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Abstract 

 

Novelty Detection is an approach to classification that offers advantages over 

conventional techniques for monitoring high-integrity systems and manufacturing 

processes: it is not necessary to provide fault data to the system during development.  

Instead, providing a sufficiently comprehensive model of the system‟s normal 

behaviour has been formed, deviations from normal working conditions can be 

identified automatically.  As information is discovered regarding the causes of these 

deviations it is then possible to move from novelty detection to diagnosis, but the ability 

to identify previously unseen abnormalities is retained at all stages. 

  

This paper describes the results of an investigation for condition monitoring of a 

manufacturing process using techniques from novelty detection.  We show that this 

approach allows the automatic identification of abnormal processes, providing 

identification of potential tool wear, giving advance notification of failure for the 

avoidance of bad processes. 

 

 

1.  Introduction 
 

The investigation described by this paper applies techniques of novelty detection to a 

drilling manufacturing process, previously applied for novelty detection in high-

integrity systems such as aerospace gas-turbine engines
(1)

, large-vehicle 

turbochargers
(2)

, and in the monitoring of human vital signs.  We show that episodes 

identified as “abnormal” correspond to pre-cursors of eventual equipment failure, and 

that they can be used in the identification of faulty processes to avoid defects in 

production. 
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1.1  Previous work 

 
One of the most well-established applications of machine learning techniques to 

monitoring manufacturing processes is that of neural networks, though they have been 

used in the multi-class classification (fault detection) manner, rather than for novelty 

detection.  This requires examples of failure in order to accurately characterise 

particular modes of operation, which are difficult to obtain from high-value 

manufacturing processes.  Approaches using such techniques include (3-9). 

 

Approaches based on statistical pattern recognition using conventional multi-class 

classification include linear discriminant functions
(10)

, autoregressive modelling
(11)

, 

Hidden Markov Models
(12)

, Kernel PCA
(13)

, and Gaussian Mixture Models
(14)

. 

 

 
1.2  Data description 

 

This paper illustrates the process by which novelty detection techniques are applied to 

data from a manufacturing drilling process, consisting of a number of similar tests.  An 

automated drill unit was moved towards a static metallic disk at a fixed velocity (“feed-

rate”), a hole was drilled through the disk, and then the drill unit was withdrawn at the 

same feed-rate.  Parameters obtained from sensors affixed to the drilling unit as 

described in Table 1. 

 

Table 1. Acquired Channels 

Channel 

Number 

Variable 

Name 

Description 

C1
 

Ax Acceleration of the disk-mounting unit in the x-plane
 

C2 Ay Acceleration of the disk-mounting unit in the y-plane
 

C3 Az Acceleration of the disk-mounting unit in the z-plane
 

C4 AE RMS acoustic emission 

C5 SP Power delivered to the drill spindle 

 

 

Test series for the drill bit contained initial periods of “normal” operation, followed by 

wear of the drill, and eventual drill failure.  A description of the dataset examined is 

given in Table 2. 

 

Table 2.  Experimental Parameters 

Test Numbers Drill Rotation Rate Feed Rate 

[1, 190] 1700 RPM 80 mm/min 



© copyright 2008 Rolls-Royce plc 3 

1.3  Pre-processing 

 
In order to ready the dataset for analysis, pre-processing must be performed in order to 

remove artefacts from the time-series data that are unrelated to the condition of the 

manufacturing process during each test.  In this case, it includes the removal of peaks in 

power spectra corresponding to an electrical power-supply, and the removal of 

transients and noise unrelated to system condition, such that meaningful diagnostic 

information contained with the data is retained for novelty detection.  This latter is 

achieved by removing peaks in frequency spectra with amplitude below some assumed 

noise threshold. 

 

 

2.  Methodology and Results 

 
2.1 Visualisation of original data 

 

The use of numerous channels of data makes exploration of the time-series data 

difficult.  Though each channel can be considered independently against time, it is 

difficult to identify changes in the relationships between channels.  A dataset 

comprising channels of different data types (such as the vibration, acoustic energy, and 

power considered in the investigation described by this paper) forms a high-dimensional 

representation of the state of a system which is not readily interpreted by inspection.  

Visualisation techniques map high-dimensional data from their original space into a 

smaller number of dimensions (typically 2) to allow structure in the data set to be 

explored. 

 

Here, we use the NeuroScale method
(15) 

 to map high-dimensional vectors (formed from 

the various channels of data described in Table 1) into two dimensions, for 

visualisation. 

 

Figure 1 shows two-dimensional projections of high-dimensional data from a selection 

of tests.  Data from the first third of each selected test are shown in green (in which the 

drill approaches the disk); data from the second third are shown in red (in which the 

drill enters the disk); data from the final third are shown in blue (in which the drill 

retracts from the disk). 
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Figure 1. Two-dimensional projects of high-dimensional data from tests 39, 76, 77, 

83, 115, 116, 124, and 127 shown in subplots (a) to (h), respectively.   

Note that NeuroScale projections have unitless axes.  

 

 

 

Figure 1(a) and (b) show “normal” tests, in which projected data lie close to the origin 

in projected space.  Figure 1(c) and (d) show data observed during movement of the 

acoustic sensor, which can be seen as excursions away from the origin.  Figure 1(e) and 

(f) show tests in which tool wear is exhibited, while more significant wear is shown in 

Figure 1(g) and (h), corresponding to more significant deviations from the origin. 

 

Thus, methods of visualisation allow “holistic” inspection of high-dimensional data in a 

single two-dimensional representation.  Such techniques are also useful for the 

communication of the results of novelty detection to non-expert users of the system, 

providing a graphical interpretation of high-dimensional analysis. 

 

 

2.2  Visualisation of derived data 

 

This section describes an approach to novelty detection that allows automated off-line 

analysis of the manufacturing process to be performed, the results of which are 

compared to the insights gained from inspection of the dataset using visualisation.   

 

The signature of a variable y throughout a test may be constructed with respect to the 

operating point of the system as illustrated in Figure 2.  Here, the mean value of 

variable y observed throughout the test is plotted against the corresponding value of the 

operating point variable.  This signature represents the variation of y across the range of 

the operating point throughout the duration of a test, which has been previously shown 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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to characterise differences between “normal” and “abnormal” behaviour in other high-

integrity systems containing rotating components
(16,17)

. 

 

 

 

 

 
Figure 2.  Constructing a signature of variable y over a range of an  

operating point variable.  Signature mean and novelty thresholds are shown as 

continuous and dashed lines, respectively. 

 

 

 

For the investigation described by this paper, SP was used as the operating point 

variable, quantised into N = 10 bins.  This value of N was experimentally shown to be a 

good compromise between under-quantisation of the operating point (in which too few 

bins are used, resulting in little discrimination between signatures), and over-

quantisation (in which too many bins are used, resulting in a large number of empty or 

under-populated bins). 

 

Thus, for each test, a 10-dimensional signature for some quantity y can be constructed, 

characterising the variation of that quantity as a function of the operating point, SP.  

Each signature can be viewed as a 10-dimensional summary representation of a test, and 

may be compared to one another, in order to automatically identify signatures 

corresponding to “abnormal” behaviour.   

 

The selection of quantity y used to construct signatures must be made such that 

differences between “normal” and “abnormal” manufacturing processes are 

characterised, and is referred to as a feature in statistical pattern recognition 

terminology.   

 

 

Operating Point  

(e.g., SP) 

y 

(e.g., AE) 

Normal 
Abnormal 
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Figure 3.  NeuroScale projection of 10-dimensional signatures for each test. 

 

Figure 3 shows an example visualisation, in which y was chosen to be the peak energy 

in the power spectral density band [0,  6] kHz, after visual inspection showed that 

“normal” and “abnormal” tests exhibited differences in this feature.  Note that practical 

systems based on this technology select more general sets of features, and that the above 

is shown for illustration of the methodology.   

 

After projection from 10- to 2-dimensions, the majority of projected points lie in a 

single cluster about the origin, indicating that the corresponding tests from which the 

signatures were constructed were similar in terms of variable y.  Significantly separated 

from the cluster of “normal” tests, tests 189 and 190 are shown plotted to the left of the 

figure.  These tests were “abnormal”, exhibiting significant tool wear that resulted in 

equipment failure. 

 

 

2.3  Testing signatures 

 

A template signature can be formed using similar techniques by collating observations 

from multiple tests.  If these tests are selected to represent “normal” behaviour, the 

resultant template signature can be used to compare signatures constructed from later 

tests (as were visualised in Section 2.2). 

 

Figure 4 shows Euclidean distances between signatures derived from each test, using 

methods described above, and the template signature constructed using data from tests 

[0, 40]. 
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Figure 4.  Signature-to-template (upper plot) and signature-to-signature (lower 

plot) distances for 10-dimensional signatures constructed from each test. 

 

 

These signature-to-template distances are generally low for tests occurring near the start 

of the dataset, with transient increases at test 19 and 64.  Significant increases in 

signature-to-template distances occur after test 125, as tool wear begins to occur.  These 

distances generally increase with increasing tool-wear throughout the remainder of the 

dataset, indicating that this metric provides a useful discriminator between “normal” and 

“abnormal” tests. 

 

Distances between successive signatures are shown in the lower plot of Figure 4, where 

large values are observed between signatures constructed using data from tests 124 and 

125, when tool wear begins to occur.  Further large increases in distance are observed 

between signatures at the end of the test, indicative of extreme tool wear and eventual 

failure.  Earlier increases for tests 5, 53, and 64 were retrospectively determined to be 

due to changes in sensor configuration, which was fixed after test 64. 

 

 

3.  Conclusions 

 
We have shown how “normal” and “abnormal” behaviour of a drilling process may be 

characterised using a novelty detection approach.  Initially, visualisation techniques are 

employed to allow inspection of 5-dimensional data in a single plot.  This allows the 

location of abnormalities within the dataset to be confirmed, and may inform the later 
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use of novelty detection methods, and the selection of features that may allow automatic 

discrimination of “normal” and “abnormal” tests. 

 

We have shown that a signature-based approach to analysis allows such abnormalities to 

be characterised, and that projection of high-dimensional signatures into 2-D can allow 

abnormal tests to be identified visually. 

 

Automatic identification of signatures is possible by constructing a model of normality, 

and we have shown how an example distance metric between signatures and the model 

can be used to characterise abnormal drill behaviour, and potentially provide early 

warning of abnormal drilling operations. 
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