
The WEKA Data Mining Software: An Update

Mark Hall Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer
Peter Reutemann, Ian H. Witten

Pentaho Corporation Department of Computer Science
Suite 340, 5950 Hazeltine National Dr. University of Waikato

Orlando, FL 32822, USA Hamilton, New Zealand
mhall@pentaho.com {eibe,geoff,bernhard,fracpete,ihw}@cs.waikato.ac.nz

ABSTRACT
More than twelve years have elapsed since the first public
release of WEKA. In that time, the software has been re-
written entirely from scratch, evolved substantially and now
accompanies a text on data mining [35]. These days, WEKA
enjoys widespread acceptance in both academia and busi-
ness, has an active community, and has been downloaded
more than 1.4 million times since being placed on Source-
Forge in April 2000. This paper provides an introduction to
the WEKA workbench, reviews the history of the project,
and, in light of the recent 3.6 stable release, briefly discusses
what has been added since the last stable version (Weka 3.4)
released in 2003.

1. INTRODUCTION
The Waikato Environment for Knowledge Analysis (WEKA)
came about through the perceived need for a unified work-
bench that would allow researchers easy access to state-of-
the-art techniques in machine learning. At the time of the
project’s inception in 1992, learning algorithms were avail-
able in various languages, for use on different platforms, and
operated on a variety of data formats. The task of collecting
together learning schemes for a comparative study on a col-
lection of data sets was daunting at best. It was envisioned
that WEKA would not only provide a toolbox of learning
algorithms, but also a framework inside which researchers
could implement new algorithms without having to be con-
cerned with supporting infrastructure for data manipulation
and scheme evaluation.

Nowadays, WEKA is recognized as a landmark system in
data mining and machine learning [22]. It has achieved
widespread acceptance within academia and business cir-
cles, and has become a widely used tool for data mining
research. The book that accompanies it [35] is a popular
textbook for data mining and is frequently cited in machine
learning publications. Little, if any, of this success would
have been possible if the system had not been released as
open source software. Giving users free access to the source
code has enabled a thriving community to develop and fa-
cilitated the creation of many projects that incorporate or
extend WEKA.

In this paper we briefly review the WEKA workbench and
the history of project, discuss new features in the recent
3.6 stable release, and highlight some of the many projects
based on WEKA.

Figure 1: The WEKA Explorer user interface.

2. THE WEKA WORKBENCH
The WEKA project aims to provide a comprehensive collec-
tion of machine learning algorithms and data preprocessing
tools to researchers and practitioners alike. It allows users
to quickly try out and compare different machine learning
methods on new data sets. Its modular, extensible architec-
ture allows sophisticated data mining processes to be built
up from the wide collection of base learning algorithms and
tools provided. Extending the toolkit is easy thanks to a
simple API, plugin mechanisms and facilities that automate
the integration of new learning algorithms with WEKA’s
graphical user interfaces.

The workbench includes algorithms for regression, classifi-
cation, clustering, association rule mining and attribute se-
lection. Preliminary exploration of data is well catered for
by data visualization facilities and many preprocessing tools.
These, when combined with statistical evaluation of learning
schemes and visualization of the results of learning, supports
process models of data mining such as CRISP-DM [27].

2.1 User Interfaces
WEKA has several graphical user interfaces that enable easy
access to the underlying functionality. The main graphical
user interface is the “Explorer”. It has a panel-based in-
terface, where different panels correspond to different data
mining tasks. In the first panel, called “Preprocess” panel,
data can be loaded and transformed using WEKA’s data
preprocessing tools, called “filters”. This panel is shown in

Page 10Volume 11, Issue 1SIGKDD Explorations



Figure 2: The WEKA Knowledge Flow user interface.

Figure 1. Data can be loaded from various sources, including
files, URLs and databases. Supported file formats include
WEKA’s own ARFF format, CSV, LibSVM’s format, and
C4.5’s format. It is also possible to generate data using an
artificial data source and edit data manually using a dataset
editor.

The second panel in the Explorer gives access to WEKA’s
classification and regression algorithms. The corresponding
panel is called “Classify” because regression techniques are
viewed as predictors of “continuous classes”. By default,
the panel runs a cross-validation for a selected learning al-
gorithm on the dataset that has been been prepared in the
Preprocess panel to estimate predictive performance. It also
shows a textual representation of the model built from the
full dataset. However, other modes of evaluation, e.g. based
on a separate test set, are also supported. If applicable,
the panel also provides access to graphical representations
of models, e.g. decision trees. Moreover, it can visualize
prediction errors in scatter plots, and also allows evaluation
via ROC curves and other “threshold curves”. Models can
also be saved and loaded in this panel.

Along with supervised algorithms, WEKA also supports ap-
plication of unsupervised algorithms, namely clustering al-
gorithms and methods for association rule mining. These
are accessible in the Explorer via the third and fourth panel
respectively. The “Cluster” panel enables users to run a
clustering algorithm on the data loaded in the Preprocess
panel. It provides simple statistics for evaluation of cluster-
ing performance: likelihood-based performance for statisti-
cal clustering algorithms and comparison to “true” cluster
membership if this is specified in one of the attributes in
the data. If applicable, visualization of the clustering struc-
ture is also possible, and models can be stored persistently
if necessary.

WEKA’s support for clustering tasks is not as extensive as
its support for classification and regression, but it has more
techniques for clustering than for association rule mining,
which has up to this point been somewhat neglected. Nev-
ertheless, it does contain an implementation of the most
well-known algorithm in this area, as well as a few other
ones. These methods can be accessed via the “Associate”
panel in the Explorer.

Perhaps one of the most important task in practical data
mining is the task of identifying which attributes in the
data are the most predictive ones. To this end, WEKA’s
Explorer has a dedicated panel for attribute selection, “Se-
lect attributes”, which gives access to a wide variety of algo-
rithms and evaluation criteria for identifying the most im-
portant attributes in a dataset. Due to the fact that it is
possible to combine different search methods with different
evaluation criteria, it is possible to configure a wide range
of possible candidate techniques. Robustness of the selected
attribute set can be validated via a cross-validation-based
approach.

Note that the attribute selection panel is primarily designed
for exploratory data analysis. WEKA’s “FilteredClassifier”
(accessible via the Classify panel) should be used to apply
attribute selection techniques in conjunction with an un-
derlying classification or regression algorithm to avoid in-
troducing optimistic bias in the performance estimates ob-
tained. This caveat also applies to some of the preprocess-
ing tools—more specifically, the supervised ones—that are
available from the Preprocess panel.

In many practical applications, data visualization provides
important insights. These may even make it possible to
avoid further analysis using machine learning and data min-
ing algorithms. But even if this is not the case, they may
inform the process of selecting an appropriate algorithm
for the problem at hand. The last panel in the Explorer,
called “Visualize”, provides a color-coded scatter plot ma-
trix, along with the option of drilling down by selecting in-
dividual plots in this matrix and selecting portions of the
data to visualize. It is also possible to obtain information
regarding individual datapoints, and to randomly perturb
data by a chosen amount to uncover obscured data.

The Explorer is designed for batch-based data processing:
training data is loaded into memory in its entirety and then
processed. This may not be suitable for problems involving
large datasets. However, WEKA does have implementations
of some algorithms that allow incremental model building,
which can be applied in incremental mode from a command-
line interface. The incremental nature of these algorithms is
ignored in the Explorer, but can be exploited using a more
recent addition to WEKA’s set of graphical user interfaces,
namely the so-called “Knowledge Flow”, shown in Figure 2.

Most tasks that can be tackled with the Explorer can also
be handled by the Knowledge Flow. However, in addition
to batch-based training, its data flow model enables incre-
mental updates with processing nodes that can load and
preprocess individual instances before feeding them into ap-
propriate incremental learning algorithms. It also provides
nodes for visualization and evaluation. Once a set-up of in-
terconnected processing nodes has been configured, it can
be saved for later re-use.

The third main graphical user interface in WEKA is the
“Experimenter” (see Figure 3). This interface is designed
to facilitate experimental comparison of the predictive per-
formance of algorithms based on the many different eval-
uation criteria that are available in WEKA. Experiments
can involve multiple algorithms that are run across multiple
datasets; for example, using repeated cross-validation. Ex-
periments can also be distributed across different compute
nodes in a network to reduce the computational load for in-
dividual nodes. Once an experiment has been set up, it can
be saved in either XML or binary form, so that it can be

Page 11Volume 11, Issue 1SIGKDD Explorations



Figure 3: The WEKA Experimenter user interface.

re-visited if necessary. Configured and saved experiments
can also be run from the command-line.

Compared to WEKA’s other user interfaces, the Experi-
menter is perhaps used less frequently by data mining prac-
titioners. However, once preliminary experimentation has
been performed in the Explorer, it is often much easier to
identify a suitable algorithm for a particular dataset, or col-
lection of datasets, using this alternative interface.

We would like to conclude this brief exposition of WEKA’s
main graphical user interfaces by pointing out that, regard-
less of which user interface is desired, it is important to
provide the Java virtual machine that is used to run WEKA
with a sufficient amount of heap space. The need to pre-
specify the amount of memory required, which should be
set lower than the amount of physical memory of the ma-
chine that is used, to avoid swapping, is perhaps the biggest
stumbling block to the successful application of WEKA in
practice. On the other hand, considering running time, there
is no longer a significant disadvantage compared to programs
written in C, a commonly-heard argument against Java for
data-intensive processing tasks, due to the sophistication of
just-in-time compilers in modern Java virtual machines.

3. HISTORY OF THE WEKA PROJECT
The WEKA project was funded by the New Zealand gov-
ernment from 1993 up until recently. The original funding
application was lodged in late 1992 and stated the project’s
goals as:

“The programme aims to build a state-of-the-art facility for
developing techniques of machine learning and investigating
their application in key areas of the New Zealand economy.
Specifically we will create a workbench for machine learning,
determine the factors that contribute towards its successful
application in the agricultural industries, and develop new
methods of machine learning and ways of assessing their ef-
fectiveness.”

The first few years of the project focused on the development
of the interface and infrastructure of the workbench. Most
of the implementation was done in C, with some evaluation
routines written in Prolog, and the user interface produced

Figure 4: Back then: the WEKA 2.1 workbench user inter-
face.

using TCL/TK. During this time the WEKA1 acronym was
coined and the Attribute Relation File Format (ARFF) used
by the system was created.

The first release of WEKA was internal and occurred in
1994. The software was very much at beta stage. The first
public release (at version 2.1) was made in October 1996.
Figure 4 shows the main user interface for WEKA 2.1. In
July 1997, WEKA 2.2 was released. It included eight learn-
ing algorithms (implementations of which were provided by
their original authors) that were integrated into WEKA us-
ing wrappers based on shell scripts and data pre-processing
tools written in C. WEKA 2.2 also sported a facility, based
on Unix Makefiles, for configuring and running large-scale
experiments based on these algorithms.

By now it was becoming increasingly difficult to maintain
the software. Factors such as changes to supporting li-
braries, management of dependencies and complexity of con-
figuration made the job difficult for the developers and the
installation experience frustrating for users. At about this
time it was decided to rewrite the system entirely in Java,
including implementations of the learning algorithms. This
was a somewhat radical decision given that Java was less
than two years old at the time. Furthermore, the runtime
performance of Java made it a questionable choice for im-
plementing computationally intensive machine learning al-
gorithms. Nevertheless, it was decided that advantages such
as “Write Once, Run Anywhere” and simple packaging and
distribution outweighed these shortcomings and would facil-
itate wider acceptance of the software.

May 1998 saw the final release of the TCL/TK-based sys-
tem (WEKA 2.3) and, at the middle of 1999, the 100%
Java WEKA 3.0 was released. This non-graphical version
of WEKA accompanied the first edition of the data mining
book by Witten and Frank [34]. In November 2003, a sta-
ble version of WEKA (3.4) was released in anticipation of
the publication of the second edition of the book [35]. In
the time between 3.0 and 3.4, the three main graphical user
interfaces were developed.

In 2005, the WEKA development team received the SIGKDD
Data Mining and Discovery Service Award [22]. The award

1The Weka is also an indigenous bird of New Zealand. Like
the well-known Kiwi, it is flightless.

Page 12Volume 11, Issue 1SIGKDD Explorations



Figure 5: Capabilities and technical information meta-data.

recognized the longevity and widespread adoption of WEKA.
In 2006, Pentaho Corporation became a major sponsor of
the software and adopted it to form the data mining and
predictive analytics component of their business intelligence
suite. Pentaho is now an active contributer to the code base,
and the first author is currently the maintainer-in-chief of
the software. As of this writing, WEKA 3.6 (released in De-
cember 2008) is the latest version of WEKA, which, given
the even-odd version numbering scheme, is considered to be
a feature-stable version.

4. NEW FEATURES SINCE WEKA 3.4
Many new features have been added to WEKA since ver-
sion 3.4—not only in the form of new learning algorithms,
but also pre-processing filters, usability improvements and
support for standards. As of writing, the 3.4 code line com-
prises 690 Java class files with a total of 271,447 lines of
code2; the 3.6 code line comprises 1,081 class files with a
total of 509,903 lines of code. In this section, we discuss
some of the most salient new features in WEKA 3.6.

4.1 Core
The largest change to WEKA’s core classes is the addition of
relation-valued attributes in order to directly support multi-
instance learning problems [6]. A relation-valued attribute
allows each of its values to reference another set of instances
(typically defining a “bag” in the multi-instance setting).
Other additions to WEKA’s data format include an XML
format for ARFF files and support for specifying instance
weights in standard ARFF files.

Another addition to the core of WEKA is the “Capabilities”
meta-data facility. This framework allows individual learn-
ing algorithms and filters to declare what data characteris-
tics they are able to handle. This, in turn, enables WEKA’s
user interfaces to present this information and provide feed-
back to the user about the applicability of a scheme for the
data at hand. In a similar vein, the “TechnicalInformation”
classes allow schemes to supply citation details for the al-
gorithm that they implement. Again, this information is
formatted and exposed automatically by the user interface.
Figure 5 shows technical information and capabilities for the
LogitBoost classifier.

Logging has also been improved in WEKA 3.6 with the ad-

2As computed by the Unix command: wc -l.

dition of a central log file. This file captures all information
written to any graphical logging panel in WEKA, along with
any output to standard out and standard error.

4.2 Learning Schemes
Many new learning algorithms have been added since WEKA
3.4 and some existing ones have been improved. An exam-
ple of the latter category is instance-based learning, where
there is now support for pluggable distance functions and
new data structures—such as ball trees and KD trees—to
speed up the search for nearest neighbors.

Some of the new classification algorithms in WEKA 3.6 in-
clude

• Bayesian logistic regression [13]: the BLR method for
text categorization, with both Gaussian and Laplace
priors.

• Best-first decision tree [28]: builds a decision tree using
a best-first search strategy.

• Decision table naive Bayes hybrid [15]: a hybrid learner
that combines decision tables and naive Bayes.

• Discriminative multinomial naive Bayes [30]: a sim-
ple Bayesian classifier with discriminative parameter
learning for text categorization.

• Functional trees [12]: decision trees with oblique splits
and linear functions at the leaves.

• Gaussian processes [26]: implements the well-known
Gaussian process method for regression.

• Simple CART [3]: a decision tree learner that imple-
ments minimal cost-complexity pruning.

• Variants of AODE [39; 17]: Averaged One-Dependence
Estimators with subsumption resolution (AODEsr) and
weighted AODE (WAODE).

• Wrapper classifiers: allow the well known algorithms
provided by the LibSVM [5] and LibLINEAR [9] third-
party libraries to be used in WEKA.

In addition to these algorithms, an entire package of multi-
instance algorithms has been added to WEKA since ver-
sion 3.4, most of which were first distributed in the separate
MILK package for multi-instance learning [37].

WEKA 3.6 also has new “meta” algorithms that can be
wrapped around base learning algorithms to widen applica-
bility or enhance performance:

• Nested dichotomies [10; 8]: an approach for handling
multi-class classification problems with a hierarchy of
two-class classifiers.

• Dagging [32]: a meta classifier similar to Bagging,
which supplies disjoint subsets of the training data to
the chosen base learning algorithm.

• Rotation forest [24]: generates an ensemble classifier
by training a base learner on a randomly selected sub-
space of the input data that has been rotated using
principal component analysis.

Page 13Volume 11, Issue 1SIGKDD Explorations



The set of clustering algorithms has also been expanded with
the following members:

• CLOPE clusterer [38]: a fast clustering scheme for
transactional data.

• Sequential information bottleneck clusterer [29]: a clus-
terer that was implemented primarily for document
clustering.

4.3 Preprocessing Filters
Just as the list of learning schemes in WEKA has grown,
so has the number of preprocessing tools. Some of the new
filters in WEKA 3.6 include:

• Add classification: adds the predictions of a classifier
to a data set.

• Add ID : adds an ID attribute to a data set—useful for
keeping track of instances.

• Add values: adds the labels from a given list to an
attribute if they are missing.

• Attribute reorder : changes the order of the attributes
in a data set.

• Interquartile range: tags instances as containing out-
liers and extreme values based on interquartile ranges.

• Kernel filter [2]: converts a given set of predictor vari-
ables into a kernel matrix.

• Numeric cleaner : “cleanses” numeric values that ex-
ceed a threshold or are too close to a certain value by
replacing them with user-supplied defaults.

• Numeric to nominal : converts a numeric attribute to
nominal by simply adding all the observed numeric
values to the list of nominal values.

• Partitioned multi-filter : applies a supplied list of filters
to a corresponding set of attribute ranges and com-
bines the result into a new data set.

• Propositional to multi-instance and vice versa: con-
verts to and from multi-instance format.

• Random subset : selects a random subset of attributes.

• RELAGGS [19]: converts relational data into propo-
sitional data using aggregation.

• Reservoir sample [33]: processes instances incremen-
tally and performs reservoir sampling, for down-sampling
data sets that do not fit in main memory.

• Subset by expression: filter instances according to a
user-specified expression.

• Wavelet [25]: performs a wavelet transformation on
the data.

Figure 6: The GUI Chooser.

Figure 7: The SQL viewer.

4.4 User Interfaces
Aside from the afore-mentioned exposure of capabilities and
technical information meta data, there has been further re-
finement and improvement to the GUIs in WEKA since
version 3.4. The GUI Chooser—WEKA’s graphical start
point—has undergone a redesign and now provides access
to various supporting user interfaces, system information
and logging information, as well as the main applications in
WEKA. Figure 6 shows the revamped GUI Chooser.

Scatter plots, ROC curves, trees and graphs can all be ac-
cessed from entries under the “Visualization” menu. The
“Tools” menu provides two new supporting GUIs:

• SQL viewer : allows user-entered SQL to be run against
a database and the results previewed. This user inter-
face is also used in the Explorer to extract data from
a database when the “Open DB” button is pressed.

• Bayes network editor : provides a graphical environ-
ment for constructing, editing and visualizing Bayesian
network classifiers.

Figures 7 and 8 show the SQL viewer and Bayes network
editor respectively.

Often it is useful to evaluate an algorithm on synthetic data.
As mentioned earlier in this paper, the Explorer user in-
terface now has a facility for generating artificial data sets

Page 14Volume 11, Issue 1SIGKDD Explorations



Figure 8: The Bayesian network editor.

Figure 9: The Explorer with an “Experiment” tab added
from a plugin.

using WEKA’s data generator tools. Artificial data suit-
able for classification can be generated from decision lists,
radial-basis function networks and Bayesian networks as well
as the classic LED24 domain. Artificial regression data can
be generated according to mathematical expressions. There
are also several generators for producing artificial data for
clustering purposes.

The Knowledge Flow interface has also been improved: it
now includes a new status area that can provide feedback on
the operation of multiple components in a data mining pro-
cess simultaneously. Other improvements to the Knowledge
Flow include support for association rule mining, improved
support for visualizing multiple ROC curves and a plugin
mechanism.

4.5 Extensibility
A number of plugin mechanisms have been added to WEKA
since version 3.4. These allow WEKA to be extended in
various ways without having to modify the classes that make
up the WEKA distribution.

New tabs in the Explorer are easily added by writing a class
that extends javax.swing.JPanel and implements the in-
terface weka.gui.explorer.Explorer.ExplorerPanel. Fig-

Figure 10: A PMML radial basis function network loaded
into the Explorer.

ure 9 shows the Explorer with a new tab, provided by a plu-
gin, for running simple experiments. Similar mechanisms al-
low new visualizations for classifier errors, predictions, trees
and graphs to be added to the pop-up menu available in the
history list of the Explorer’s “Classify” panel. The Knowl-
edge Flow has a plugin mechanism that allows new compo-
nents to be incorporated by simply adding their jar file (and
any necessary supporting jar files) to the .knowledgeFlow/

plugins directory in the user’s home directory. These jar
files are loaded automatically when the Knowledge Flow is
started and the plugins are made available from a “Plugins”
tab.

4.6 Standards and Interoperability
WEKA 3.6 includes support for importing PMML mod-
els (Predictive Modeling Markup Language). PMML is a
vendor-agnostic, XML-based standard for expressing statis-
tical and data mining models that has gained wide-spread
support from both proprietary and open-source data mining
vendors. WEKA 3.6 supports import of PMML regression,
general regression and neural network model types. Import
of further model types, along with support for exporting
PMML, will be added in future releases of WEKA. Figure 10
shows a PMML radial basis function network, created by the
Clementine system, loaded into the Explorer.

Another new feature in WEKA 3.6 is the ability to read
and write data in the format used by the well known Lib-
SVM and SVM-Light support vector machine implementa-
tions [5]. This complements the new LibSVM and LibLIN-
EAR wrapper classifiers.

5. PROJECTS BASED ON WEKA
There are many projects that extend or wrap WEKA in
some fashion. At the time of this writing, there are 46
such projects listed on the Related Projects web page of
the WEKA site3. Some of these include:

• Systems for natural language processing. There are
a number of tools that use WEKA for natural lan-
guage processing: GATE is a NLP workbench [11];

3http://www.cs.waikato.ac.nz/ml/weka/index_
related.html

Page 15Volume 11, Issue 1SIGKDD Explorations



Balie performs language identification, tokenization,
sentence boundary detection and named-entity recog-
nition [21]; Senseval-2 is a system for word sense dis-
ambiguation; Kea is a system for automatic keyphrase
extraction [36].

• Knowledge discovery in biology. Several tools using
or based on WEKA have been developed to aid data
analysis in biological applications: BioWEKA is an
extension to WEKA for tasks in biology, bioinformat-
ics, and biochemistry [14]; the Epitopes Toolkit (EpiT)
is a platform based on WEKA for developing epitope
prediction tools; maxdView and Mayday [7] provide
visualization and analysis of microarray data.

• Distributed and parallel data mining. There are a num-
ber of projects that have extended WEKA for dis-
tributed data mining; Weka-Parallel provides a dis-
tributed cross-validation facility [4]; GridWeka pro-
vides distributed scoring and testing as well as cross-
validation [18]; FAEHIM and Weka4WS [31] make WEKA
available as a web service.

• Open-source data mining systems. Several well known
open-source data mining systems provide plugins to
allow access to WEKA’s algorithms. The Konstanz
Information Miner (KNIME) and RapidMiner [20] are
two such systems. The R [23] statistical computing en-
vironment also provides an interface to WEKA through
the RWeka [16] package.

• Scientific workflow environment. The Kepler Weka
project integrates all the functionality of WEKA into
the Kepler [1] open-source scientific workflow platform.

6. INTEGRATION WITH THE PENTAHO
BI SUITE

Pentaho corporation is a provider of commercial open source
business intelligence software. The Pentaho BI suite consists
of reporting, interactive analysis, dashboards, ETL/data in-
tegration and data mining. Each of these is a separate open
source project, which are tied together by an enterprise-class
open source BI platform. In late 2006, WEKA was adopted
as the data mining component of the suite and since then
has been integrated into the platform.

The main point of integration between WEKA and the Pen-
taho platform is with Pentaho Data Integration (PDI), also
known as the Kettle project4. PDI is a streaming, engine-
driven ETL tool. Its rich set of extract and transform opera-
tions, combined with support for a large variety of databases,
are a natural complement to WEKA’s data filters. PDI can
easily export data sets in WEKA’s native ARFF format to
be used immediately for model creation.

Several WEKA-specific transformation steps have been cre-
ated so that PDI can access WEKA algorithms and be used
as both a scoring platform and a tool to automate model
creation. The first of these, shown in Figure 11, is called
“Weka Scoring.” It enables the user to import a serialized
WEKA model (classification, regression or clustering) or a
supported PMML model and use it to score data as part
of an ETL transformation. In an operational scenario the
predictive performance of a model may decrease over time.

4http://kettle.pentaho.org/

Figure 11: Scoring open sales opportunities as part of an
ETL transformation.

Figure 12: Refreshing a predictive model using the Knowl-
edge Flow PDI component.

This can be caused by changes in the underlying distribu-
tion of the data and is sometimes referred to as “concept
drift.” The second WEKA-specific step for PDI, shown in
Figure 12, allows the user to execute an entire Knowledge
Flow process as part of an transformation. This enables
automated periodic recreation or refreshing of a model.

Since PDI transformations can be executed and used as a
source of data by the Pentaho BI server, the results of data
mining can be incorporated into an overall BI process and
used in reports, dashboards and analysis views.

7. CONCLUSIONS
The WEKA project has come a long way in the 16 years
that have elapsed since it inception in 1992. The success
it has enjoyed is testament to the passion of its community
and many contributors. Releasing WEKA as open source
software and implementing it in Java has played no small
part in its success. These two factors ensure that it remains
maintainable and modifiable irrespective of the commitment
or health of any particular institution or company.

8. ACKNOWLEDGMENTS
Many thanks to past and present members of the Waikato
machine learning group and the external contributers for all
the work they have put into WEKA.

Page 16Volume 11, Issue 1SIGKDD Explorations



9. REFERENCES

[1] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Lud-
scher, and S. Mock. Kepler: An extensible system for
design and execution of scientific workflows. In In SS-
DBM, pages 21–23, 2004.

[2] K. Bennett and M. Embrechts. An optimization per-
spective on kernel partial least squares regression. In
J. S. et al., editor, Advances in Learning Theory: Meth-
ods, Models and Applications, volume 190 of NATO Sci-
ence Series, Series III: Computer and System Sciences,
pages 227–249. IOS Press, Amsterdam, The Nether-
lands, 2003.

[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees. Wadsworth
International Group, Belmont, California, 1984.

[4] S. Celis and D. R. Musicant. Weka-parallel: machine
learning in parallel. Technical report, Carleton College,
CS TR, 2002.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[6] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez.
Solving the multiple instance problem with axis-parallel
rectangles. Artif. Intell., 89(1-2):31–71, 1997.

[7] J. Dietzsch, N. Gehlenborg, and K. Nieselt. Mayday-
a microarray data analysis workbench. Bioinformatics,
22(8):1010–1012, 2006.

[8] L. Dong, E. Frank, and S. Kramer. Ensembles of bal-
anced nested dichotomies for multi-class problems. In
Proc 9th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, Porto, Por-
tugal, pages 84–95. Springer, 2005.

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning. Research,
9:1871–1874, 2008.

[10] E. Frank and S. Kramer. Ensembles of nested di-
chotomies for multi-class problems. In Proc 21st In-
ternational Conference on Machine Learning, Banff,
Canada, pages 305–312. ACM Press, 2004.

[11] R. Gaizauskas, H. Cunningham, Y. Wilks, P. Rodgers,
and K. Humphreys. GATE: an environment to support
research and development in natural language engineer-
ing. In In Proceedings of the 8th IEEE International
Conference on Tools with Artificial Intelligence, pages
58–66, 1996.

[12] J. Gama. Functional trees. Machine Learning,
55(3):219–250, 2004.

[13] A. Genkin, D. D. Lewis, and D. Madigan. Large-
scale bayesian logistic regression for text categorization.
Technical report, DIMACS, 2004.

[14] J. E. Gewehr, M. Szugat, and R. Zimmer. BioWeka—
extending the weka framework for bioinformatics.
Bioinformatics, 23(5):651–653, 2007.

[15] M. Hall and E. Frank. Combining naive Bayes and de-
cision tables. In Proc 21st Florida Artificial Intelligence
Research Society Conference, Miami, Florida. AAAI
Press, 2008.

[16] K. Hornik, A. Zeileis, T. Hothorn, and C. Buchta.
RWeka: An R Interface to Weka, 2009. R package ver-
sion 0.3-16.

[17] L. Jiang and H. Zhang. Weightily averaged one-
dependence estimators. In Proceedings of the 9th Bi-
ennial Pacific Rim International Conference on Artifi-
cial Intelligence, PRICAI 2006, volume 4099 of LNAI,
pages 970–974, 2006.

[18] R. Khoussainov, X. Zuo, and N. Kushmerick. Grid-
enabled Weka: A toolkit for machine learning on the
grid. ERCIM News, 59, 2004.

[19] M.-A. Krogel and S. Wrobel. Facets of aggregation ap-
proaches to propositionalization. In T. Horvath and
A. Yamamoto, editors, Work-in-Progress Track at the
Thirteenth International Conference on Inductive Logic
Programming (ILP), 2003.

[20] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data
mining tasks. In L. Ungar, M. Craven, D. Gunopu-
los, and T. Eliassi-Rad, editors, KDD ’06: Proceedings
of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 935–940,
New York, NY, USA, August 2006. ACM.

[21] D. Nadeau. Balie—baseline information extraction :
Multilingual information extraction from text with ma-
chine learning and natural language techniques. Tech-
nical report, University of Ottawa, 2005.

[22] G. Piatetsky-Shapiro. KDnuggets news on SIGKDD
service award. http://www.kdnuggets.com/news/

2005/n13/2i.html, 2005.

[23] R Development Core Team. R: A Language and En-
vironment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2006. ISBN 3-
900051-07-0.

[24] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. Ro-
tation forest: A new classifier ensemble method. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 28(10):1619–1630, 2006.

[25] K. Sandberg. The haar wavelet transform.
http://amath.colorado.edu/courses/5720/

2000Spr/Labs/Haar/haar.html, 2000.

[26] M. Seeger. Gaussian processes for machine learning. In-
ternational Journal of Neural Systems, 14:2004, 2004.

[27] C. Shearer. The CRISP-DM model: The new blueprint
for data mining. Journal of Data Warehousing, 5(4),
2000.

[28] H. Shi. Best-first decision tree learning. Master’s thesis,
University of Waikato, Hamilton, NZ, 2007. COMP594.

Page 17Volume 11, Issue 1SIGKDD Explorations



[29] N. Slonim, N. Friedman, and N. Tishby. Unsupervised
document classification using sequential information
maximization. In Proceedings of the 25th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 129–136, 2002.

[30] J. Su, H. Zhang, C. X. Ling, and S. Matwin. Discrimina-
tive parameter learning for bayesian networks. In ICML
2008, 2008.

[31] D. Talia, P. Trunfio, and O. Verta. Weka4ws: a wsrfen-
abled weka toolkit for distributed data mining on grids.
In Proc. of the 9th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases
(PKDD 2005, pages 309–320. Springer-Verlag, 2005.

[32] K. M. Ting and I. H. Witten. Stacking bagged and
dagged models. In D. H. Fisher, editor, Fourteenth
international Conference on Machine Learning, pages
367–375, San Francisco, CA, 1997. Morgan Kaufmann
Publishers.

[33] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57,
1985.

[34] I. H. Witten and E. Frank. Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann, San Francisco, 2000.

[35] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan Kauf-
mann, San Francisco, 2 edition, 2005.

[36] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin,
and C. G. Nevill-Manning. Kea: Practical automatic
keyphrase extraction. In Y.-L. Theng and S. Foo, ed-
itors, Design and Usability of Digital Libraries: Case
Studies in the Asia Pacific, pages 129–152. Information
Science Publishing, London, 2005.

[37] X. Xu. Statistical learning in multiple instance prob-
lems. Master’s thesis, Department of Computer Sci-
ence, University of Waikato, 2003.

[38] Y. Yang, X. Guan, and J. You. CLOPE: a fast and
effective clustering algorithm for transactional data. In
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 682–687. ACM New York, NY, USA, 2002.

[39] F. Zheng and G. I. Webb. Efficient lazy elimination for
averaged-one dependence estimators. In Proceedings of
the Twenty-third International Conference on Machine
Learning (ICML 2006), pages 1113–1120. ACM Press,
2006.

Page 18Volume 11, Issue 1SIGKDD Explorations


