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ABSTRACT
This paper presents a SIFT-based multi-view cooperative tracking
scheme for multiple player tracking in soccer games. We assume
that future sports events will be captured by an array of fixed high-
definition cameras which provide multi-view video sequences. The
imagery will then be used to provide a free-viewpoint networked
experience. In this work, SIFT features are used to extract the inter-
view and inter-frame correlation among related views. Hence, ac-
curate 3D information of each player can be efficiently utilized for
real time multiple player tracking. By sharing the 3D information
with all cameras and exploiting the perspective diversity of the multi-
camera system, occlusion problems can be solved effectively. The
extracted 3D information improves the average reliability of track-
ing by more than 10% when compared to SIFT-based 2D tracking.

Index Terms— Multiple object tracking, multi-view, SIFT.

1. INTRODUCTION

The rise of high-definition television (HDTV) and the desire for user-
defined soccer video have raised the interest in content-adaptive cod-
ing techniques [1], which allow users to access content items freely
and semantically meaningfully. Thus, an accurate and reliable mul-
tiple player tracking system is desirable which allows us to extract
a rectangular region for each player, where each region defines a
dynamic content item and results in an individual image sequence.

Prevalent particle filter work well for isolated object tracking
by estimating the non-Gaussian and non-linear posterior probability
distribution of the object [2]. However, it is ambiguous to distinguish
objects when tracking is applied to multiple objects with similar be-
haviors or in situations of congestion and confusion. The mean-shift
method is another efficient approach to find the optimal matching re-
gion between frames [3]. However, manually labeled regions of in-
terest are required for initialization or entering objects. Additionally,
due to region-based properties, tracking is burdened by occlusions.

In this paper, we propose a Scale Invariant Feature Transform
(SIFT) based multi-view cooperative tracking scheme for real time
multiple player tracking in soccer video. SIFT has been widely used
in object recognition, robotic mapping, video tracking, and match
moving [4]. The primary advantage of SIFT is its invariance under
rotation, scale change and affine transformation. It performs better
than conventional feature matching techniques like ordinary corre-
lation and Harris corners which are not invariant under rotation and
changes in scale.

Moreover, we assume that future soccer events are captured by
an array of fixed high-definition cameras which provide multi-view
image sequences for a free-viewpoint experience in a home envi-
ronment. We fully exploit the inter-view and temporal correlation

of multi-view video by matching SIFT features in both view im-
agery and temporal frames. Different from the conventional 2D
SIFT-based tracking approach [5], the uniquely defined 3D position
of each feature is extracted by utilizing multi-view geometry con-
straints. In other words, the 3D coordinates of moving points are
obtained, hence, accurate 3D positions of players are used for track-
ing.

By knowing the 3D position information of players, player-
oriented tracking in local regions can be realized. Compared to the
joint-state-oriented multi-view tracking scheme [6] whose compu-
tational complexity increases exponentially in terms of the number
of players and cameras, the computational complexity of our pro-
posed scheme increases linearly with the number of players and
cameras. These benefits ensure that our scheme can be parallelized
and implemented in real-time.

2. MULTI-VIEW TRACKING SCHEME

To facilitate real time multiple player tracking for soccer events, we
discuss a SIFT-based multi-view cooperative tracking scheme. To
match the properties of multi-view video captured by an array of
static cameras in a soccer stadium, we exploit the inter-view and
temporal correlation among related views. The inter-view correla-
tion between adjacent views, defining the same object captured by
different views instantaneously, can be exploited efficiently by inter-
view geometric constraints. On the other hand, the temporal cor-
relation between successive frames, defining the motion of features
captured by the same view over time, can be exploited efficiently by
inter-frame feature matching.
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Fig. 1. SIFT-based tracking scheme.

The SIFT-based multi-view cooperative tracking scheme com-
prises the SIFT feature matching between spatial and temporal
views, the feature repository, and a tracking unit that realizes the
real time implementation. Fig. 1 depicts the discussed SIFT-based
multi-view cooperative tracking scheme.



2.1. SIFT Feature Matching and Refinement

Fig. 2. SIFT features in left and right reference images.

First, we define a view group which includes both spatially
correlated views Vl,t, Vr,t and temporally correlated views Vm,t,
Vm,t+1 with respect to time t, as depicted in Fig. 1. We extract SIFT
features in views Vm,t and Vm,t+1, and find correct correspon-
dences. Let pm,t

i ↔ pm,t+1
j be a temporal feature correspondence,

where pm,t
i denotes the i-th feature point with the image coordinate

(xm,t
i , ym,t

i ) in the view Vm,t and pm,t+1
j the j-th feature point with

the image coordinate (xm,t+1
j , ym,t+1

j ) in the view Vm,t+1. As we
assume that the sports events are captured by an array of fixed high-
definition cameras, the static scene can be generated by traditional
temporal median methods [7]. Thus, feature correspondences which
belong to the static scene can be easily filtered. In that scene, the
remaining correspondences are related to the moving items between
two successive frames, hence, they can be used to obtain tracking
information. We define two sets of moving features for views Vm,t

and Vm,t+1

Fm,t = {pm,t
i |pm,t

i ↔ pm,t+1
j } ,

Fm,t+1 = {pm,t+1
j |pm,t

i ↔ pm,t+1
j } . (1)

Next, we extract SIFT features in views Vl,t and Vr,t, and find
correct correspondences of pm,t ↔ pr,t and pm,t ↔ pl,t. Correct
correspondences in adjacent views relate to the same 3D point in the
scene and, hence, can be used to obtain reliable 3D information. An
example is depicted in Fig. 2.

Let pri ↔ pmj be a feature correspondence between views Vr,t

and Vm,t. Knowing the camera calibration parameters, we are able
to check the correctness of the feature match based on a geometric
constraint. If it is a correct correspondence, pri and pmj are origi-
nally projected from the same 3D world coordinate. Thus, by using
projection relations for corresponding points, the following relations
hold:
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where [X,Y, Z]T is the 3D world coordinate, and where R, A and C
are the camera calibration parameters which depend on the camera
position. The factors λr and λm in (2) and (3) define the position
of the 3D point on the rays. To determine the scaling factors, let the
third row of the 3× 3 matrix R−1

r · A−1
r be [αr, βr, γr], and let the

third row of the 3×3 matrix R−1
m ·A−1

m be [αm, βm, γm]. Thus, the
factor λr is given by

λr(Z
r
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Zr
i − Cz

r

αrxr
i + βryr

i + γr
. (4)

Similarly for the factor λm. Therefore, the factors λr and λm are
a function of the world coordinate Z. Note, if we assume that the
players move on the plane Z=0, the world coordinate Z relates to the
height of players.

With the scaling factors λr and λm, (2) and (3) need to be equal
for corresponding points pri ↔ pmj . As we assume to know the
true camera calibration parameters, the resulting expression is over-
determined. For our practical application, we determine the least
square error solution of Z∗ according to

Z∗ = argmin
Z
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The two resulting 3D world coordinates [X,Y, Z]rTi and [X,Y, Z]mT
j

are obtained by the least square error solution (5) with respect to pri
and pmj . However, some small misalignment caused by calibration
parameters should also be considered. Thus, we use an additional
criterion. If ‖[X,Y, Z]rTi − [X,Y, Z]mT

j ‖2 < δd, where δd is a
small threshold for the Euclidean distance in 3D space, the correct-
ness of the correspondence pri ↔ pmj is sufficiently reliable. Thus,
we define a set of inter-view features for view Vr,t

F r,t = {pr,ti |pr,ti ↔ pm,t
j } . (6)

Similarly, for the feature correspondence pli ↔ pmj between
views Vl,t and Vm,t, we define a set of inter-view features for view
Vl,t

F l,t = {pl,ti |pl,ti ↔ pm,t
j } . (7)

To obtain reliably the 3D information of the moving items in
view Vm,t and handle the possible occlusion problem in the adjacent
views, we choose inter-view features in both adjacent views Vl,t and
Vr,t

Fm,t
s = Fm,t ∩ (F r,t ∪ F l,t). (8)

Note, regarding the complexity of the algorithm, global SIFT match-
ing is applied for the initialization of the algorithm. Thereafter, local
SIFT matching will be used. Details are given in Section 2.3.

2.2. Feature Clustering by Using 3D Information

Fig. 3. Clustering of 3D features; each player is identified by one
cylinder, the features are shown by small circles; the same color in-
dicates the same cluster.

After extracting features from dynamic items, the 3D informa-
tion can be exploited to identify players by clustering the features.



Conventional methods for object classification usually operate
on the 2D image plane. However, due to the lack of 3D distance
information, the accuracy of classification is low. In our work, we
use 3D coordinates [Xi, Yi, Zi] to describe the feature points pm,t

i

in 3D space and use k-means [8] to cluster them:

min

K∑
i=1

∑
p
(i)
j ∈Si

‖p(i)j − Ci‖2

s.t. Fm,t
s =

K⋃
i

Si, (9)

where Si is the i-th set of features and Ci the cluster center. Note,
we use the cluster center Ci to define the position of player i. Let the

number of players be denoted by K. ‖p(i)j −Ci‖2 is the 3D distance

between feature point p
(i)
j and the cluster center Ci. In other words,

each player is identified by nearby 3D features, as depicted in Fig. 3.

This approach offers three advantages: First, compared to 2D
information, 3D information is more robust. Second, due to the
available 3D information on the field, the estimate for the number
of clusters is more reliable. Third, the computational cost is lower
for object classification.

2.3. Feature Tracking in Consecutive Frames
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Fig. 4. Matching local SIFT features in the selected regions.

After generating the set of active players {Ci}K1 by clustering
the features Fm,t

s , the tracking of each player can be implemented
by a scheme as shown in Fig. 1.

The 3D information of player position Ci(X,Y, Z) allows us to
extract a cylindrical region for each player. This 3D world coordinate
is projected onto the image plane of Vm,t, Vl,t and Vr,t, resulting in

the corresponding 2D player positions cm,t
i , cl,ti and cr,ti . Note, for

view Vm,t+1, we assign the 2D player position cm,t+1
i also to cm,t

i .
Then, the 2D player position can be used to define one region U in

each view to cover player i. Note, the local 3D features S̃t
i within

cluster i can be used to extract the corresponding 2D features p̃m,t

for each player i at time t by using the scheme in Section 2.1, as
depicted in Fig. 4.

If there is more than one player in region U , we find for each

p̃m,t its nearest 3D cluster Ci with respect to 3D distance, and assign

p̃m,t to the 3D set S̃t
i . An example is shown in Fig. 5.

Fig. 5. Feature assignment; each color defines one region Ui, circles

indicate features belonging to the 3D set S̃t
i , crosses indicate features

that do not belong to the same set, however have been extracted from
region Ui.

There are two advantages of matching SIFT features locally:
First, since the computational burden of SIFT is determined by the
image size, matching SIFT features only in dynamic parts [1] avoids
unnecessary complexity. Second, the selected region U efficiently
provides a prior region for feature matching, which leads to more
reliable results. Note, the occlusion problem will be addressed in
Section 2.4.

Knowing the 2D correspondences p̃m,t ↔ ˜pm,t+1, the motion
vector vi for player i can be determined by calculating the median
of motion shifts:

vi = median
1≤j≤|S̃t

i |
{ ˜pm,t+1

j − p̃m,t
j }. (10)

Note, we assume a rigid body for each player since they are relatively
small in each view. Hence, the median of motion shifts can be used
to represent the motion vector vi.

With this rigid model, we are able to track the motion between

two successive frames. For that, we update the position C̃t
i of each

player by calculating the new cluster center

C̃t
i =

1

|S̃t
i |

∑
[Xj ,Yj ,Zj ]∈S̃t

i

⎛
⎝ Xj

Yj

Zj

⎞
⎠ . (11)

Next, C̃t
i is projected onto the image plane of Vm,t to obtain its 2D

coordinate c̃m,t
i . Then, the 2D coordinate

˜cm,t+1
i in Vm,t+1 can be

estimated by motion compensation

˜cm,t+1
i = c̃m,t

i + vi. (12)

Finally, the
˜cm,t+1
i can be back-projected into 3D space to get the

player position information
˜Cm,t+1
i in the frame t+1. Moreover, it

can also be warped into adjacent views.

2.4. Addressing Occlusion Problems

With our multi-view cooperative tracking scheme, we are able to
handle efficiently both partial and total occlusion by exploiting the
perspective diversity of the multi-camera system.

Let us consider the following example: Player i is visible in
Um,t, however, it is totally occluded by other objects (i.e. other
players) in Um,t+1. Obviously, feature matching between Um,t and



Table 1. Comparison of the reliability of tracking schemes.

Sequence index Player-number Frame-number Reliability of 2D tracking Reliability of 3D tracking
Reliability of 3D tracking
(detection error excluded)

01 1 480 100% 100% 100%
02 > 9 180 88.8% 99.2% 99.9%
03 > 11 480 86.5% 95.4% 97.5%
04 > 13 360 84.2% 98.1% 99.7%

Um,t+1 for player i will fail, which leads to an empty 3D feature set

S̃t
i . However, due to the multi-camera arrangement which captures

views from different perspectives, player i is probably visible in an-
other view, i.e., Vx,t. Since the 3D position Ct

i of player i is shared
by all views, new local view groups Ux,t, Ux,t+1, Ur′,t, Ul′,t con-
taining player i with the structure as shown in Fig. 4 can be easily
defined by calculating the projection of Ct

i . Thus, our SIFT match-
ing method in Section 2.3 can be reused to obtain the 3D feature set

S̃t
i for player i. This improves the reliability of tracking of occluded

objects.

2.5. Detection of Appearing Objects

As we assume that soccer games are captured by arrays of fixed high-
definition cameras, player appearance in Vm,t is usually captured in
other views too. Thus, our scheme in Section 2.1 with associated
sets of tracked players {C̃i}K1 can be used to detect new players.

Recall that we extract the set Fm,t
s of 3D information for the

moving items in view Vm,t. For each feature in Fm,t
s , we measure

its minimum 3D distance to the sets of tracked players {C̃i}K1 . If the
distance is larger than δ, where δ is a threshold for the Euclidean dis-
tance in 3D space, a new player is reliably detected. After clustering
the new features according to Section 2.2, the label of the new player

position will be added to the set of active players {Ci}K′
1 . Note that

there exists a trade-off between early detection in all camera frames
and computational complexity. A low detection frequency may re-
duce the reliability of capturing new players. However, a low detec-
tion frequency is favorable for reducing computational complexity.

3. EXPERIMENTAL RESULTS

We evaluate our SIFT-based multi-view cooperative tracking scheme
with the soccer test video set Barca-St. Andreu which is provided
by the MEDIAPRO group. The videos are captured by three fixed
broadcast cameras. The resolution of the videos is 1080×1920 at 15
fps. For comparison purposes, conventional SIFT-based 2D tracking
is utilized, which obtains the tracking information by measuring the
motion of SIFT features between two successive frames.

We assess the performance of the algorithm by measuring the
reliability of tracking. The measure captures the average reliability
of successful tracking, i.e, the number of correctly tracked players
divided by the number of players in each frame, averaged over all
frames. For a fair comparison, we calculate the average reliability
for the center camera view Vm. Note, to distinguish the failure of
continuous tracking from the failure of appreance detection of new
players, we show also results that exclude the detection error in the
first frames.

As shown in Table 1, our SIFT-based multi-view cooperative
tracking scheme outperforms the reference SIFT-based 2D tracking
scheme for multiple player tracking (Sequence 02-04). The average
reliability improves by more than 10%.

4. CONCLUSIONS

We discussed a SIFT-based multi-view cooperative tracking scheme
for acquiring multiple player position information for soccer video.
Our scheme utilizes inter-view and inter-frame correlation by ex-
tracting SIFT features. Further, the 3D information of these features
is exploited to track the position of each player and to solve the oc-
clusion problem. The experimental results show that our SIFT-based
multi-view cooperative tracking scheme improves the reliability of
tracking by more than 10% when compared to SIFT-based 2D track-
ing.
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