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Abstract

We present an extension of Isomap nonlin-
ear dimension reduction (Tenenbaum et al.,
2000) for data with both spatial and temporal
relationships. Our method, ST-Isomap, aug-
ments the existing Isomap framework to con-
sider temporal relationships in local neigh-
borhoods that can be propagated globally via
a shortest-path mechanism. Two instantia-
tions of ST-Isomap are presented for sequen-
tially continuous and segmented data. Re-
sults from applying ST-Isomap to real-world
data collected from human motion perfor-
mance and humanoid robot teleoperation are
also presented.

1. Introduction

The process of uncovering structure underlying unla-
beled data is a challenging endeavor in unsupervised
learning. Recently, several methods have been pro-
posed to address this problem through dimension re-
duction from pairwise relationships. These include
global techniques (e.g., Kernel PCA (Schoélkopf et al.,
1998), Isomap (Tenenbaum et al., 2000)), local tech-
niques (e.g., Locally Linear Embedding (Roweis &
Saul, 2000), Manifold Charting (Brand, 2002)), and
spectral clustering (Ng et al., 2001). While these pair-
wise methods have exhibited great potential, several
issues remain largely unaddressed, such as dealing with
out-of-sample points (Bengio et al., 2003) and tempo-
ral dependencies within data.

Motivated by analyzing human and humanoid robot
motion, we propose an a extension to Isomap for data
with both spatial and temporal relationships. Two
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versions of our spatio-temporal Isomap (ST-Isomap)
are presented for continuous and segmented input data
with sequential temporal ordering. Continuous ST-
Isomap is suited for uncovering spatio-temporal man-
ifolds of data exhibiting temporal coherence, where se-
quentially adjacent samples are incrementally differ-
ent. Segmented ST-Isomap is suited for uncovering
spatio-temporal clusters in segmented data, where the
input data is prepartitioned. Our ST-Isomap method
is validated with empirical results from applications to
humanoid robot sensory data from teleoperation and
multi-activity human motion capture data.

2. Spatio-temporal Dimension
Reduction

The success of techniques mentioned in Section 1 is
due largely to leveraging estimated spatial relation-
ships between data pairs. Such methods are able to un-
cover global spatial relationships in data through local
kernels, models, or neighborhoods about each point.
For addressing temporal relationships, however, these
techniques must be able to perform:

e proximal disambiguation of spatially proximal
data points in the input space that are struc-
turally different;

e distal correspondence of spatially distal data
points in the input space that share common
structure;

in order to uncover spatio-temporal structure. Our
aim is to define dimension reduction techniques that
perform proximal disambiguation and distal corre-
spondence such that spatio-temporal structure be-
comes apparent.

Our notions of proximal disambiguation and distal cor-
respondence are illustrated in Figure 1 with respect to
three arm waving motions. In the left panel, the two



Figure 1. An illustration of proximal disambiguation and
distal correspondence. (Left) Three waving motions with
hand trajectories shown as a dotted trail. The beginning of
each trajectory is marked with a large sphere. (Right) A set
of exemplars connected the low and high waving motions
through similarly structured motions.

low waving motions are relatively proximal in joint an-
gle space but are structurally different due to moving
in opposite directions. In constrast, the low and high
motion waving the same direction are structurally cor-
responding but are distal in joint angle space.

We consider the case of waving back and forth at var-
ious heights as a single continuous performance. For
such motion, we would expect to uncover a circular
“loop” structure. Each iteration of the loop indicates
on back and forth wave. For disambiguation, consider
that proximal arm postures in joint angle space could
be encountered during waves in both directions. Be-
ing from different underlying behaviors (e.g., “wave
left” and “wave right”) , such points should be sepa-
rated to distal locations in the embedding space. In
contrast, distal postures encountered during the high
wave correspond to equivalent progress through a low
wave. These corresponding motions should be placed
into proximity in the resulting embedding, flattening
the variations of waving to a single curve.

Because proximal disambiguation and distal corre-
spondence are pair-based concepts, our approach is
to augment existing pairwise dimension reduction for
spatio-temporal relationships. Isomap is our primary
focus for spatio-temporal augmentation, given its ide-
pendence on a specific measure of distance (due to its
foundation in multidimensional scaling). In contrast,
LLE is reliant upon weights and locally linear models
that are inherently spatial and difficult to extend for
other factors. Kernel PCA and kernel spectral clus-
tering use local kernels that are applied globally from
each data point, but may not be globally appropriate.
Methods that abstract input data into intermediate
models, such as in work by Teh and Roweis (Teh &
Roweis, 2002) and Brand (Brand, 2002), could also
be amenable to temporal extension at different lev-
els of resolution. Temporal Kohonen Maps (Varsta
et al., 2001) are suited to uncover structure in spatio-

temporal data, but require a priori specification of ex-
pected structure topology.

3. Spatio-temporal Isomap

The general framework for dimension reduction us-
ing Isomap is a batch three-step procedure for embed-
ding a full matrix of geodesic distances. The distance
matrix is computed by propagating local distances
globally through an all-pairs shortest paths algorithm.
Our extension, termed spatio-temporal Isomap (ST-
Isomap), retains this framework, inserting additional
steps for temporal windowing and temporal augmen-
tation. Assuming input data as samples from a con-
tinuous process, the general procedure for ST-Isomap
is specified as follows, with extensions to Isomap indi-
cated in bold:

1. windowing of the input data into temporal
blocks 5,

2. compute sparse distance matrix D' from local
neighborhoods nbhd(S;) about each point S; us-
ing Euclidean distance;

3. locally identify common temporal neighbors
CTN(S;) of each point S; as either local seg-
mented common temporal neighbors LSCTN(.S;) or
K-nearest nontrivial neighbors KNTN():

4. reduce distances in Dlsi,sj between points
with common and adjacent temporal rela-

tionships:
D%i,sj' = (1)
ngiysj/(CCTNCATN) if Sj S CTN(SZ‘)
and j =i+ 1
Dj, s, /corn if S; € CTIN(S;)
Dl5*i7sj/CATN ifj=i+1
penalty(S;, S;) otherwise

5. complete D° into full all-pairs shortest-path dis-
tance matrix D = DY (Dijkstra’s algorithm), such
that g > |S]:

g=0

0
1= b 1 1 1 (2)
bJ min(DfJ_- ,Dz; + DZ; ) g>1

6. embed D into d.-dimensional embedding space
through MDS such that:

E =|D9 — D,|2 (3)



where nbhd () are the local neighbors of given segment,
corn and carn are constants for increasing similarity
between common and adjacent temporal neighbors, D,
is the matrix of Euclidean distances in the embedding,
and ||A| is the L? matrix norm of A. penalty(S;,S;)
is a function that determines the distance between a

pair with no temporal relationship, typically set as

l
Dy, s,

The first step, temporal windowing, serves to provide
a temporal history for each data point. The result
from windowing is a sequentially ordered set of data
points S. This windowing is an initial (but not com-
plete) means for temporal disambiguation. If we con-
sider temporal windows at each point, we assume S
maintains temporal coherence of the underlying pro-
cess between sequentially adjacent points. This “con-
tinuous” data is suited for continuous ST-Isomap. If
temporal windows are non-overlapping, temporal co-
herence is not assumed and segmented ST-Isomap is
appropriate.

The third step in the procedure serves to establish
hard spatio-temporal correspondences between prox-
imal data pairs. Given S; € nbhd(S;), S; is in the
set of common temporal neighbors (CTN) that are lo-
cal to S; if a spatio-temporal correspondence between
the pair is determined. CTN() can be defined by a va-
riety of metrics. Described later in this section, we
have chosen KNTN() for continuous data and LSCTN()
for segmented data. CTN identified in this step are
local individual neighborhoods.

In the fourth step, distances between data pairs with
spatio-temporal relationships are reduced to accentu-
ate their similarity. We consider two types of temporal
relationships between a data pair, CTN and adjacent
temporal neighbors (ATN). These relationships allow
for the construction a matrix of spatio-temporal sim-
ilarities DY that will be globally propagated through
all-pairs shortest-path computation. ATN are adja-
cent points in the sequential order of S. Elements in
DO for distances between ATN explicitly establishes
the temporal order in the data. Additionally, these
elements ensure a single connected component will re-
sult in the all-pairs shortest-matrix DY. Distances are
greatly reduced between data pairs with CTN rela-
tionships by a constant factor of cery. As the value
of cery increases, the distance between data pairs with
spatio-temporal correspondences decreases and their
similarity increases.

We consider CTN to be symmetric and transitive:

Sj S CTN(SZ‘) = Sj € CTN(S» (4)

Sj S CTNglobal(Si) <= (5)
S] S CTNlocal(Sk) and Sk S CTNlocal(Si)

CTN transitivity (illustrated in Figure 3) is enforced
through the shortest-path mechanism and not explic-
itly represented. Given a significantly large value cery,
distances between CTN-pairs will be reduced such that
all pairs connected by a CTN-path can be identified as
a CTN component. CTN components are identified as-
suming that local neighbors with CTN relationships
will have significantly smaller distances in D° than
non-CTN neighbors. In DY, consequently, a point S;
will be more proximal to S; € CTN(S;) in its CTN com-
ponent than any inter-component point Sy & CTN(.S;):

S; € CTN(S;) and Sy, & CTN(S;) = (6)
Dgz‘,sj < D%i,Sk

By reducing local CTN distances by cery, any two
points S; and S; with a connecting path of CTN corre-
spondences should have a shortest path of all reduced-
distance edges. Any point Sy whose shortest path in-
curs an edge outside of the CTN component will put its
distance to S; outside of proximity. Beyond the scope
of this paper, soft correspondences could be incorpo-
rated into ST-Isomap through using ccry as a variable
weighing the degree of spatio-temporal similarity.

Once the full spatio-temporal distance matrix DY has
been generated, MDS is performed to produce the d.-
dimensional embedding. From this point, the same
process as Isomap is performed. This process uses
MDS to realize coordinates such that the distances of
DY are preserved. For this paper, we treat MDS as a
“black box” that could be performed using a variety of
techniques (Cox & Cox, 1994). Additionally, he em-
bedding dimensionality can be selected by identifying
the “elbow” of residual variance, as with Isomap.

We loosely term the structure produced by ST-Isomap
a spatio-temporal manifold, an example of which is
shown in Figure 2. This manifold is a structurally a
1-manifold curve in the embedding space. Each loca-
tion on this curve is representative of a certain point
of temporal progress along the spatio-temporal pro-
cess. Each location on the curve also encapsulates all
of the spatial variations representing a certain fixed
spatio-temporal progress. Thus, a diverse set of spatial
variations corresponding to the same spatio-temporal
progress is collapsed into a single location in the em-
bedded manifold.



Sm € CTN(S;)
Sm € CTN(S))
Sy e CTN(Sk)
S € CTN(S;)

S; € CIN(S)

S; € LSCTN(S;)

S, & LSCTN(S})

Figure 3. Illustrations of CTN transitivity corresponding S; and Sy, (left), K-nearest non-trivial neighbors of = (center),
and local segmented common temporal neighbors of S; (right). The KNTN of z are circled and trivial matches are marked

[7as1]

with an “x”. of distal correspondence of two points S; and S,, through CTN transitivity.

Figure 2. A temporal variation on the “two moons” ex-
ample (Zhou et al., 2003) illustrating a spatio-temporal
manifold. (Top left) 2D input data (drawn from blue to
red with respect to time) collected from mouse movements
moving up and down one moon and transitioning to move
up and down the second moon. (Top right) The resulting
continuous ST-Isomap embedding (KNTN = 3), producing
two loops connected by a transition. (Bottom left) Hard
spatio-temporal correspondences (shown by red lines) es-
tablished by ST-Isomap in the input data. (Bottom right)
Distance matrix produced by ST-Isomap.

3.1. Continuous ST-Isomap

We now describe the use of ST-Isomap for continuous
data (i.e., data exhibiting temporal coherence). Con-

tinuous ST-Isomap assumes temporal disambiguation
occurs by windowing over some horizon €4 from each
data point. Windowing in this manner is a means to
include the velocity of the underlying process in the
similarity matrix. CTN correspondences with respect
to each data point are determined as its K-nearest non-
trivial neighbors (KNTN) using Euclidean distance.
Our notion of KNTN was inspired by Chiu et al. (Chiu
et al., 2003), who define the concept of trivial matches
in data mining for univariate time-series. Diverging
slightly from their definition, we consider a point S;
to be a nontrivial match within the local neighborhood
of a point S; if it is closest matching point on its tra-
jectory through the neighborhood (Figure 3):

Sj S KNTN(Si) 54 (7)
j=t+1or
i;éjandDﬁ7j§Dé7k,k—ew§k§k+ew

where (2¢€,,) + 1 is the length of a trivial match win-
dow centered on point Si. The KNTN of S; are its
K nearest nontrivial matches based on Euclidean dis-
tance. Given K, a data point S; € KNTN(S;,K) =
S; € CTN(S;) for continuous ST-Isomap.

The thought driving KNTN is that a large number of
neighbors are expected be spatio-temporally similar to
a point S;. However, the bulk of these neighbors are
redundant correspondences generated from a smaller
number of trajectories passing through the neighbor-
hood. KNTN effectively aims to find the best match-
ing neighbors from each individual trajectory.

3.2. Segmented ST-Isomap

As with Isomap, a significant problem in using con-
tinuous ST-Isomap is its computational sensitivity to
the number of samples N in the input data, requiring
the storage, shortest-path computation, and eigende-



composition of an N x N matrix. Because input data
are related in time by an underlying spatio-temporal
process, the input can be partitioned into Ng non-
overlapping segments, where Ny, < N.

By forming S as N, segments, ST-Isomap can be ap-
plied to larger input datasets. Because the Isomap
framework is relatively insensitive to high-dimensional
data, ST-Isomap is better equipped to handle a smaller
number of Ny segments of higher dimension d x [ as
input rather than a larger number N of samples with
lower dimension d. As discussed in (Jenkins, 2003), ab-
stracting input samples into segments assumes mech-
anisms for segmentation and time normalization. In
addition, segmented data requires a different defini-
tion for CTN correspondences. This new definition is
necessary because sequentially adjacent points use to
establish CTN-pairs may be distal in the input space.

Towards this end, we define local segmented common
temporal neighbors (LSCTN) as (Figure 3):

Sj S LSCTN(Si) =4 (8)
Sj € nbhd(Si) and Sj+1 € nbhd(Sj+1)

The intuition driving SCTN is that a pair of points are
spatio-temporally similar if they are spatially similar
and the points they transition to are also spatially sim-
ilar. More specifically, two segments S; and S; shar-
ing a common spatio-temporal structure A will always
be followed by segments S;11 and S;11 also sharing
a common structure B, forming a temporal structure
A — B. Given a sufficiently large cery, the resulting
embedding will place points of an SCTN component
into clusterable proximity, yielding separable clusters.
We recommend the use of “sweep-and-prune” cluster-
ing (Cohen et al., 1995) into axis-aligned bounding
boxes in such embeddings. Sweep-and-prune cluster-
ing uses a threshold distance on data projections to
each axis for partitioning, avoiding the estimation of
K cluster cardinality (Jain & Dubes, 1988).

We also note that segmentation presents a particularly
challenging “chicken-and-egg” problem as there is no
definitive general ground-truth domain-independent
models or mechanisms to guide the abstraction of the
input samples. In order to produce a structurally
appropriate embedding, the segments produced from
the input samples must be consistent (i.e., similar in-
put intervals produce similar segments) and atomic
(i.e., the user considers each segment to contain a
conceptually and/or meaningfully indivisible perfor-
mance/subsequence of the input data).

3.3. Connections to Hidden Markov Models

The result from clustering is a temporal process
structure similar to Hidden Markov Models (Rabiner,
1989). A spatio-temporal process is uncovered as a
structure in the form of “... - A - B — C —
7, where A, B, and C are clusters in the embed-
ding. Each cluster can be thought of as a latent vari-
able grouping observed spatial variations on a spatio-
temporal structure. The initial state probabilities of a
state A can be computed via the normalized popula-
tion of its cluster. Additionally, members of a cluster
for A are found implicitly using the members of B, in-
dicative of the transitional relationship between A and
B. Thus, transition probability from states A to B can
be the transition count from one cluster A to cluster
B normalized by the number of transitions from A.

4. Results

In this section, we present results from applying MAT-
LAB implementations, based on code provided by the
authors of Isomap !, of continuous and segmented ST-
Isomap to human and robot data acquired from real-
world performances.

4.1. Embedding Robonaut Sensor Data

To evaluate its functionality, we applied continuous
ST-Isomap to sensory data produced from teleopera-
tion of the NASA Robonaut (Ambrose et al., 2000)
(Figure 4). Robonaut is a humanoid robot with up-
per body actuation of arms with 7 and 12 degrees of
freedom (DOF) in each arm and hand, respectively.
Additionally, various tactile and force sensors placed
throughout Robonaut’s upper body and hands.

For our input data?, Robonaut was teleoperated to
perform 5 trials for grasping of a horizontally ori-
ented wrench from a starting rest posture. The wrench
was placed at various locations in Robonaut’s reach-
able space. During each trial, Robonaut published
its sensor and motor actuation data at approximately
10Hz as a 110-dimensional vector. Motor actuation
values were zeroed-out of this data, producing 460
frames of 57-dimensional vectors for each trial. Sensor
columns were mean subtracted and normalized into
a fixed range. Frames across all trials were concate-

!Thank you!

2The Robonaut teleoperation data were graciously pro-
vided by Alan Peters of Vanderbilt University and the
Robonaut team at the Johnson Space Center. This data
is temporarily available at http://robotics.usc.edu/ cjenk-
ins/sensordata.zip and will persist at (Howard & Roy,
2003)
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Figure 4. 3D embeddings of 57D Robonaut sensor data
from PCA (top row), Isomap using 20 K-NN (top middle
row), and continuous ST-Isomap using 3 KNTN (bottom
middle row). An image of the NASA Robonaut and the
distance matrix from continuous ST-Isomap (bottom). In
each plot, sequentially adjacent points are connected by a
blue line and temporal order is color coded from blue to
red.

nated together to form an input data set of 2300 57-
dimensional samples.

Results of applying continuous ST-Isomap to Robo-
naut sensor data are shown in Figure 4. In the PCA
embedding, the looping nature of the teleoperation

repeatedly performing the same behavior can be ob-
served. However, both the PCA and Isomap embed-
dings are unable to capture the spatio-temporal struc-
ture of this data, resulting in embeddings that require
significant deciphering. In contrast, ST-Isomap is able
to capture the spatio-temporal process underlying this
data as a curve with two large clusters. The looping
structure contains 5 loops, indicative of the 5 grasp
trials, with the two clusters representative of the idle
time spent in the resting and grasping positions.

4.2. Embedding Multi-activity Human Motion

To evaluate its functionality, two time-series of kine-
matic motion were given as input into segmented ST-
Isomap. This kinematic motion data® were acquired
of a human subject performing multiple scripted high-
level activities, including various dancing, punching,
and arm waving behaviors (Input Motion 1) and two
arm reaching to various locations (Input Motion 2).
This data contain 22,549 and 9,394 frames, for Input
Motions 1 and 2 respectively, of 42 kinematic DOF
for rotations about joints of the arms and legs. With-
out segmentation, processing this motion data would
be intractable for our MATLAB routine (capable of
handling approximately 2500 points). This data was
partitioned into 226 and 64 segments using Kinematic
Centroid Segmentation (Jenkins, 2003), an automated
procedure that treats limbs as pendulums and looks
for limb “swings”.

Embeddings and clusterings produced by segmented
ST-Isomap from the motion segment data are shown
in Figure 5. The reaching motion (Input Motion 2),
the easiest of the motions to visually interpret, was
mostly segmented into two primitive-level behaviors,
“reach to position” and “return to rest posture”. The
PCA embedding illustrates the distinction of the two
alternating behaviors, but is unable to distally corre-
spond points of the same underlying behavior. The
embedding produced by segmented ST-Isomap, how-
ever, is able to collapse the points into two distinct
clusters with dominate populations. Spurious data
points are also present in the ST-Isomap embedding
that are a result of segments of idle motion due to
resting between reaches. Because such resting periods
are underrepresented in the input data, distal corre-
spondence was unable to build a CTN component for

this behavior.

3The motion capture data were obtained with a
Vicon optical motion capture system and graciously
provided by Jessica Hodgins at Carnegie Mellon Uni-
versity.  These motions are available for viewing at
http://robotics.usc.edu/ cjenkins/motionmodules/.



Figure 5. 3D embeddings of segmented reaching (top row) and multi-activity (middle row) human motion data from
PCA (left), spatial Isomap (using 7 K-NN) with distance matrix (middle), and spatio-temporal Isomap (using 4 K-NN
and cteprrern = 100) with distance matrix (right). Data points in each embedding are shown in red, with sequentially
adjacent points connected with a blue line. (Bottom row) Extracted motion clusters generalized into manifolds.

ST-Isomap extracted 78 clusters from Input Motion 1
(multi-activity), including structurally significant clus-
ters representing underlying behaviors and underrep-
resented transitions between these behaviors. Motion
represented in selected clusters (and generalized to
manifolds (Jenkins, 2003)) are shown in Figure 5. Not-
icable aspects in the ST-Isomap embedding are the
flattening of the data into a near 1-manifold structure
and loops sprouting from this manifold. The primary
loop on the far left side of this manifold is due to the
“horizonal arm waving” activity. This activity is per-
formed during two non-adjacent intervals (segments
60-75 and 105-120), shown by the dark off-diagonal
block in the distance matrix. By corresponding these
segments of arm waving, the manifold creates a large
loop consisting of behaviors that occur between the
separate performances of arm waving. The smaller
loops toward the middle of the manifold consisting of
activities that alternate between a primitive-level be-
haviors, such as “punch outward” and “return to fight-
ing posture”.

5. Discussion

As with Isomap, ST-Isomap requires manual selec-
tion of various parameters, such as neighborhood se-

lection and embedding dimensionality. For local neigh-
borhoods, ST-Isomap additionally requires a means
for spatio-temporal correspondence within a neighbor-
hood. Our experience has been that larger local neigh-
borhoods are more difficult for performing accurate
correspondences due to the greater number of points
that are not spatio-temporally similar. Smaller neigh-
borhoods provides easier correspondences that can be
propagated via shortest-path computaton. Distal cor-
respondence for such neighborhoods, however, requires
that sampling of the underlying spatio-temporal pro-
cess is dense enough such that split CTN components
result. Split CTN components are multiple compo-
nents that are representative of one underlying com-
ponent. In contrast to underestimation of neighbor-
hood size, our tendency is to overestimate embedding
dimensionality. By overestimating dimensionality, we
allow for all intra-CTN distances to be small, assum-
ing additional dimensions provide better preservation
of pairwise distances.

ST-Isomap in its current form provides a means to
uncover spatio-temporal structure. In order to process
larger data sets, however, we must either consider only
a subset of the data (as landmarks) or bias the system
through interval segmentation. To avoid subset land-



marks and heuristic biasing, a line of future research
we plan to explore is uncovering spatio-temporal struc-
ture without necessarily computing all-pairs shortest-
paths or embedding a full distance matrix.

6. Conclusion

We have presented ST-Isomap, an extension of Isomap
nonlinear dimension reduction for data with both spa-
tial and temporal relationships. Two instantiations
of ST-Isomap were described for uncovering spatio-
temporal processes in continuous and segmented data.
Implementations of ST-Isomap were successfully ap-
plied to human motion and robot teleoperation data.
As future work, we aim to perform comparisons of ST-
Isomap with other unsupervised methods for segment-
ing and classifying data, such as methods based on
time-series motifs (Chiu et al., 2003) and probabil-
ity density function features (Kohlmorgen & Lemm,
2001).
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