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Abstract  In this work, the propagation and attenuation characteristics of both TE and TM waves in a waveguide 
structure consisting of left handed material (LHM) film by using the equivalent current theory of optical waveguide 
coupling method have been derived and obtained. The dispersion relations and the attenuation coefficient were 
numerically solved for a given set of parameters: allowed phase angles; core’s thicknesses; and propagation 
constants. We found that lower attenuation is realized for higher propagation constants. Moreover, attenuation 
coefficient has same small positive values for all thickness in phase angles range of values ( 0 00 57− ). Besides that, 
the attenuation decreases to negative values with thickness increase in phase angles range of values 0 057 90 )−  
which means a gain of the wave is achieved for wider buffer layer and at larger phase angles. We also found that, TE 
waves have lower attenuation than that of TM waves. 
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1. Introduction 
In light –wave technology many analytical methods and 

theories have been developed for various optical 
waveguide components. For example, there are the plane-
wave analytical method [1,2] and the reciprocity relation 
analytical theorem [3]. Many of these analytical methods 
are famous and of fundamental significance and many 
calculations formulas obtained by these analytical 
methods are complex and are not easy to use in 
calculations and designs. The propagation attenuation of a 
metal-clad optical waveguide for TE waves is different 
from that TM waves and recently this large TM to TE loss 
ratio is used to produce a polarizer or mode analyzer for 
integrated-optics circuits [4], therefore the analysis of the 
propagation characteristics of the metal-clad optical 
waveguide has aroused great interest from many scholars 
of light-wave technology. Yizun [5] introduced a unified 
theory called equivalent-current theory that can be used 
successfully to analyze a variety of optical waveguide 
components. It was shown that this theory can be used 
systematically to analyze a series of optical waveguide 
problems that were previously solved by analytical 
methods. They applied this theory to the derivation of the 
general optical waveguide coupling equations and the 
analysis of a grating coupler and a metal-clad optical 
waveguide. A new fundamental formula is obtained for 
calculating the attenuation coefficient of the metal-clad 
optical waveguide. The obtained results are difficult to 

obtain by other analytical methods. This formula make the 
calculation and design of polarizers easy[6]. Rectangular 
waveguides are employed extensively in microwave 
receiver [7] since they are much easier to manipulate than 
circular waveguides and also offer significantly lower 
cross polarization component. Much studies have been 
carried out on waveguide structure by using the analytical 
method directly from the Maxwell equations. Yeap et.al.[8] 
had proposed a fundamental technique to compute the 
attenuation in rectangular waveguides with finite 
conductivity walls. Mousa and Shabat [9,10,11] have 
examined the propagation characteristics of both nonlinear 
TE and TM surface waves in a left-handed material (LHM) 
or metamaterial waveguide structures. These metamaterials 
grasped great attention of many researchers’ worldwide, 
because of the peculiar characteristics and novel devices 
which can be built upon. Interest is focused on the 
propagation of electromagnetic waves in LHM with 
negative index of refraction: materials which are designed 
to exhibit both negative permeability and permittivity over 
predetermined range of frequencies [9]. Metamaterials or 
left handed materials are used in many potential 
applications as fabricating Transmission lines, Mi- 
crostrip Resonators, wave division multiplexors (WDM), 
Couplers, Resonators, and Antennas [12,13]. S. Zhang 
et.al. [14] numerically demonstrated a metamaterial with 
both negative permittivity and negative permeability  over 
an over lapping near-infrared wavelength range resulting 
in a low loss negative-index material and thus a much 
higher transmission, which will lead to more extensive 
applications. Furthermore, the proposed structure has a 
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minimum feature size of ~ 100 nm. In this paper, we use 
this LHM in clad film waveguide to calculate the 
attenuation coefficient of both TE and TM mode by using 
equivalent current theory of optical waveguide coupling. 

2. TE Analysis of a LHM-clad Optical 
Waveguide 

As shown in Fig.(1), the proposed structure consists of 
four dielectric layers of refractive indices 1 2 3 4, , ,n n n n . 
The clad layer of the waveguide is LHM. It has complex 
refractive index 4 h hn ε µ= − +2i where hε is its electric 
permittivity and hµ  is its magnetic permeability. 

 

Figure 1. LHM clad waveguide structure 

Assuming that Transverse electric (TE) waves 
propagate in the z direction with a propagation wave 
constant in the form exp 1[ ( )]i zβ− . The guided wave field 
of the film waveguide without the LHM cover can be 
expressed as[5]: 
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where 
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and 1β is the propagation constant, 0ϕ is the initial phase 
angle and 0E  is the field normalization parameter. It is 
found as: 
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According to Maxwell's equations, the magnetic field is 

1
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∂
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. The layer of refractive index 

1n and that of 2n and 3n  are nonmagnetic where the 
magnetic permeability 1µ = . The continuity of zH  at 
the boundary 0x =  leads to the following : 

 1 0 2 0sin( ) cos( )k kϕ ϕ=  (3a) 

Where the dispersion equation is: 
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By substituting Eq.(2) into Eq.(3b), Eq.(3b) is written 
as: 
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According to equivalent current theory of optical 
waveguide coupling, The electromagnetic field of the 
LHM-clad waveguide shown in Figure 1 is equal to the 
total result of the field excited by the equivalent wave 
( E − ) and the guided wave ( 1E ), the attenuation 
coefficient is [5]:  
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The surface integral is evaluated only in LHM region. 
The field outside the LHM ( x w h≤ + ) remains the same 
as expressed by Eq.(1) and that the field inside the LHM 
( x w h+ ) is taken as the transmission wave ( tE ) when 
the field of the guide wave of Eq.( 1) is incident upon the 
LHM boundary. Therefore the fields outside and inside 
the LHM boundary are obtained as:[ 5] 
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Where ryE is the reflection wave and iyE is the incident 

wave with ( )0 0 1 0cosiE E k x ϕ= − . The continuity of the 
tangential components yE  and zH  at the boundary 

( )x w h= +  leads to the following equations: 

 , .iy ry ty iz rz tzE E E H H H+ = + =  (6) 

And 

 0 3 0 0 4exp[ ] exp[ ( )]i r tE k h E E ik w h− + = − +  (7) 
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By Eq.( 7 ) and Eq.( 8), one obtains: 
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By substituting Eq.(9) into Eq.(5) one gets: 

 10 3 4exp[ ]exp[ ( )] i z
ty e iE E T E k h ik x w h e β−= = − − − − (10) 

With ( )0 0 1 0cosiE E k x ϕ= − . 
For the film waveguide the attenuation becomes: 
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By substituting tyE  from Eq.(10) and 1yE  from Eq.(1) 
into Eq.(11), the attenuation is: 
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3. TM Analysis of a LHM-clad Optical 
Waveguide 

Assuming that the guided wave field of the film 
waveguide without the LHM cover can be expressed as: [6] 

( )
( )
( )

10 1 0

2 11 0 0
( )3 10 1 0

cos 0

cos 0

cos

i z

k x i z
y

k x w i z

H k x e x w

H H e e x

H k w e e x w

β

β

β

ϕ

ϕ

ϕ

−

−

− − −

 − ≤ ≤
 
 = ≤
 
 − ≥ 

(13a) 

The components of electrical field vector 1E


are:  
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The field outside the LHM ( x w h≤ + ) remains the 
same as expressed by Eq.(13) and that the field inside the 
LHM ( x w h+ ) is taken as the transmission wave ( tH ) 
when the field of the guide wave of Eq.( 13) is incident 
upon the LHM boundary. Therefore the fields outside and 
inside the LHM boundary are obtained as [6]: 
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Where ryH is the reflection wave and iyH is the incident 

wave with ( )0 0 1 0cosiH H k x ϕ= − . The continuity of 
tangential components yH  and zE  at the boundary 

( )x w h= + leads to the following equations 
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By Eq.( 16 ) and Eq.( 17), one gets: 
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= and 3ε is the permittivity of the third 

layer. By substituting Eq.(18) into Eq.(14) one gets: 
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With ( )0 0 1 0cosiH H k x ϕ= − . 

The components of the transmitted electric field E


are: 
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According to equivalent current theory of optical 
waveguide coupling, the attenuation becomes[6]: 
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By substituting E


 from Eq.(20) and 1E


 from Eq.(13b) 
into Eq.(21), the attenuation is: 
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4. Numerical Results and Discussion 
In the present work, The parameters were used in 

carrying out the numerical calculations are: 
1 2 31.95, 1, 1.45n n n= = = . Near infrared frequencies, 

such as 162 THz ( 1.85 mλ µ= ), LHM has 14,hε = −  
1hµ = − , 4 3.47 2n i= − +  [14]. The dispersion relation, 
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Equation (4), numerically solved to compute the 
propagation constant for different values of phase angle 

0ϕ in a complete cycle. Figure(2) shows that the 
propagation constant 1β increases to the value of 

6 16.4 10x m− with 0ϕ  increase up to the value of 090 and 

then decreases to the value of 6 13.3 10x m− at 0
0 180ϕ = . 

The same behavior of 1β is repeated for 0ϕ  values of 
0180 to 0360 . In Fig.(3), we plot the attenuation 

coefficient of TE waves TEα versus the propagation 
constant 1β  at different buffer layer's thickness h . It is 

noticed that log ( TEα  ) decreases to the value of 10.7cm−  

with 1β  increase to the value of 6 14.8 10x m− in the phase 

angle range of values ( 0 00 57−  ) and then increases 
sharply to the value of 12.4cm−  where there is depression 
in TEα  around 1β  of value 6 14.8 10x m−  which means the 
Lower attenuation is realized for higher propagation 
constants. Besides that, Fig. 3 shows that TEα values 
decrease and turns to negative with thickness h  increase 
to the values of ( 0.4 , 0.7 , 1 , 1.5m m m mµ µ µ µ )in the phase 

angle range of values ( 0 057 90−  ). Negative TEα  means 
that there is a gain in the wave which achieved for wider 
buffer layer and at larger phase angles and higher 
propagation constants. Figure(4) describes the variation of 

TEα versus the buffer layer's thickness h  for a series 
values of 0ϕ . It displays the value of TEα coefficient 
decreases with buffer layer's thickness increase and turns 
to have negative values. At 2h mµ=  as 0ϕ  increases to 

the values of ( 0 0 040 , 50 , 80 ), log( TEα ) decreases to the 

values of ( 11cm− ,-0.8 1cm− , -4.4 1cm− ). This confirms the 
previous results. The attenuation coefficient of TM waves 

TMα versus the propagation constant 1β  for increasing 

buffer layer's thickness h  is shown in Fig.(5). As a 
comparison between Fig.(3) and Fig.(5), TE waves have 
lower attenuation than TM waves where at 

6 1
11.5 , 4.9 10h m x mµ β −= = , log( TEα ) = 11.1 cm− and 

log( TMα ) =
12.6 cm− . This is because of the more deeply 

inverse relation between TE attenuation and 1β  than that 
of TM and 1β as observed by Eq.(12) and Eq.(22). The 
behavior of TMα  seems to be similar to TEα  except there 

is another depression in TMα
 
at 1β  of value 6 14.5 10x m− . 

5. Conclusions 
By using the equivalent current theory, we derived the 

modal dispersion relation and attenuation coefficient for 
both TE and TM modes for lossy left-handed material 
(LHM) waveguide in THz range of electromagnetic wave. 
The numerical solutions showed that the attenuation 
decreased with propagation constants increase. The 
waveguide structure offers good guiding for all thickness 

in the phase angles range 0 0(0 90 )− . This waveguide 
structure is a good candidate for coupling or guiding TE 
electromagnetic waves more than TM waves. 

 
Figure 2. Dispersion curve of TE waves for 1 21.95, 1,n n= =  

3 1.45n = 4 3.47 2n i= − + ,
 

0.5 ,w mµ=
 

1.9 mλ µ=  

 
Figure 3. Attenuation of TE waves versus propagation constant 1β  
(1) 0.4 , (2) 0.7 , (3) 1h m h m h mµ µ µ= = = (4) 1.5 ,h mµ=

 1.9 ,mλ µ=  0.5 ,w mµ=  1 2 31.95, 1, 1.45n n n= = = , 
4 3.47 2n i= − +  

 

Figure 4. Attenuation of TE waves versus layer's thickness for 
0

0(1) 40ϕ = 0 0
0 0, (2) 50 , (3) 80ϕ ϕ= =  1 1.95,n =

 2 1,n =
 

3 1.45n = , 4 3.47 2n i= − + , 0.5w mµ= , 1.9 mλ µ=   
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Figure 5. Attenuation of TM waves versus propagation constant 1β  for 
(1) 0.4 , (2) 0.7 , (3) 1h m h m h mµ µ µ= = = (4) 1.5 ,h mµ=  

1.9 ,mλ µ= , 0.5w mµ= ，  1 1.95,n = 2 1,n = 3 1.45n = , 
4 3.47 2n i= − +  
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