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Abstract

We present the “Geometry Video,” a new data structure to encode animated meshes. Being able to encode animated
meshes in a generic source-independent format allows people to share experiences. Changing the viewpoint allows
more interaction than the fixed view supported by 2D video. Geometry videos are based on the “Geometry Image”
mesh representation introduced by Gu et al. 4. Our novel data structure provides a way to treat an animated
mesh as a video sequence (i.e., 3D image) and is well suited for network streaming. This representation also
offers the possibility of applying and adapting existing mature video processing and compression techniques (such
as MPEG encoding) to animated meshes. This paper describes an algorithm to generate geometry videos from
animated meshes.

The main insight of this paper, is that Geometry Videos re-sample and re-organize the geometry information, in
such a way, that it becomes very compressible. They provide a unified and intuitive method for level-of-detail con-
trol, both in terms of mesh resolution (by scaling the two spatial dimensions) and of frame rate (by scaling the
temporal dimension). Geometry Videos have a very uniform and regular structure. Their resource and computa-
tional requirements can be calculated exactly, hence making them also suitable for applications requiring level of

service guarantees.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism, Animation

1. Introduction

The problem of representing animated models is of signif-
icant importance in the field of computer graphics. There
are several applications for animated geometry, such as
computer-generated movies and computer games. Due to the
unceasing increase in computational power and memory, it is
becoming increasingly easier to acquire such animated mod-
els. Some systems, such as Matusik et al. 11, are already able
to acquire, construct, and render animated geometry in real-
time.

We present a new data structure for storing animated
meshes called the geometry video. Our approach is based
on the geometry image representation by Gu et al. [2002].
The geometry image represents a static mesh as a 2D square
image, which is a completely regular remesh of the original
geometry.
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Geometry videos are sequences of geometry images, each
geometry image being one frame in the video. Thus, a ge-
ometry video is a 3D image with two spatial dimensions and
one temporal dimension. This paper presents a method to
create geometry videos, that is, to parametrize the meshes in
the animation sequence and sample them onto a 3D image.

Our new animated geometry representation has several
significant advantages over previous ones:

o It inherits the features of geometry images, thus providing
a mesh representation for each frame that has completely
regular connectivity.

e It allows for a unified way to address level-of-detail,
both in terms of mesh resolution and frame rate. That is
achieved by scaling the two spatial dimensions or the one
temporal dimension of the geometry video.

e |t is amenable to hardware parallelization and optimiza-
tion.
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e |t allows for the application of numerous available pro-
cessing and compression methods targeted at videos (such
as MPEG encoding) to animated meshes.

e It provides a global implicit parametrization for all
frames, thus allowing the application of a single high res-
olution texture-map to be shared by all frames in the ani-
mation sequence

e |t provides a representation whose resource and compu-
tational requirements for rendering can be known exactly,
thus providing level of service guarantees.

In Section 2, we place our novel representation in the con-
text of previous work. In Section 3 we describe the Geom-
etry Image approach. In Section 4, we describe our method
for creating geometry videos. In Section 5, we present the
results of our implementation. Finally, in Section 6, we sum-
marize and propose directions for future work.

2. Related Work

Static Mesh Compression. Taubin and Rossignac 18 intro-
duced a method to encode the connectivity of a static mesh.
It uses predictors to compactly encode the vertex positions.
The prediction is based on estimating the angles between
adjacent faces to predict the location of future vertices. Al-
though this method does very well for encoding connectiv-
ity information, geometry information is not as highly com-
pressed.

Karni at Gotsman looked at an alternative method for
encoding vertex positions 6. Instead of looking at building
predictors based on vertex locations, they approached the
encoding from another perspective. They applied classical
Fourier analysis to mesh data. Fourier analysis is already
used in JPEG for image compression, so it is well under-
stood and achieves good compression. Here they compute
the eigenvectors of the Laplacian Matrix to obtain a basis.
The vertex positions are encoded as a weighted sum of these
basis.

Remeshing. Higher compression rates can be achieved if
the original connectivity is discarded, and instead, a regular
or semi-regular representation is used. Several approaches
for constructing and encoding meshes with semi-regular
connectivity have been proposed 2985, Khodakovsky et al.
7 present an algorithm to encode a mesh with semi-regular
connectivity using wavelet techniques, thus achieving very
high compression rates. Gu et al. 4 propose the extreme ap-
proach of representing the input mesh with fully regular con-
nectivity. We build upon this last work to encode a sequence
of time-varying geometries.

Time-varying Geometries. There has also been directly re-
lated work in the compression of time-varying geometries.
Lengyel 10 proposes an encoding based on predictors. He
partitions the mesh into sets of vertices. These sets of ver-
tices (from a reference frame) will be transformed indepen-
dently and linearly combined to form a predictor. Each frame

in the animation is represented as a predictor plus a residual.
The residual and the transformation coefficients are quan-
tized for compression. Our approach is very similar to his.
We find that our approach is less sensitive to the quantization
of transformation coefficients, it rearranges the data (resid-
ual) making it suitable for compression, and can make use
of video encoding techniques.

Alexa and Miiller 1 propose to represent the motion of
vertices through principal component analysis. First, all
the frames are approximated by a reference frame using
affine transformations. The vertex locations at each frame
(columns) are then decomposed into basis and weights.
Compression is achieved by discarding less important ba-
sis. This method is computationally expensive, especially for
large meshes. It also suffers from scaling artifacts if impor-
tant basis are discarded.

Finally Shamir and Pascucci 17-16 propose a very flexible
approach for encoding dynamic meshes. It supports level of
detail both in time and space. It works by building a progres-
sive representation of each frame, while tracking reconstruc-
tion error information. Their encoding is not very compact,
it is actually larger than the original mesh size. Their work is
complementary to Lengyel’s 19, so it is possible to combine
their works to produce a more compact encoding.

3. Background: Review of Geometry Images

Before we describe our algorithm to create geometry videos,
we will briefly review the geometry image construction algo-
rithm of Gu et al. 4. To construct a geometry image, the orig-
inal mesh is cut in order to form a mesh that is topologically
equivalent to a disk. The cut mesh is then parametrized onto
a square domain. Then, the original mesh is sampled onto a
square image using the computed parametrization. The nor-
malized XYZ coordinates are encoded as the RGB values
of the image. Finally, the resulting image is compressed us-
ing image wavelet coding techniques. Sideband information
is used to ensure that the boundaries (of the cut) match af-
ter lossy compression. We now describe each of these steps.
Refer to Gu et al. # for further details.

Cutting. In order to parametrize the mesh onto a square, the
mesh must be topologically equivalent to a disk. The goal is
to find a cut such that the resulting mapping from the cut
mesh to the parameter domain can be adequately sampled.
The algorithm first finds a topologically sufficient cut to map
the initial mesh onto a disk and then improves upon this cut.

For a genus zero surface, this initial cut can be as simple
as a cut traversing two edges. For higher genus, a different
algorithm is used (see 4 for more details); for example for
a genus one object like a toroid, we would need two cuts: a
first cut, to unwrap the toroid forming a cylinder; and a sec-
ond cut, to unfold the cylinder onto a sheet, which is topo-
logically equivalent to a disk.

(© The Eurographics Association 2003.
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Figure 1: Iterative Cutting Algorithm. We start a short cut.
The resulting parametrization has high distortion at the cen-
ter. The worst undersampled area is near the horns. We then
cut, and reparametrize. We stop when adding a new cut in-
creases the average distortion or undersampling.

This cut is then improved iteratively. We greedily im-
prove the cut and parametrize the mesh until the quality
of the resulting parametrization no longer improves the av-
erage distortion or quality. The quality is measured using
the geometric-stretch metric of Sander et al. 15, which mea-
sures both the change in area and shape of triangles or faces
from the parameter space to the object space. During each
iteration, in order to improve the cut, an angle-preserving
parametrization for the current cut mesh is computed using
the method of Floater 3. The vertex whose adjacent faces
have the highest undersampling in the domain is identified.
The parametrization is computed using a circular bound-
ary. Then, the cut is extended by the shortest path between
the current cut boundary and the identified vertex. Figure 1
shows iterations of the cutting algorithm on a sample mesh.

Boundary parametrization. Once the cut is defined, the
mesh is parametrized onto the 2D domain. In order to pre-
vent geometric discontinuities across the cut, the samples
on opposite sides of the cut must have the same geometric
value. This is achieved by parametrizing the boundary of the
mesh onto a square, and assigning corresponding parametric
lengths to edges on opposite sides of the cut. Vertices that lie
at the junction of multiple cuts are called cut-nodes. These
will appear more than twice on the boundary of the square.
In order to guarantee that they will be sampled exactly, we
place these samples on integral grid positions on the bound-

ary.

If the Geometry Image is compressed using a lossy encod-
ing, additional sideband information is recorded. The lossy
encoding will blur the boundaries and hence the cut-nodes
and boundary will not match on the reconstructed mesh,
causing a seam to be visible at the cut. The sideband infor-
mation keeps track of the correspondence of the cut-nodes,
so that after the Geometry Image is decoded, their location
can be aligned to match (in order to prevent seam artifacts).

Geometry images form a geometric sampling of the orig-
inal surface. We can implement lower resolution versions
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of the original surface by simply subsampling it — by sub-
sampling the geometry image. This is commonly referred
as “level-of-detail” support. When we subsample (decimate)
the geometry image to obtain a lower resolution version, it
is possible that we might miss cut-nodes on the boundary,
and therefore cracks may become visible. To avoid this, we
place cut-nodes on boundary locations that would be sam-
pled, even if the geometry image is decimated.

Interior parametrization. After defining the parametriza-
tion of the boundary vertices, the parametrization of the in-
terior is computed so as to minimize the geometric-stretch
metric of Sander et al. 15. This metric penalizes undersam-
pling in the parametric domain and yields a parametrization
with samples uniformly distributed over the mesh surface.
The algorithm uses the hierarchical parametrization frame-
work of Sander et al. 14 to improve quality and convergence
speed.

Compression. Once the parametrization is computed, the
mesh is sampled onto a 2D image. In order to sample the
image, a bounding box around the mesh is computed, the
mesh is scaled to fit within the RGB unit cube, and the sam-
ples are quantized to a desired number of bits. The geometry
image is then compressed using off-the-shelf image coding
techniques (e.g., 2D wavelets). When lossy compression is
applied, the corresponding boundary samples will not nec-
essarily match after decoding. This is addressed by storing
additional sideband information about the topology of the
boundary.

Limitations. There are many advantages of being able to
parametrize the surface onto one chart. It arranges the data in
a compressible manner. It can be easily manipulated and par-
allelized. Unfortunately, many topologically and geometri-
cally complex surfaces cannot be parametrized onto a square
with low distortion.

Moreover, we are mapping the surface to a square; this in
it by itself introduces distortion at the corners. Being of a
fixed aspect ratio also imposes a limitation on the unwrap-
ping of the surface. Figure 2 shows the parametrization of a
snake. Due to the “aspect-ratio” of the snake body, there is
high distortion at the boundaries. This becomes a problem
for textures, as these areas might not be rendered well. It
is possible to alleviate the problem by smoothing the points
away from the boundary. This is sensible in a static context.
In a dynamic context the answer is not so clear, as we would
need to calculate the effect of this smoothing on all frames.

There are many approaches to this problem, among them
chartification and allowing the boundaries to be free. We
maintain this parametrization due to its advantages in com-
pressibility and ease of processing. For now, we acknowl-
edge that Geometry Videos may not be for all objects. With
this in mind, let us delve into the encoding of animated
meshes.
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Figure 2: Limitations: one of the drawbacks of using a sin-
gle parametrization is that regions of high-distortion might
be unavoidable.

4. Our Approach

In this section, we describe how we extend each of the three
steps of the geometry image construction (cut, parametriza-
tion, and compression) in order to generate geometry videos
from animated input meshes.

The straightforward way to implement 3D animation en-
coding with geometry images, is to apply the algorithm stat-
ically to each frame. The disadvantages of this approach are
many. Notice that the geometry image parametrization forms
an implicit texture map. Hence if we encode each frame with
a separate parametrization, we would need to update the tex-
ture map for each frame. The same applies for any other at-
tribute information that is fixed through time. Furthermore,
since we are resampling the input mesh, it is unlikely that
the two meshes will be sampled in the same way, therefore,
on low-motion scenes, a jittering effect will be seen. Lastly,
using different parametrizations makes it difficult to exploit
the temporal coherence that exists between frames. Different
parametrization yields complex correspondence relationship
between samples in different geometry images.

We seek to find a common parametrization for all
the frames in the animation sequence. Using a single
parametrization yields better results because the compres-
sion algorithm can exploit the frame-to-frame coherence that
is present with a single parametrization; the loss due to us-
ing a “non-optimal” parametrization in general is very small.
By using a fixed parametrization for all frames one can then
store fixed per-vertex attributes (e.g., texture, material id,
etc) in a single separate image. Notice that by fixing the
parametrization, we are also fixing the cut, since the cut de-
fines how the boundary will be mapped, and changing the
boundary mapping would change the parametrization.

Picking a single cut and parametrization for all frames in
the sequence does not work well if the features of the model
change drastically from frame-to-frame (i.e., a human mor-
phing into a two-legged animal).

Currently our parametrization is fixed and computed from

a single frame. Our algorithm assumes all meshes in the an-
imation have the same connectivity. This presents a problem
if the input mesh changes connectivity or topology. The first
challenge is not an inherent problem of geometry images.
We could apply a re-meshing algorithm (e.g. 13) to all the
frames to generate frames of equal connectivity as a pre-
process. The second challenge is more difficult. Changes in
topology force changes in the cuts which make re-using or
adapting another parametrization next to impossible. This
is a current limitation of the system. Our current solution
would involve approaching this problem as a scene change,
where a new parametrization would be used. We would need
ensure a smooth transition between frames with different
parametrizations. 3D morphing techniques could be used for
this purpose.

4.1. Cutting

We now describe the cut algorithm that converts the mesh
into one that is topologically equivalent to a disk. As de-
scribed above, we seek to construct a single parametrization
for the entire animation sequence, the cut in all of the meshes
must be equivalent (connectivity-wise).

Initially, our approach used the cut found in a single
frame and applied it to all frames. We found that frames that
showed all the important features of the object (i.e., a human
in anatomical position, or a standing cow) worked best, but
only slightly better than the worse chosen frame. That is be-
cause cuts reach out to regions of high distortion releasing
the “tension” that exists in that area. All these areas were
usually reached when the cutting algorithm was applied to
any frame.

The drawback of this approach, besides being heuristic,
is that it will miss areas of high-distortion if these occur at
different times. Figure 11, shows an example where this can
happen, where the eyes and the tail are regions of high dis-
tortion, but they occur exclusively in different frames. This
approach also biases regions that have an average of high
distortion, such as joints.

In order to “catch” these potential areas, we seek a global
cutting algorithm. This cutting algorithm works by apply-
ing the single-frame cutting algorithm simultaneously to all
frames. Recall that the single-frame cutting algorithm works
iteratively by cutting, computing the Floater parametrization
on the resulting mesh, finding the vertex next to the face of
highest distortion and then making the shortest cut from that
vertex to the current boundary. The algorithm stops when
additional cuts do not improve the average distortion. The
problem then becomes how to find the face of highest distor-
tion and how to compute the “shortest-path” to the boundary
when considering all the frames.

In the single frame case, the vertex of highest distortion
is located by computing the geometric-stretch for each face.
The vertex next to the face with the highest stretch in then
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selected. The geometric-stretch measures how circles in the
parameter space are mapped into the object space. The dis-
tortion is measured by the magnitude of the major-axis of
the resulting ellipsis.

For the global case, we have to compare or average the
maximum stretch on many frames. We also do not want a
single frame with very distorted faces to dominate or drive
the algorithm astray. Therefore, for each frame, we normal-
ize the stretch by the maximum stretch on that frame. Then,
the final stretch of each face is the average of the normalized
stretch of that face in all frames.

We compute the shortest distance to the boundary by
using Dijkstra’s algorithm using a proxy mesh. This non-
realizable mesh has the same connectivity of our animation,
but the length of its edges is the average length of that same
edge for all frames of the animation. This method yielded
good results.

The single-frame algorithm stops when adding a cut
would increase the average distortion. This is the average
distortion across of faces of all frames. The average distor-
tion of a face is measured using the geometric-stretch metric.
This measurement is normalized by the surface area in ob-
ject space for each frame. It is comparable between frames,
hence our criteria for stopping the algorithm considers the
average of the average distortion across all frames without
any modifications.

The global cut does not consistently do better than choos-
ing a cut and parametrization from a single frame either by
hand or by brute force. The advantage is that is does consis-
tently well; this reduces human-intervention or computation
time. Additionally, it can identify and relax regions of high-
distortion that do not occur in the same frame.

4.2. Parametrization

Given the global cut, we wish to find a parametrization that
minimizes the errors across all frames. We have additional
requirements which also constrain the parametrization.

In order to support level-of-detail, we would like a
parametrization that uniformly samples the surface. This al-
lows us to simply decimate in both dimensions each frame of
the geometry video, to obtain a low resolution version of the
animation. If this feature is not a requirement of the applica-
tion, then it is possible to tweak the points in the parameter
space to align better with features in the object space (like
sharp creases). Additionally, having a uniform parametriza-
tion works well for frames that may not have been taken into
account in building the cut and parametrization. Without a
priori information, uniform sampling is likely to sample ar-
bitrary areas better than a specialized sampling based on an-
other frame.

The algorithm already used by Gu et al. 4, minimizes
the geometric stretch metric in order to parametrize the
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mesh. This metric distributes the samples uniformly over the
surface and minimizes the reconstruction error assuming a
piecewise constant signal. Ideally we would like to modify
it to take all frames into account, or determine a reference
frame in our animation to be used for the parametrization of
the animation.

We have experimented with an approach that parametrizes
the cut mesh while considering the geometry of all frames.
For an animated mesh sequence, instead of a single 3D ge-
ometry channel, we have N 3D geometry channels, where
N is the number of frames. This yields a 3N-dimensional
signal. We seek to find a parametrization that minimizes the
stretch over this 3N-dimensional space, thus minimizing re-
construction error over all frames in the sequence. But our
results in terms of reconstruction error (after compression)
were slightly worse than using the parametrization from a
single frame. In terms of worst-case distortion, this algo-
rithm did significantly better than the parametrization using
a single frame. We have not done enough experiments to re-
liably use this global parametrization. This is a direction for
future work.

Currently we have found that using an arbitrary frame
(i.e., the first frame) of the animation as the reference frame
for the parametrization algorithm to yield good results. For
medium deformation animations, we have found that the cut
has a large effect on the parametrization. It already defines
the boundary, and in a sense, it has spread the regions of high
distortion around the unit square. So even choosing an arbi-
trary frame in our animation, yields similar results. Figure 5
shows some data to support our theory.

4.3. Sampling and Rendering

Once we have a cut and parametrization, we can uniformly
convert each frame of the animation into a geometry im-
age. The collection of geometry images is called a geom-
etry video. The conversion works by sampling over a grid
the original vertex values mapped onto the parametrization.
By using the same parametrization, the samples in the same
coordinates in different frames will correspond to the same
location on the original surface.

The mesh resulting from the geometry image will have
regular connectivity. It will look like a grid. We triangulate it
uniformly along one chosen diagonal. We do not change the
original diagonalization once fixed, because doing so would
yield popping or jittering artifacts in the encoded animation
when the diagonalization changes.

4.4. Compression

The cut and parametrization allows us to generate a sequence
of geometry images. The next logical step is to compress
these images taking advantage of the coherence or redun-
dancy that exists within each image and between each pair
of frames in the sequence.
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This sequence of images is very much like a 2D video.
Therefore we can apply standard mature video encoding
techniques to the encoding and manipulation of such se-
quences. There are two important differences that allow us
to make better use of these techniques.

First, the “colors” of these geometry images correspond
to a 2D manifold surface in 3D space. The neighboring “col-
ors” tend to be similar since we are assuming a single con-
nected surface. This allows us to use wavelet techniques
which can represent smooth functions very compactly.

Second, mesh vertices, due to the fact that they are con-
nected, usually do not move in a chaotic manner, but rather
tend to locally move in conjunction. We can represent this
motion by affine transformations, which can be computed or
resolved precisely or at least to a best approximation.

We can use this transformation to represent changes be-
tween frames as a first approximation. Then we only need to
encode the difference, or delta between this approximation
and our target image. This is similar to the Predictive frames
in MPEG, with the difference that we don’t compute mo-
tion vectors, but rather affine transformations. This is pos-
sible because we know the exact motion of the object, not
a 2D flat vision of the world or motion. This idea of using
transformations as a form of predictors is not new. Lengyel
10 mentions it in the direct context of compression of time-
varying geometry.

Our approach is simple. Given a sequence of geometry
images, we encode each image in one of two ways:

I-Frames The geometry image is encoded independently
of any other information. We encode the geometry image
using wavelets, since this method proves to compress very
well. We have found the geometry images to be sufficiently
smooth to use wavelet functions with large support (18/10
taps for synthesis/analysis). This allows the compressor to
use more information to predict sample locations.

Furthermore, we achieve good compression because the
data is well-ordered. Recall that the parametrization is opti-
mized for uniform sampling. This means that information in
the vertical and horizontal directions in the parameter space
will be independent. This allows the algorithm to exploit the
redundancy that exists locally in both directions of the sur-
face. This contrasts with many static mesh encoders which
sometimes can only exploit the redundancy of the geometry
in only “one” direction.

P-Frames The alternative way to encode a geometry image,
is to use a transformation of the previous geometry image as
a predictor. Any transformation function and any number of
reference frames maybe used. The choice is limited by re-
sources and the complexity needed to choose the function
optimally. Our idea, is not to resolve exactly how the data
was generated (free form deformations, skinning, inverse-
kinematics...), but rather to develop a mechanism that works

well across many domains and is simple. We use an affine
transformation (4x4 matrix with 12 degrees of freedom) to
match, in the least square sense, the previous geometry im-
age to our target geometry image. We find that we can quan-
tize the transformation coefficients to 11 bits with negligible
negative effects. Finally, we encode the difference between
the current geometry image and the transformed reference
geometry image using also wavelets — exactly as if it was
an I-Frame. The transformation coefficients are saved sepa-
rately.

We have also implemented “B-Frames” or Bi-directional
frames, where the prediction is based on a weighted average
of two transformed frames. We find that it is a black art to
choose the right combination and selection of different kinds
of frames. Nevertheless, it is another tool that works well for
certain applications. For example, B-Frames are useful for
encoding key-frame animations, and allowing users to have
reverse playback with low overhead. Currently we only use
P-Frames.

For small meshes, we find that the geometry images tend
to supersample the original mesh. If the lossless version of
a geometry image for a given mesh is a good approxima-
tion of the surface, then the difference between the encoded
geometry image and the original geometry image will form
a good estimate for reconstructed surface error. This is be-
cause the reconstructed surface error (Hausdorff distance)
is usually measured by supersampling a surface, and com-
puting the closest point on the reference surface. Although
a “diff” between geometry images only considers one point
(the corresponding point), it provides a good upper bound on
the quality of the reconstructed mesh assuming that both ge-
ometry images were constructed from the same parametriza-
tion. This is useful to guide any bit allocation and compres-
sion decision.

5. Results

We have implemented an encoder for geometry videos. To
compare different cuts, parametrizations, and encoding pa-
rameters, we measure the root mean square (RMS) distance
between the original and reconstructed mesh for each frame
(we take the maximum of both one-sided distances, same as
Khodakovsky et al. 7).

For our results, we use bits per vertex (bpv) as our mea-
sure of compression. We always consider the number of ver-
tices of the original mesh when computing the bits per vertex
(bpv) of a Geometry Image. Vertices are assumed to be three
coordinates of 32-bit floating point numbers; hence they are
96 bpv uncompressed. Therefore, compressing a mesh at 1
bpv would correspond to a 96x compression over the uncom-
pressed format.

We use three animated meshes to test and compare our
system: A bouncing cow sequence (deformation) with 2904
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vertices, a motion captured dance sequence (skinning) with
7061 vertices, and a curling snake sequence (motion) with
9179 vertices. We have also applied our algorithm to short
sequences with meshes with 38K vertices.

5.1. Comparison to Static Approaches

Geometry images are competitive with other static mesh
compression approaches. Figure 3 shows rate-distortion
curves for a few models. Static compression methods based
on quantized deltas usually cannot support very low bit-
rates. Also, note that the geometry image algorithm works
better with a larger number of vertices. With more vertices,
we have a larger bit-budget to encode the object; in both
cases we are encoding the same object.

5.2. Cutg/Parametrization

In order to obtain more temporal coherence and have one
uniform parametrization for the entire animation, we would
like to use only one cut and parametrization. Two experi-
ments show the effect of this choice.

The first experiment shows that using one global cut does
not yield much worse reconstruction. Figure 4 compares us-
ing an “optimal” cut and parametrization for each frame
versus having one fixed cut and parametrization (using the
first frame of the sequence). Notice that the fixed global cut
does only slightly worse in the Dance sequence and achieves
about the same quality in the Snake sequence.

The second experiment shows that once a cut is de-
fined, picking an arbitrary parametrization is not harm-
ful. The reasoning is that the cut already relieves tension
in areas of high distortion and fixes the boundary of the
parametrization. Hence, picking a different reference frame
for the parametrization only changes the internal configura-
tion slightly. Figure 5 shows the effect of fixing the cut and
calculating the error for all frames of the sequence using dif-
ferent reference frames for the parametrization. The model
on frame 15 is a highly distorted cow, but even using this as
the reference frame for the parametrization, does not yield a
notably higher errors for the sequence.

5.3. Level of Detail

Level of detail is naturally supported by geometry images
and hence by geometry videos. It is simple to construct a
coarse version of the mesh by simply decimating (remov-
ing every other pixel in each direction) the geometry image.
It is important to have a uniform parametrization such that
when decimation occurs, the texture map of the fine geom-
etry image also forms a good mapping on the coarse geom-
etry image. In figure 10 we show the same geometry image
at two resolutions; we can combine them to present a multi-
resolution version of the mesh.

The concept of temporal scalability is the same as in
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Figure 4: Dance (7061 vertices) and Snake (9179 vertices)
sequences encoded at 8 bits per vertex. We do not lose much
by using a fixed cut and parametrization.

video. B-Frames can be interleaved such that if the user
wants to fast forward through an animation, the decoder does
not have to decode all the frames. On the downside, inserted
B-Frames makes the prediction for P-Frames harder since
these are farther apart. Figure 6 shows the reconstruction er-
ror between using only I-Frames, using P-Frames, or using
a combination of P-Frames and B-Frames. Notice that the
use of B-Frames increases the variance of the error, and only
increases the average error average slightly. B-Frames are
predicted using reference frames that are farther apart, hence
are not as good predictors. The variance could be mitigated
by adaptive adjusting the frame size. Most video techniques
applicable to MPEG are applicable here.
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Figure5: The cut has a significant effect on the parametriza-
tion. This figure shows the Signal to Noise Ratio of the
reconstructed key frames of the cow sequence (2904 ver-
tices) encoded at 8bpv. All of them use the same cut. The
parametrization is based on different frames. Notice that the
error for each frame is about the same for all parametriza-
tions.

5.4. Compression Results

Geometry Videos do a good job in compressing our sample
data sets. We compare our results with a straightforward im-
plementation of Alexa and Miller’s 1 “Representing Anima-
tions by Principal Component Analysis.” We find wavelets
are very powerful at compressing both the original geome-
tries and the residuals. The intuition is that by re-sampling
and re-ordering the vertices, we can extract more spatial co-
herence. It is possible to calculate this on an irregular mesh,
but handling these irregularities can be cumbersome and un-
predictable.

Figure 8 shows a comparison between Principal Com-
ponent Analysis (PCA) and Geometry Videos. Figure 8.b
shows that the detail of the single frames with PCA is
slightly better (see face), as it does not suffer from some of
the smoothing of face that occurs with geometry images. Un-
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Figure 6: The use of B-frames allows the decoder to skip
them if necessary. One simple way to implement temporal
scalability is by introducing B-Frames. The animation can
be played at half the frame rate just by dropping the B-
Frames.

fortunately, PCA shows major distortion on some frames of
the animation. PCA has worse in reconstruction error, also
because without enough basis, it can’t capture the exact mo-
tion of the object.

Next, we consider how well the predictive encoding
works. We find that using P-Frames reduces the reconstruc-
tion error by half for the same bit-rate using I-Frames only.
P-Frames are encoded at 30% the size of the I-Frames; the
overall size is the same. Figure 7 shows the encoding of
the Dance sequence. We note that using predictions on a 4
bits per vertex encoding achieves almost the same result as
applying a new cut and parametrization to encode frames
at 8 bits per vertex. This shows that by fixing the cut and
parametrization we can reduce the temporal redundancy be-
tween frames.

Finally, we are exploring partitioning the geometry image
into regions and applying separate transformations to each

(© The Eurographics Association 2003.
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Figure7: Dance sequence (7061 vertices) encoded: at 8 bits
per vertex (bpv) using a customized cut and parametrization
per frame (vary); at 8 bpv using Geometry Images using only
I-Frames; and at 8,4 and 2 bpv using P-Frames (0.3 size ra-
tio between P-Frames and I-Frames). Notice that the encod-
ing using P-frames at 4 bpv is better to using only I-frames
at 8bpv.

region. The idea is to capture local changes better. We are in-
spired by motion compensation in MPEG. Our preliminary
results are encouraging. We find that local transformations
form a better predictors than using one global transforma-
tion. One has to be careful to blend the different transformed
regions. Without a smooth transition between transformed
regions, this predictor will yield residuals containing high
frequencies at the region boundaries which will hurt com-
pression.

5.5. Timings

In this section we briefly report on the performance of our
system. Table 1 reports the performance of different algo-
rithms.

The encoder was developed in Matlab 6.5 for ease of
prototyping. It has not yet been ported it to C++. The first
five measurements concern the encoder, in particular the
parametrization pre-process. Once a cut has been chosen
and a parametrization computed, we can encode 3D anima-
tions at a rate of few frames per second for an image size
of 256 x 256, and much faster with an smaller image size.
The encoding time is dominated by two factors: the wavelet
encoding of the geometry images and the cutting and sam-
pling of the frames in the 3D animation. For example, the
encoder will encode 100 frames of the Cow Sequence with
an image size of 64 x 64 in 6.24 seconds: 1.69 seconds are
spent cutting the meshes of each frame and preparing them
to be sampled, 1.90 seconds are spent sampling the input

(© The Eurographics Association 2003.

Model/Sequence Cow Sequence
# Vertices 2904

Find Cutf 147secs (2m27s)
Find Global Cut (100 frames)* 12720secs (3h32m)
Parametrize (1 frame)t 125secs
Encode Seq. 256 x 256 8bpvT 3.03 fps
(I-Frame only, given cut/param)

Encode Seq. 64 x 64 8bpvT 16.02 fps
(I-Frame only, given cut/param)

Frame Size 2904 bytes
Decode Stream 256x256 8bpv 10.57 fps
Decode Stream 128x128 8bpvT 32.99 fps
Decode Stream 64x64 8bpvt 64.03 fps

Table 1: Geometry Video subsystems timings

meshes; and finally 1.66 seconds will be spent encoding the
resulting Geometry Images for each frame. The wavelet en-
coder/decoder is a research prototype!2 and its performance
can be improved. For example, the wavelet basis is not hard-
coded and it does not take advantage of multimedia exten-
sions in the hardware processor. The cutting algorithm is im-
plemented in Matlab; The sampling (rasterization) is done in
software without any optimizations and without taking ad-
vantage of hardware support.

We can decode Geometry Videos at interactive rates for
small image sizes (64). The decoding speed is dominated
by the wavelet decoder. The larger the image size, the more
computation the wavelet decoder requires. The beauty of Ge-
ometry Videos is that the performance for a Geometry Video
of size 64 x 64 and will be the same (assuming same file
size) regardless of the actual original mesh it represents.

6. Summary and Future Work

We introduced a new animated mesh representation, called
the geometry video. We described an algorithm to create
geometry videos from animated meshes. Our algorithm is
based on the geometry image construction algorithm from
Gu et al. 4. We extend the algorithm to take advantage of
frame-to-frame coherence during compression. We approach
this by building a global cut that takes all frames into ac-
count. We choose the reference frame for the parametriza-
tion arbitrarily, but show, at least for our data sets, that the
cut has a significant effect on the parametrization and any
choice of frame would be satisfactory.

We also develop intuition for the effectiveness of wavelets
in representing the geometry and residuals. The main insight
is that by reorganizing and resampling the vertices of a mesh,

T Windows XP, Pentium 4 at 3.06 GHz, 533MHz front side bus
1 Linux, Pentium 4 at 2.4 GHz, 533MHz front side bus
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we can more easily “see” around the vertex to extract the
existing spatial redundancy. We can see in two locally in-
dependent directions. This allows the wavelets to compress
both geometry and residual information well.

The key advantage of this approach is to leverage all of
the accumulated knowledge on 2D Video encoding to allow
3D animation to become another natural media. For certain
classes of animation this should be possible; for others we
still have to address some of the shortcomings of using a sin-
gle square parametrization. It is also clear that more sophis-
ticated transformations should help in building better pre-
dictors. The fact that we also have one continuous surface
should make it efficient to select or cluster regions of similar
motion together. The possibilities are many, and the advan-
tages unique. We hope to have shown the promise of this
approach, and at the very least that it is viable for a subset of
animations.
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Figure8: PCA and Geometry Images Comparison: We com-
pare Alexa and Miiller’s “Representing Animations by Prin-
cipal Components™ ! method to Geometry Images. (a) The
PCA encoded animation with 16 basis (no compression per
basis) on 180 frames corresponds to roughly an encoding at
8bpv, which performs for most frames comparable to Geom-
etry Images at 2bpv. (b) Objects on the bottom show the re-
construction using Geometry Images, the original mesh, and
the reconstruction using PCA. The reconstructed meshes are
color-coded to show the relative magnitudes of the error
from the original mesh. Note the scaling distortion in the
PCA reconstruction.

(© The Eurographics Association 2003.

Figure 9: Pipeline. (a) We start with a cut of the input mesh.
(b) the edges of the cut will map to the boundary edges of
the parametrization. (c) we raster-scan the parametrization
and interpolate the points. (d) We compress, decompress and
resample the mesh. The cut or seam will open if the decoding
is lossy. (e) We use the boundary information to close seams.
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Figure 10: Level-of-Detail: by decimating the geometry im-
age (a) we obtain a lower resolution version (b); We can
combine the two to support a multi-resolution version of the
mesh (c); care must be taken at the transition edges, this is a
simple operation due to the regularity of the mesh.

(2) (b) (©)

Figure 11: Global Cut. (a) Shows the cuts of turtle with its
tail sticking out. (b) Shows the cuts of turtle now with its eyes
sticking out but tail retracted; tail now does not have much
distortion. (c) Shows a base turtle with the global cuts built
from (a) and (b)



