algorithm and has close links with problems involv-
ing dynamic programming. In the next few sections we will
discuss our proposed scheme.

A. Convolutional Codes and Viterbi Algorithm

Convolutional codes use a finite state machine for the
calculation of the codeword. The output at each time depends
on the input as well as past inputs [11]. The memory of the
code K determines both the power of the code, as well as
the computational complexity needed for decoding. A rate k

n

convolutional encoder accepts k bits at a time and outputs
n bits at a time. In this paper we only consider rate-1/2
convolutional codes. The popularity of convolutional codes
as error correcting codes is due to the optimal yet compu-
tationally efficient Viterbi decoding algorithm [2]. The Viterbi
algorithm tries to maximize the probability of decoding a
received sequence to a correct codeword by searching through
the trellis of the code.

Error correcting performance of a convolutional code de-
pends on the memory K and rate. Higher value of K and a
lower rate imparts stronger error correcting capability to the

code. Increasing K also increases the number of operations
to be performed while decoding. The number of states in a
trellis is exponential in K and the Viterbi algorithm has to
calculate likelihood at each state. Specifically, for a code of
block length N and memory K, the Viterbi algorithm requires
N22(K+1) operations.

With the loss of each packet a number of consecutive bits
are lost. Convolutional codes are susceptible to the loss of
consecutive bits, therefore interleaving must be used to avoid
burst erasures to be “seen” by the code. An interleaver re-
orders the bits so that successive bit errors will appear to the
code as randomly dispersed bit errors. The best interleavers
are those that maximally separate nearby bits, an exmple of
which follows.

B. S-Random Interleaving

An S-Random interleaver is based on the idea of semi-
random permutations [12]. The basic idea is this:

Generate integers i, 1 ≤ i ≤ N , and randomly select one
integer at a time. If the current integer is equal to any of
the previous S selections within a distance of ±S, the current
selection is placed back in the pool and another random integer
is drawn.

This design procedure ensures that if two input bits to the
interleaver π are within distance S then they are at least S
distance apart at the output. Therefore considering two indices
i, j such that

0 < |i − j| ≤ S (3)

then the design conditions ensures that

|π(i) − π(j)| > S (4)

The design parameter S can be adjusted to obtain varying
error correction performance. Although the searching time for
this algorithm increases with S, for S <

√

N
2 an S-Random

interleaver can be designed in reasonable time [12]. In the next
section we will describe the basic idea of using convolutional
codes along with an S-Random interleaver to achieve error
resilience in header compression systems on uni-directional
links.

Header
Compression

Systematic
Convolutional

Code

parity bits

(compressed) data bits

Multiplexer

data interleaver channel interleaver

π
1

π
2

Fig. 3. Interleaving and Convolutional Encoding of header bits

Header
Decompression

parity bits

From
Channel

Viterbi
Decoder

data bits

−1

−1

data interleaver

channel de-interleaver

π
1

π
2

π
1

Fig. 4. Deinterleaving and Viterbi Decoding of header bits

IV. PROPOSED SCHEME

We assume that the compressor outputs compressed headers
of 2-3 bytes. Let α be the refresh period, i.e., the number of
compressed headers between two uncompressed headers. The
S-random interleaver is fed bits from α compressed headers
and the uncompressed header. If u is the number of bits
in the uncompressed header and c the number of bits in a
compressed header, then a total of u + αc bits are given to
the interleaver. The output bits from the interleaver are fed
to a Recursive Systematic Convolutional (RSC) encoder. The
parity bits coming out of this encoder are fed to an S-Random
interleaver and the output interleaved parity bits are equally
divided among the α compressed packet headers.

Interleaving the data bits (u + αc of them) before encoding
ensures that the parity bits generated belong to data bits which
are at least S distance apart. Correct reception of one such
parity bit can contribute in reconstruction of many packets.
The parity bits are also interleaved which ensures that even
if a packet is lost, the missing parity bits are as far as
possible at the time of decoding. Also the parity bits are
equally distributed among the α compressed packets instead
of transporting them in one single packet. This excludes the
possibility of losing all the parity bits except when all the
packets are lost (a rare event). In the next section we present
simulation results and compare the performance of our scheme
with existing schemes.

V. SIMULATIONS

We compare our scheme with ECRTP and ROHC operating
in uni-directional mode. We us the RSC encoder given in [13]
with rate 1/2, K = 6 and generator matrix g0 = [101011] and

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

packet error probability

pa
ck

et
 d

is
ca

rd
 ra

te
 (a

pp
lic

at
io

n
la

ye
r)

ROHC−U
Proposed Scheme
ECRTP
No Protection

Fig. 5. IID Packet Loss: Comparison of Packet Discard Rates at the
Application Layer

g1 = [111101]. The number of bits in uncompressed header
is u = 320 and length of compressed header is c = 16 bits.
We set the refresh rate α = 40. For the S-Random interleaver
the design parameter S = 16. We consider two cases: i.i.d.
packet losses and correlated packet losses. For a correlated
packet loss model, a two-state Markov channel accurately
describes the Internet packet loss characteristics [14]. For fair
comparison, the end-to-end rate of the system is kept constant
across comparisons.

It can be seen from Figure 5 and Figure 6 that the proposed

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

packet error probability

pa
ck

et
 lo

ss
 ra

te
 (a

pp
lic

at
io

n
la

ye
r)

ROHC−U
Proposed Scheme
ECRTP
No Protection

Fig. 6. Correlated Packet Loss: Comparison of Packet Discard Rates at the
Application Layer. Burst length, BL = 5

0 0.05 0.1 0.15 0.2 0.25
10

15

20

25

30

35

packet error probability

P
S

N
R

(d
B

)

ROHC−U
ECRTP
Proposed Scheme

Fig. 7. Video Quality Evaluation

scheme performs very well compared to existing schemes.
Note that the packet loss rate is the one observed at the applica-
tion layer. Packets discarded by the decompressor never reach
the application layer. We have not assumed any protection on
the payload.

Bits saved due to compressing headers at the lower layers
can be utilized to achieve a better presentation of the source
data at the application layer. In [3] it was shown that a gain up
to 1.5 dB can be achieved. Here we compare the performance
of our scheme in video transport applications with the existing
schemes. The Foreman QCIF sequence is encoded at 65 kbps

with a H.263+ encoder and transmitted over an i.i.d. channel.
Each packet carries only one GOB to improve error resilience
at the video decoder. In case a GOB is lost, to reduce visual
artifacts the GOB in the same spatial location is copied in
the current location. The PSNR metric is used to compare the
video quality in the three cases. Figure 7 also indicates that
on average a 2 dB improvement in PSNR is obtained by using
our proposed method.

VI. CONCLUSION

We present a scheme to improve error resilience in header
compression schemes via use of convolutional codes. Com-
pared to existing schemes the proposed scheme performs
very well. Decoding convolutional codes introduces moderate
complexity since the Viterbi algorithm is only linear in code
length. Video simulations also indicate a better performance
achieved by our scheme.

REFERENCES

[1] CAIDA, “Packet Length Distributions,” HTTP Link, August 2004,
http://www.caida.org/analysis/AIX/.

[2] A. J. Viterbi, “Error bounds for convolutional codes and an asyptotically
optimum decoding algorithm,” IEEE Trans. Inform. Theory, vol. 13, pp.
260–269, April 1967.

[3] V. Suryavanshi, A. Nosratinia, and R. Vedantham, “Resilient Packet
Header Compression through Coding,” Global Telecommunications Con-
ference, 2004. GLOBECOM ’04. IEEE, vol. 3, pp. 1635–1639, 29 Nov.-3
Dec., 2004 2004.

[4] V. Jacobson, “TCP/IP Compression for Low-Speed Serial
Links,” RFC 1144 IETF Network Working Group, Feb 1990,
http://www.ietf.org/rfc/rfc1144.txt.

[5] S. Casner and V. Jacobson, “Compressing IP/UDP/RTP Headers for
Low-Speed Serial Links,” RFC 2508 IETF Network Working Group,
Feb. 1999, http://www.ietf.org/rfc/rfc2508.txt.

[6] I. Joseph, “Survey of Header Compression techniques,” NASA/TM -
2001-211154, Sept 2001, National Aeronautics and Space Administra-
tion (NASA).

[7] S. J. Perkins and M. W. Mutka, “Dependency Removal for Transport
Protocol Header compression over noisy channels,” Proc. of IEEE
International Conference on Communications (ICC), vol. 2, pp. 1025–
1029, June 1997.

[8] M. Rossi, A. Giovanardi, M. Zorzi, and G. Mazzini, “Improved Header
Compression for TCP/IP over Wireless Links,” Electronics Letters,
vol. 36, no. 23, pp. 1958–1960, November 2000.

[9] ——, “TCP/IP Header Compression: Proposal and Performance In-
vestigation on a WCDMA Air Interface,” Proc. of the 12th IEEE
International Symposium on Personal, Indoor and Mobile Radio Com-
munications, vol. 1, pp. A 78–A 82, Sept 2001.

[10] M. Degermak, M. Engan, B. Nordgren, and S. Pink, “Low loss TCP/IP
header compression for Wireless Networks,” in mobicam96, New York,
NY, October 1997.

[11] S. B. Wicker, Error Control Systems for Digital Communcation and
Storage. Englewood Cliffs, NJ: Prentice Hall, 1995.

[12] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using
random and nonrandom permutations,” The Telecommunications and
Data Acquisition Progress Report 42-122, pp. 56–65, 15 August 1995.

[13] P. Frenger, P. Orten, and T. Ottosson, “Convolutional codes with opti-
mum distance spectrum,” IEEE Communications Letters, vol. 3, pp. 317
–319, November 1999.

[14] B. Girod, K. Stuhlmueller, M. Link, and U. Horn, “Packet Loss Resilient
Internet Video Streaming,” Proc. SPIE Visual Communications and
Image processing 99, vol. Vol.3653, pp. 833–844, Jan 1999.

