
ABSTRACT
As their prices decline, their storage capacities increase, and their
endurance improves, NAND Flash Solid State Disks (SSD)
provide an increasingly attractive alternative to Hard Disk Drives
(HDD) for portable computing systems and PCs. This paper
presents a study of NAND Flash SSD architectures and their
management techniques, quantifying SSD performance under
user-driven/PC applications in a multi-tasked environment; user
activity represents typical PC workloads and includes browsing
files and folders, emailing, text editing and document creation,
surfing the web, listening to music and playing movies, editing
large pictures, and running office applications.

We find the following: (a) the real limitation to NAND Flash
memory performance is not its low per-device bandwidth but its
internal core interface; (b) NAND Flash memory media transfer
rates do not need to scale up to those of HDDs for good
performance; (c) SSD organizations that exploit concurrency at
both the system and device level (e.g. RAID-like organizations
and Micron-style “superblocks”) improve performance
significantly; and (d) these system- and device-level concurrency
mechanisms are, to a significant degree, orthogonal: that is, the
performance increase due to one does not come at the expense of
the other, as each exploits a different facet of concurrency
exhibited within the PC workload.

Categories and Subject Descriptors
B.3 Memory Structures; B.4 I/O and Data Communications;
C.4 Performance of Systems

General Terms
Measurement, Performance, Design, Experimentation

Keywords
Storage Systems, Flash Memory, Solid State Disks, Performance

1. INTRODUCTION
Flash-based solid state disks are rapidly becoming a popular
alternative to hard disk drives as permanent storage, particularly
in netbooks, notebooks and PCs, because of flash’s faster read
access, low power consumption, small size, shock resistance and
reliability compared to hard disks. SSDs are commercially
available in numerous commodity PC models today; they are
considered a high-end option due to a price-per-bit that is higher
than HDDs, but that price gap is closing very quickly.

Flash technology has additional characteristics that have slowed
its takeover of hard disks, including a bit density that is low
relative to HDDs, a limited endurance (i.e., its limited number of
write cycles), and its write performance. Solutions have reached a
level of maturity to place Flash on a near-term crossover with
disk. Rapid migration to later technology nodes and development
of multilevel-cell technology have been driving the bit cost of
NAND Flash significantly lower and its density higher. NAND
Flash capacity has doubled every year since 2001 and is expected
to continue at that rate until 2010; by 2010 it is expected to reach
32/64 Gb single chip density [17, 24, 31]. Over the same period,
NAND-Flash cost has been decreasing 40-50% per year [29]. In
addition, technological enhancements and architectural
mechanisms have improved Flash endurance—currently, NAND
Flash from several different vendors is commercially available
having an endurance rating of more than 50 years at 50 GB write
per day. Soon, the limit on the number of writes will become a
fading memory (pun intended).

What has received relatively little attention is the interplay
between SSD organization and performance, including write
performance. As previous studies have shown [8, 1], the
relationship between memory-system organization and its
performance is both complex and very significant. Very little has
been published on the internals of solid-state disk drives; less has
been published on the performance resulting from the various
design options. The most in-depth study to date has been by
Agrawal et al. [1], who analyze different mapping and ganging/
striping policies at the device level (i.e., assuming a flash device
exported multiple array-select lines to enable concurrent access
within the device) and ganging at the system level, targeting both
enterprise workloads and synthetic workloads.

The Performance of PC Solid-State Disks (SSDs)
as a Function of Bandwidth, Concurrency, Device

Architecture, and System Organization
Cagdas Dirik* and Bruce Jacob

Dept. of Electrical and Computer Engineering
University of Maryland, College Park

{cdirik, blj}@umd.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06...$5.00.

* Cagdas Dirik is a Senior Software Quality Engineer at
MicroStrategy. Email: cdirik@microstrategy.com

By contrast, this study explores in detail the system-level
organization choices for solid-state disks—we study a full design
space of system-level organizations, varying number of busses,
speeds and widths of busses, and degree of concurrent access
allowed on each bus. To compare with system-level details, we
also investigate device-level design trade-offs as well, including
pin bandwidth and I/O width. The design tradeoffs are studied in
the context of user-driven workloads. Our study addresses the
following issues:

• Concurrency. By system-level organization we mean the
design of the SSD, treating the individual flash devices as
constants. Variables in this space include the number of
independent busses, their organizations (widths, speeds, etc.),
banking strategies, and management heuristics that connect
the SSD’s flash controller to the flash devices. As shown by
Agrawal et al., increasing the level of concurrency in the
flash SSD system by striping across the planes within the
flash device can amortize the write overhead and increase
throughput significantly. Concurrency has been shown in the
HDD space to provide tremendous bandwidth increases in
interleaved organizations (e.g., RAID); flash is interesting
because, unlike disks, its form factor need not change when
accommodating interleaved organizations: one can achieve
significant levels of concurrency in an SSD without
significantly changing its overall size and shape. We
investigate the effects of concurrent access to different flash
banks via the same channel or by replicating resources and
providing multiple independent channels to different flash
banks, or by a combination of two.

• Bandwidth issues. Common wisdom holds that SSD
performance is limited by its media transfer rate. Currently
access to a single flash memory chip is provided by an 8-bit
bus, which limits the available bandwidth to the 25–50 MB/s
range (e.g., 30 ns bus speed, 33 MB/s is common) for read
access. For write requests, single chip bandwidth can be
much lower at 6-10 MB/s due to slow programming time
(200 µs for programming a 2KB page). As interface transfer
rates are increasing with the introduction of serial I/O
interfaces and fiber channel, HDD performance will continue
to scale, but SSD performance is expected to be limited by
the device’s media transfer rate. Samsung’s solution to this
problem has been to move to a wider and higher performance
bus, which can sustain 108 MB/s (16 bit, 54 MHz). Other
vendors have followed suit. Two to three years ago, an 8-bit
bus clocked at 50 ns was typical, whereas today most flash
solid state disks come with clocks speeds of 20–30 ns. There
is also push by other vendors in improving read/write
performance of flash disks by access via 800 MB/s bus in a
ring topology [15].

• Write performance. Another approach in improving flash
performance is to reduce the programming time, thus
improving the throughput of write requests. For example
Micron proposed using two-plane flash devices which can
simultaneously read and program two pages (2 KBytes each)
in the same flash die [25]. This effectively doubles
sustainable read and write bandwidth (reported page program

performance increases from 8.87 MB/s to 17.64 MB/s).
Another approach taken by Micron is combining flash
memory blocks into so-called superblocks, enabling the
simultaneous read or write of 2 or 4 pages within a flash
device or even across different flash dies [23]; this
mechanism is similar to Agrawal’s ganging and striping
mechanisms. Samsung offers a similar architecture to hide
programming latency wherein the flash controller controls 2
separate channels and supports 4-way interleaving (write
throughput of 30 MB/s is reported) [28, 29].

The obvious question is which of these issues is the most
significant—i.e., what approaches to improving performance
provide the best performance at the lowest cost? In this paper we
present a simulation-based performance study of NAND Flash
SSD architectures and measure the effectiveness of each of the
mentioned mechanisms. We model various flash solid state disk
architectures for a typical portable computing environment and
quantify their performance under diverse user applications such as
browsing, listening to music, watching video, editing pictures,
editing text and document creation, office applications and email
applications. We find the following:

• The flash memory bus does not need to scale up to HDD I/O
speeds for good performance. Average read response times, a
good indicator of system-level CPI [18, p. 52], do not
improve much beyond 100 MB/s bus bandwidth. The real
limitation to flash memory performance is not its bus speed
but its core interface—the movement of data between the
flash device’s internal storage array and internal 2KB data
and cache registers.

• SSD organizations with significant concurrency (e.g. RAID-
like organizations) do improve performance significantly.
Methods that increase available concurrency by using
multiple independent flash banks per channel combined with
multiple independent channels provide a scalable storage
system. Moreover, there is potential for further
improvements by flash-oriented queuing algorithms, access
reordering and bus ordering algorithms to accommodate
asymmetric read and writes.

Our simulator is based on DiskSim v2.0 [13] and extends its
capabilities by implementing NAND Flash memory read/write/
erase protocols while still emulating a block-device interface. We
model 32 GB NAND Flash SSD system in various organizations
by using 1 to 16 flash memory chips connected with 1, 2 or 4
channels with data widths of 8, 16 or 32 bits each, representing
bandwidths of 25 to 400 MB/s. We focus on user level workloads
in a laptop environment which represent everyday user-level
tasks; details of the workload including several trace snapshots are
given in Section 4).

2. RELATED WORK
Min and Nam described basics of flash memory and its
technological trends [24]. They also outlined various
enhancements in the performance of flash memory such as write
request interleaving and the need for higher bus bandwidth.
Birrell et al. investigated the write performance of flash disks by

running micro-benchmarks for USB flash disks under Windows;
they noted an increased latency for non-sequential writes [4]. In a
similar study Gray and Fitzgerald [14] tested 32 GB Flash SSD
from Samsung and reported average request time of 37 msec for 8
KB non-sequential writes. Dumitru [10] provides a comparison of
Flash SSDs from various vendors and suggests techniques such as
write caching to improve performance. Park et al. proposed high
performance controllers for NAND SSDs which can support 2
channels and up to 4-way interleaving in order to hide write
latency [29]. Kim and Ahn implement a RAM buffer (similar to
write buffers in hard disks) to improve latency of random writes
[20]. Additionally, there are many studies that focus specifically
on flash memory erase performance and wear leveling. These
works look at various ways to hide erase latency, to minimize cost
of block cleaning and to ensure uniform wear leveling across flash
memory blocks [2, 7, 32].

Flash solid state disks emulate a block-device interface. A
different approach is using a file system specific for flash memory
and letting system software manage flash storage [9, 12, 19, 22].
These file systems usually employ a log-structured approach [30].
A survey on flash specific file systems and related patents can be
found in [11]. This survey also discusses various sophisticated
data structures and algorithms designed to overcome the
limitations of flash memory.

Another use for flash memory in storage systems is in a hybrid
setting. Bisson and Brandt use flash memory as a non-volatile
cache called NVCache to provide an extension to hard disks [5].
By using flash memory with hard disk drives in a hybrid
configuration, storage sub-systems I/O performance is improved
and power consumption is reduced. This is consistent with similar
results from Jacob, Ng, and Wang [18]. Similar studies provide
variations of hybrid storage systems which use both flash memory
and hard disk [6, 21].

Recently, Myers discusses use of NAND Flash memory in
relational databases. He investigates using log-structured file
systems for improved write performance and focuses on available
parallelism in multi-chip flash solid state disks. His work
concludes that current flash memory technology is not mature
enough to be used in high-performance relational databases [26].

Finally, Agrawal et al. provide a detailed discussion on design
tradeoffs for NAND Flash SSDs [1]. Their work analyzes
different SSD organizations using synthetic workloads and
enterprise traces. In their work, the serial interface to flash
memory is considered the primary bottleneck for performance. By
employing parallelism within a flash memory package and
interleaving requests to a flash memory die, the overall system
bandwidth is doubled. Although our study resembles theirs, there
are major differences on the methodology and area of
investigation between their work and ours. One of their
conclusions is that SSD performance is highly workload sensitive:
they find that performance differs substantially if write requests
are sequential or random (their synthetic traces are largely
sequential; their enterprise traces are largely random; the
performance improvements shown for the synthetic traces are far
more significant than those shown for the real-world traces).
Additionally, the workloads used in their study are read oriented,

with roughly a 2:1 read-to-write ratio, which helps to hide the
problem of slow writes in an SSD. However, in PC applications
(user-driven workloads), there tends to be a much higher
proportion of writes: in our workloads, we see a 50:50 ratio,
which would tend to expose flash’s write problem. User driven
workloads are not biased towards sequential or random requests
but provide a mix of random and sequential writes at a given time
interval (see Figure 4). Agrawal’s study outlines core limitations
of flash memory within the boundaries of a flash memory device/
package—limitations such as logical to physical mapping
granularity, limited serial interface, block erasure, cleaning
frequency and wear leveling. Our study extends their work by
focusing on exploiting concurrency in SSD organizations at both
the system and device level (e.g. RAID-like organizations and
Micron-style superblocks). These system- and device-level
concurrency mechanisms are, to a significant degree, orthogonal:
that is, the performance increase due to one does not come at the
expense of the other, as each exploits a different facet of
concurrency available within SSD organizations.

3. BACKGROUND
NAND Flash memory is a type of nonvolatile electrically erasable
programmable read only memory (EEPROM) where memory
cells are connected in series between ground and bit lines. This
cell organization allows NAND Flash memory to have much
smaller cell area and bit cost and to consume less power [3, 27].
Data can be read from and written into NAND Flash memory
using an indirect I/O like interface via an 8-bit bus, which is used
for both data and address information, and for issuing commands.
Though the 8-bit I/O bus can be considered a limitation, it
allowed industry-wide standardization of pin counts for NAND
Flash memory packages, and this commoditization helped propel
the technology into its current market position. In addition to read
and write operations, NAND Flash memory also supports a third
type of operation, the erase command. Flash memory technology
does not allow overwrite of data (in-place update of data is not
allowed) since a write operation can only change bits from 1 to 0.
Therefore, to change a cells value from 0 to 1, one has to erase a
group of cells first by setting all of them to 1.

3.1. NAND Flash Array Structure
NAND Flash memory is organized into blocks where each block
consists of a fixed number of pages. Each page stores data and
corresponding metadata and ECC information. A single page is
the smallest read and write unit. Earlier versions of flash memory
had page sizes of 512 Bytes and block size of 16 KBytes (32
pages). Currently a typical page size is 2 KBytes (4 sectors of 512
Bytes each), and a typical block size is 128 KBytes (64 pages).
The number of blocks and pages vary with the size of the flash
memory chip. In addition to storage cells for data and metadata
information, each flash memory die includes a command register,
an address register, a data register and a cache register. Figure 1
shows NAND Flash memory array organization for a sample 1 Gb
flash memory from Micron [25].

3.2. Read/Write Command
In NAND Flash memory, the smallest access unit is a page. To
read a page one issues a read command to the command register

and then writes a block number and page number within the block
into the address register. The complete page data (2 KBytes) will
be accessed in 25 μs and will be loaded into the data register.
Afterwards, data can be read from the data register via the 8-bit
I/O bus. If sequential pages need to be accessed within a block,
the read command can be used in cache mode. In this mode, when
the first page is loaded into data register, it will be transferred
from data register to the cache register. Typically, copying data
from data register to cache register takes 3 μs. While data is read
out from cache register via 8 bit I/O bus, a subsequent page can be
read into the data register.

Similar to a read command, a write or program command must be
issued at the page level, and pages within a block are written in
sequential order. To program a page, one issues a write command
to the command register, writes a block number and page number
into the address register and loads data into the data register. The
data is programmed into the page in 200 μs. To program more
than one page, the write command can be used in cache mode ,
which is similar to the read-command cache mode described
earlier and allows concurrent access via the cache and data
registers.

Figure 2 shows the timing of sample read and write commands for
8 KByte read and write requests. The timing of read requests is
heavily dependent on I/O bus speed, while the timing of write
requests is determined by how quickly a page can be
programmed.

1. Erase Command
As mentioned, a write operation in flash memory can only change
bit values from 1 to 0. The only way to change bit values from 0
to 1 is by erasing. Unlike read and write commands, the erase
command can only be performed at the block level. Once issued,
all bit values in all pages within a block are set to 1. To erase a
block, one issues the erase command to the command register and
loads a block number into the address register. Then flash memory
will set its status to busy for 2 ms while the erase operation is
performed and verified.

2. LBN-PBN Mapping and Block Cleaning
NAND Flash memory does not allow in-place update of data.
Once a page is written, subsequent writes to that page cannot

proceed until the block in which the page resides is erased. Since
it is clearly too expensive to perform an erase for every write,
flash memory allocates to write requests a different, newly erased
page and redirects the write request (and any subsequent read
requests) to this new page. Thus, flash devices must manage a
logical to physical address mapping.

Over time as more write requests are serviced, the number of
pages with invalid data increases, and the number of newly erased
pages decreases. To service more write requests, blocks with
invalid pages need to be cleaned via the erase operation. This is a
garbage-collection process and is managed by the flash controller,
external to the devices.

3. FTL and Host Interface
Compared to HDD, flash memory provides a simpler read/write
interface, one without the complexities of mechanical parts. On
the other hand, flash memory has its own peculiarities of block
erasing and logical-physical address mapping. To use flash
memory as a storage device, one needs to hide these peculiarities
from the host system, since file systems and virtual memory
systems assume a block device interface when accessing storage.
For this purpose, Flash SSDs implement a software layer called
Flash Translation Layer that emulates an HDD for host systems.
Figure 3 shows a sample 32 GB NAND Flash SSD architecture
from Samsung [28]. When the host system calls for a block read
or write, the host interface layer in Flash SSD interprets the host’s
command and invokes associated FTL layer functions. The FTL
converts the logical block address into a physical page address in
the flash memory and initiates read, write or erase commands in
NAND interface layer. In addition to logical to physical address
mapping, FTL is also responsible for implementing all features of
flash memory such as block management, erase unit reclamation,
wear leveling and internal data movements. A survey of
algorithms and data structures implemented at FTL layer can be
found at [11]. Finally, the NAND interface layer implements
internal flash commands and accesses data in flash memory array.

I/
O

 C
o

n
tr

o
l

I/O

Column

R
o
w

Data Reg

Cache Reg

Control

Logic

Cmd Reg

Status Reg

Addr Reg

CE#
W#

R#

Flash Memory Bank

Data Reg

Cache Reg

2K bytes

1 Block

1 Page = 2 K bytes

1 Blk = 64 Pages

1024 Blocks per Device (1 Gb)

Flash

Array

Figure 1: NAND Flash Memory Array Organization. A typical
1 Gb flash memory array consists of 1024 blocks. Each block
contains 64 pages of 2 KB each. Figure adapted from [25].

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array into
data register

Xfer from data to
cache register

Subsequent page is
accessed while data is read
out from cache register

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed while
data for subsequent page is
written into cache register200 us

Read 8 KB
(4 Pages)

Write 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Figure 2: Flash memory Read and Write Operation Timing
Diagram. Read/write 8 KB with 25 μs page read time, 200 μs
page program time and 25 MHz 8-bit I/O bus. Page size is 2
KBytes. Cache mode operation is typical when accessing
sequential pages.

2. EXPERIMENTAL METHODOLOGY
For accurate timing of disk requests for a flash SSD, we integrated
our flash memory code into DiskSim v2.0. DiskSim is an efficient,
accurate disk system simulator from Carnegie Mellon University
and has been extensively used in various research projects
studying storage subsystem architectures [13]. Our modified
version of DiskSim can simulate a generalized Flash NAND SSD
by implementing flash specific read, program, erase commands,
block cleaning, LBN-PBN mapping, all while providing the
illusion of representing an HDD.

In this study, we have modeled a 32 GB ATA 133 MB/s NAND
Flash SSD with the following timing parameters: page access time
of 25 μs, page program time of 200 μs and block erase time of
3 ms. We have assumed page sizes of 2 KBytes and block sizes of
64 pages. Logical to physical address mapping is performed at the
granularity of a page. To measure the impact of media transfer
rate, we varied the speed at which data can be read from the flash
devices to the external controller (over the flash device’s external
pins). We modeled 8-, 16- and 32-bit wide I/O busses at speeds of
25, 50 and 100 MHz.

We wanted to model today’s typical SSDs which usually support 2
channels and up to 4-way interleaving (e.g., the configuration
modeled in [1]). Therefore we simulated various configurations of
flash memory banks on a shared bus or multiple independent
channels to different flash banks or a combination of the two. In
our simulations each flash memory bank (either a single device or
a set of interleaved devices, similar to Agrawal’s ganging) can
accept one request at a time and can operate independently of
other banks unless they are linked together in Micron-style
superblocks. The size of each flash memory bank can change, as
the entire storage capacity is kept constant at 32 GB. For example,
if 4 banks are connected via a single shared bus, then each bank is
8 GB in size. If a configuration with 4 independent I/O channels
and 4 memory banks per channel is used, then each bank is 2 GB
in size (system capacity is 16 x 2 GB).

To simulate a realistic flash management model, we have assumed
modular striping for write requests. If we have a total of x banks,
the Nth write request is assigned to bank number N(mod x). We
have maintained a pool of free blocks for each bank and have
allocated pages from the current working free block when a write

request is received. For example; if a write request of 8 KBytes is
received, data is written into the next available 4 pages within the
current working free block and logical-to-physical address
mapping is updated accordingly.

2.1. I/O Workloads
DiskSim can be used as a trace-driven simulator or can internally
generate synthetic workloads [13]. In our study, we have used our
own disk traces collected from portable computers and PCs
running real user workloads. Our workloads represent typical
multi-tasking user activity, which includes browsing files and
folders, emailing, text editing and document creation, surfing the
web, listening to music and playing movies, editing pictures, and
running office applications.

The characteristics of our traces are consistent with expected I/O
traffic for personal computer workloads reported by Hsu and
Smith [16]. The average I/O per second in our traces ranges from
1.6 Mbps to 3.5 Mbps, which is similar to 2.37 Mbps reported in
[16]. Our personal computer workloads generate 4.6 to 21.35 I/O
requests per second with an average request size of 26 KB.
Although this average request size is much higher than 7-9 KB
expected by [16], it is weighted by a small number of large files:
approximately half of the requests generated in our traces are
4-8 KB. We observed that average request size in our personal
workloads is skewed by occasional very large write requests (of
size 64 KB and higher). We have also confirmed that I/O traffic in
our workloads is bursty, localized and balanced—I/O requests
arrive in groups, frequently access localized areas of the disk, and
are partitioned roughly 50:50 between reads and writes. Figure 4
summarizes properties of our traces and shows three different 8-
minute snapshots from three different traces, representing
different mixes of reads and writes.

2.2. Average Read Latency
We present performance in terms of average request response
time, average write request time, and average read request time.
As shown in Jacob, Ng, & Wang [18 p. 52], overall computer-
system performance (i.e., CPI) tracks disk’s average read
response time and not the disk’s average request response time,
which includes both reads and writes. The observation is true for
both read-dominated applications and applications with significant
write activity. In our simulations, write-request behavior is
modeled in detail to address flash’s write-performance issue as
well as to determine its effect on read performance.

3. EXPERIMENTAL RESULTS

3.1. Banking and Interleaving
One way to hide write (program) latency in flash memory has
been interleaving sequential writes by dividing the flash array into
banks where each bank can read/write/erase independently. Since
flash memory allocates a newly erased page for a write request,
choosing an empty page for each write becomes a run-time
decision of resource allocation. When sequential write requests
arrive, one can assign pages for these writes from different banks.
This way sequential writes can be dispatched to multiple
independent banks in parallel, and page write times can be

Ctrl

IDE

ATA

SCSI

Host

x16

S
R

A
M

MPU

ECC

D
at

a
B

u
ff

er

x32

Flash Translation

Layer

Data

&

Ctrl

x32

F
la

sh
 C

o
n
tr

o
ll

er

x16

x8

x8

x16

x8

x8

Flash

Array

Flash

Array

Flash

Array
Flash

Array

Host I/F

Layer
NAND I/F

Layer

Figure 3: Organization of a conventional 32 GB NAND Flash
SSD. Figure adapted from [28].

Fi
gu

re
 4

: I
/O

 W
or

kl
oa

ds
. P

ro
pe

rti
es

 o
f o

ur
 u

se
r d

riv
en

 d
isk

 tr
ac

es
 a

re
 li

ste
d.

 S
na

ps
ho

ts
fro

m
 d

iff
er

en
t t

ra
ce

s c
on

fir
m

 b
ur

sty
, l

oc
al

iz
ed

 a
nd

 re
ad

/w
rit

e
ba

la
nc

ed
 I/

O
 tr

af
fic

.

interleaved. Figure 5(a) shows a flash array organization with 4-
way interleaving and timing diagram for 4 sequential write
requests of 2KB each.

Figure 6(a) shows the effect of increasing the degree of banking
on average disk-request response time. Note that response time is
sum of physical access time (time to read/write data to/from flash
array) and queue wait time. One sees significant improvements in
both read and write request times, 50–80%, when the level of
banking is increased from 1 to 2 and 2 to 4. However, from 4- to
8-way banking, reads and writes start to show different
performance characteristics. While request times continue to
improve for writes, read-request performance starts to flatten,
moving from 4 to 8-way banking. This is explained by an increase
in the physical access times at high levels of banking due to bus
contention—especially for low bandwidth 8-bit 25 MHz bus
configurations. The more banks per channel, the larger the degree
of bus utilization, to the point of traffic congestion. As shown
before in Figure 2, read request timing mostly consists of time
spent in reading data from the I/O bus and is thus more sensitive
to degradation in the I/O channel than writes; any congestion in
the I/O bus will impact reads more than writes. Performance of
read requests is critical since overall system performance tracks
disk’s average read response time [18]. Therefore one does not
gain much by increasing interleaving from 4 to 8 in a single
channel configuration. If 8-way banking is supported by 2
channels rather than a single channel, read performance does
improve 20%. 4-way banking is the optimum level of concurrency
on a single I/O bus for these workloads.

3.2. Superblocks
Another way to hide write latency in flash memory and to
improve both read and write performance is to gang blocks across
individual flash banks to create superblocks [23]. Individual flash
memory banks are combined by sharing chip-enable, command
signals, and I/O signals. Sharing command signals enables
merging physical blocks across flash arrays to create a designated

superblock. This effectively increases the size of available data
and cache registers and enables the superblock to process a higher
volume of data in one step. Figure 5(b) shows a sample flash array
organization with 4-way superblocks.

The effect of superblocks on average response time is shown in
Figure 6(b). Similar to banking, superblocks also improve
performance significantly in 2- and 4-way configurations, with
diminishing returns in read performance for 8-way configurations.
Compared to banking, superblocks provide 10–60% better
performance, especially at higher I/O bandwidths. When the I/O
bandwidth is low and the level of interleaving is high, banking
outperforms superblocks by 27% in servicing write requests, as
shown in Figure 6(c).

Improving performance by banking is relatively cheap—
independent banks on a shared bus do not increase controller
complexity, and bus arbitration can be implemented with low cost.
On the other hand, superblocks require additional controller
complexity in managing blocks across flash memory banks, as
each block must be checked independently (for example, compare
Figures 5 & 6 in [23]). Another trade-off with superblocks is the
fact that blocks are linked together permanently, due to the
hardwiring of control and I/O pins from multiple devices. If any
one of the blocks in a superblock becomes bad, all blocks in that
superblock are considered unusable, thus reducing available
storage. This represents a significant design trade-off: superblocks
provide better performance than banking, but banking is a more
reliable solution and is thus potentially more scalable.

3.3. Media Transfer Rate
One of the factors limiting flash memory performance is believed
to be its media transfer rate. In current flash devices, 8-bit 33MB/s
I/O buses are common. As HDDs with 7200 or 10K RPM are
popular, and disk-interface speeds are scaling up with serial
interface and fiber channel, SSD performance is expected to be
limited by the media transfer rate. We have measured the effect of
media transfer rate on the performance of NAND Flash SSD by
scaling I/O bus bandwidth from 25 MB/s (8-bit wide bus at 25
MHz) up to 400 MB/s (32-bit wide bus at 100 MHz). As shown in
Figure 7, performance does not improve significantly beyond 100
MB/s.

However, note that, even when performance saturates at high
bandwidths, it is still possible to achieve significant performance
gains by increasing the level of concurrency by either banking or
implementing superblocks. Performance saturates at 100MB/s
because the real limitation to NAND Flash memory performance
is the device’s core interface—the requirement to read and write
the flash storage array through what is effectively a single port
(the read/cache registers)—and this is a limitation that
concurrency overcomes.

3.4. Increasing the Degree of Concurrency
As shown previously, flash memory performance can be improved
significantly if request latency is reduced by dividing the flash
array into independent banks and exploiting concurrency. The
flash controller can support these concurrent requests through
multiple flash memory banks via the same channel or through

F
la

sh
 C

o
n
tr

o
ll

er

Data Reg

Cache Reg

Data Reg

Cache Reg

Data Reg
Cache Reg

Data Reg
Cache Reg

1 Blk

(64 Pages)

2K bytes

F
la

sh
 C

o
n
tr

o
ll

er

Data Reg

Cache Reg

Data Reg

Cache Reg

1 Superblock

(4x64 Pages)

8K bytes

Data Reg

Cache Reg

Data Reg

Cache Reg

8 KB Data and Cache Reg

Independent

Banks Banks are ganged and operate synchronous

2048 cycles
81.92 us

I/O [7:0]

200 us

To Bank 0

To Bank 2

To Bank 1

To Bank 3

Cmd & Addr

8192 cycles
327.68 us

I/O [7:0]

200 us

To Bank 0, 1, 2, 3

Cmd & Addr

Flash

Array Flash

Array

Flash

Array

Flash

Array

Flash

Array

DI0 Pr0

DI1 Pr1

DI2 Pr2

DI3 Pr3

DI0-3 Pr0-3

Flash

Array

Flash

Array

Write
4 x 2 KB

Write
8 KB

(a) (b)

Figure 5: Banking and Superblocks. (a) 4-way baking and
timing diagram of 4 subsequent write requests of 2 KB each. I/O
bus is shared by independent banks. (b) 4-way superblocks and
timing diagram of writing 8 KB. Blocks across blocks are linked
together to create superblocks. Data and cache registers are linked
as well.

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

All Requests
R

e
s

p
o

n
s

e
 T

im
e

 (
m

s
e

c
) Access Queue

0

1

2

3

4

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

Reads

0

3

6

9

12

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

Writes

0

2

4

6

8

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s

e
c

)

Access Queue

0

1

2

3

4

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

0

3

6

9

12

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

8
x
25

8
x
50

16
 x
 5

0

0

1

2

3

4

2-
w
ay

4-
w
ay

8-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

Banking Superblocks

0

3

6

9

12

2-
w
ay

4-
w
ay

8-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

Banking Superblocks

0

2

4

6

8

2-
w
ay

4-
w
ay

8-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

2-
w
ay

4-
w
ay

8-
w
ay

R
e

q
u

e
s

t
R

e
s

p
o

n
s

e
 T

im
e

 (
m

s
e

c
)

Banking Superblocks

(a)

(b)

(c)

Bus Width (bits) x Bus Speed (MHz)

8x25MHz 8x50MHz 16x50MHz 8x25MHz 8x50MHz 16x50MHz 8x25MHz 8x50MHz 16x50MHz

Bus Width (bits) x Bus Speed (MHz)

All Requests Reads Writes
30

.2
25

.5
24

.1
15

.2 11 9.8 45
.3 40 38

.3

30
.2

25
.5
24

.1
15

.2 11 9.8 45
.3 40 38

.3

2-way 4-way 8-way

Figure 6: Response Times: Banking vs. Superblocks. (a) 2, 4, and 8-way banking; performance dramatically increase when the level of
banking is increased from 1 to 2 and 2 to 4. Read-request performance starts to flatten, moving from 4 to 8-way banking. (b) 2, 4, and 8-
way superblocks. Performance improves significantly in 2- and 4-way configurations, with diminishing returns in read performance for 8-
way configurations. (c) Comparing banking against superblocks with varying I/O bus width and speed.

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

All Requests

R
e

q
u

e
s

t
R

e
s

p
o

n
s

e
 T

im
e

 (
m

s
e

c
)

0

1

2

3

4

Reads

0

3

6

9

12

WritesAll Requests Reads Writes
30

.2
23

.7
15

.2 9.6 45
.1

37
.7

Ba
nk

ing

2-way

Si
ng

le

Ba
nk Si

ng
le

Ba
nk Si

ng
le

Ba
nk

8 x 25MHz
8 x 50MHz
8 x 100MHz
16 x 100MHz
32 x 100MHz

Su
pe

rb
loc

ks

4-way 8-way

2-way 4-way 8-way 2-way 4-way 8-way

Figure 7: Media Xfer Rate - Changing I/O bandwidth from 25 MB/s (8bit x 25 MHz bus) to 400 MB/s (32 bit x 100 MHz bus).
Performance does not improve significantly beyond 100 MB/s.

multiple independent channels to different banks, or through a
combination of the two. To get a better idea of the shape of the
design space, we have focused on changing the degree of
concurrency one I/O bandwidth at a time. Figure 8 shows example
configurations modeled in our simulations with bandwidths
ranging from 25 MB/s to 400 MB/s. This is equivalent to saying,
“I have four 50 MHz 8-bit I/O channels ... what should I do?
Gang them together, use them as independent channels, or try
some combination of the two?”

The performance results are shown in Figure 9. Though
increasing the available concurrency in the storage sub-system
(number of banks x number of channels) typically increases
performance, it does not always do so by very much. For
example, consider Figure 9(a); comparing 4 banks with 2
channels against 4 banks with 4 channels, adding 2 channels does
not improve performance if the channels are already fast enough.

Trying to exploit concurrency by splitting an I/O bus into multiple
narrow channels does not improve performance. Moreover, if the
I/O bus is slow, it has a negative effect, as is shown in Figure 9(b).
Read and write requests show different trends. When total I/O
bandwidth of the system is fixed, as in Figure 9(c), read requests
prefer faster channels. On the other hand write requests prefer
multiple channels. Given a storage sub-system with fixed media
transfer bandwidth, there are always several near-optimal
configurations that are within several percent of each other.

1. Queueing and Read Priority
As mentioned before, read and write requests in flash memory
show different characteristics. One major difference is their
asymmetric nature, as shown in Figure 2. Read request
performance is heavily dependent on I/O bus width and clock
speed. On the other hand, write requests are limited by core
programming time. Another difference is the scale factor in their
timing: a write request usually executes 2–8 times slower than a
read request, depending on the I/O bandwidth. These differences
provide an additional opportunity to improve storage sub-system
performance by giving priority to reads in request scheduling. For
example, assume read access takes x and a write access takes 4x
amount of time, and a read request is received immediately
following a write request. Simply scheduling these requests in the
order they are received will result in average response time of
4.5x. However, if the read request is given priority and issued
earlier, the average response time will be 3x. Moreover, read
performance will improve by a factor of 5 while write

performance is only effected by 25%. When combined with the
fact that overall system performance tracks disk’s average read
response time (not the disk’s average response time) for both
read-dominated applications and applications with significant
write traffic, one can simply improve NAND Flash SSD
performance by giving priority to read requests over write
requests.

As shown in Figure 10, we have simulated effects of read priority
on performance of flash memory with superblocks. When reads
are given priority over writes, their performance improves
significantly, by 30–50%. At the same time, writes show a slight
performance degradation of roughly 5%. Superblocks provide a
good example because of their superior write performance—read
and write timings show the smallest scale of difference. For other
memory organizations such as banking and multiple channels, the
impact will much bigger as asymmetry between reads and writes
increase.

2. CONCLUSIONS
We have simulated various NAND Flash SSD architectures for a
typical portable computing environment and found that NAND
Flash memory performance is not limited by its serial interface.
Given a storage sub-system with fixed media transfer bandwidth,
there are several configurations that result in excellent
performance without significant costs—i.e., one need not move
into GB/s bandwidths or 128-bit data widths to achieve good
performance. SSD organizations that exploit concurrency at both
the system and device level (e.g. RAID-like organizations and
Micron-style superblocks) improve performance significantly.
Due to the asymmetric nature of read and write requests, one
configuration that provides the best write performance may not be
the best choice for read performance. Moreover, asymmetry
between reads and writes provide potential for further
performance improvements by flash oriented queueing algorithms.

REFERENCES
[1]
 Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., M.

Manasse, and Panigraphy, R. 2008. Design Tradeoffs for
SSD Performance. In Proceedings of the USENIX Annual
Technical Conference (Boston, MA, June 2008). USENIX
2008.

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

kH
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

(a) Single channel (b) Dedicated channel for each bank (c) Multiple shared channels

Figure 8: Flash SSD Organizations. (a) Single I/O bus is shared - 1, 2, or 4 banks; (b) dedicated I/O bus: 1, 2, or 4 buses and single bank
per bus; (c) multiple shared I/O channels - 2 or 4 channels with 2 or 4 banks per channel.

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

All Requests
R

e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

0

1.5

3.0

4.5

6.0

25 MHz 50 MHz 100 MHz

Writes

0

2

4

6

8

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

0

0.5

1.0

1.5

2.0

25 MHz 50 MHz 100 MHz

Reads

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

0

1

2

3

4

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

0

3

6

9

12

1
 x

 8
 x

 2
5

1
 x

 8
 x

 5
0

2
 x

 8
 x

 2
5

1
 x

 1
6
 x

 5
0

1
 x

 8
 x

 1
0
0

2
 x

 8
 x

 5
0

1
 x

 1
6
 x

 5
0

4
 x

 8
 x

 2
5

2
 x

 1
6
 x

 2
5

1
 x

 3
2
 x

 2
5

2
 x

 8
 x

 1
0
0

1
 x

 1
6
 x

 1
0
0

4
 x

 8
 x

 5
0

2
 x

 1
6
 x

 5
0

1
 x

 3
2
 x

 5
0

4
 x

 1
6
 x

 2
5

2
 x

 3
2
 x

 2
5

4
 x

 8
 x

 1
0
0

2
 x

 1
6
 x

 1
0
0

1
 x

 3
2
 x

 1
0
0

4
 x

 1
6
 x

 5
0

2
 x

 3
2
 x

 5
0

4
 x

 3
2
 x

 2
5

4
 x

 1
6
 x

 1
0
0

2
 x

 3
2
 x

 1
0
0

4
 x

 3
2
 x

 5
0

4
 x

 3
2
 x

 1
0
0

R
e
s
p

o
n

s
e
 T

im
e
 (

m
s
e
c
)

1
x
1

1
x
2

2
x
1

1
x
4 2
x
2 4
x
1

2
x
4

4
x
2

4
x
4

25 MHz

50 MHz 100 MHz 200 MHz 400 MHz

1 Chan

2 Chan

4 Chan

1 Bank per Channel
2 Banks per Channel

4 Banks per Channel

25 MBps 50 MBps 100 MBps 200 MBps 400 MBps 800 MBps 1.6 GBps

(a) (b)

(c)

No of Channels x Bus Width (bits) x Speed (MHz)

No of Channels x Banks per Channel

30
.2

25
.5

24
.1

23
.8

23
.7

30
.2

25
.5

x 2
5

24
.1 23

.8
23

.7

15
.2 11 9.

8 9.
7 9.

6

45
.1

40
38

.3 37
.9

37
.7

All Requests

Reads

Writes

Figure 9: Level of concurrency. (a) Increasing concurrency by using multiple 8-bit channels and multiple banks per channel; (b) splitting
single 32-bit 25 MHz I/O bus into 2 16-bit channels or 4 8-bit channels; (c) changing bank and channel organization for fixed I/O
bandwidth.

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

Reads

0

3

6

9

12

Writes

0

2

4

6

8

All Requests

R
e

q
u

e
s

t
R

e
s

p
o

n
s

e
 T

im
e

 (
m

s
e

c
)

8 bit 25 MHz

1 Bank

F
C

F
S

8 bit 50 MHz
8 bit 100 MHz
16 bit 100 MHz
32 bit 100 MHz

R
ea

ds

F
irs

t

F
C

F
S

R
ea

ds

F
irs

t

F
C

F
S

R
ea

ds

F
irs

t

F
C

F
S

R
ea

ds

F
irs

t

2-way 4-way
Superblocks

8-way

30
.2

25
.3

15
.2

45
.1

47
.7

Figure 10: FCFS vs. Read Priority. Comparing first come first serve scheduling policy against reads first in 2, 4, and 8-way superblocks.

[2]
 Baek, S., Ahn, S., Choi, J., Lee, D., and Noh., S. H. 2007.
Uniformity Improving Page Allocation for Flash Memory
File Systems. In Proceedings of the 7th ACM & IEEE
International Conference On Embedded Software (2007),
154-163.

[3]
 Bez R., and Cappelletti P. 2005. Flash Memory and
Beyond. In 2005 International Symposium on VLSI
Technology (April 2005). IEEE VLSI-TSA, 84-87.

[4]
 Birrell, A., Isard, M., Thacker, C., and Wobber, T. 2007. A
Design for High-Performance Flash Disks. ACM SIGOPS
Operating Systems Review, vol. 41, no. 2, 88-93.

[5]
 Bisson, T., and Brandt, S. A. 2007. Reducing Hybrid Disk
Write Latency with Flash-Backed I/O Requests. In
Proceedings of the 15th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. MASCOTS’07.

[6]
 Chen, F., Jiang, S. and Zhang, X. 2006. SmartSaver:
Turning Flash Drive into a Disk Energy Saver for Mobile
Computers. In Proceedings of the 11th International
Symposium on Low Power Electronics and Design,
(October, 2006). ISLPED'06.

[7]
 Chiang, M.-L., and Chang, R.-C. 1999. Cleaning Policies in
Mobile Computers Using Flash Memory. Journal of
Systems and Software, vol. 48, no. 3, 213-231.

[8]
 Cuppu, V., and Jacob, B. 2001. Concurrency, Latency, or
System Overhead: Which Has the Largest Impact on
Uniprocessor DRAM-System Performance? In Proceedings
of the 28th Annual ACM/IEEE International Symposium on
Computer Architecture (Göteborg, Sweden, June 2001).
ISCA 2001, 62–71.

[9]
 Dai, H., Neufeld, M., and Han, R. 2004. Elf: An Efficient
Log Structured Flash File System for Micro Sensor Nodes.
In Proceedings of the 2nd International Conference on
Emdedded Networked Sensor Systems. SenSys’04, 176-187.

[10]
 Dumitru, D. 2007. Understanding Flash SSD Performance.
http://managedflash.com/news/papers/easyco-
flashperformance-art.pdf (August 2007).

[11]
 Gal, E., and Toledo, S. 2005. Algorithms and Data
Structures for Flash Memories. ACM Computing Surveys,
vol. 37, no. 2, 138-163.

[12]
 Gal, E., and Toledo, S. 2005. A Transactional Flash File
System for Microcontrollers. In Proceedings of the USENIX
Annual Technical Conference, 89-104.

[13]
 Ganger, G., R., Worthington, B. L., and Patt, Y. N. The
DiskSim Simulation Environment Version 2.0 Reference
Manual. http://www.pdl.cmu.edu/DiskSim/disksim2.0.html.

[14]
 Gray, J., and Fitzgerald, B. 2007. Flash Disk Opportunity
for Server-Applications. http://research.microsoft.com/
~gray/papers/FlashDiskPublic.doc (January 2007).

[15]
 HLNAND. HyperLink NAND Flash. MOSAID
Technologies Inc., http://hlnand.com/852572C9004980E9/
ID/Next-Gen-Memory-WP1, May 2007.

[16]
 Hsu, W., and Smith, A. J. 2003. Characteristics of I/O
Traffic in Personal Computer and Server Workloads. IBM
Systems Journal, vol. 2, no. 2 (April 2003), 347-372.

[17]
 Hwang, C. 2003. Nanotechnology Enables a New Memory
Growth Model. Proceedings of the IEEE, vol. 91, no. 11
(November 2003), 1765-1771.

[18]
 Jacob, B., Ng, S., and Wang, D. 2007. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann.

[19]
 JFFS2: The Journalling Flash File System. Red Hat
Corporation. http://sources.redhat.com/jffs2/jffs2.pdf, 2001.

[20]
 Kim, H., and Ahn, S. 2008. A Buffer Management Scheme
for Improving Random Writes in Flash Storage. In
Proceedings of the 6th USENIX Symposium on File and
Storage Technologies. FAST’08, 239-252.

[21]
 Kim, Y., Lee, S., Zhang, K., and Kim, J. 2007. I/O
Performance Optimization Techniques for Hybrid Hard
Disk-Based Mobile Consumer Devices. IEEE Transactions
on Consumer Electronics, vol. 53, no. 4 (November 2007),
1469-1476.

[22]
 Manning, C. 2004. YAFFS: Yet Another Flash File System.
http://aleph1.co.uk/yaffs.

[23]
 Memory Management in NAND Flash Arrays. Micron, Inc.
Technical Note TN-29-28. http://download.micron.com/pdf/
technotes/nand/tn2928.pdf, 2005.

[24]
 Min, S. L., and Nam, E. H. 2006. Current Trends in Flash
Memory Technology. In Proceedings of the 2006 Asia
South Pacific Design Automation (January 2006). ASP-
DAC '06, 332-333.

[25]
 MT29F1GxxABB 1 Gb NAND Flash Memory. Micron
Technology, Inc., http://download.micron.com/pdf/
datasheets/flash/nand/1gb_nand_m48a.pdf, 2006.

[26]
 Myers, D. 2007. On the Use of NAND Flash Memory in
High-Performance Relational Databases. Master’s thesis.
MIT.

[27]
 NAND Flash Applications Design Guide. Toshiba America
Electronic Components, Inc. http://www.dataio.com/pdf/
NAND/Toshiba/NandDesignGuide.pdf.pdf, April 2003.

[28]
 NAND Flash-based Solid State Disk Module Type Product
Data Sheet. Samsung Electronics Co., Ltd., http://
www.bigboytech.com/new/v1.5/ssd/docs/
ssd_module_type_spec_rev121.pdf, January 2007.

[29]
 Park, C., Talawar, P., Won, D., Jung, M., Im, J., Kim, S.,
and Choi, Y. 2006. A High Performance Controller for
NAND Flash-based Solid State Disk (NSSD). In
Proceedings of the 21st IEEE Non-Volatile Semiconductor
Memory Workshop. NVSMW, 17-20.

[30]
 Rosenblum, M., and Ousterhout, J. 1992. The Design and
Implementation of a Log-Structured File System. ACM
Transactions on Computer Systems, vol. 10, no. 1, 26-52.

[31]
 Shin, Y. 2005. Non-volatile Memory Technologies for
Beyond 2010. In 2005 Symposium on VLSI Circuits (June
2005), 156-159.

[32]
 Wu, M., and Zwaenepoel, W. 1994. eNVy: A Non-Volatile,
Main Memory Storage System. In Proceedings of the 6th
International Conference on Architectural Support for
Programming Languages and Operating Systems.
ASPLOS, 86-97.

