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Abstract 
Future computer networks are expected to carry bursty traffic. Shortest-path routing protocols have the 

disadvantage of causing bottlenecks due to their single-path routing. That is, the shortest path between a 
source and a destination may become highly congested even when many other paths have low utilization. 
We propose a routing scheme that distributes traffic over the whole network via bounded randomization; 
therefore, it removes bottlenecks and increases network throughput. For each data message to be sent 
from a source s to a destination d, the proposed routing protocol randomly chooses an intermediate node e 
from a selected set of network nodes, and routes the data message along the shortest path from s to e. 
Then, it routes the data message via the shortest path from e to d. Intuitively, we would expect that this 
increases the effective bandwidth between each pair of nodes. Our simulation results indicate that this 
load-balanced routing protocol distributes traffic evenly over the whole network and, in consequence, 
increases network throughput. 

1. Introduction 

In a wide-area store-and-forward computer network, such as the Internet, routing protocols are 

essential. They are mechanisms for finding an efficient path between any pair of source and destination 

nodes in the network and for routing data messages along this path. The path must be chosen so that 

network throughput is maximized and message delay and message loss are reduced as much as possible. 

There are mainly two types of routing protocols: source routing and destination routing. In source 

routing, a source node determines the path that a data message must take [8]. In destination routing, each 

node uses its routing table to store a preferred neighbor to each destination. Thus, the routing table 

specifies only one hop along the path from the current node to the destination. In a stable state of the 

protocols, the path consisting of consecutive preferred neighbors for a given destination is assumed to be 

the shortest path to the destination. 

Destination routing protocols are classified into two types of routing protocols: distance-vector routing 

[14], for example, used in the RIP Internet protocol [10], and link-state routing [11], for example, used in 

the OSPF Internet protocol [12]. 
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Destination routing protocols suffer performance degradation because all data messages are routed via 

the same shortest path to the destination as long as the routing tables are unchanged. The problem with 

these routing protocols is that there are no mechanisms for altering the routing other than updating the 

routing tables. The shortest path may be highly congested, even when many other paths to the destination 

have low link utilization. This congestion may trigger the loss of valuable data messages due to the buffer 

overflow at each node. Using a single path to the destination limits the maximum throughput possible 

between the source and the destination to be at most the minimum capacity of the links along the shortest 

path from the source to the destination. 

Maximizing network throughput is an important goal in the design of routing protocols. If the network 

uses shortest routing protocols to carry bursty traffic, then many of these data packets would be dropped 

due to the limited buffer space of each node when these shortest paths are congested. In this paper, we 

want to minimize the packet loss due to the buffer overflow at each node. We also want to maximize the 

network throughput. Our approach increases the effective bandwidth between the source and the 

destination so that more data packets can be delivered. A result in network flow theory, known as the 

max-flow min-cut theorem [5], shows that distributing the traffic load over all available paths between a 

source and a destination in the network, instead of using only one path of minimum cost, increases the 

effective bandwidth up to the capacity of the minimum cut separating these two nodes.  

Figure 1. Network topology 

For example, let’s consider Figure 1. The number by each link represents its capacity. Suppose that 

node a wants to send data messages to node f. Suppose that we use the hop count in order to calculate the 

cost of a path in the network. Then the effective bandwidth between node a and node f is 30, while the 

effective bandwidth of the shortest path (a-h-g-f) from node a to node f is 5. 

Several multiple-path routing techniques to increase the effective bandwidth between each pair of 

nodes and to attempt thereby to improve performance have been proposed ([2], [6], [15], [17], [18]). 

These routing protocols improve performance by routing data messages via multiple paths to the 

destination. They provide alternate paths to distribute data traffic when the selected shortest path to the 

destination becomes congested. Some techniques are Shortest Path First with Emergency Exits [17] based 
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on link-state routing, Multiple Disjoint Paths [15] based on distance-vector routing, and Dynamic Multi-

path Routing [2] based on source routing. The disadvantages of these techniques are that they require 

considerable processing overhead, need significant storage space, or increase the complexity of the 

routing algorithms. Several randomized multiple-path routing schemes ([4], [13]) have been proposed for 

regular network topologies, such as mesh, torus, and butterfly, but these schemes are not suitable for the 

Internet, which has an irregular network topology. 

In a recent paper [3], we proposed a randomized routing scheme that improves network performance 

by randomly distributing the traffic load over a set of paths to the destination. The routing protocol was 

formulated for an IP (Internet Protocol) network with an irregular topology. 

We propose an improved method that implements our routing approach in order to maximize the 

number of packets that reach their destination and to minimize the number of packets that are dropped 

due to buffer overflow at each network node. 

The rest of this paper is organized as follows. Section 2 sketches the load-balanced routing protocol. 

Section 3 introduces the protocol notation to give a formal version of our routing protocol, which is given 

in Section 4. In Sections 5 and 6, we present the simulation model and our results, in Sections 7 and 8, we 

outline future work and draw conclusions, respectively. 

2. Overview of the Load-Balanced Routing 

In this section, we sketch how our method, called the Load-Balanced Routing (LBR), routes data 

messages to the destination. Each node creates data messages and receives data messages from its 

neighbors. The node should forward these data messages to its neighbors so that the number of links (the 

cost of a path) traversed by each data message is as small as possible, while at the same time attempting 

to distribute these data messages evenly throughout the network to avoid congestion and increase network 

throughput. Our scheme is based on the distance-vector routing algorithm.  

2.1 Load-Balanced Routing via Full Randomization 

 In this subsection, we sketch the Load-Balanced Routing via Full Randomization (LBR-FR) with 

ideas borrowed from Valiant’s randomized routing algorithm [16]. Valiant’s scheme was originally 

developed for a regular network topology such as an n-dimension binary cube of parallel computers, 

which is different from the Internet topology. The Internet has an irregular topology. Our paper addresses 

these particular issues in the context of the IP network.  

Here is the algorithm of the Load-Balanced Routing via Full Randomization: 

1. For each data packet to be sent from a source node s to a destination node d, LBR-FR randomly 

chooses an intermediate node e among all the network nodes. 
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2. It routes the packet via the shortest-distance (or least-cost) path from s to e. 

3. It routes the packet via the shortest-distance (or least-cost) path from e to d. 

As an example, consider Figure 1 again. Suppose that node a (source) wants to send data messages to 

node f (destination). For load balancing, node a should distribute the data messages uniformly over all 

possible paths to node f. Node a may accomplish this by selecting at random an intermediate node (say 

node c) among all the nodes in the network whenever node a sends a data message to node f, routing it to 

the intermediate node c via the shortest path between node a and node c and then routing it to destination 

f via the shortest path between node c and node f. 

To accomplish this, each message must carry at least three pieces of information: the destination node 

d, the intermediate node e, and a bit b. Bit b indicates whether the message has not yet reached e (b = 0) 

or has already passed through node e (b = 1). 

Therefore, the operation of the protocol is as follows. Initially, the source node s sends the message 

with b = 0, and routes it in the direction of node e. As long as b = 0, the message keeps being routed along 

the network until it reaches node e. At node e, b is updated to 1, and the message is routed towards node 

d. As long as b = 1, the message keeps being routed along the network until it reaches node d, where it is 

delivered. 

This technique distributes the traffic load over all the paths between a source and a destination in the 

network and increases the effective bandwidth up to the capacity of the minimum cut separating these two 

nodes, which is the upper bound on the available bandwidth between these two nodes [5]. 

2.2 Load-Balanced Routing via Bounded Randomization 

The protocol described in Subsection 2.1 has a shortcoming for pairs of nodes of short distance. It is 

possible that a data message is routed to the destination via a very long path, much longer than a shortest 

path from the source to the destination.  

For example, in Figure 1, suppose that node a wants to send a data message to node b and it randomly 

chooses node f as the intermediate node. As a result, LBR-FR routes the data message to node f via the 

shortest path (a-h-g-f) and then routes it to node b via the shortest path (f-e-c-b). Although there is a path 

of length 1 between node a and node b, LBR-FR results in the use of a path of length 6.  

Clearly, routing paths that are excessively long will waste network resources. 

To remedy this problem, we introduce a parameter k, in order to exclude nodes from being candidates 

for an intermediate node that are “ too far away” from the source. The set of candidates is restricted to all 

the nodes whose distance from the source is at most k. 

The value chosen for k affects delay, path length, load balancing, and network throughput. If k is zero, 

the length of the path is minimized because our routing protocol becomes the conventional distance-

vector routing protocol, and thus the data message will be routed via a shortest path to the destination. On 
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the other hand, if k is non-zero, a larger number of routing paths may be available, which alleviates 

congestion and increases the effective bandwidth between these two nodes, but at the expense of 

increasing the length of the traveled path. If k is INFINITY, the proposed algorithm is LBR-FR (see 

Section 2.1). This may increase the effective bandwidth up to the capacity of the minimum cut separating 

these two nodes. 

Choosing an appropriate value for k is crucial for the performance of the algorithm. Choosing too 

small a value may exclude nodes that are too far away from the source from being candidates for an 

intermediate node, but it will increase the likelihood of a bottleneck. On the other hand, choosing too 

large a value may waste network resources by routing packets via excessively long paths, but it will 

increase the effective bandwidth up to the capacity of the minimum cut separating each pair of nodes. To 

reach a compromise between these two extremes, the parameter k may be chosen to be the average of the 

distance to each node reachable from the source (LBR-BR1) [3]: 

 where di is a node in the network and s is the source node. 

 

This value is a constant for the source s, since each link is considered to have a cost of 1. This value, 

however, has shortcomings. It limits the effective bandwidth between each pair of the nodes in the 

network to less than the capacity of the minimum cut separating the pair. The static value of k is too 

strong a restriction for a pair of nodes with a long path length and too weak a restriction for a pair of 

nodes with a short path length. 

To remedy this problem of the static value for the parameter k, we may choose the value of the 

parameter k more intelligent to be fair to all the pairs of network nodes and consider a dynamic choice of 

parameter k (LBR-BR2): 

where di is a node in the network, s is the source node and d is the destination node. 

This value of the parameter k dynamically changes according to the length of the shortest path from 

the source node s to the destination node d.  

3. Protocol Notation 

In this paper, we use a simple notation to define our routing protocol. A protocol is defined by a set of 

processes, p[0], p[1], . . . , p[n-1]. A process corresponds to a node in a computer network. A pair of 
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neighboring processes is joined by a communications channel. Henceforth, we use the term process and 

node interchangeably.  

A process is defined by a set of constants, a set of inputs, a set of variables and a set of actions. The 

actions of a process are separated by the symbol [], as follows: 

begin action.1 []     action.2 []  . . . []   action.m end 

An action has the following form: guard → statement. A guard is a Boolean expression, which refers 

to constants, inputs, and variables of the process. A statement is defined recursively as one of the 

following: skip, assignment statement, conditional (if ... fi), bounded loop (for ... rof) and a sequence of 

two or more statements separated by ";".  

An action in a process is enabled if and only if the action's guard is true at the current state of the 

network. An execution step of a protocol consists of choosing any enabled action from any process, and 

executing the action’s statement. Executions are maximal, i.e., either they consist of an infinite number of 

execution steps, or they terminate in a state in which no action is enabled. Executions are assumed to be 

fair, i.e., each action that remains continuously enabled is eventually executed.   

The communication between processes is based on a message-passing model. For every pair of 

neighboring processes p[i] and p[j], there are a FIFO channel from p[i] to p[j] and a FIFO channel from 

p[j] to p[i]. The statement send data(var) to p[j] in process p[i] appends a message of type data to the 

channel from p[i] to p[j], and the field in the message is the current value of variable var in process p[i]. 

In addition to Boolean expressions, guards in each process p[i] are allowed to be of the form rcv 

data(var) from any p[j]. This guard is enabled iff there is a message of type data at the head of an 

incoming channel of p[i]. If an action with this receive guard is chosen for execution, then, before its 

command is executed, the data message is removed from the channel, and its field is copied into the local 

variable var. Furthermore, variable j is set to the identity of the neighbor from whom the message is 

received.  

Similar protocol notations are defined in [6] and [9]. 

4. Specification of the Load-Balanced Routing Protocol 

In this section, we present a formal version only for LBR-BR2. Formal versions of LBR-FR and LBR-

BR1 [3] can be derived in a straightforward manner from that of LBR-BR2. Each process has a constant n 

with the number of the processes in the network and an input set N with the identities of its neighbors.  

 Each process p[i] has several variables. The variable inter stores candidates for intermediate nodes. 

That is, inter stores the process id’s of processes which are at most k hops away from process p[i]. 

Variable rtb[j] stores the preferred neighbor to reach destination p[j], and hop[j] stores the distance to 

reach destination p[j].  
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The load-balanced routing protocol (LBR-BR2) is defined as follows. 

process p [i: 0 . . n-1] 

constants 
n : integer               { number of nodes in the network}  

inputs 
N : set of { j | p[j] is a neighbor of p[i]}  

variables 
k : 0 . . n-1,       { maximum length of 1st routing path}  
inter : set of { 0 . . n-1}     { possible intermediate nodes of routing paths}  
rtb : array [0 . . n-1] of 0 . . n,     { routing table}  
hop : array [0 . . n-1] of 0 . . n,   { hop count to each destination}  
h : array [0 . . n-1] of 0 . . n,         { neighbor’s hop count to each destination}  
e, d : 0 . . n-1,     { message’s intermediate node and destination}  
b : 0 . . 1,         { status bit: b=0 on 1st routing path, b=1 on 2 nd routing path}  
x : 0 . . n-1,              
j :      element of N 

begin 
   true →  

m := max{ hop[x] | 0 ≤ x < n  ∧ 0 ≤ hop[x] < n} ; 

 []  true →          { create and route a new message to any destination}  
b := 0;  
d := any; 
k := hop[d]*(m-1)/m;                { determine a value of the parameter k}  
inter := { x | hop[x] ≤ k}  
e := random(inter);  
RTMSG 

[]  rcv data(b, e, d) from any p[j] → RTMSG  

[]  true →  
for each j in N do      { send hop count to neighbors}  

send upd(hop) to p[j] 
rof 

[]  rcv upd(h) from any p[j] →  
UPDTBL 

end 
 

Statement RTMSG is defined as follows. 

if d = i →           {arrived, deliver message}  
  skip 
[]  d ≠ i ∧ b = 0 ∧ hop[e] = n →            { unreachable intermediate node}  
  skip 
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[]  d ≠ i ∧ b = 0 ∧ hop[e] < n ∧ e ≠ i →              { reachable intermediate node}  
  send data(b, e, d) to rtb[e] 

[]  d ≠ i ∧ b = 0 ∧ hop[e] < n ∧ e = i →         { end of first routing path}  
      send data(1, e, d) to rtb[d] 
[]  d ≠ i ∧ b = 1 ∧ hop[d] = n →          { unreachable destination}  
  skip 
[]  d ≠ i ∧ b = 1 ∧ hop[d] < n →                { reachable destination}  
      send data(1, e, d) to rtb[d] 
fi 
 

Statement UPDTBL is defined as follows.  

hop[i] := 0; 
for each x, where x ≠ i, do 

if rtb[x] = j ^ (h[x]+1) ≠ hop[x] → { p[i] currently routes to p[x] via p[j],and  
  p[j]'s distance to p[x] has changed}   

hop[x] := min(h[x]+1, n) 
[] rtb[x] ≠ j ^ (h[x]+1) < hop[x] →             { found a shorter path}  

hop[x] := min(h[x]+1, n);  
rtb[x] := j 

[] rtb[x] ≠ j ^ (h[x]+1) ≥ hop[x] →            { keep the current path}  
skip 

[]  rtb[x]∉ N →         { p[rtb[x]] is down}  
hop[x] := min(h[x]+1, n); 
rtb[x] := j 

fi; 
rof 

5. Simulation Model 

Our simulation studies were done on the Maryland Routing Simulator (MaRS) [1], which is a network 

simulator developed at the University of Maryland. A network configuration consists of a physical 

network, a routing algorithm, and a workload. 

The routing algorithms are DVR, LSR, LBR-FR, LBR-BR1 [3], and LBR-BR2. DVR is a distance-

vector and loop-free routing protocol [14], which uses a shortest-distance path for each pair of source and 

destination nodes. LSR is a link-state routing protocol [11], where each node calculates and broadcasts 

the costs of its outgoing links periodically and Dijkstra’s shortest path algorithm [7] is applied to the view 

of the network topology to determine next hops. To get a better understanding of LBR-BR2 protocol, we 

compare the performance of the LBR-BR2 protocol against LBR-FR, LBR-BR1, DVR and LSR.   
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Figure 2. NSFNET Topology: 14 nodes, 21 bi-directional links, average degree of 3 

In our simulation, the assumed physical network is the NSFNET topology given in Figure 2. All links 

have a bandwidth of 1.5 Mbits/sec. We assumed that there are no link or node failures. Each node has a 

buffer space of 50,000 bytes. The processing time of a data message at each node equals 1 µsec. In order 

to calculate the cost of a path in the network, we use the hop count. When we use the hop count as a link 

cost, the cost of each link is 1. The propagation delay of each link is 1 msec. 

The workload consists of FTP (file transfer protocol) and telnet connections. A connection is a 

communication session established between end-user applications at source and destination nodes. All 

FTP and telnet connections have the following parameters: the data message length equals 512 bytes, the 

inter-message generation time is 1 or 10 msec, and the window size is 500 messages. Traffic was 

introduced into the network by the FTP and/or telnet connections at the nodes they were attached to. 

Network traffic consisted of data messages sent from the source of a connection to the destination and 

response messages sent from the destination of the connection to the source. Further, each source and 

destination node send acknowledgements for data messages received. Also present in the network are 

routing messages, which are sent periodically to update the state of the network. Connections start when 

the simulation begins and they are considered never-ending. 

We consider the performance measures of throughput, message delay, message loss, and link 

utilization. The measurement interval of each simulation is 100,000 msec. 

• Throughput. The total number of data bytes acknowledged during the measurement interval divided 

by the length of the measurement interval. 

• Message delay. The total delay of all data messages acknowledged during the measurement interval 

divided by the number of data messages acknowledged during the measurement interval. 

• Message loss. The total number of messages dropped during the measurement interval. 

• Link utilization. The data service rate divided by the link bandwidth. 
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6. Simulation Results 

Figure 3. Throughput vs. No. of connections
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Figure 4. Message loss vs. No. of connections
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Figure 3 shows throughput versus the number of connections. The throughput in all the routing 

protocols in general increases as the number of connections increases. With respect to throughput, the 

three LBR protocols are much better than DVR and LSR, when the number of connections is low. The 

throughput of the LBR-BR2 is generally highest among all the protocols when the number of connections 

is in the range from 19 to 38. The throughput increases almost linearly except around the saturation 

points. The system is saturated when the number of connections is around 2, 10 and 30 in LBR protocols, 

while the system is saturated when the number of connections is around 2, 11 and 26 in DVR and LSR. 

Figure 4 shows the message loss versus the number of connections. The message loss in the LBR-BR2 

protocol is generally lower than in the other routing protocols both when the numbers of connections are 

low and high. LBR-FR has the highest message loss when the numbers of connections are high, while it 

has a lower message loss when the number of connections is low.  

Figure 5 shows the average delay versus the number of connections. DVR and LSR exhibit higher 

delay oscillations than our LBR protocols. The average delay in all the routing protocols first increases 

sharply and levels off as the number of connections increases. The three LBR protocols have lower 

average delay than DVR and LSR during the measurement interval when the number of connections is 

low. The LBR-BR2 protocol has a low average delay both when the number of connections is high and 

low. LBR-FR has the highest average delay at most times during the measurement interval when the 

number of connections is high. However, in both Figures 3 and 5, the curves in LBR-BR2, DVR and LSR 

tend to converge as the number of connections increases. 

 

Figure 5. Delay vs. No. of connections
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Figure 6 shows throughput versus number of connections in the hot spot. In this scenario, we make a 

special node, called hotspot, have much more connections than any other nodes in the network. All the 

LBR protocols have better throughput than DVR and LSR do until the number of connections is 9. 

LBR_FR has the highest throughput when the number of connections is in the range from 1 to 5, while 

LBR_BR2 has the highest throughput when the number of connections is more than 5. Table 1 shows the 

average link utilization during the measurement interval when the number of connections is 8. By 

inspecting the link utilization over the whole network, we can see that the LBR protocols distribute the 

data messages more uniformly over the whole network than DVR and LSR. Also, the total and the 

average of the link utilization indicate that the LBR protocols use network resources more productively 

than DVR and LSR (see Figure 3). 

We shall now discuss our observations and the interesting insights obtained the results. 

The performance of LBR-BR1 and LBR-FR is getting worse as the number of connections increases. 

Especially, LBR-FR exhibits a good performance with respect to throughput, message loss and message 

delay when the number of connections is low (in the range from 1 to 19), while it exhibits the worst 

performance among all the routing protocols when the number of connections is high (in the range from 

20 to 38). LBR-FR will increase the effective bandwidth up to the capacity of the minimum cut separating 

these two nodes, while it has a much more chance than LBR-BR1 and LBR-BR2 that a data message is 

routed to the destination via a very long path, much longer than a shortest path from the source to the 

destination. The performance of shortest-path routing protocols (DVR and LSR) is getting better as the 

number of connections increases. Especially, DVR exhibits bad performance with respect to throughput, 

message loss, and message delay when the number of connections is low (in the range from 1 to 16), 

while it exhibits a good performance when the number of connections is high (in the range from 17 to 38). 

Figure 6. Throughput vs. No. of hotspot connections
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This is to be expected, since even a single path routing algorithm would tend to distribute load over the 

entire network (from a global perspective), as the number of connections approaches n•(n-1), where n is 

the number of the network nodes. 

 

Link Link Utilization    
 LBR-FR LBR-BR1 LBR-BR2 DVR LSR 

(1,2) 0.121856 0.220536 0.196233 0 0 
(2,1) 0.198315 0.130696 0.152132 0 0 
(1,3) 0.002936 0.001161 0.000341 0 0 
(3,1) 0.662169 0.425923 0.401546 0 0 
(1,8) 0.731325 0.328432 0.356318 0 0 
(8,1) 0.004335 0.001058 0.000376 0 0 
(2,3) 0.90508 0.901697 0.840716 0.899904 0.904239 
(3,2) 0.261973 0.153156 0.193707 0.020139 0.014029 
(2,4) 0.995069 0.995623 0.992131 0.992315 0.99268 
(4,2) 0.222276 0.179644 0.267503 0.043145 0.029218 
(3,7) 0.954249 0.909037 0.95026 0 0 
(7,3) 0.266854 0.003891 0.00297 0 0 
(4,5) 0.278972 0.239445 0.247228 0.298565 0.147046 
(5,4) 0.625362 0.651136 0.658512 0.463428 0.897757 
(4,9) 0.99428 0.994313 0.990944 0.990906 0.991348 
(9,4) 0.248013 0.162099 0.15005 0.09728 0.032939 
(5,6) 0.561359 0.710283 0.656828 0.643448 0.64396 
(6,5) 0.28119 0.143053 0.163806 0.067823 0.069427 
(5,7) 0.434552 0.298086 0.419294 0.408406 0.0782 
(7,5) 0.58737 0.765582 0.821679 0.644643 0.675977 
(6,8) 0.18036 0.194901 0.129672 0 0 
(8,6) 0.543098 0.271053 0.28003 0 0 
(7,11) 0.326042 0.317713 0.374955 0.032017 0.03369 
(11,7) 0.324915 0.258867 0.269346 0.305118 0.307439 
(7,14) 0.935556 0.802533 0.854488 0.340003 0.008772 
(14,7) 0.066389 0.122368 0.112128 0 0.028536 
(8,10) 0.556308 0.445645 0.38714 0 0 
(10,8) 0.192068 0.195004 0.181555 0 0 
(9,12) 0.163772 0.165001 0.207258 0.256785 0.444314 
(12,9) 0.229274 0.04096 0.042769 0.052838 0.013005 
(9,13) 0.237705 0.2176 0.199202 0.395162 0.312013 
(13,9) 0.853144 0.85779 0.86014 0.024303 0.005905 

(10,11) 0.001468 0.133666 0.000922 0 0 
(11,10) 0.378914 0.042018 0.446805 0 0 
(10,12) 0.203844 0.619803 0.129707 0 0 
(12,10) 0.051166 0.061713 0.035499 0 0 
(10,13) 0.634379 0.001263 0.607034 0 0 
(13,10) 0.046012 0.400964 0.049766 0 0 
(12,14) 0.002355 0.002185 0.001912 0 0.014916 
(14,12) 0.399736 0.22883 0.22982 0.340003 0.004676 
(13,14) 0.039629 0.001468 0.001502 0 0.013619 
(14,13) 0.510157 0.454349 0.515277 0 0.004096 
Total 16.21382 14.05054 14.3795 7.316228 6.667801 

Average 0.386043 0.334537 0.342369 0.174196 0.158757 
Variance 0.091891 0.093938 0.095212 0.08218 0.093452 

 
                            Table 1. Average link utilization (No. of connections = 8) 
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7. Future Work 

In previous work [3], we had proposed a randomized distance-vector routing protocol, which is called 

a load-balanced routing protocol in this paper, for balancing load. The randomized scheme used LBR-

BR1 to compute the value of the parameter k in order to exclude nodes that are too far away from the 

source from being candidates for an intermediate node. In this paper, we studied another method (LBR-

BR2) to implement our routing approach. Both LBR-BR1 and LBR-BR2 are based on LBR-FR, which 

chooses an intermediate node from the entire network nodes. From our simulation results, we can see that 

LBR-BR2 has the best performance among the three LBR protocols as the number of connections 

increases. A direction of future work is to determine more dynamically the value of the parameter k for 

balancing network traffic load, improving network throughput and using a path of a distance as short as 

possible. For example, using the distance (or cost) from the particular destination for the parameter k may 

give better performance because then the intermediate node closer to the destination may be chosen. 

8. Conclusions 

We presented a family of load-balanced routing protocols to distribute the data traffic, via bounded 

randomization, over all available paths to a destination in the network for data load balancing. Our 

simulation results show that LBR-BR2 has improved performance with respect to throughput, message 

loss, message delay and link utilization at most times during the measurement interval, compared with 

LBR-FR, LBR-BR1, DVR and LSR, which are our previous load-balanced routing protocols and 

conventional destination routing protocols, respectively. Like the previous load-balanced schemes (LBR-

FR, LBR-BR1), LBR-BR2 is simple and suffers from little control overhead. It also improves network 

performance with respect to throughput, message loss, message delay and link utilization. It randomly 

chooses one node within k hops as an intermediate node. This value of the parameter k dynamically 

changes according to the length of the shortest path from the source node to the destination node. Since 

our routing method may use a path that is more expensive than the shortest path, the gain from load 

balance may be smaller than the cost resulting from a longer delay in a network with a very balanced 

traffic. From the result of our simulation, we conclude that our new routing scheme has the following 

advantage over existing schemes: 

Better utilization -- The improved network throughput, the lower packet loss and traffic load balancing 

achieved by using the proposed LBR schemes is indicative of better utilization than the shortest-path 

routing schemes. 
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