
Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Numerical methods and object-oriented design

Pras Pathmanathan

Summer 2011

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Write down equations to be solved

2 Discuss numerical schemes that can be used and summarise some of the
important features

3 Discuss a sensible object-oriented design to implement the scheme

4 Describe the (current) Chaste implementation for reference

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Write down equations to be solved

2 Discuss numerical schemes that can be used and summarise some of the
important features

3 Discuss a sensible object-oriented design to implement the scheme

4 Describe the (current) Chaste implementation for reference

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Write down equations to be solved

2 Discuss numerical schemes that can be used and summarise some of the
important features

3 Discuss a sensible object-oriented design to implement the scheme

4 Describe the (current) Chaste implementation for reference

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Write down equations to be solved

2 Discuss numerical schemes that can be used and summarise some of the
important features

3 Discuss a sensible object-oriented design to implement the scheme

4 Describe the (current) Chaste implementation for reference

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Intro to object-oriented programming — lecture 1

2 ODEs — lecture 1

3 Simple (linear, single-variable) PDEs and the finite element method
(FEM) — lectures 2 and 3

4 Coupled and nonlinear PDEs — lecture 4

5 Cardiac electro-physiological PDEs — lecture 4

6 Other methods for solving PDEs — lecture 5

7 Continuum mechanics — lectures 5 and 6

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Intro to object-oriented programming — lecture 1

2 ODEs — lecture 1

3 Simple (linear, single-variable) PDEs and the finite element method
(FEM) — lectures 2 and 3

4 Coupled and nonlinear PDEs — lecture 4

5 Cardiac electro-physiological PDEs — lecture 4

6 Other methods for solving PDEs — lecture 5

7 Continuum mechanics — lectures 5 and 6

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Intro to object-oriented programming — lecture 1

2 ODEs — lecture 1

3 Simple (linear, single-variable) PDEs and the finite element method
(FEM) — lectures 2 and 3

4 Coupled and nonlinear PDEs — lecture 4

5 Cardiac electro-physiological PDEs — lecture 4

6 Other methods for solving PDEs — lecture 5

7 Continuum mechanics — lectures 5 and 6

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Intro to object-oriented programming — lecture 1

2 ODEs — lecture 1

3 Simple (linear, single-variable) PDEs and the finite element method
(FEM) — lectures 2 and 3

4 Coupled and nonlinear PDEs — lecture 4

5 Cardiac electro-physiological PDEs — lecture 4

6 Other methods for solving PDEs — lecture 5

7 Continuum mechanics — lectures 5 and 6

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Intro to object-oriented programming — lecture 1

2 ODEs — lecture 1

3 Simple (linear, single-variable) PDEs and the finite element method
(FEM) — lectures 2 and 3

4 Coupled and nonlinear PDEs — lecture 4

5 Cardiac electro-physiological PDEs — lecture 4

6 Other methods for solving PDEs — lecture 5

7 Continuum mechanics — lectures 5 and 6

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

1 Intro to object-oriented programming — lecture 1

2 ODEs — lecture 1

3 Simple (linear, single-variable) PDEs and the finite element method
(FEM) — lectures 2 and 3

4 Coupled and nonlinear PDEs — lecture 4

5 Cardiac electro-physiological PDEs — lecture 4

6 Other methods for solving PDEs — lecture 5

7 Continuum mechanics — lectures 5 and 6

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction

Things that are not part of the course

C++

Specific design decisions in Chaste

Solving linear systems

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object Oriented Programming

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Classes

The basic data-types in standard programming are integers, floating point real
numbers, boolean flags, etc.

Object-oriented programming is based on user-defined complex data-types,
known as classes, representing, for example: Mesh, Cat, Measurement,
PdeSolver, ..

Classes are composed of data (member variables) and methods (functions)

Classes can be considered to be a collection of related data, with functions for
using the data appropriately.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Classes - example

For example, consider the following simple class for representing a ’human’

class Human:

Data:
mAge (an integer)

Methods:
SetAge(age)

GetAge()

The usage could be something like

Human ozzy;

ozzy.SetAge(age);

Human miguel;

..

if(ozzy.GetAge() < miguel.GetAge())

..

Objects are instantiations of classes - in the above example ‘Human’ is a class,
‘ozzy’ and ‘miguel’ are objects.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Classes - example

For example, consider the following simple class for representing a ’human’

class Human:

Data:
mAge (an integer)

Methods:
SetAge(age)

GetAge()

The usage could be something like

Human ozzy;

ozzy.SetAge(age);

Human miguel;

..

if(ozzy.GetAge() < miguel.GetAge())

..

Objects are instantiations of classes - in the above example ‘Human’ is a class,
‘ozzy’ and ‘miguel’ are objects.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Classes - inheritance

Suppose we want to write a class for an ‘academic’. We don’t want to have to
copy all the code relating to the fact that academics are (usually) humans.
Inheritance gets around this

class Academic inherits from Human:
Data:

mNumPapers

Methods:
PublishPaper() (increments mNumPapers by one)
GetNumPapers()

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Classes - inheritance

Example usage:

Academic hawking;

..

if(hawking.GetAge()<30 && hawking.GetNumPapers()>30)

..

The original class (Human) is referred to as the parent class / superclass /
base class

The inheriting class (Academic) is referred to as the child class / subclass
/ derived class.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Abstract classes

Abstract classes are classes that contain an abstract (or ‘pure virtual’) method.
These are methods which are declared but not implemented.

class AbstractAnimal:
Data:

mIsHungry

Methods:
Eat() (set mIsHungry to false)
MakeNoise() (Abstract method, implementation not given)

Abstract classes cannot be instantiated, i.e. the following is not allowed

AbstractAnimal rover

Instead, a subclass must be written which implements the abstract method..

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Abstract classes

Example ‘concrete classes’, inheriting from AbstractAnimal:

class Dog inherits from AbstractAnimal:
Methods:

MakeNoise() (print out ‘woof’)

class Cat inherits from AbstractAnimal:
Methods:

MakeNoise() (print out ‘meow’)

As these have implemented the abstract methods, they can be instantiated:

Cat scratchy;

Dog brian;

scratchy.MakeNoise();

brian.MakeNoise();

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Abstract classes

Example ‘concrete classes’, inheriting from AbstractAnimal:

class Dog inherits from AbstractAnimal:
Methods:

MakeNoise() (print out ‘woof’)

class Cat inherits from AbstractAnimal:
Methods:

MakeNoise() (print out ‘meow’)

As these have implemented the abstract methods, they can be instantiated:

Cat scratchy;

Dog brian;

scratchy.MakeNoise();

brian.MakeNoise();

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Abstract classes

The following isn’t be very neat

class Human:
Methods:

..
SetPetDog(dog)

SetPetCat(cat)

Instead, we can do

class Human:
Methods:

..
SetPet(abstractAnimal)

Inside SetPet() we could call MakeNoise() on the abstract animal and the
program would decide at runtime which is the appropriate function to run.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Colour scheme

AbstractAnimal:
Member var: mIsHungry

Method: Eat()

Abs. method: MakeNoise()

Dog: inherits from AbstractAnimal

Implemented method: MakeNoise()

Cat: inherits from AbstractAnimal

Implemented method: MakeNoise()

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving ODEs

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The forward and backward Euler methods

Consider the system of ODEs:

dy

dt
= f (t, y)

with initial condition y(0) = y0. Given a timestep ∆t, we require a numerical
approximation y0(= y0), y1, y2, . . . Here yn represents the numerical solution at
time tn = n∆t.

The forward Euler discretisation is

yn+1 − yn

∆t
= f (tn, yn) ⇒ yn+1 = yn + ∆t f (tn, yn)

which explicitly gives each yn+1 in terms of yn, i.e. this is an explicit scheme.

The backward Euler discretisation is

yn+1 − yn

∆t
= f (tn+1, yn+1) ⇒ yn+1 −∆t f (tn+1, yn+1) = yn

which in general is a nonlinear system of equations for yn+1, i.e. an implicit
scheme.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The forward and backward Euler methods

Consider the system of ODEs:

dy

dt
= f (t, y)

with initial condition y(0) = y0. Given a timestep ∆t, we require a numerical
approximation y0(= y0), y1, y2, . . . Here yn represents the numerical solution at
time tn = n∆t.

The forward Euler discretisation is

yn+1 − yn

∆t
= f (tn, yn) ⇒ yn+1 = yn + ∆t f (tn, yn)

which explicitly gives each yn+1 in terms of yn, i.e. this is an explicit scheme.

The backward Euler discretisation is

yn+1 − yn

∆t
= f (tn+1, yn+1) ⇒ yn+1 −∆t f (tn+1, yn+1) = yn

which in general is a nonlinear system of equations for yn+1, i.e. an implicit
scheme.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The forward and backward Euler methods

Consider the system of ODEs:

dy

dt
= f (t, y)

with initial condition y(0) = y0. Given a timestep ∆t, we require a numerical
approximation y0(= y0), y1, y2, . . . Here yn represents the numerical solution at
time tn = n∆t.

The forward Euler discretisation is

yn+1 − yn

∆t
= f (tn, yn) ⇒ yn+1 = yn + ∆t f (tn, yn)

which explicitly gives each yn+1 in terms of yn, i.e. this is an explicit scheme.

The backward Euler discretisation is

yn+1 − yn

∆t
= f (tn+1, yn+1) ⇒ yn+1 −∆t f (tn+1, yn+1) = yn

which in general is a nonlinear system of equations for yn+1, i.e. an implicit
scheme.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Backward Euler

Backward Euler:

yn+1 − yn

∆t
= f (tn+1, yn+1) ⇒ yn+1 −∆t f (tn+1, yn+1) = yn

This is a nonlinear equation if f is nonlinear, and a linear system if f is linear
and multi-dimensional (better than nonlinear, worse than explicit).

For example:

1 unknown, satisfying equation dy
dt

= e−y : the discretisation is

yn+1 −∆t e−yn+1

= yn

linear set of M ODEs dy
dt

= Ay: the discretisation is

(I −∆t A)yn+1 = yn

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Backward Euler

Backward Euler:

yn+1 − yn

∆t
= f (tn+1, yn+1) ⇒ yn+1 −∆t f (tn+1, yn+1) = yn

This is a nonlinear equation if f is nonlinear, and a linear system if f is linear
and multi-dimensional (better than nonlinear, worse than explicit).

For example:

1 unknown, satisfying equation dy
dt

= e−y : the discretisation is

yn+1 −∆t e−yn+1

= yn

linear set of M ODEs dy
dt

= Ay: the discretisation is

(I −∆t A)yn+1 = yn

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Write an explicit one-step method as: yn+1 = yn + ∆t φ(tn, yn; ∆t)

Truncation error

The truncation error is defined as

T n = y(tn+1)− y(tn)−∆t φ(tn, y(tn); ∆t);

or, equivalently: if y(tn) = yn, then

T n = y(tn+1)− yn+1

i.e. it is the local error induced in a single timestep. Note:

for implicit/multi-step methods there is an analogous definition.

some definitions divide through by ∆t

It is easy to show using a Taylor expansion that

T n = O(∆t2)

for both forward and backward Euler.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Write an explicit one-step method as: yn+1 = yn + ∆t φ(tn, yn; ∆t)

Truncation error

The truncation error is defined as

T n = y(tn+1)− y(tn)−∆t φ(tn, y(tn); ∆t);

or, equivalently: if y(tn) = yn, then

T n = y(tn+1)− yn+1

i.e. it is the local error induced in a single timestep. Note:

for implicit/multi-step methods there is an analogous definition.

some definitions divide through by ∆t

It is easy to show using a Taylor expansion that

T n = O(∆t2)

for both forward and backward Euler.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Write an explicit one-step method as: yn+1 = yn + ∆t φ(tn, yn; ∆t)

Truncation error

The truncation error is defined as

T n = y(tn+1)− y(tn)−∆t φ(tn, y(tn); ∆t);

or, equivalently: if y(tn) = yn, then

T n = y(tn+1)− yn+1

i.e. it is the local error induced in a single timestep. Note:

for implicit/multi-step methods there is an analogous definition.

some definitions divide through by ∆t

It is easy to show using a Taylor expansion that

T n = O(∆t2)

for both forward and backward Euler.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Global error

The global error is simply defined as

en = y(tn)− yn

We only consider global error on some fixed time interval [0,Tend]. Let
Tend = N∆t, i.e. let N be the total number timesteps taken.

For the Euler methods we expect eN = O(N∆t2) = O(Tend∆t) = O(∆t), and
therefore that en = O(∆t).

This can be shown to be the case under assuming mild conditions1 on f :

en = O(∆t)

We say the forward and backward Euler methods are first-order

1Basically, f (t, y) is Lipschitz continuous in y—the same conditions which are required for the

existence of a unique solution of the ODE dy
dt = f (t, y)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Global error

The global error is simply defined as

en = y(tn)− yn

We only consider global error on some fixed time interval [0,Tend]. Let
Tend = N∆t, i.e. let N be the total number timesteps taken.

For the Euler methods we expect eN = O(N∆t2) = O(Tend∆t) = O(∆t), and
therefore that en = O(∆t).

This can be shown to be the case under assuming mild conditions1 on f :

en = O(∆t)

We say the forward and backward Euler methods are first-order

1Basically, f (t, y) is Lipschitz continuous in y—the same conditions which are required for the

existence of a unique solution of the ODE dy
dt = f (t, y)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Global error

The global error is simply defined as

en = y(tn)− yn

We only consider global error on some fixed time interval [0,Tend]. Let
Tend = N∆t, i.e. let N be the total number timesteps taken.

For the Euler methods we expect eN = O(N∆t2) = O(Tend∆t) = O(∆t), and
therefore that en = O(∆t).

This can be shown to be the case under assuming mild conditions1 on f :

en = O(∆t)

We say the forward and backward Euler methods are first-order

1Basically, f (t, y) is Lipschitz continuous in y—the same conditions which are required for the

existence of a unique solution of the ODE dy
dt = f (t, y)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Accuracy

Global error

The global error is simply defined as

en = y(tn)− yn

We only consider global error on some fixed time interval [0,Tend]. Let
Tend = N∆t, i.e. let N be the total number timesteps taken.

For the Euler methods we expect eN = O(N∆t2) = O(Tend∆t) = O(∆t), and
therefore that en = O(∆t).

This can be shown to be the case under assuming mild conditions1 on f :

en = O(∆t)

We say the forward and backward Euler methods are first-order

1Basically, f (t, y) is Lipschitz continuous in y—the same conditions which are required for the

existence of a unique solution of the ODE dy
dt = f (t, y)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stability

There are various notions of stability

Zero-stability

Zero stability is the stability of the numerical solution to changes in initial
condition y 0

This is the essentially that small errors (at any time) do not grow
unbounded

A non-zero-stable method would be useless computationally

Dahlquist equivalence theorem: for a ‘consistent’ multistep method with
‘consistent’ initial values: zero-stability ⇔ convergence

A-stability

Consider the ODE

dy

dt
= λy , with y(0) = 1 ⇒ y = eλt

If λ < 0, then y → 0 as t →∞.

Does the numerical solution yn satisfy yn → 0 as n→∞, with fixed ∆t?

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stability

There are various notions of stability

Zero-stability

Zero stability is the stability of the numerical solution to changes in initial
condition y 0

This is the essentially that small errors (at any time) do not grow
unbounded

A non-zero-stable method would be useless computationally

Dahlquist equivalence theorem: for a ‘consistent’ multistep method with
‘consistent’ initial values: zero-stability ⇔ convergence

A-stability

Consider the ODE

dy

dt
= λy , with y(0) = 1 ⇒ y = eλt

If λ < 0, then y → 0 as t →∞.

Does the numerical solution yn satisfy yn → 0 as n→∞, with fixed ∆t?

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stability

There are various notions of stability

Zero-stability

Zero stability is the stability of the numerical solution to changes in initial
condition y 0

This is the essentially that small errors (at any time) do not grow
unbounded

A non-zero-stable method would be useless computationally

Dahlquist equivalence theorem: for a ‘consistent’ multistep method with
‘consistent’ initial values: zero-stability ⇔ convergence

A-stability

Consider the ODE

dy

dt
= λy , with y(0) = 1 ⇒ y = eλt

If λ < 0, then y → 0 as t →∞.

Does the numerical solution yn satisfy yn → 0 as n→∞, with fixed ∆t?

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stability

A-stability

Consider the ODE

dy

dt
= λy , with y(0) = 1 ⇒ y = eλt

If λ < 0, then y → 0 as t →∞.

Does the numerical solution yn satisfy yn → 0 as n→∞, with fixed ∆t?

If λ < 0

Forward Euler: yn → 0 only if ∆t < − 2
λ

, i.e. conditional stability

Backward Euler: yn → 0 for all ∆t, i.e. unconditional stability

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Other discretisations

One-step:

Forward Euler: yn+1 = yn + ∆t f (tn, yn) O(∆t)

Backward Euler: yn+1 = yn + ∆t f (tn+1, yn+1) O(∆t)

Trapezoidal rule: yn+1 = yn + 1
2
∆t
`
f (tn, yn) + f (tn+1, yn+1)

´
O(∆t2)

Heun’s method:
yn+1 = yn + 1

2
∆t
`
f (tn, yn) + f (tn+1, yn + ∆t f (tn, yn))

´
O(∆t2)

Four-stage Runge-Kutta:
yn+1 = yn + 1

6
∆t(k1 + 2k2 + 2k3 + k4) O(∆t4)

where k1 = f (tn, yn), k2 = f (tn + 1
2
∆t, yn + 1

2
∆t k1),...

Multi-step:

Simpson’s Rule: yn+2 = yn+1 + 1
3
∆t
`
f n+2 + 4f n+1 + f n

´
O(∆t4)

Adams-Bashforth: yn+2 = yn+1 + 1
2
∆t

`
3f n+1 − f n

´
O(∆t2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Other discretisations

One-step:

Forward Euler: yn+1 = yn + ∆t f (tn, yn) O(∆t)

Backward Euler: yn+1 = yn + ∆t f (tn+1, yn+1) O(∆t)

Trapezoidal rule: yn+1 = yn + 1
2
∆t
`
f (tn, yn) + f (tn+1, yn+1)

´
O(∆t2)

Heun’s method:
yn+1 = yn + 1

2
∆t
`
f (tn, yn) + f (tn+1, yn + ∆t f (tn, yn))

´
O(∆t2)

Four-stage Runge-Kutta:
yn+1 = yn + 1

6
∆t(k1 + 2k2 + 2k3 + k4) O(∆t4)

where k1 = f (tn, yn), k2 = f (tn + 1
2
∆t, yn + 1

2
∆t k1),...

Multi-step:

Simpson’s Rule: yn+2 = yn+1 + 1
3
∆t
`
f n+2 + 4f n+1 + f n

´
O(∆t4)

Adams-Bashforth: yn+2 = yn+1 + 1
2
∆t

`
3f n+1 − f n

´
O(∆t2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Other discretisations

One-step:

Forward Euler: yn+1 = yn + ∆t f (tn, yn) O(∆t)

Backward Euler: yn+1 = yn + ∆t f (tn+1, yn+1) O(∆t)

Trapezoidal rule: yn+1 = yn + 1
2
∆t
`
f (tn, yn) + f (tn+1, yn+1)

´
O(∆t2)

Heun’s method:
yn+1 = yn + 1

2
∆t
`
f (tn, yn) + f (tn+1, yn + ∆t f (tn, yn))

´
O(∆t2)

Four-stage Runge-Kutta:
yn+1 = yn + 1

6
∆t(k1 + 2k2 + 2k3 + k4) O(∆t4)

where k1 = f (tn, yn), k2 = f (tn + 1
2
∆t, yn + 1

2
∆t k1),...

Multi-step:

Simpson’s Rule: yn+2 = yn+1 + 1
3
∆t
`
f n+2 + 4f n+1 + f n

´
O(∆t4)

Adams-Bashforth: yn+2 = yn+1 + 1
2
∆t

`
3f n+1 − f n

´
O(∆t2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Other discretisations

One-step:

Forward Euler: yn+1 = yn + ∆t f (tn, yn) O(∆t)

Backward Euler: yn+1 = yn + ∆t f (tn+1, yn+1) O(∆t)

Trapezoidal rule: yn+1 = yn + 1
2
∆t
`
f (tn, yn) + f (tn+1, yn+1)

´
O(∆t2)

Heun’s method:
yn+1 = yn + 1

2
∆t
`
f (tn, yn) + f (tn+1, yn + ∆t f (tn, yn))

´
O(∆t2)

Four-stage Runge-Kutta:
yn+1 = yn + 1

6
∆t(k1 + 2k2 + 2k3 + k4) O(∆t4)

where k1 = f (tn, yn), k2 = f (tn + 1
2
∆t, yn + 1

2
∆t k1),...

Multi-step:

Simpson’s Rule: yn+2 = yn+1 + 1
3
∆t
`
f n+2 + 4f n+1 + f n

´
O(∆t4)

Adams-Bashforth: yn+2 = yn+1 + 1
2
∆t

`
3f n+1 − f n

´
O(∆t2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Other discretisations

One-step:

Forward Euler: yn+1 = yn + ∆t f (tn, yn) O(∆t)

Backward Euler: yn+1 = yn + ∆t f (tn+1, yn+1) O(∆t)

Trapezoidal rule: yn+1 = yn + 1
2
∆t
`
f (tn, yn) + f (tn+1, yn+1)

´
O(∆t2)

Heun’s method:
yn+1 = yn + 1

2
∆t
`
f (tn, yn) + f (tn+1, yn + ∆t f (tn, yn))

´
O(∆t2)

Four-stage Runge-Kutta:
yn+1 = yn + 1

6
∆t(k1 + 2k2 + 2k3 + k4) O(∆t4)

where k1 = f (tn, yn), k2 = f (tn + 1
2
∆t, yn + 1

2
∆t k1),...

Multi-step:

Simpson’s Rule: yn+2 = yn+1 + 1
3
∆t
`
f n+2 + 4f n+1 + f n

´
O(∆t4)

Adams-Bashforth: yn+2 = yn+1 + 1
2
∆t

`
3f n+1 − f n

´
O(∆t2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation

A (standard) Matlab approach uses function pointers:

[T,Y] = ode45(@my_func,[0 1],[1 2 3]);

function dydt = my_func(t,y)

dydt = y.^2;

Object-oriented approach:

AbstractOdeSystem:
Member var: mSize

B i.e. the dimension of the vector y
Abs. method: EvaluateYDerivatives(t, y)

B Declares the function representing f (t, y)

MyOdeSystem: inherits from AbstractOdeSystem

Implemented method: EvaluateYDerivatives(t, y)

B One particular choice of f (t, y)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a forward Euler solve

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a backward Euler solve

This isn’t optimal, because the loop over time is implemented in both the
solvers, but isn’t specific to either

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a forward Euler solve

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a backward Euler solve

This isn’t optimal, because the loop over time is implemented in both the
solvers, but isn’t specific to either

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a forward Euler solve

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a backward Euler solve

This isn’t optimal, because the loop over time is implemented in both the
solvers, but isn’t specific to either

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a forward Euler solve

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: Solve(..)

B Implements a backward Euler solve

This isn’t optimal, because the loop over time is implemented in both the
solvers, but isn’t specific to either

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Method: Solve(abstractOdeSystem,t0,t1,initialCond)

B Implements a loop over time, and each timestep calls the
following:

Abs. method: CalculateNextYValue(currentYValue)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

B Takes in yn, returns yn+1 = yn + ∆t f (tn, yn)

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

B Takes in yn, solves yn+1 −∆t f (tn+1, yn+1) = yn, returns yn+1

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Method: Solve(abstractOdeSystem,t0,t1,initialCond)

B Implements a loop over time, and each timestep calls the
following:

Abs. method: CalculateNextYValue(currentYValue)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

B Takes in yn, returns yn+1 = yn + ∆t f (tn, yn)

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

B Takes in yn, solves yn+1 −∆t f (tn+1, yn+1) = yn, returns yn+1

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented implementation: solvers

AbstractOneStepOdeSolver:
Method: Solve(abstractOdeSystem,t0,t1,initialCond)

B Implements a loop over time, and each timestep calls the
following:

Abs. method: CalculateNextYValue(currentYValue)

ForwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

B Takes in yn, returns yn+1 = yn + ∆t f (tn, yn)

BackwardEulerSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

B Takes in yn, solves yn+1 −∆t f (tn+1, yn+1) = yn, returns yn+1

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Multiple ODE systems

A complication: for large-scale cardiac problems (and other applications), have
a system of ODEs for each point in space—which leads to (for example), a
system of ODEs for each node in the computational mesh.

For large simulations this is potentially millions of systems of ODEs. The
current solution at each node needs to be stored.

One approach would be to store an N by M matrix, N the number of nodes, M
the size of each system. 0B@ y(node 1)

...

y(node N)

1CA

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Design for multiple ODE systems

The object-oriented approach is to store the state variables (i.e. ‘current
solution’) in the ODE system object.

AbstractOdeSystem:
Member var: mSize

Member var: mStateVariables ←
Abs. method: EvaluateYDerivatives(t, y)

The solver now has two different types of Solve method

AbstractOneStepOdeSolver:
Method: Solve(abstractOdeSystem,t0,t1,initialCond)

B Uses the given initial condition, returns computed solution, ignores
state variables inside the ODE sysem

Method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

B Use state variables in ODE system as initial condition, puts final
solution in state variables and returns nothing

Abs. method: CalculateNextYValue(..)

ForwardEulerSolver etc are unchanged

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Design for multiple ODE systems

The object-oriented approach is to store the state variables (i.e. ‘current
solution’) in the ODE system object.

AbstractOdeSystem:
Member var: mSize

Member var: mStateVariables ←
Abs. method: EvaluateYDerivatives(t, y)

The solver now has two different types of Solve method

AbstractOneStepOdeSolver:
Method: Solve(abstractOdeSystem,t0,t1,initialCond)

B Uses the given initial condition, returns computed solution, ignores
state variables inside the ODE sysem

Method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

B Use state variables in ODE system as initial condition, puts final
solution in state variables and returns nothing

Abs. method: CalculateNextYValue(..)

ForwardEulerSolver etc are unchanged

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - ODE system

See folder ode/src/common/

AbstractParameterisedSystem:
Member var: mNumberOfStateVariables

Member var: mStateVariables

Member var: mpSystemInfo

B Data of type AbstractOdeSystemInformation

AbstractOdeSystem: inherits from AbstractParameterisedSystem

Member var: mDefaultInitialConditions

Abs. method: EvaluateYDerivatives(t, y)

AbstractOdeSystemInformation:
Member var: mVariableNames

Member var: mVariableUnits

OdeSolution:
B Returned by solvers, contains times and solution values

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - ODE system

See folder ode/src/common/

AbstractParameterisedSystem:
Member var: mNumberOfStateVariables

Member var: mStateVariables

Member var: mpSystemInfo

B Data of type AbstractOdeSystemInformation

AbstractOdeSystem: inherits from AbstractParameterisedSystem

Member var: mDefaultInitialConditions

Abs. method: EvaluateYDerivatives(t, y)

AbstractOdeSystemInformation:
Member var: mVariableNames

Member var: mVariableUnits

OdeSolution:
B Returned by solvers, contains times and solution values

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - ODE system

See folder ode/src/common/

AbstractParameterisedSystem:
Member var: mNumberOfStateVariables

Member var: mStateVariables

Member var: mpSystemInfo

B Data of type AbstractOdeSystemInformation

AbstractOdeSystem: inherits from AbstractParameterisedSystem

Member var: mDefaultInitialConditions

Abs. method: EvaluateYDerivatives(t, y)

AbstractOdeSystemInformation:
Member var: mVariableNames

Member var: mVariableUnits

OdeSolution:
B Returned by solvers, contains times and solution values

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - ODE system

See folder ode/src/common/

AbstractParameterisedSystem:
Member var: mNumberOfStateVariables

Member var: mStateVariables

Member var: mpSystemInfo

B Data of type AbstractOdeSystemInformation

AbstractOdeSystem: inherits from AbstractParameterisedSystem

Member var: mDefaultInitialConditions

Abs. method: EvaluateYDerivatives(t, y)

AbstractOdeSystemInformation:
Member var: mVariableNames

Member var: mVariableUnits

OdeSolution:
B Returned by solvers, contains times and solution values

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - solvers

See folder ode/src/solver/

AbstractIvpOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

Abs. method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

AbstractOneStepIvpOdeSolver: inherits from AbstractIvpOdeSolver

Implemented method: Solve(..)

Implemented method: SolveAndUpdateStateVariable(..)

Method: InternalSolve(..)

Abs. method: CalculateNextYValue(..)

ForwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

BackwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

There are also Heun, RungeKutta2 and RungeKutta4 solvers (all one-step),
and a RungeKuttaFehlberg (Matlab’s ‘ode45‘) (inherits from
AbstractIvpOdeSolver).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - solvers

See folder ode/src/solver/

AbstractIvpOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

Abs. method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

AbstractOneStepIvpOdeSolver: inherits from AbstractIvpOdeSolver

Implemented method: Solve(..)

Implemented method: SolveAndUpdateStateVariable(..)

Method: InternalSolve(..)

Abs. method: CalculateNextYValue(..)

ForwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

BackwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

There are also Heun, RungeKutta2 and RungeKutta4 solvers (all one-step),
and a RungeKuttaFehlberg (Matlab’s ‘ode45‘) (inherits from
AbstractIvpOdeSolver).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - solvers

See folder ode/src/solver/

AbstractIvpOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

Abs. method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

AbstractOneStepIvpOdeSolver: inherits from AbstractIvpOdeSolver

Implemented method: Solve(..)

Implemented method: SolveAndUpdateStateVariable(..)

Method: InternalSolve(..)

Abs. method: CalculateNextYValue(..)

ForwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

BackwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

There are also Heun, RungeKutta2 and RungeKutta4 solvers (all one-step),
and a RungeKuttaFehlberg (Matlab’s ‘ode45‘) (inherits from
AbstractIvpOdeSolver).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - solvers

See folder ode/src/solver/

AbstractIvpOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

Abs. method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

AbstractOneStepIvpOdeSolver: inherits from AbstractIvpOdeSolver

Implemented method: Solve(..)

Implemented method: SolveAndUpdateStateVariable(..)

Method: InternalSolve(..)

Abs. method: CalculateNextYValue(..)

ForwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

BackwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

There are also Heun, RungeKutta2 and RungeKutta4 solvers (all one-step),
and a RungeKuttaFehlberg (Matlab’s ‘ode45‘) (inherits from
AbstractIvpOdeSolver).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

ODE classes in Chaste - solvers

See folder ode/src/solver/

AbstractIvpOdeSolver:
Abs. method: Solve(abstractOdeSystem,t0,t1,initialCond)

Abs. method: SolveAndUpdateStateVariable(absOdeSys,t0,t1)

AbstractOneStepIvpOdeSolver: inherits from AbstractIvpOdeSolver

Implemented method: Solve(..)

Implemented method: SolveAndUpdateStateVariable(..)

Method: InternalSolve(..)

Abs. method: CalculateNextYValue(..)

ForwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

BackwardEulerIvpSolver: inherits from AbstractOneStepOdeSolver

Implemented method: CalculateNextYValue(..)

There are also Heun, RungeKutta2 and RungeKutta4 solvers (all one-step),
and a RungeKuttaFehlberg (Matlab’s ‘ode45‘) (inherits from
AbstractIvpOdeSolver).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving simple PDEs using the finite element method

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: elliptic and parabolic linear PDEs

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation ∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation utt = ∇2u

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

PDEs

Second-order PDEs commonly arise in physical models. There are three
archetypal second-order PDEs

1 Elliptic PDEs, for example, Poisson’s equation ∇2u + f = 0

2 Parabolic PDEs, for example, the heat equation ut = ∇2u + f

3 Hyperbolic PDEs, for example, the wave equation utt = ∇2u

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE ∇ · D∇u = f ,
where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)

Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE ∇ · D∇u = f ,
where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)

Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Defining PDEs in an object oriented manner

First, an abstract class defining a general linear elliptic PDE ∇ · D∇u = f ,
where D is a matrix-valued function of position (the diffusion tensor):

AbstractLinearEllipticPde:
Abs. method: GetDiffusionTensor(x)

Abs. method: GetForceTerm(x)

MyEllipticPde: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

Implemented method: GetForceTerm(x)

For example ∇2u = 0

LaplacesEquation: inherits from AbstractLinearEllipticPde

Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Defining PDEs in an object oriented manner

Next, an abstract class defining a general linear parabolic PDE

αut = ∇ · D∇u + f

where α, D and f are functions of space and time.

AbstractLinearParabolicPde:
Abs. method: GetDuDtCoefficientTerm(t,x)

Abs. method: GetDiffusionTensor(t,x)

Abs. method: GetForceTerm(t,x)

For example ut = ∇2u

HeatEquation: inherits from AbstractLinearParabolicPde

Implemented method: GetDuDtCoefficientTerm(t,x)

B return 1
Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Defining PDEs in an object oriented manner

Next, an abstract class defining a general linear parabolic PDE

αut = ∇ · D∇u + f

where α, D and f are functions of space and time.

AbstractLinearParabolicPde:
Abs. method: GetDuDtCoefficientTerm(t,x)

Abs. method: GetDiffusionTensor(t,x)

Abs. method: GetForceTerm(t,x)

For example ut = ∇2u

HeatEquation: inherits from AbstractLinearParabolicPde

Implemented method: GetDuDtCoefficientTerm(t,x)

B return 1
Implemented method: GetDiffusionTensor(x)

B return identity matrix
Implemented method: GetForceTerm(x)

B return zero

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: introduction to FEM

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite element method

Stages

1 Convert equation from strong form to weak form

2 Convert infinite-dimensional problem into a finite dimensional one

3 Set up the finite element linear system to be solved

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form of Poisson’s equation

Consider Poisson’s equation:
∇2u + f = 0

subject to boundary conditions

u = 0 on Γ1

∇u · n = g on Γ2

Weak form

Multiply by a test function v satisfying v = 0 on Γ1, and integrate:

v
“
∇2u

”
= −fvZ

Ω

v
“
∇2u

”
dV = −

Z
Ω

fv dVZ
∂Ω

v (∇u · n) dS −
Z

Ω

∇u ·∇v dV = −
Z

Ω

fv dVZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form of Poisson’s equation

Consider Poisson’s equation:
∇2u + f = 0

subject to boundary conditions

u = 0 on Γ1

∇u · n = g on Γ2

Weak form

Multiply by a test function v satisfying v = 0 on Γ1, and integrate:

v
“
∇2u

”
= −fvZ

Ω

v
“
∇2u

”
dV = −

Z
Ω

fv dVZ
∂Ω

v (∇u · n) dS −
Z

Ω

∇u ·∇v dV = −
Z

Ω

fv dVZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:R 1

0
du
dx

dv
dx

dx = −
R 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:R 1

0
du
dx

dv
dx

dx = −
R 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form of Poisson’s equation

Let V be the space of all differentiable functions on Ω (more precisely, V is the
Sobolev space H1(Ω)). Let

V0 = {v ∈ V : v = 0 on Γ1}

Weak form

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

Example

Solve d2u
dx2 = 1, u(0) = u(1) = 0 vs

Find differentiable u satisfying
u(0) = u(1) = 0 and:R 1

0
du
dx

dv
dx

dx = −
R 1

0
v dx for all

v s.t. v(0) = v(1) = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisation

Find u ∈ V0 satisfyingZ
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS for all v ∈ V0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS for all v ∈ Vh
0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS for all v ∈ Vh
0

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇φj dV =

Z
Ω

f φj dV +

Z
Γ2

gφj dS for j = 1, 2

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisation

Find uh ∈ Vh
0 satisfyingZ

Ω

∇uh ·∇φj dV =

Z
Ω

f φj dV +

Z
Γ2

gφj dS for j = 1, 2

Take
Vh

0 = span{φ1, φ2}

(where φ1, φ2 satisfy the Dirichlet boundary conditions), so

uh = αφ1 + βφ2

Linear system:» R
Ω

∇φ1 ·∇φ1 dV
R

Ω
∇φ1 ·∇φ2 dVR

Ω
∇φ2 ·∇φ1 dV

R
Ω

∇φ2 ·∇φ2 dV

– »
α
β

–
=

" R
Ω

f φ1 dV +
R

Γ2
gφ1 dSR

Ω
f φ2 dV +

R
Γ2

gφ2 dS

#

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisations

Take
Vh = span{φ1, φ2, . . . , φN}

(satisfying φj = 0 on Γ1) so

uh = α1φ1 + . . .+ αNφN

Let the stiffness matrix and RHS vector be given by

Kjk =

Z
Ω

∇φj ·∇φk dV

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

and solve

K

264 α1

...
αN

375 = b

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Basis functions

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM discretisations

Let

Kjk =

Z
Ω

∇φj ·∇φk dV stiffness matrix

Mjk =

Z
Ω

φjφk dV mass matrix

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

FEM discretisations

Laplace’s equation: ∇2u + f = 0 → KU = b

Heat equation:

∂u

∂t
= ∇2u + f → M

dU

dt
+ KU = b

Time-discretised heat equation:

un+1 − un

∆t
= ∇2un+1 + f n+1 → MUn+1 + ∆t KUn+1 = MUn + ∆t bn+1

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive
definite), for example, in Poisson’s equation:

∇ · (D∇u) + f = 0

subject to boundary conditions

u = 0 on Γ1

(D∇u) · n = g on Γ2

The weak form is: find u ∈ V0 satisfyingZ
Ω

(D∇u) ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

and the only change in the FEM discretisation is that the stiffness matrix
becomes

Kjk =

Z
Ω

∇φj · (D∇φk) dV

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Anisotropic diffusion

Suppose we have an anisotropic diffusion tensor D (symmetric, positive
definite), for example, in Poisson’s equation:

∇ · (D∇u) + f = 0

subject to boundary conditions

u = 0 on Γ1

(D∇u) · n = g on Γ2

The weak form is: find u ∈ V0 satisfyingZ
Ω

(D∇u) ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V0

and the only change in the FEM discretisation is that the stiffness matrix
becomes

Kjk =

Z
Ω

∇φj · (D∇φk) dV

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 26664

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

37775
26664

U1

U2

...
UN

37775 =

26664
b1

b2

...
bN

37775

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 26664

K11 K12 . . . K1N

K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

37775
26664

U1

U2

...
UN

37775 =

26664
b1

b2

...
bN

37775

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Implementing Dirichlet boundary conditions

In practice, rather using the basis functions in Vh
0 (i.e. bases satisfying φi = 0

on Γ1), we use Vh, i.e. all the basis functions corresponding to all nodes in the
mesh.

We then impose (any) Dirichlet boundary conditions by altering the appropriate
rows of the linear system, for example, for KU = b, if we want to impose
U1 = c 26664

1 0 . . . 0
K21 K22 . . . K2N

...
...

. . .
...

KN1 KN2 . . . KNN

37775
26664

U1

U2

...
UN

37775 =

26664
c
b2

...
bN

37775

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages

Solve:
∇ · (D∇u) + f = 0

subject to boundary conditions

u = u∗ on Γ1

(D∇u) · n = g on Γ2

1 Set up the computational mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

Z
Ω

∇φj · (D∇φk) dV

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: FEM details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing a finite element matrix/vector by assembly

Consider computing the mass matrix Mjk =
R

Ω
φjφk dV , an N by N matrix say,

and let’s suppose (for clarity only) that we are in 2D. Also, assume we are
using linear basis functions.

We do not write out the full basis functions explicitly in computing this
integral. Instead: firstly, we break the integral down into an integral over
elements:

Mjk =
X
K

Z
K
φjφk dV

Consider
R
K φjφk dV . Key point: The only basis functions with are non-zero in

the triangle are the 3 basis functions corresponding to the 3 nodes of the
element.

Therefore: compute the elemental contribution to the mass matrix, a 3 by 3
matrix of the form

R
K φjφk dV for 3 choices of j and k only.

Then add elemental contribution to full N by N mass matrix.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing an elemental contribution

We have reduced the problem to computing small matrices/vectors, for
example the 3 by 3 matrix Z

K
φjφk dV

where φj , φk are the 3 basis functions corresponding to the 3 nodes of the
mesh.

Next, map to the reference triangle (also known as the canonical triangle),
Kref, the triangle with nodes (0, 0), (0, 1), (1, 0).

The basis functions on the reference triangle are easy to write down

N1(ξ, η) = 1− ξ − η
N2(ξ, η) = ξ

N3(ξ, η) = η

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing an elemental contribution

We now need to be able to computeZ
K
φjφk dxdy =

Z
Kref

NjNk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3X

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

»
x2 − x1 x3 − x1

y2 − y1 y3 − y1

–

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing an elemental contribution

We now need to be able to computeZ
K
φjφk dxdy =

Z
Kref

NjNk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3X

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

»
x2 − x1 x3 − x1

y2 − y1 y3 − y1

–

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing an elemental contribution

We now need to be able to computeZ
K
φjφk dxdy =

Z
Kref

NjNk det J dξdη

where J is the Jacobian of the mapping from the true element to the canonical
element.

J is also required if ∇φi is needed (for example, in computing the stiffness
matrix), since ∇φi = J∇ξNi .

Consider the mapping from an element with nodes x1, x2, x3, to the canonical
element. The inverse mapping can in fact be easily written down using the
basis functions.

x(ξ, η) =
3X

j=1

xjNj(ξ, η)

from which it is easy to show that J is the following function of nodal positions

J = inv

»
x2 − x1 x3 − x1

y2 − y1 y3 − y1

–

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Computing an elemental contribution - the general case

Suppose we want to computeZ
K
F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) dxdy

We map to the reference element:Z
Kref

F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) det J dξdη

and then use numerical quadrature, which means f just has to be evaluated
at the quadrature points.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Solve:
∇ · (D∇u) + f = 0

subject to boundary conditions

u = u∗ on Γ1

(D∇u) · n = g on Γ2

1 Set up the computational mesh and choose basis functions

2 Compute the matrix K and vector b:

Kjk =

Z
Ω

∇φj · (D∇φk) dV

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM stages - full algorithm

Write

bj =

Z
Ω

f φj dV +

Z
Γ2

gφj dS

as b = bvol + bsurf

1 Set up the computational mesh and choose basis functions
2 Compute the matrix K and vector b:

1 Loop over elements, for each compute the elemental contributions Kelem

and bvol
elem (3 by 3 matrix and 3-vector)
For this, need to compute Jacobian J for this element, and loop over quadrature
points

2 Add Kelem and bvol
elem to K and bvol appropriately

3 Loop over surface-elements on Γ2, for each compute the elemental
contribution bsurf

elem (a 2-vector).
Similar to integrals over elements, again use quadrature

4 Add bsurf
elem to bsurf appropriately

3 Alter linear system KU = b to impose Dirichlet BCs

4 Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: Object-oriented implementation (introduction)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Template classes (C++)

C++ allows you to do:

template<int DIM>

class Node

{
// use DIM in some way

}

from which the compiler creates different versions of the class, depending on
which values of DIM is used. This is an alternative to having a member
variable mDimension inside the class.

Usage:
Node<3> 3d node;

Node<2> 2d node;

This kind of code would generally a compile error (which is good):
Node<3> node;

Mesh<2> mesh;

mesh.AddNode(node);

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The procedural approach

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: Object-oriented implementation (general ideas)

Note that in the following:

We consider one possible approach - the appropriate design will depend
fundamentally on the precise nature of the solver required (eg, a solver for
a particular equation versus a general solver of several)

Related to Chaste design but heavily simplified

Purple represents an abstract class/method, red represents a concrete
class or implemented method, blue represents a self-contained class (no
inheritance).

Important members or methods of the classes will be given, but obvious
extra methods will be omitted, such as Get/Set methods

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented design

What are the self-contained ‘concepts’ (objects) that form the overall
simulation code, and what functionality should each of these objects have?

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Geometry

Node

Member var: mLocation

B a vector

Element

Member var: mNodes

B (Pointers to) the 3 nodes (assuming a 2d simulation) of this
element

Method: ComputeJacobian()

Method: ComputeJacobianDeterminant()

SurfaceElement

Member var: mNodes

B (Pointers to) the 2 nodes of this element
B Also has corresponding methods to the Jacobian methods above

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Geometry - using templates

Node<SPACE DIM>

Member var: mLocation

B a vector of length SPACE DIM

Element<ELEM DIM,SPACE DIM>

Member var: mNodes

B (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions

Then:

Element<2,2> represents a volume element

Element<1,2> represents a surface element

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Geometry - using templates

Node<SPACE DIM>

Member var: mLocation

B a vector of length SPACE DIM

Element<ELEM DIM,SPACE DIM>

Member var: mNodes

B (Pointers to) the nodes of this element
Method: ComputeJacobian() etc, depending on dimensions

Then:

Element<2,2> represents a volume element

Element<1,2> represents a surface element

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Geometry

Mesh<DIM>

mNodes

B a list of Node<DIM> objects
mElements

B a list of Element<DIM,DIM> objects
mBoundaryElements

B a list of surface elements (Element<DIM-1,DIM>) on the boundary
mBoundaryNodeIndices

Note:

There are other possibilities (nodes knowing whether they are a boundary
node, for example)

Here, boundary nodes/elements represent the entire boundary—‘mesh’
concept is self-contained and not dependent on PDE problem being solved.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM DIM>

GetValues(xi)

B xi is a vector of size ELEM DIM, and this function returns the
vector [N1(ξ), . . . ,Nn(ξ)] = [φ1(x(ξ)), . . . , φn(x(ξ))]

GetTransformedDerivatives(xi, J)

B similarly, returns vector with entries ∇φi = J∇ξNi

There are again other possibilities, eg. just having GetDerivatives(xi) and
having calling code deal with multiplication by J, or doing:

AbstractBasisFunction<ELEM DIM>:
GetValues(xi)

GetTransformedDerivatives(xi, J)

and then having LinearBasisFunction and QuadraticBasisFunction

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Basis functions

If solving a problem with piece-wise linear basis functions:

LinearBasisFunction<ELEM DIM>

GetValues(xi)

B xi is a vector of size ELEM DIM, and this function returns the
vector [N1(ξ), . . . ,Nn(ξ)] = [φ1(x(ξ)), . . . , φn(x(ξ))]

GetTransformedDerivatives(xi, J)

B similarly, returns vector with entries ∇φi = J∇ξNi

There are again other possibilities, eg. just having GetDerivatives(xi) and
having calling code deal with multiplication by J, or doing:

AbstractBasisFunction<ELEM DIM>:
GetValues(xi)

GetTransformedDerivatives(xi, J)

and then having LinearBasisFunction and QuadraticBasisFunction

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Boundary conditions

There are various ways this could be implemented

Key point: the implementation requires that
Dirichlet BCs be defined at boundary nodes
Neumann BCs be defined on boundary elements (ie element interiors)

BoundaryConditions<DIM>

mDirichletBoundaryNodes

mDirichletValues

mNeumannBoundaryElements

mNeumannValues

AddDirichletBoundaryCondition(node,dirichletBcValue)

AddNeumannBoundaryCondition(boundaryElement,neumannBcValue)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

Suppose we want to write a solver for Poisson’s equation ∇2u = f for general
forcing terms f (x) and general boundary conditions. The solver class could be
self-contained, and look like:

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

A simple solver

PoissonEquationSolver:
Solve(mesh,abstractForce,boundaryConditions)

The Solve method needs to:

1 Set up a LinearBasisFunction object

2 Set up stiffness matrix Kij =
R

Ω
φiφj dV

1 Loop over elements of mesh (“mesh.GetNumElements()”,
“mesh.GetElement(i)”)

2 For each element set-up the elemental stiffness matrix – loop over
quadrature points, call element.GetJacobian() and
basis func.GetValues(xi) etc

3 Add elemental contribution to K

3 Similarly, loop over elements and assemble bvol
i =

R
Ω

f φi dV

4 Loop over Neumann boundary elements (using boundaryConditions) and
assemble bsurf

i =
R

Γ2
gφi dS

5 Alter the linear system KU = bvol + bsurf to take the Dirichlet BCs into
account (using boundaryConditions again).

6 Solve the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

FEM for simple PDEs: Object-oriented implementation in Chaste

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Mesh classes in Chaste

Node<SPACE DIM>

B data includes: location, index, whether it is a boundary node

AbstractElement<ELEM DIM,SPACE DIM>

B Contains nodes, not necessarily tetrahedral
AbstractTetrahedralElement<ELEM DIM,SPACE DIM>

B Methods to calculate the jacobian, etc
Element<ELEM DIM,SPACE DIM>

AbstractMesh<ELEM DIM,SPACE DIM>

B Contains nodes but not elements
AbstractTetrahedralMesh<ELEM DIM,SPACE DIM>

B Contains elements, access methods, and lots of functionality
TetrahedralMesh<ELEM DIM,SPACE DIM> and
DistributedTetrahedralMesh<ELEM DIM,SPACE DIM>

There are also MutableMesh, Cylindrical2dMesh (both for cell-based
simulations), QuadraticMesh, and more..

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Basis functions and BCC in Chaste

LinearBasisFunction defined as above, (just static methods), and similarly,
QuadraticBasisFunction (no inheritance).

BoundaryConditionsContainer

B Same as the ‘BoundaryConditions’ class outlined above.
B Contains Dirichlet nodes and corresponding BC values
B Contains Neumann boundary elements and corresponding BC
B Method for applying the Dirichlet BCs to a supplied linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Some discretisations Chaste is required to solve

Consider the discretised heat equation

(M + ∆t K) Un+1 = MUn + ∆t bvol,n + ∆t bsurf,n

which requires M, K , bvol,n and bsurf,n to be ‘assembled’

The following is a discretisation that arises in cardiac electro-physiology

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn + ∆t dn
purkinje

where

Fn represents nodal ionic currents

cn is a correction term that improves accuracy

dn
purkinje is an integral over a 1D-sub-structure

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solvers versus assemblers

The requirements of Chaste to solve a variety of problem (and using various
discretisations) suggest the following type of design:

Assembler classes

used to construct any ‘finite element’ matrix or vector, i.e. something that
requires a loop over elements (or surface-elements) etc, to be set up, such
as M, K etc.

Solver classes

these use assemblers to set up a particular linear system, then solve it

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler concept

Consider computing any of the following

Mjk =

Z
Ω

φjφk dV

Kjk =

Z
Ω

∇φj · D∇φk dV

bvol
j =

Z
Ω

f φj dV

1 Loop over elements, for each compute the elemental contributions Kelem

or Melem or bvol
elem (3 by 3 matrices or 3-vector)

For this, need to compute Jacobian J for this element, and loop over
quadrature points

2 Add Kelem or Melem or bvol
elem to full matrix appropriately

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler concept

Consider computing any of the following

Mjk =

Z
Ω

φjφk dV

Kjk =

Z
Ω

∇φj · D∇φk dV

bvol
j =

Z
Ω

f φj dV

1 Loop over elements, for each compute the elemental contributions Kelem

or Melem or bvol
elem (3 by 3 matrices or 3-vector)

For this, need to compute Jacobian J for this element, and loop over
quadrature points

2 Add Kelem or Melem or bvol
elem to full matrix appropriately

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler concept

In all cases we can write the integral over the element asZ
Kref

F(x , y , u, φ1, φ2, φ3,∇φ1,∇φ2,∇φ3) det J dξdη

where

Computing mass matrix ⇒ F is the matrix φjφk

Computing stiffness matrix ⇒ F is the matrix ∇φj · D∇φk

Computing bvol ⇒ F is the vector f φj

AbstractAssembler

B Does everything above except provide the form of F
Abs. method: A method representing F

MassMatrixAssembler inherits from AbstractAssembler:
Implemented method: F returns the matrix φjφk

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler classes: abstract base class

Define an (essentially) abstract class AbstractFeObjectAssembler, which is
templated over the dimensions, and also booleans saying whether the class will
assemble matrices (eg M, K) and/or vectors (eg bvol).

AbstractFeObjectAssembler<DIMs,CAN ASSEMBLE VEC,CAN ASSEMBLE MAT>

SetMatrixToBeAssembled(matrix)

SetVectorToBeAssembled(vector)

Assemble()

B Loops over elements, computes elemental contribution by calling:
AssembleOnElement(..)

B Computes element contribution by looping over quadrature
points, and at each quad point calling one or both of the

following:
ComputeMatrixTerm(..)

B the function F for matrices
ComputeVectorTerm(..)

B the function F for vectors

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Assembler classes: example concrete classes

MassMatrixAssembler inherits from AbsFeObjectAssembler<false,true> :
Implemented method: ComputeMatrixTerm(..)

B return matrix φjφk (elemental-contribution, 3 by 3 matrix in 2D)

StiffnessMatrixAssembler inherits from AbsFeObjectAssembler<false,

true>:
Implemented method: ComputeMatrixTerm(..)

B return matrix ∇φj ·∇φk (elemental-contribution)

This designs allows new assemblers to be written fairly easily, and provides the
flexibility required of the code

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver classes in Chaste

AbstractLinearPdeSolver:
SetupLinearSystem()

B Needs to be implemented in concrete class, and should fully set
up the linear system for the particular problem being solved

AbstractStaticPdeSolver inherits from AbstractLinearPdeSolver:
Solve()

B Calls SetupLinearSystem() and then solves linear system

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver:
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Repeatedly calls SetupLinearSystem() and solves linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Example usage of the general design

The discretisation for the monodomain equation (cardiac electro-physiology)

(M + ∆t K) Vn+1 = MVn + ∆t MFn + ∆t cn

where only the highlighted terms are ‘assembled’.

Write concrete classes

MassMatrixAssembler for computing M

MonodomainAssembler for computing M + ∆t K

CorrectionTermAssembler for computing cn

MonodomainSolver inherits from AbstractDynamicPdeSolver:
Member var: mMassMatrixAssembler

Member var: mMonodomainAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)„
M +

1

2
∆t K

«
Vn+1 =

„
M − 1

2
∆t K

«
Vn + ∆t MFn + ∆t cn

where the highlighted terms are ‘assembled’.

CrankNicolsonMonodomainSolver2 inherits from AbsDynamicPdeSolver :
Member var: mMassMatrixAssembler

Member var: mStiffnessMatrixAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up this linear system

2This class doesn’t exist (yet), the point is that the design allows it to be implemented fairly
easily

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Example usage of the general design

An alternative discretisation (Crank-Nicolson, i.e. the trapezoidal rule)„
M +

1

2
∆t K

«
Vn+1 =

„
M − 1

2
∆t K

«
Vn + ∆t MFn + ∆t cn

where the highlighted terms are ‘assembled’.

CrankNicolsonMonodomainSolver2 inherits from AbsDynamicPdeSolver :
Member var: mMassMatrixAssembler

Member var: mStiffnessMatrixAssembler

Member var: mCorrectionTermAssembler

Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up this linear system

2This class doesn’t exist (yet), the point is that the design allows it to be implemented fairly
easily

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f)φj dV +

Z
Γ2

gφj dS

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f)φj dV +

Z
Γ2

gφj dS

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

For some problems and with simple discretisations the linear system is of the
form AUn = B, where both A and B are ‘assembled’.

For example, for the general elliptic problem ∇ · (D∇u) + f = 0 (with BCs),
the discretisation is KU = b as we have seen

Also, for the parabolic problem ut = ∇ · (D∇u) + f (with BCs), the
discretisation can be written as

AUn+1 = B

where

Ajk =

Z
Ω

φjφk + ∆t ∇φj ·∇φk dV

Bj =

Z
Ω

(un + f)φj dV +

Z
Γ2

gφj dS

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solver-assembler objects

The original Chaste design just considered such problems, and for these
problems solvers don’t need to own assemblers—solvers are assemblers. The
concrete ‘assembler-solver’ class for a particular problem needs to implement
ComputeMatrixTerm(), ComputeVectorTerm() etc. This design pattern is still
used:

SimpleLinearEllipticSolver essentially inherits from both
AbstractStaticPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

SimpleParabolicEllipticSolver essentially inherits from both
AbstractDynamicPdeSolver and AbstractFeObjectAssembler<true,true>

and implements ComputeMatrixTerm(..) and ComputeVectorTerm(..)

If you have linear, coupled (see later) set of PDEs and can write the
discretisation in this form, it is very easy to write a solver using this
design—see above classes and other examples in the code.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled/Nonlinear PDEs

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled (linear) PDEs in Chaste

We consider solving a set of linear coupled PDEs, and assume it is a case in
which the use of linear basis functions for all unknowns is appropriate (for
example, a set of reaction-diffusion equations).

It is not possible to write a generic ‘PDE class’ for all such coupled systems, so
a user wishing to solve such systems in Chaste will have to write their own
solver.

However, using the tools available, this requires significantly less work than
coding up from scratch

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled (linear) PDEs in Chaste

We consider solving a set of linear coupled PDEs, and assume it is a case in
which the use of linear basis functions for all unknowns is appropriate (for
example, a set of reaction-diffusion equations).

It is not possible to write a generic ‘PDE class’ for all such coupled systems, so
a user wishing to solve such systems in Chaste will have to write their own
solver.

However, using the tools available, this requires significantly less work than
coding up from scratch

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled (linear) PDEs in Chaste

We consider solving a set of linear coupled PDEs, and assume it is a case in
which the use of linear basis functions for all unknowns is appropriate (for
example, a set of reaction-diffusion equations).

It is not possible to write a generic ‘PDE class’ for all such coupled systems, so
a user wishing to solve such systems in Chaste will have to write their own
solver.

However, using the tools available, this requires significantly less work than
coding up from scratch

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The parameter PROBLEM DIM

Define PROBLEM DIM to be the size of the system of PDEs. For example, for the
PDE system

ut = ∇2u + v

vt = ∇2v + a∇2u

wt = ∇2w + u

we have PROBLEM DIM equal to 3

The PDE solver classes are written to work with general PROBLEM DIM. In
particular the following classes are all templated over this:

BoundaryConditionsContainer<ELEM DIM, SPACE DIM, PROBLEM DIM>

AbstractFeObjectAssembler<ELEM DIM, SPACE DIM, PROBLEM DIM,

CAN ASSEMBLE VEC, CAN ASSEMBLE MAT>

AbstractLinearPdeSolver<ELEM DIM, SPACE DIM, PROBLEM DIM>

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The parameter PROBLEM DIM

Define PROBLEM DIM to be the size of the system of PDEs. For example, for the
PDE system

ut = ∇2u + v

vt = ∇2v + a∇2u

wt = ∇2w + u

we have PROBLEM DIM equal to 3

The PDE solver classes are written to work with general PROBLEM DIM. In
particular the following classes are all templated over this:

BoundaryConditionsContainer<ELEM DIM, SPACE DIM, PROBLEM DIM>

AbstractFeObjectAssembler<ELEM DIM, SPACE DIM, PROBLEM DIM,

CAN ASSEMBLE VEC, CAN ASSEMBLE MAT>

AbstractLinearPdeSolver<ELEM DIM, SPACE DIM, PROBLEM DIM>

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Striping

With the system

ut = ∇2u + v

vt = ∇2v + α∇2u

wt = ∇2w + u

and with a mesh of N nodes, and linear basis functions for each unknown, the
unknown vectors will be Un, Vn, Wn, each of size N.

In the linear system to be set up to solve this problem, the solution vector is
chosen to be striped, i.e. the full solution vector is given by

Un = [Un
1 ,V

n
1 ,W

n
1 ,U

n
2 ,V

n
2 ,W

n
2 , . . . ,U

n
N ,V

n
N ,W

n
N]

This is largely for parallelisation reasons.

The code uses striping, on paper however (for clarity) we use blocks

Un = [Un Vn Wn]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Striping

With the system

ut = ∇2u + v

vt = ∇2v + α∇2u

wt = ∇2w + u

and with a mesh of N nodes, and linear basis functions for each unknown, the
unknown vectors will be Un, Vn, Wn, each of size N.

In the linear system to be set up to solve this problem, the solution vector is
chosen to be striped, i.e. the full solution vector is given by

Un = [Un
1 ,V

n
1 ,W

n
1 ,U

n
2 ,V

n
2 ,W

n
2 , . . . ,U

n
N ,V

n
N ,W

n
N]

This is largely for parallelisation reasons.

The code uses striping, on paper however (for clarity) we use blocks

Un = [Un Vn Wn]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Striping

With the system

ut = ∇2u + v

vt = ∇2v + α∇2u

wt = ∇2w + u

and with a mesh of N nodes, and linear basis functions for each unknown, the
unknown vectors will be Un, Vn, Wn, each of size N.

In the linear system to be set up to solve this problem, the solution vector is
chosen to be striped, i.e. the full solution vector is given by

Un = [Un
1 ,V

n
1 ,W

n
1 ,U

n
2 ,V

n
2 ,W

n
2 , . . . ,U

n
N ,V

n
N ,W

n
N]

This is largely for parallelisation reasons.

The code uses striping, on paper however (for clarity) we use blocks

Un = [Un Vn Wn]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form

Consider the static problem:

∇2u + α∇2v + f = 0

∇2v + u + w = 0

∇2w + β∇2v = 0

subject to u = v = w = 0 on Γ1 and natural boundary conditions on Γ2.

The linear system (in block form) can be read off to be24 K αK 0
−M K −M

0 βK K

3524 U
V
W

35 =

24 b
0
0

35

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form

Consider the static problem:

∇2u + α∇2v + f = 0

∇2v + u + w = 0

∇2w + β∇2v = 0

subject to u = v = w = 0 on Γ1 and natural boundary conditions on Γ2.

The linear system (in block form) can be read off to be24 K αK 0
−M K −M

0 βK K

3524 U
V
W

35 =

24 b
0
0

35

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled problems in Chaste

For such coupled linear PDEs, it is reasonably straightforward to set-up a
(parallel, efficient, trustworthy) solver in Chaste.

The user needs to be able to convert their set of PDEs into a linear system as
above, then only needs to implement functions ComputeMatrixTerm() and
ComputeVectorTerm() saying what (the elemental contributions of) the matrix
and vector are (remembering the striped nature of the data structures).

For examples, see tutorial on writing PDE solvers

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Nonlinear problems

Consider a nonlinear elliptic problem, such as

∇ · (D(u)∇u) + f = 0

with boundary conditions

u = 0 on Γ1

D(u)∇u · n = g on Γ2

Computing the weak form as before, we obtain: find u ∈ V0 satisfyingZ
Ω

(D(u)∇u) ·∇v dV −
Z

Ω

fv dV −
Z

Γ2

gv dS = 0 ∀v ∈ V0

Write this as: find u ∈ V0 satisfying

F(u, v) = 0 ∀v ∈ V0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Nonlinear problems

Consider a nonlinear elliptic problem, such as

∇ · (D(u)∇u) + f = 0

with boundary conditions

u = 0 on Γ1

D(u)∇u · n = g on Γ2

Computing the weak form as before, we obtain: find u ∈ V0 satisfyingZ
Ω

(D(u)∇u) ·∇v dV −
Z

Ω

fv dV −
Z

Γ2

gv dS = 0 ∀v ∈ V0

Write this as: find u ∈ V0 satisfying

F(u, v) = 0 ∀v ∈ V0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Nonlinear problems

Consider a nonlinear elliptic problem, such as

∇ · (D(u)∇u) + f = 0

with boundary conditions

u = 0 on Γ1

D(u)∇u · n = g on Γ2

Computing the weak form as before, we obtain: find u ∈ V0 satisfyingZ
Ω

(D(u)∇u) ·∇v dV −
Z

Ω

fv dV −
Z

Γ2

gv dS = 0 ∀v ∈ V0

Write this as: find u ∈ V0 satisfying

F(u, v) = 0 ∀v ∈ V0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Nonlinear problems

The finite element problem is obtained as before: find uh ∈ Vh
0 satisfying

F(uh, v) = 0 ∀v ∈ Vh
0

i.e. find coefficients U1, . . . ,UN of uh =
P

Uiφi such that

F(uh, φi) = 0 for i = 1, . . . ,N

This is a general N-dimensional nonlinear system.

An iterative approach is required to solve nonlinear systems. Let uk
h

(equivalently, Uk = [Uk
1 , . . . ,U

k
N]) be the current guess. Then the vector Fk

defined by
F k

i = F(uk
h , φi)

is known as the k-th residual vector. We require a guess satisfying

‖Fk‖ < TOL

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Nonlinear problems

The finite element problem is obtained as before: find uh ∈ Vh
0 satisfying

F(uh, v) = 0 ∀v ∈ Vh
0

i.e. find coefficients U1, . . . ,UN of uh =
P

Uiφi such that

F(uh, φi) = 0 for i = 1, . . . ,N

This is a general N-dimensional nonlinear system.

An iterative approach is required to solve nonlinear systems. Let uk
h

(equivalently, Uk = [Uk
1 , . . . ,U

k
N]) be the current guess. Then the vector Fk

defined by
F k

i = F(uk
h , φi)

is known as the k-th residual vector. We require a guess satisfying

‖Fk‖ < TOL

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Nonlinear problems

The finite element problem is obtained as before: find uh ∈ Vh
0 satisfying

F(uh, v) = 0 ∀v ∈ Vh
0

i.e. find coefficients U1, . . . ,UN of uh =
P

Uiφi such that

F(uh, φi) = 0 for i = 1, . . . ,N

This is a general N-dimensional nonlinear system.

An iterative approach is required to solve nonlinear systems. Let uk
h

(equivalently, Uk = [Uk
1 , . . . ,U

k
N]) be the current guess. Then the vector Fk

defined by
F k

i = F(uk
h , φi)

is known as the k-th residual vector. We require a guess satisfying

‖Fk‖ < TOL

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Suppose we want to solve the nonlinear set of N equations

F(U) = 0

Given an initial guess U0, Newton’s method is: let Uk+1 = Uk + δUk+1, where
δUk+1 satisfies the linear system

J(Uk) δUk+1 = −F(Uk)

where Jij = ∂Fi
∂Uj

.

Newton’s method provides quadratic convergence when the current guess is
‘close enough’ to the true solution. To avoid initial divergence however, it may
be necessary to use damping

Uk+1 = Uk + skδUk+1

for some sk generally smaller than 1. (There are various ways to go about
choosing sk , the simplest is to pick one from a small list of possibilities which
leads to the smallest ‖F‖).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Suppose we want to solve the nonlinear set of N equations

F(U) = 0

Given an initial guess U0, Newton’s method is: let Uk+1 = Uk + δUk+1, where
δUk+1 satisfies the linear system

J(Uk) δUk+1 = −F(Uk)

where Jij = ∂Fi
∂Uj

.

Newton’s method provides quadratic convergence when the current guess is
‘close enough’ to the true solution. To avoid initial divergence however, it may
be necessary to use damping

Uk+1 = Uk + skδUk+1

for some sk generally smaller than 1. (There are various ways to go about
choosing sk , the simplest is to pick one from a small list of possibilities which
leads to the smallest ‖F‖).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Alternative nonlinear solvers

There are other methods for solving nonlinear systems, for example solve
x = f (x) using fixed point iterations: xn+1 = f (xn).

For F(U) = 0, this is
Un+1 = Un + F(Un)

Very loosely speaking, methods which use the Jacobian will be more
effective.

If used, the Jacobian can be either provided analytically (if so, has to be
calculated on paper on paper and coded up); or estimated numerically
(slow).

Petsc has (black-box) solvers for nonlinear systems. The user has to
provide functions telling Petsc how to compute the residual (and
optionally, the Jacobian)

Chaste sometimes uses the Petsc nonlinear solvers (eg
AbstractNonlinearAssemblerSolverHybrid), sometimes Newton’s
method is coded from scratch (solid mechanics solvers).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Alternative nonlinear solvers

There are other methods for solving nonlinear systems, for example solve
x = f (x) using fixed point iterations: xn+1 = f (xn).

For F(U) = 0, this is
Un+1 = Un + F(Un)

Very loosely speaking, methods which use the Jacobian will be more
effective.

If used, the Jacobian can be either provided analytically (if so, has to be
calculated on paper on paper and coded up); or estimated numerically
(slow).

Petsc has (black-box) solvers for nonlinear systems. The user has to
provide functions telling Petsc how to compute the residual (and
optionally, the Jacobian)

Chaste sometimes uses the Petsc nonlinear solvers (eg
AbstractNonlinearAssemblerSolverHybrid), sometimes Newton’s
method is coded from scratch (solid mechanics solvers).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Alternative nonlinear solvers

There are other methods for solving nonlinear systems, for example solve
x = f (x) using fixed point iterations: xn+1 = f (xn).

For F(U) = 0, this is
Un+1 = Un + F(Un)

Very loosely speaking, methods which use the Jacobian will be more
effective.

If used, the Jacobian can be either provided analytically (if so, has to be
calculated on paper on paper and coded up); or estimated numerically
(slow).

Petsc has (black-box) solvers for nonlinear systems. The user has to
provide functions telling Petsc how to compute the residual (and
optionally, the Jacobian)

Chaste sometimes uses the Petsc nonlinear solvers (eg
AbstractNonlinearAssemblerSolverHybrid), sometimes Newton’s
method is coded from scratch (solid mechanics solvers).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Alternative nonlinear solvers

There are other methods for solving nonlinear systems, for example solve
x = f (x) using fixed point iterations: xn+1 = f (xn).

For F(U) = 0, this is
Un+1 = Un + F(Un)

Very loosely speaking, methods which use the Jacobian will be more
effective.

If used, the Jacobian can be either provided analytically (if so, has to be
calculated on paper on paper and coded up); or estimated numerically
(slow).

Petsc has (black-box) solvers for nonlinear systems. The user has to
provide functions telling Petsc how to compute the residual (and
optionally, the Jacobian)

Chaste sometimes uses the Petsc nonlinear solvers (eg
AbstractNonlinearAssemblerSolverHybrid), sometimes Newton’s
method is coded from scratch (solid mechanics solvers).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Alternative nonlinear solvers

There are other methods for solving nonlinear systems, for example solve
x = f (x) using fixed point iterations: xn+1 = f (xn).

For F(U) = 0, this is
Un+1 = Un + F(Un)

Very loosely speaking, methods which use the Jacobian will be more
effective.

If used, the Jacobian can be either provided analytically (if so, has to be
calculated on paper on paper and coded up); or estimated numerically
(slow).

Petsc has (black-box) solvers for nonlinear systems. The user has to
provide functions telling Petsc how to compute the residual (and
optionally, the Jacobian)

Chaste sometimes uses the Petsc nonlinear solvers (eg
AbstractNonlinearAssemblerSolverHybrid), sometimes Newton’s
method is coded from scratch (solid mechanics solvers).

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solving nonlinear problems with finite elements and Newton’s method

Firstly, decide whether the Jacobian (if used) is to be computed numerically or
analytically. If the latter, both the residual and Jacobian need to be
‘assembled’ in a finite element manner.

Choose a (good!) initial guess U0

Compute the initial residual F0 = F(U0) (loop over elements, compute
elemental contribution, add to full vector).

While ‖Fk‖ > TOL

Compute J(Uk) (loop over elements, compute elemental contribution, add
to full matrix).
Solve J δU = −Fk .
Set Uk+1 = Uk + s δU, choosing s appropriately.
Compute Fk+1 (loop over elements, compute elemental contribution, add to
full vector). [Now increment k]

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cardiac electro-physiology

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The monodomain and bidomain equations

The monodomain equations (dropping stimulus currents) is essentially the heat
equation coupled to ODEs:

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σ∇V) = 0

du

dt
= f (u,V)

(with zero-Neumann BCs on entire boundary)

The bidomain equations can be written as a parabolic PDE coupled to an
elliptic PDE coupled to ODEs:

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σi∇ (V + φe)) = 0

∇ · (σi∇V + (σi + σe) ∇φe) = 0

du

dt
= f (u,V)

(with zero-Neumann BCs on entire boundary)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The monodomain and bidomain equations

The monodomain equations (dropping stimulus currents) is essentially the heat
equation coupled to ODEs:

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σ∇V) = 0

du

dt
= f (u,V)

(with zero-Neumann BCs on entire boundary)

The bidomain equations can be written as a parabolic PDE coupled to an
elliptic PDE coupled to ODEs:

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σi∇ (V + φe)) = 0

∇ · (σi∇V + (σi + σe) ∇φe) = 0

du

dt
= f (u,V)

(with zero-Neumann BCs on entire boundary)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Placing cell models

We know that the forcing term of the heat equation enters the RHS vector of
the FEM discretisation as (using ψ rather than φ for basis functions):

bj =

Z
Ω

f ψj dV

which here is (assuming the reaction term is treated explicitly in the
time-discretisation)

bn+1
j =

Z
Ω

Iion(un,V n)ψj dV

Therefore we require the ionic current at the quadrature points, i.e. u is
required at the quadrature points. The natural approach is therefore to solve
cell models at quad points.

However this can be computationally-expensive (and a pain to implement),
instead, solve cell models at nodes and interpolate onto quadrature points.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Placing cell models

We know that the forcing term of the heat equation enters the RHS vector of
the FEM discretisation as (using ψ rather than φ for basis functions):

bj =

Z
Ω

f ψj dV

which here is (assuming the reaction term is treated explicitly in the
time-discretisation)

bn+1
j =

Z
Ω

Iion(un,V n)ψj dV

Therefore we require the ionic current at the quadrature points, i.e. u is
required at the quadrature points. The natural approach is therefore to solve
cell models at quad points.

However this can be computationally-expensive (and a pain to implement),
instead, solve cell models at nodes and interpolate onto quadrature points.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Placing cell models

We know that the forcing term of the heat equation enters the RHS vector of
the FEM discretisation as (using ψ rather than φ for basis functions):

bj =

Z
Ω

f ψj dV

which here is (assuming the reaction term is treated explicitly in the
time-discretisation)

bn+1
j =

Z
Ω

Iion(un,V n)ψj dV

Therefore we require the ionic current at the quadrature points, i.e. u is
required at the quadrature points. The natural approach is therefore to solve
cell models at quad points.

However this can be computationally-expensive (and a pain to implement),
instead, solve cell models at nodes and interpolate onto quadrature points.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Placing cell models

We know that the forcing term of the heat equation enters the RHS vector of
the FEM discretisation as (using ψ rather than φ for basis functions):

bj =

Z
Ω

f ψj dV

which here is (assuming the reaction term is treated explicitly in the
time-discretisation)

bn+1
j =

Z
Ω

Iion(un,V n)ψj dV

Therefore we require the ionic current at the quadrature points, i.e. u is
required at the quadrature points. The natural approach is therefore to solve
cell models at quad points.

However this can be computationally-expensive (and a pain to implement),
instead, solve cell models at nodes and interpolate onto quadrature points.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cell models at nodes

Solving cell models at nodes, we write the ionic current evaluated at the nodes
as I = (I1, . . . , IN). Interpolating the ionic current onto the quadrature point
using linear basis functions ψj , we have

Iion =
X

Ikψk

which means that

bj =

Z
Ω

Iionψj dV =

Z
Ω

X
k

Ikψkψj dV =
X

k

Ik

Z
Ω

ψkψj dV =
X

k

Mjk Ik

so that
b = MI

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Monodomain discretisation

Solve

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σ∇V) = 0

du

dt
= f (u,V)

subject to initial conditions and zero-Neumann boundary conditions.

We de-couple the ODEs from the PDEs, and use a time-discretisation which
treats the conductivity implicitly and the (nonlinear) reaction term explicitly,
and place cell models at nodes, obtaining, for the PDE solve:„

χC
∆t

M + K

«
Vm+1 =

χC
∆t

MVm −MIm

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Monodomain discretisation

Solve

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σ∇V) = 0

du

dt
= f (u,V)

subject to initial conditions and zero-Neumann boundary conditions.

We de-couple the ODEs from the PDEs, and use a time-discretisation which
treats the conductivity implicitly and the (nonlinear) reaction term explicitly,
and place cell models at nodes, obtaining, for the PDE solve:„

χC
∆t

M + K

«
Vm+1 =

χC
∆t

MVm −MIm

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Bidomain discretisation

Solve

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σi∇ (V + φe)) = 0

∇ · (σi∇V + (σi + σe) ∇φe) = 0

du

dt
= f (u,V)

subject to initial conditions and zero-Neumann boundary conditions.

Going through the same procedure, we obtain»
χC
∆t

M + K [σi] K [σi]
K [σi] K [σi + σe]

– »
Vm+1

Φm+1
e

–
=

»
χC
∆t

MVm −MIm

0

–
where

K [σ]jk =

Z
Ω

∇ψk · (σ∇ψj) dV

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Bidomain discretisation

Solve

χ

„
C ∂V

∂t
+ Iion(u,V)

«
−∇ · (σi∇ (V + φe)) = 0

∇ · (σi∇V + (σi + σe) ∇φe) = 0

du

dt
= f (u,V)

subject to initial conditions and zero-Neumann boundary conditions.

Going through the same procedure, we obtain»
χC
∆t

M + K [σi] K [σi]
K [σi] K [σi + σe]

– »
Vm+1

Φm+1
e

–
=

»
χC
∆t

MVm −MIm

0

–
where

K [σ]jk =

Z
Ω

∇ψk · (σ∇ψj) dV

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solution overview

For either the monodomain or bidomain equations

Set up the left-hand side matrix, A say (loop over elements, etc)

Set up the mass matrix (loop over elements, etc)

Set up the initial conditions V0, also initialise cell models at each node

While t < tend

Pass nodal voltages to each cell model
Solve cell models at each node using choice of ODE solver
Compute ionic current at each node
Set up linear system RHS vector (matrix-vector products only, no need for
assembly)
Solve linear system

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cell models in Chaste

AbstractOdeSystem

mStateVariables

EvaluateYDerivatives(t,y)

AbstractCardiacCell3 inherits from AbstractOdeSystem :
mOdeSolver

B of type AbstractOdeSolver

Compute(t0,t1)

B Use solver to solve between given times, updating internal state
B Class has various other cardiac cell related functionality

LuoRudyCellModel inherits from AbstractCardiacCell:
Implemented method: EvaluateYDerivatives(t,y)

3Slightly simplified

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cell models in Chaste

AbstractOdeSystem

mStateVariables

EvaluateYDerivatives(t,y)

AbstractCardiacCell3 inherits from AbstractOdeSystem :
mOdeSolver

B of type AbstractOdeSolver

Compute(t0,t1)

B Use solver to solve between given times, updating internal state
B Class has various other cardiac cell related functionality

LuoRudyCellModel inherits from AbstractCardiacCell:
Implemented method: EvaluateYDerivatives(t,y)

3Slightly simplified

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cell models in Chaste

AbstractOdeSystem

mStateVariables

EvaluateYDerivatives(t,y)

AbstractCardiacCell3 inherits from AbstractOdeSystem :
mOdeSolver

B of type AbstractOdeSolver

Compute(t0,t1)

B Use solver to solve between given times, updating internal state
B Class has various other cardiac cell related functionality

LuoRudyCellModel inherits from AbstractCardiacCell:
Implemented method: EvaluateYDerivatives(t,y)

3Slightly simplified

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cardiac PDE solvers in Chaste

AbstractLinearPdeSolver:
PrepareForSetupLinearSystem()

B Empty implementation here (ie does nothing)
SetupLinearSystem()

AbstractDynamicPdeSolver inherits from AbstractLinearPdeSolver :
SetTimes(t0,t1)

SetInitialCondition(initialCondition)

Solve()

B Calls PrepareForSetupLinearSystem(), then calls
SetupLinearSystem(), then solves linear system.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cardiac PDE solvers in Chaste

MonodomainSolver

mMonodomainTissue

B Basically a set of AbstractCardiacCells for each node
B plus conductivity information

mMonodomainAssembler

mMassMatrixAssembler

PrepareForSetupLinearSystem()

B Overloaded to solve all the cell models
Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system

Notes:

BidomainSolver uses the same design (but uses PROBLEM DIM=2)

There is MonodomainProblem and BidomainProblem (both inheriting
from AbstractCardiacProblem). These own solvers and deal with set-up
and output etc.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Cardiac PDE solvers in Chaste

MonodomainSolver

mMonodomainTissue

B Basically a set of AbstractCardiacCells for each node
B plus conductivity information

mMonodomainAssembler

mMassMatrixAssembler

PrepareForSetupLinearSystem()

B Overloaded to solve all the cell models
Implemented method: SetUpLinearSystem()

B Uses the above assemblers to set up the linear system

Notes:

BidomainSolver uses the same design (but uses PROBLEM DIM=2)

There is MonodomainProblem and BidomainProblem (both inheriting
from AbstractCardiacProblem). These own solvers and deal with set-up
and output etc.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled reaction-diffusion equations

A solver for general coupled reaction-diffusion equations has recently been
written.

∂ui

∂t
−∇ · (Di∇ui) = fi (x, u1, . . . , up, v1, . . . , vp),

dvi

dt
= gi (x, u1, . . . , up, v1, . . . , vp),

where ui and vi denote the extracellular and intracellular concentrations of
solute i respectively, and with BCs

ui = u∗i (x), on Γ1

n · (Di (x)∇ui) = gi (x), on Γ2

ui (0, x) = u
(0)
i (x),

vi (0, x) = v
(0)
i (x),

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Coupled reaction-diffusion equations

See the tutorial LinearParabolicPdeSystemsWithCoupledOdeSystems for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

An overview of alternative methods for solving PDEs

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Finite differences are conceptually the simplest method for solving PDEs

Set up a (generally regular) grid on the geometry, aim to compute the
solution at the gridpoints

All derivatives in the PDE (and in Neumann BCs) are replaced with
difference formulas

For a regular grid in 1D x0, x1, . . . , xN , stepsize h: some possible difference
formulas and corresponding error introduced are: forward, backward and
central differences:

du

dx
(xi) =

xi+1 − xi

h
+O(h)

du

dx
(xi) =

xi − xi−1

h
+O(h)

du

dx
(xi) =

xi+1 − xi−1

2h
+O(h2)

and
d2u

dx2
(xi) =

xi+1 − 2xi + xi−1

h2
+O(h2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Finite differences are conceptually the simplest method for solving PDEs

Set up a (generally regular) grid on the geometry, aim to compute the
solution at the gridpoints

All derivatives in the PDE (and in Neumann BCs) are replaced with
difference formulas

For a regular grid in 1D x0, x1, . . . , xN , stepsize h: some possible difference
formulas and corresponding error introduced are: forward, backward and
central differences:

du

dx
(xi) =

xi+1 − xi

h
+O(h)

du

dx
(xi) =

xi − xi−1

h
+O(h)

du

dx
(xi) =

xi+1 − xi−1

2h
+O(h2)

and
d2u

dx2
(xi) =

xi+1 − 2xi + xi−1

h2
+O(h2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

For example, for the heat equation ut = uxx + f , suppose we choose a fully
explicit time-discretisation, and then discretise in space:

Heat equation: ut = uxx + f

Semi-discretised: un+1 − un = ∆t un
xx + ∆t f (tn)

Fully discretised: un+1
i − un

i =
∆t

h2
(un

i+1 − 2un
i + un

i−1) + ∆t f (tn, xi)

(Since this is an explicit scheme there will be a condition required for stability:
∆t
h2 ≤ 1

2
. Such results are obtained using Von Neumann (Fourier) stability

analysis).

Let us write the above as a linear system: Un+1 = Un + ∆t
h2 DUn + ∆t Fn, where

Un = [Un
1 , . . . ,U

n
N], F n = [f (tn, x1), . . . , f (tn, xN)], and D is a matrix with -2s

on the diagonal and 1s above and below the diagonal.

The first and last rows of the linear system have to be altered to take into
account Dirichlet and/or Neumann boundary conditions.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

For example, for the heat equation ut = uxx + f , suppose we choose a fully
explicit time-discretisation, and then discretise in space:

Heat equation: ut = uxx + f

Semi-discretised: un+1 − un = ∆t un
xx + ∆t f (tn)

Fully discretised: un+1
i − un

i =
∆t

h2
(un

i+1 − 2un
i + un

i−1) + ∆t f (tn, xi)

(Since this is an explicit scheme there will be a condition required for stability:
∆t
h2 ≤ 1

2
. Such results are obtained using Von Neumann (Fourier) stability

analysis).

Let us write the above as a linear system: Un+1 = Un + ∆t
h2 DUn + ∆t Fn, where

Un = [Un
1 , . . . ,U

n
N], F n = [f (tn, x1), . . . , f (tn, xN)], and D is a matrix with -2s

on the diagonal and 1s above and below the diagonal.

The first and last rows of the linear system have to be altered to take into
account Dirichlet and/or Neumann boundary conditions.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

For example, for the heat equation ut = uxx + f , suppose we choose a fully
explicit time-discretisation, and then discretise in space:

Heat equation: ut = uxx + f

Semi-discretised: un+1 − un = ∆t un
xx + ∆t f (tn)

Fully discretised: un+1
i − un

i =
∆t

h2
(un

i+1 − 2un
i + un

i−1) + ∆t f (tn, xi)

(Since this is an explicit scheme there will be a condition required for stability:
∆t
h2 ≤ 1

2
. Such results are obtained using Von Neumann (Fourier) stability

analysis).

Let us write the above as a linear system: Un+1 = Un + ∆t
h2 DUn + ∆t Fn, where

Un = [Un
1 , . . . ,U

n
N], F n = [f (tn, x1), . . . , f (tn, xN)], and D is a matrix with -2s

on the diagonal and 1s above and below the diagonal.

The first and last rows of the linear system have to be altered to take into
account Dirichlet and/or Neumann boundary conditions.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

For example, for the heat equation ut = uxx + f , suppose we choose a fully
explicit time-discretisation, and then discretise in space:

Heat equation: ut = uxx + f

Semi-discretised: un+1 − un = ∆t un
xx + ∆t f (tn)

Fully discretised: un+1
i − un

i =
∆t

h2
(un

i+1 − 2un
i + un

i−1) + ∆t f (tn, xi)

(Since this is an explicit scheme there will be a condition required for stability:
∆t
h2 ≤ 1

2
. Such results are obtained using Von Neumann (Fourier) stability

analysis).

Let us write the above as a linear system: Un+1 = Un + ∆t
h2 DUn + ∆t Fn, where

Un = [Un
1 , . . . ,U

n
N], F n = [f (tn, x1), . . . , f (tn, xN)], and D is a matrix with -2s

on the diagonal and 1s above and below the diagonal.

The first and last rows of the linear system have to be altered to take into
account Dirichlet and/or Neumann boundary conditions.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Compare the finite difference equation:

Un+1 = Un +
∆t

h2
DUn + ∆tFn

with the equivalent finite element equation:

MUn+1 = MUn + ∆t KUn + ∆tbn

In fact, for a regular grid in 1D and with linear basis functions, K = D/h
(except for first/last rows).

The big advantages of FE over FD are

FD is difficult to write down on irregular geometries, but FE works ON
any valid mesh

Neumann boundary conditions are handled very naturally in FE—
require an integral over surface, and nothing required for zero-Neumann
BCs. Much more difficult in FD

Error analysis

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Compare the finite difference equation:

Un+1 = Un +
∆t

h2
DUn + ∆tFn

with the equivalent finite element equation:

MUn+1 = MUn + ∆t KUn + ∆tbn

In fact, for a regular grid in 1D and with linear basis functions, K = D/h
(except for first/last rows).

The big advantages of FE over FD are

FD is difficult to write down on irregular geometries, but FE works ON
any valid mesh

Neumann boundary conditions are handled very naturally in FE—
require an integral over surface, and nothing required for zero-Neumann
BCs. Much more difficult in FD

Error analysis

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Compare the finite difference equation:

Un+1 = Un +
∆t

h2
DUn + ∆tFn

with the equivalent finite element equation:

MUn+1 = MUn + ∆t KUn + ∆tbn

In fact, for a regular grid in 1D and with linear basis functions, K = D/h
(except for first/last rows).

The big advantages of FE over FD are

FD is difficult to write down on irregular geometries, but FE works ON
any valid mesh

Neumann boundary conditions are handled very naturally in FE—
require an integral over surface, and nothing required for zero-Neumann
BCs. Much more difficult in FD

Error analysis

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Compare the finite difference equation:

Un+1 = Un +
∆t

h2
DUn + ∆tFn

with the equivalent finite element equation:

MUn+1 = MUn + ∆t KUn + ∆tbn

In fact, for a regular grid in 1D and with linear basis functions, K = D/h
(except for first/last rows).

The big advantages of FE over FD are

FD is difficult to write down on irregular geometries, but FE works ON
any valid mesh

Neumann boundary conditions are handled very naturally in FE—
require an integral over surface, and nothing required for zero-Neumann
BCs. Much more difficult in FD

Error analysis

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The finite difference method

Compare the finite difference equation:

Un+1 = Un +
∆t

h2
DUn + ∆tFn

with the equivalent finite element equation:

MUn+1 = MUn + ∆t KUn + ∆tbn

In fact, for a regular grid in 1D and with linear basis functions, K = D/h
(except for first/last rows).

The big advantages of FE over FD are

FD is difficult to write down on irregular geometries, but FE works ON
any valid mesh

Neumann boundary conditions are handled very naturally in FE—
require an integral over surface, and nothing required for zero-Neumann
BCs. Much more difficult in FD

Error analysis

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z
∂Ωi

f(u) · n dS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · n dS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z
∂Ωi

f(u) · n dS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · n dS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z
∂Ωi

f(u) · n dS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · n dS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z
∂Ωi

f(u) · n dS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · n dS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z
∂Ωi

f(u) · n dS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · n dS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Finite volume methods

Very commonly used for hyperbolic PDEs (for which the FE method tends
to have trouble) and in computational fluid dynamics

As with FE, FV is based on integral formulations.

The domain is broken down into control volumes (similar to ‘elements’).

One unknown computed per element (i.e. no need for ‘node’)—this can be
considered to be the average value of u in the control volume.

Consider the advection equation ut +∇ · f(u) = 0. Integrate over a control
volume Ωi of volume Vi :Z

Ωi

ut dV =

Z
Ωi

−∇ · f(u) dV = −
Z
∂Ωi

f(u) · n dS

Using an explicit time-discretisation, and
R

Ωi
Un dV ≈ Vi U

n
i , we obtain

Un+1
i = Un

i −
∆t

Vi

Z
∂Ωi

f(un) · n dS

See eg http://www.comp.leeds.ac.uk/meh/Talks/FVTutorial.pdf for
more details

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

In FE we used an integral formulation of the PDE, eg: find u ∈ V such that:Z
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V

Write this as: find u ∈ V such that: a(u, v) = l(v) ∀v ∈ V

To discretise the integral equation, we replace V by finite-dimensional
subspaces (of dimension N): find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

Choosing bases:

W1 = span{φ1, . . . , φN}
W2 = span{χ1, . . . , χN}

(ie uapprox =
P
αiφi), we can obtain N equations for N unknowns.

Different methods are based on different choices of W1 and W2.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

In FE we used an integral formulation of the PDE, eg: find u ∈ V such that:Z
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V

Write this as: find u ∈ V such that: a(u, v) = l(v) ∀v ∈ V

To discretise the integral equation, we replace V by finite-dimensional
subspaces (of dimension N): find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

Choosing bases:

W1 = span{φ1, . . . , φN}
W2 = span{χ1, . . . , χN}

(ie uapprox =
P
αiφi), we can obtain N equations for N unknowns.

Different methods are based on different choices of W1 and W2.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

In FE we used an integral formulation of the PDE, eg: find u ∈ V such that:Z
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V

Write this as: find u ∈ V such that: a(u, v) = l(v) ∀v ∈ V

To discretise the integral equation, we replace V by finite-dimensional
subspaces (of dimension N): find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

Choosing bases:

W1 = span{φ1, . . . , φN}
W2 = span{χ1, . . . , χN}

(ie uapprox =
P
αiφi), we can obtain N equations for N unknowns.

Different methods are based on different choices of W1 and W2.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

In FE we used an integral formulation of the PDE, eg: find u ∈ V such that:Z
Ω

∇u ·∇v dV =

Z
Ω

fv dV +

Z
Γ2

gv dS ∀v ∈ V

Write this as: find u ∈ V such that: a(u, v) = l(v) ∀v ∈ V

To discretise the integral equation, we replace V by finite-dimensional
subspaces (of dimension N): find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

Choosing bases:

W1 = span{φ1, . . . , φN}
W2 = span{χ1, . . . , χN}

(ie uapprox =
P
αiφi), we can obtain N equations for N unknowns.

Different methods are based on different choices of W1 and W2.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Methods of weight residuals

Find uapprox ∈ W1 such that:

a(uapprox, v) = l(v) ∀v ∈ W2

with:

W1 = span{φ1, . . . , φN}.
W2 = span{χ1, . . . , χN}

Galerkin methods: use φ = χ, i.e. W1 =W2

Collocation methods: use δ-functions for χ’s (i.e. replace integrals with
point evaluations (at N collocation points x1, x2, . . . , xN)
(Continuous) Galerkin FEM: use W1 =W2 and take the φi to be
continuous and piecewise polynomial on element

As we know in practice we just consider 1 canonical element and define the
basis functions on this (the shape functions)
Elements could be tetrahedral/hexahedral, shape functions could be linear,
quadratic, cubic Hermite and more...

Discontinuous Galerkin FEM: φi piecewise polynomial but no longer
continuous across elements

Spectral methods: φk globally continuous and infinitely differentiable (for
example, φk(x) = exp(ikx))

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Spectral methods

There are both spectral-collocation methods (work with the strong form)
or spectral-Galerkin methods (work with the weak form)

Various choices of basis functions (W1) are possible, for example

For problems with periodic boundary conditions, use φk(x) = exp(ikx)
i.e. uapprox =

P
αkφk approximates u with a cut-off Fourier series

For problems with non-periodic boundary conditions: use a set of
‘orthogonal polynomials’ for φk , such a Legendre or Chebychev
polynomials

For problems with smooth data (initial condition, boundary conditions,
forces etc are smooth functions), spectral methods give exceptional rates
of convergence.

For more info, see e.g. http://www.lorene.obspm.fr/palma.pdf

http://www.lorene.obspm.fr/palma.pdf

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Spectral methods

There are both spectral-collocation methods (work with the strong form)
or spectral-Galerkin methods (work with the weak form)

Various choices of basis functions (W1) are possible, for example

For problems with periodic boundary conditions, use φk(x) = exp(ikx)
i.e. uapprox =

P
αkφk approximates u with a cut-off Fourier series

For problems with non-periodic boundary conditions: use a set of
‘orthogonal polynomials’ for φk , such a Legendre or Chebychev
polynomials

For problems with smooth data (initial condition, boundary conditions,
forces etc are smooth functions), spectral methods give exceptional rates
of convergence.

For more info, see e.g. http://www.lorene.obspm.fr/palma.pdf

http://www.lorene.obspm.fr/palma.pdf

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Spectral methods

There are both spectral-collocation methods (work with the strong form)
or spectral-Galerkin methods (work with the weak form)

Various choices of basis functions (W1) are possible, for example

For problems with periodic boundary conditions, use φk(x) = exp(ikx)
i.e. uapprox =

P
αkφk approximates u with a cut-off Fourier series

For problems with non-periodic boundary conditions: use a set of
‘orthogonal polynomials’ for φk , such a Legendre or Chebychev
polynomials

For problems with smooth data (initial condition, boundary conditions,
forces etc are smooth functions), spectral methods give exceptional rates
of convergence.

For more info, see e.g. http://www.lorene.obspm.fr/palma.pdf

http://www.lorene.obspm.fr/palma.pdf

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Continuum Mechanics

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overview

1 Introduction: solids and fluids

2 Kinematics∗

3 Balance equations∗

4 Material laws∗

5 Overall governing equations∗

6 Weak problem and numerical method∗∗

7 Objected-oriented design in Chaste∗∗

∗ Focussing on nonlinear elasticity, but also mentioning linear elasticity & fluids
∗∗ Nonlinear elasticity only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Introduction: solids and fluids

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solids versus fluids

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solids versus fluids

Pitchdrop experiment, Queensland. Experiment begun 1927 (1930). Drops fell
in: 1938, 1947, 1954, 1962, 1970, 1979, 1988, 2000

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solids versus fluids

“Fluids cannot resist deformation force”. Shape will change as long as the
force is applied. Whereas a solid can change shape but not indefinitely.

More specifically, fluids cannot resist shear forces

For solids, force is related to deformation (coefficient: stiffness)

For fluids, force is related to deformation-rate (coefficient: viscosity)

Some materials are fluid under some conditions (excl. temperature) and solid
under others (see, for example, youtube:walking on custard)

http://www.youtube.com/watch?v=BN2D5y-AxIY

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Solids versus fluids

“Fluids cannot resist deformation force”. Shape will change as long as the
force is applied. Whereas a solid can change shape but not indefinitely.

More specifically, fluids cannot resist shear forces

For solids, force is related to deformation (coefficient: stiffness)

For fluids, force is related to deformation-rate (coefficient: viscosity)

Some materials are fluid under some conditions (excl. temperature) and solid
under others (see, for example, youtube:walking on custard)

http://www.youtube.com/watch?v=BN2D5y-AxIY

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Types of solid

For solids, force is related to deformation (stress related to strain):

Elastic

When an applied force is removed, the solid returns to its original shape

For small enough forces/strains, stress is usually proportional to strain
(linear elasticity)

Visco-elastic

Also exhibit a viscous response, for example, slow change of shape if a
force is held constant / slow decrease of stress if strain held constant

Stress becomes a function of strain and strain rate

Plastic

Once a large enough stress is applied (the yield stress), the material
undergoes permanent deformation (flows), due to internal rearrangement.
If the stress is removed it won’t return back to original state.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Types of solid

For solids, force is related to deformation (stress related to strain):

Elastic

When an applied force is removed, the solid returns to its original shape

For small enough forces/strains, stress is usually proportional to strain
(linear elasticity)

Visco-elastic

Also exhibit a viscous response, for example, slow change of shape if a
force is held constant / slow decrease of stress if strain held constant

Stress becomes a function of strain and strain rate

Plastic

Once a large enough stress is applied (the yield stress), the material
undergoes permanent deformation (flows), due to internal rearrangement.
If the stress is removed it won’t return back to original state.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Types of solid

For solids, force is related to deformation (stress related to strain):

Elastic

When an applied force is removed, the solid returns to its original shape

For small enough forces/strains, stress is usually proportional to strain
(linear elasticity)

Visco-elastic

Also exhibit a viscous response, for example, slow change of shape if a
force is held constant / slow decrease of stress if strain held constant

Stress becomes a function of strain and strain rate

Plastic

Once a large enough stress is applied (the yield stress), the material
undergoes permanent deformation (flows), due to internal rearrangement.
If the stress is removed it won’t return back to original state.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Types of fluid

For fluids force is related to deformation-rate (stress is related to strain-rate)

Newtonian

Stress is related linearly to the strain-rate

Non-Newtonian

Stress is related non-linearly to the strain-rate

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Kinematics of solids

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Kinematics of solids

In the later section we will write down balance equations relating the internal
stresses in the body to external forces.

What are the internal stresses a function of?

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Undeformed and deformed states

Let Ω0 represent the unloaded, unstressed body
Let Ωt represent the deformed body at time t

For time-independent problems, we denote the deformed body Ω

Let X represent a point in the undeformed body

Let x ≡ x(t,X) represent the corresponding deformed position

Let the displacement be denoted u = x− X

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The deformation gradient

Let FiM = ∂xi
∂XM

be the deformation gradient. This describes the deformation,
excluding rigid body translations.

Any deformation can be decomposed into a (local) translation, rotation, and
stretch. Correspondingly, F can be decomposed into a rotation and a stretch:
F = RU, where R is an rotation matrix, and U is a positive-definite symmetric
matrix representing stretch.

Examples, in 2D:

let x =

»
αX
βY

–
, then F =

»
α 0
0 β

–
(simple bi-axial stretch)

let x =

»
X − αY

Y

–
, then F =

»
1 −α
0 1

–
(simple shear)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The deformation gradient

Let FiM = ∂xi
∂XM

be the deformation gradient. This describes the deformation,
excluding rigid body translations.

Any deformation can be decomposed into a (local) translation, rotation, and
stretch. Correspondingly, F can be decomposed into a rotation and a stretch:
F = RU, where R is an rotation matrix, and U is a positive-definite symmetric
matrix representing stretch.

Examples, in 2D:

let x =

»
αX
βY

–
, then F =

»
α 0
0 β

–
(simple bi-axial stretch)

let x =

»
X − αY

Y

–
, then F =

»
1 −α
0 1

–
(simple shear)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The deformation gradient

Let FiM = ∂xi
∂XM

be the deformation gradient. This describes the deformation,
excluding rigid body translations.

Any deformation can be decomposed into a (local) translation, rotation, and
stretch. Correspondingly, F can be decomposed into a rotation and a stretch:
F = RU, where R is an rotation matrix, and U is a positive-definite symmetric
matrix representing stretch.

Examples, in 2D:

let x =

»
αX
βY

–
, then F =

»
α 0
0 β

–
(simple bi-axial stretch)

let x =

»
X − αY

Y

–
, then F =

»
1 −α
0 1

–
(simple shear)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The deformation gradient

det F

F is the jacobian of the mapping from Ω0 to Ω, therefore det F represents the
change in local volume. Hence:

det F > 0 for all deformations

For incompressible deformations (also known as isochoric or isovolumetric
deformations), det F = 1 (everywhere)

Define J = det F

Principal stretches

The eigenvalues of U are of the principal stretches, denoted λ1, λ2, λ3

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The deformation gradient

det F

F is the jacobian of the mapping from Ω0 to Ω, therefore det F represents the
change in local volume. Hence:

det F > 0 for all deformations

For incompressible deformations (also known as isochoric or isovolumetric
deformations), det F = 1 (everywhere)

Define J = det F

Principal stretches

The eigenvalues of U are of the principal stretches, denoted λ1, λ2, λ3

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Lagrangian measures of strain

The (right) Cauchy-Green deformation tensor is

C = F TF

Note that

F = RU ⇒ C = UTRTRU = UTU = U2

i.e. C is independent of the rotation

the eigenvalues of C are λ2
1, λ2

2, λ2
3.

The Green-Lagrange strain tensor is

E =
1

2
(C − I)

and is the nonlinear generalisation of the simple 1d strain measure (l − l0)/l0

Can work with either C or E . Note: for no deformation C = I vs E = 0.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Lagrangian measures of strain

The (right) Cauchy-Green deformation tensor is

C = F TF

Note that

F = RU ⇒ C = UTRTRU = UTU = U2

i.e. C is independent of the rotation

the eigenvalues of C are λ2
1, λ2

2, λ2
3.

The Green-Lagrange strain tensor is

E =
1

2
(C − I)

and is the nonlinear generalisation of the simple 1d strain measure (l − l0)/l0

Can work with either C or E . Note: for no deformation C = I vs E = 0.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Lagrangian measures of strain

The (right) Cauchy-Green deformation tensor is

C = F TF

Note that

F = RU ⇒ C = UTRTRU = UTU = U2

i.e. C is independent of the rotation

the eigenvalues of C are λ2
1, λ2

2, λ2
3.

The Green-Lagrange strain tensor is

E =
1

2
(C − I)

and is the nonlinear generalisation of the simple 1d strain measure (l − l0)/l0

Can work with either C or E . Note: for no deformation C = I vs E = 0.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Lagrangian measures of strain

The (right) Cauchy-Green deformation tensor is

C = F TF

Note that

F = RU ⇒ C = UTRTRU = UTU = U2

i.e. C is independent of the rotation

the eigenvalues of C are λ2
1, λ2

2, λ2
3.

The Green-Lagrange strain tensor is

E =
1

2
(C − I)

and is the nonlinear generalisation of the simple 1d strain measure (l − l0)/l0

Can work with either C or E . Note: for no deformation C = I vs E = 0.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Isotropic problems

We shall see later how stress is a function of strain E , or equivalently, of C , say
σ = σ(C11,C12,C13,C22,C23,C33).

If can be shown that for isotropic problems, the stress is just a function of the
principal invariants4 of C

I1 = tr(C)

I2 =
1

2

“
tr(C)2 − tr(C 2)

”
I3 = det(C)

4To complicate matters even more, compressible problems often use the deviatoric invariants:

Ī1 = I1I
− 1

3
3 , and Ī2 = I2I

− 2
3

3 . These are the invariants of C after it has been scaled to have
determinant 1—see [Horgan and Saccomandi, Journal of Elasticity, 2004] for a discussion.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Isotropic problems

We shall see later how stress is a function of strain E , or equivalently, of C , say
σ = σ(C11,C12,C13,C22,C23,C33).

If can be shown that for isotropic problems, the stress is just a function of the
principal invariants4 of C

I1 = tr(C)

I2 =
1

2

“
tr(C)2 − tr(C 2)

”
I3 = det(C)

4To complicate matters even more, compressible problems often use the deviatoric invariants:

Ī1 = I1I
− 1

3
3 , and Ī2 = I2I

− 2
3

3 . These are the invariants of C after it has been scaled to have
determinant 1—see [Horgan and Saccomandi, Journal of Elasticity, 2004] for a discussion.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Linear elasticity

Linearise E , removing terms that are quadratic in the displacement:

Eij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
+O(u2)

so define

εij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
This is the infinitesimal strain tensor

Note: normally in linear elasticity x represents undeformed position, so εij is

defined to be 1
2

“
∂ui
∂xj

+
∂uj

∂xi

”
.

Note also that linearising the incompressibility constraint det F = 1 gives:

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Linear elasticity

Linearise E , removing terms that are quadratic in the displacement:

Eij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
+O(u2)

so define

εij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
This is the infinitesimal strain tensor

Note: normally in linear elasticity x represents undeformed position, so εij is

defined to be 1
2

“
∂ui
∂xj

+
∂uj

∂xi

”
.

Note also that linearising the incompressibility constraint det F = 1 gives:

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Linear elasticity

Linearise E , removing terms that are quadratic in the displacement:

Eij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
+O(u2)

so define

εij =
1

2

„
∂ui

∂Xj
+
∂uj

∂Xi

«
This is the infinitesimal strain tensor

Note: normally in linear elasticity x represents undeformed position, so εij is

defined to be 1
2

“
∂ui
∂xj

+
∂uj

∂xi

”
.

Note also that linearising the incompressibility constraint det F = 1 gives:

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Balance laws

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, σ, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S , the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T , the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S = JF−1σ T = SF−T σ =
1

J
FTF T

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, σ, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S , the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T , the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S = JF−1σ T = SF−T σ =
1

J
FTF T

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, σ, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S , the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T , the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S = JF−1σ T = SF−T σ =
1

J
FTF T

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, σ, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S , the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T , the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S = JF−1σ T = SF−T σ =
1

J
FTF T

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Stresses

There are various definitions of stress in nonlinear elasticity:

Cauchy stress, σ, the force per unit deformed area acting on surfaces on the
deformed body (i.e. the true stress) (symmetric)

1st Piola-Kirchhoff stress, S , the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric)

2nd Piola-Kirchhoff stress, T , the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric)

Relationships:

S = JF−1σ T = SF−T σ =
1

J
FTF T

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Equilibrium equation

Let ρ0 and ρ be the density in the undeformed and deformed bodies, and let b
be the body force density (e.g. gravity, for which b = [0, 0,−9.81])

For a body in static equilibrium, the equilibrium equation is

∂σij

∂xj
+ ρbi = 0 in Ω

This isn’t particularly useful as x and Ω are unknown

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Equilibrium equation

Let ρ0 and ρ be the density in the undeformed and deformed bodies, and let b
be the body force density (e.g. gravity, for which b = [0, 0,−9.81])

For a body in static equilibrium, the equilibrium equation is

∂σij

∂xj
+ ρbi = 0 in Ω

This isn’t particularly useful as x and Ω are unknown

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Equilibrium equation

Let ρ0 and ρ be the density in the undeformed and deformed bodies, and let b
be the body force density (e.g. gravity, for which b = [0, 0,−9.81])

For a body in static equilibrium, the equilibrium equation is

∂σij

∂xj
+ ρbi = 0 in Ω

This isn’t particularly useful as x and Ω are unknown

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Equilibrium equation

We can transform to the undeformed state, for which the 1st Piola-Kirchhoff
stress arises

∂SMi

∂XM
+ ρ0bi = 0 in Ω0

The two equations can be written as

div(σ) + ρb = 0 in Ω

Div(S) + ρ0b = 0 in Ω0

Replacing the 1st PK stress with the 2nd PK stress, we obtain

∂

∂XM

„
TMN

∂xi

∂XN

«
+ ρ0bi = 0 in Ω0

Note that T ≡ T (x) (through some material-dependent relationship, to be
discussed)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Equilibrium equation

We can transform to the undeformed state, for which the 1st Piola-Kirchhoff
stress arises

∂SMi

∂XM
+ ρ0bi = 0 in Ω0

The two equations can be written as

div(σ) + ρb = 0 in Ω

Div(S) + ρ0b = 0 in Ω0

Replacing the 1st PK stress with the 2nd PK stress, we obtain

∂

∂XM

„
TMN

∂xi

∂XN

«
+ ρ0bi = 0 in Ω0

Note that T ≡ T (x) (through some material-dependent relationship, to be
discussed)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Boundary conditions

Mixed Dirichlet-Neumann boundary conditions are the specification of

deformation/displacement on one part of the boundary (Dirichlet BCs)

tractions the rest of the boundary (Neumann BCs)

The Neumann boundary condition is

σijnj = si on deformed surface

where s is the prescribed traction, which again has to be transformed back to
the undeformed body

Splitting ∂Ω0 into Γ1 and Γ2, overall the boundary conditions are

x = x∗ on Γ1

SMi NM = si on Γ2

(and again we could replace S with TF T)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Boundary conditions

Mixed Dirichlet-Neumann boundary conditions are the specification of

deformation/displacement on one part of the boundary (Dirichlet BCs)

tractions the rest of the boundary (Neumann BCs)

The Neumann boundary condition is

σijnj = si on deformed surface

where s is the prescribed traction, which again has to be transformed back to
the undeformed body

Splitting ∂Ω0 into Γ1 and Γ2, overall the boundary conditions are

x = x∗ on Γ1

SMi NM = si on Γ2

(and again we could replace S with TF T)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Boundary conditions

Mixed Dirichlet-Neumann boundary conditions are the specification of

deformation/displacement on one part of the boundary (Dirichlet BCs)

tractions the rest of the boundary (Neumann BCs)

The Neumann boundary condition is

σijnj = si on deformed surface

where s is the prescribed traction, which again has to be transformed back to
the undeformed body

Splitting ∂Ω0 into Γ1 and Γ2, overall the boundary conditions are

x = x∗ on Γ1

SMi NM = si on Γ2

(and again we could replace S with TF T)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Other balance equations

Linear elasticity

Use ∂
∂xi
≈ ∂

∂Xi
(which means all 3 types of stress are equal to lowest order);

work with
∂σij

∂Xj
+ ρ0bi = 0 in Ω0

Time-dependent problems

Defining the acceleration a = ∂2x
∂t2 .

ρ0ai =
∂

∂XM

„
TMN

∂xi

∂XN

«
+ ρ0bi in Ω0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Material laws

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The strain energy function

An elastic material is one where stress is a function of strain: T ≡ T (E) say

A hyper-elastic material is an elastic material for which there exists a strain
energy function whose derivative with respect to strain gives the stress.

Specifically, there exists W ≡W (E) such that5

TMN =
∂W

∂EMN

W must be determined experimentally (propose a law and experimentally
determine parameters)

5For reference, it is also the case that SMi = ∂W
∂FiM

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The strain energy function

An elastic material is one where stress is a function of strain: T ≡ T (E) say

A hyper-elastic material is an elastic material for which there exists a strain
energy function whose derivative with respect to strain gives the stress.

Specifically, there exists W ≡W (E) such that5

TMN =
∂W

∂EMN

W must be determined experimentally (propose a law and experimentally
determine parameters)

5For reference, it is also the case that SMi = ∂W
∂FiM

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

The strain energy function

It is often simpler to just work with C

W ≡W (C) such that TMN = 2
∂W

∂CMN

Isotropic materials

In general, W is a function of the six independent components of C (recall
that C is symmetric)

However, for (compressible) isotropic materials, it can be shown that

W ≡W (I1, I2, I3)

only

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Incompressible strain energy functions

Recall that for incompressible materials we have the constraint

det F = 1

(everywhere), i.e. I3 = 1. This introduces a Lagrange multiplier p ≡ p(X),
which must be computed together with the deformation.

The material law becomes, for an isotropic material

W (C) = W mat(I1, I2)− p

2
(I3 − 1)

This gives: TMN = 2 ∂W mat

∂CMN
− p

`
C−1

´
MN

, or equivalently

σij = σmat
ij − pδij

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Incompressible strain energy functions

Recall that for incompressible materials we have the constraint

det F = 1

(everywhere), i.e. I3 = 1. This introduces a Lagrange multiplier p ≡ p(X),
which must be computed together with the deformation.

The material law becomes, for an isotropic material

W (C) = W mat(I1, I2)− p

2
(I3 − 1)

This gives: TMN = 2 ∂W mat

∂CMN
− p

`
C−1

´
MN

, or equivalently

σij = σmat
ij − pδij

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Example strain energy functions

Incompressible strain energies:

Neo-Hookean: W mat(I1, I2) = c1(I1 − 3)

Mooney-Rivlin: W mat(I1, I2) = c1(I1 − 3) + c2(I2 − 3)

Veronda-Westman: W mat(I1, I2) = c1eα(I1−3) + c2(I2 − 3)

Similar exponential laws are often used in biology

W mat(C) = c1eα(Q(C)−1)

where Q(C) is a quadratic in the entries of C

A compressible strain energy: the compressible Neo-Hookean law

W (I1, I2, I3) = c1(Ī1 − 3) + c3(J − 1)2

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Material law for (compressible) linear elasticity

Stress σij is linearly related to strain εij :

σij = Cijklεkl

For isotropic materials, it can be shown that this relationship must be of the
form

σij = 2µεij + λδijεkk

where material parameters λ and µ are the Lamé coefficients

This relationship is often re-written using derived parameters E (Young’s
modulus) and ν (Poisson’s ratio)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Material law for (compressible) linear elasticity

Stress σij is linearly related to strain εij :

σij = Cijklεkl

For isotropic materials, it can be shown that this relationship must be of the
form

σij = 2µεij + λδijεkk

where material parameters λ and µ are the Lamé coefficients

This relationship is often re-written using derived parameters E (Young’s
modulus) and ν (Poisson’s ratio)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Material law for (compressible) linear elasticity

Stress σij is linearly related to strain εij :

σij = Cijklεkl

For isotropic materials, it can be shown that this relationship must be of the
form

σij = 2µεij + λδijεkk

where material parameters λ and µ are the Lamé coefficients

This relationship is often re-written using derived parameters E (Young’s
modulus) and ν (Poisson’s ratio)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations:

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: static, incompressible nonlinear elasticity

Given a material relationship W ≡W (C , p), T ≡ 2 ∂W
∂C

:

Find x ≡ x(X) and p ≡ p(X) satisfying

∂

∂XM

„
TMN(x, p)

∂xi

∂XM

«
+ ρ0bi = 0

det F (x) = 1

with boundary conditions:

x = x∗ on Γ1

TF TN = s on Γ2

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: static, compressible linear elasticity

Given the material relationship

σij = 2µεij + λδijεkk

find u ≡ u(X) satisfying
∂σij(u)

∂Xj
+ ρ0bi = 0

with boundary conditions:

u = u∗ on Γ1

σn = s on Γ2

Sometimes this is expanded and expressed explicitly in terms of u

(λ+ µ)∇ (∇ · u) + µ∇2u + ρ0b = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: static, compressible linear elasticity

Given the material relationship

σij = 2µεij + λδijεkk

find u ≡ u(X) satisfying
∂σij(u)

∂Xj
+ ρ0bi = 0

with boundary conditions:

u = u∗ on Γ1

σn = s on Γ2

Sometimes this is expanded and expressed explicitly in terms of u

(λ+ µ)∇ (∇ · u) + µ∇2u + ρ0b = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

Kinematics: Incompressibility ⇒ ∇ · u = 0 again, ...

Balance law: use time-dependent Eulerian, i.e. ρ D
Dt

ui =
∂σij

∂xj
+ ρbi

Material law: Stress is a function of strain-rate, one material parameter,
µ, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

ρ

„
∂u

∂t
+ u ·∇u

«
= −∇p + µ∇2u + ρb

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

Kinematics: Incompressibility ⇒ ∇ · u = 0 again, ...

Balance law: use time-dependent Eulerian, i.e. ρ D
Dt

ui =
∂σij

∂xj
+ ρbi

Material law: Stress is a function of strain-rate, one material parameter,
µ, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

ρ

„
∂u

∂t
+ u ·∇u

«
= −∇p + µ∇2u + ρb

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

Kinematics: Incompressibility ⇒ ∇ · u = 0 again, ...

Balance law: use time-dependent Eulerian, i.e. ρ D
Dt

ui =
∂σij

∂xj
+ ρbi

Material law: Stress is a function of strain-rate, one material parameter,
µ, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

ρ

„
∂u

∂t
+ u ·∇u

«
= −∇p + µ∇2u + ρb

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

Kinematics: Incompressibility ⇒ ∇ · u = 0 again, ...

Balance law: use time-dependent Eulerian, i.e. ρ D
Dt

ui =
∂σij

∂xj
+ ρbi

Material law: Stress is a function of strain-rate, one material parameter,
µ, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

ρ

„
∂u

∂t
+ u ·∇u

«
= −∇p + µ∇2u + ρb

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Overall governing equations: fluids

For fluids, u is used to denote flow rather than displacement and x is the
independent variable (i.e. an Eulerian formulation is used).

For incompressible flow:

Kinematics: Incompressibility ⇒ ∇ · u = 0 again, ...

Balance law: use time-dependent Eulerian, i.e. ρ D
Dt

ui =
∂σij

∂xj
+ ρbi

Material law: Stress is a function of strain-rate, one material parameter,
µ, the viscosity; and of pressure, as before

Overall, the Navier-Stokes equations are: find u and p satisfying

ρ

„
∂u

∂t
+ u ·∇u

«
= −∇p + µ∇2u + ρb

∇ · u = 0

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Numerical methods (incompressible nonlinear elasticity only)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Weak form

We cam compute the weak form as before

multiplying (inner product) of the first equation with a test function
v ∈ V, integrate, use divergence theorem.

multiply second equation with q ∈ W, integrate

Find x ∈ V and p ∈ W such x = x∗ on Γ1 andZ
Ω0

TMN(x, p)
∂xi

∂XN

∂vi

∂XM
dV0 −

Z
Ω0

ρ0b · v dV0 −
Z

Γ2

s · v dS0

+

Z
Ω0

q (det F (x)− 1) dV0 = 0

∀v ∈ V0, q ∈ W

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Newton’s method

Using u as the unknown instead of x, write weak problem as:

Find uh ∈ Vh, ph ∈ Wh such that u = u∗ on Γ1 and:

F(uh, ph, v, q) = 0 ∀v ∈ V0
h, q ∈ Wh

Use quadratic basis functions for displacement, linear for pressure. This is
necessary for a ‘stable’ scheme (accuracy).

Suppose there are

N quadratic bases, φ1, . . . , φN

M linear bases, ψ1, . . . , ψM :

Let v =

24 φi

0
0

35 ,
24 0
φi

0

35 ,
24 0

0
φi

35 and q = ψi ⇒ 3N + M nonlinear eqns

Solve using Newton’s method as described in lecture 4.

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented design

SolidMechanicsProblemDefinition

mBodyForce

mFixedNodes

mFixedNodeLocations

mNeumannBoundaryElements

mTractions

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented design

IncompressibleNonlinearElasticitySolver

Solve(mesh, solidMechProblemDefn, absIncompMaterialLaw)

B Use Newton’s method to solve the given problem

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented design

AbstractIncompressibleMaterialLaw

Abs. method: GetStrainEnergyValue(C)

B Take in C, return W (C)

This doesn’t work as code needs to use T = 2 ∂W
∂C

(and also ∂2W
∂CMN∂CPQ

)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented design

AbstractIncompressibleMaterialLaw

Abs. method: ComputeStressAndStressDerivative(C,p)

B Take in C, p, return 2 ∂W
∂C

and 4 ∂2W
∂CMN∂CPQ

AbstractIsotropicIncompressibleMaterialLaw inherits from (above):
Method: ComputeStressAndStressDerivative(C,p)

Abs. method: Get dW dI1(I1,I2) Get ∂W
∂I1

Abs. method: Get dW dI2(I1,I2) Get ∂W
∂I2

Abs. method: Get d2W dI1(I1,I2) Get ∂2W
∂I12

Abs. method: Get d2W dI2(I1,I2)

Abs. method: Get d2W dI1dI2(I1,I2)

Object oriented Prog. Solving ODEs Solving PDEs Coupled/Nonlinear PDEs Cardiac electro-phys Other PDE methods Continuum Mechanics

Object-oriented design

The Mooney-Rivlin law is

W mat(I1, I2) = c1(I1 − 3) + c2(I2 − 3)

MooneyRivlinMaterialLaw inherits from AbsIsotropicIncompMaterialLaw:

Implemented method: Get dW dI1(I1,I2)

B return c1

Implemented method: Get dW dI2(I1,I2)

B return c2

Implemented method: Get d2W dI1(I1,I2)

B return 0, etc.

	Object Oriented Programming
	Solving ODEs
	Solving simple PDEs using the finite element method
	Coupled/Nonlinear PDEs
	Cardiac electro-physiology
	An overview of alternative methods for solving PDEs
	Continuum Mechanics

