
ABSTRACT
As their prices decline, their storage capacities increase, and their 
endurance improves, NAND Flash  Solid State Disks (SSD) 
provide an increasingly attractive alternative to Hard Disk Drives 
(HDD) for portable computing systems and PCs. This paper 
presents a study of NAND Flash SSD architectures and their 
management techniques, quantifying SSD performance under 
user-driven/PC applications in a multi-tasked environment; user 
activity represents typical PC workloads and includes browsing 
files and folders, emailing, text editing and document creation, 
surfing the web, listening to music and playing  movies, editing 
large pictures, and running office applications. 

We find the following: (a) the real limitation to NAND Flash 
memory performance is not its low per-device bandwidth but  its 
internal core interface; (b) NAND Flash  memory media transfer 
rates do not need to scale up to those of HDDs for good 
performance; (c) SSD organizations that  exploit concurrency at 
both  the system and device level (e.g. RAID-like organizations 
and Micron-style “superblocks”) improve performance 
significantly; and (d) these system- and device-level concurrency 
mechanisms are, to  a significant degree, orthogonal: that  is, the 
performance increase due to one does not come at  the expense of 
the other, as each exploits a different  facet of concurrency 
exhibited within the PC workload.

Categories and Subject Descriptors
B.3 Memory Structures; B.4 I/O and Data Communications; 
C.4 Performance of Systems

General Terms
Measurement, Performance, Design, Experimentation

Keywords
Storage Systems, Flash Memory, Solid State Disks, Performance

1. INTRODUCTION
Flash-based solid state disks are rapidly becoming a popular 
alternative to hard disk drives as permanent storage, particularly 
in  netbooks, notebooks and  PCs, because of flash’s faster read 
access, low power consumption, small size, shock resistance and 
reliability compared to hard disks. SSDs are commercially 
available in numerous commodity PC models today; they are 
considered a high-end option due to a price-per-bit  that is higher 
than HDDs, but that price gap is closing very quickly.

Flash technology has additional  characteristics that  have slowed 
its takeover of hard disks, including a bit density that is low 
relative to HDDs, a limited endurance (i.e., its limited  number of 
write cycles), and its write performance. Solutions have reached a 
level of maturity to place Flash on a near-term crossover with 
disk. Rapid migration to later technology nodes and development 
of multilevel-cell  technology have been driving the bit cost  of 
NAND Flash significantly lower and its density higher. NAND 
Flash capacity has doubled every year since 2001 and is expected 
to  continue at that  rate until 2010; by 2010 it is expected to reach 
32/64 Gb single chip density [17, 24, 31]. Over the same period, 
NAND-Flash cost has been decreasing 40-50% per year [29]. In 
addition, technological enhancements and architectural 
mechanisms have improved Flash endurance—currently, NAND 
Flash from several  different  vendors is commercially available 
having an endurance rating of more than 50 years at 50 GB write 
per day. Soon, the limit on the number of writes will become a 
fading memory (pun intended). 

What has received relatively little attention is the interplay 
between SSD organization and performance, including write 
performance. As previous studies have shown [8, 1], the 
relationship between memory-system organization and its 
performance is both complex and very significant. Very little has 
been published on the internals of solid-state disk drives; less has 
been published on the performance resulting from the various 
design options. The most in-depth study to  date has been by 
Agrawal et al. [1], who analyze different mapping and ganging/
striping policies at  the device level (i.e., assuming a flash device 
exported multiple array-select lines to  enable concurrent access 
within  the device) and ganging at the system level, targeting  both 
enterprise workloads and synthetic workloads. 
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By contrast, this study explores in detail the system-level 
organization choices for solid-state disks—we study a full design 
space of system-level organizations, varying  number of busses, 
speeds and widths of busses, and degree of concurrent access 
allowed on each bus. To compare with system-level  details, we 
also investigate device-level design trade-offs as well, including 
pin bandwidth and I/O width. The design tradeoffs are studied in 
the context of user-driven  workloads. Our study addresses the 
following issues:

• Concurrency. By system-level organization we mean the 
design of the SSD, treating the individual flash devices as 
constants. Variables in this space include the number of 
independent busses, their organizations (widths, speeds, etc.), 
banking strategies, and management heuristics that connect 
the SSD’s flash controller to the flash devices. As shown by 
Agrawal et al., increasing the level of concurrency in the 
flash SSD system by striping across the planes within the 
flash device can amortize the write overhead and increase 
throughput significantly. Concurrency has been shown in the 
HDD space to provide tremendous bandwidth increases in 
interleaved organizations (e.g., RAID); flash is interesting 
because, unlike disks, its form factor need not change when 
accommodating interleaved organizations: one can achieve 
significant levels of concurrency in an SSD without 
significantly changing its overall size and shape. We 
investigate the effects of concurrent access to different flash 
banks via the same channel or by replicating resources and 
providing multiple independent channels to different flash 
banks, or by a combination of two. 

• Bandwidth issues. Common wisdom holds that SSD 
performance is limited by its media transfer rate. Currently 
access to a single flash memory chip is provided by an 8-bit 
bus, which limits the available bandwidth to the 25–50 MB/s 
range (e.g., 30 ns bus speed, 33 MB/s  is common) for read 
access. For write requests, single chip bandwidth can be 
much lower at 6-10 MB/s due to slow programming time 
(200 µs for programming a 2KB page). As interface transfer 
rates are increasing with the introduction of serial I/O 
interfaces and fiber channel, HDD performance will continue 
to scale, but SSD performance is expected to be limited by 
the device’s media transfer rate. Samsung’s solution to this 
problem has been to move to a wider and higher performance 
bus, which can sustain 108 MB/s (16 bit, 54 MHz). Other 
vendors have followed suit. Two to three years ago, an 8-bit 
bus clocked at 50 ns was typical, whereas today most flash 
solid state disks come with clocks speeds of 20–30 ns. There 
is also push by other vendors in improving read/write 
performance of flash disks by access via 800 MB/s bus in a 
ring topology [15].

• Write performance. Another approach in improving flash 
performance is to reduce the programming time, thus 
improving the throughput of write requests. For example 
Micron proposed using two-plane flash devices which can 
simultaneously read and program two pages (2 KBytes each) 
in the same flash die [25]. This effectively doubles 
sustainable read and write bandwidth (reported page program 

performance increases from 8.87 MB/s to 17.64 MB/s). 
Another approach taken by Micron is combining flash 
memory blocks into so-called superblocks, enabling the 
simultaneous read or write of 2 or 4 pages within a flash 
device or even across different flash dies [23]; this 
mechanism is similar to Agrawal’s ganging and striping 
mechanisms. Samsung offers a similar architecture to hide 
programming latency wherein the flash controller controls 2 
separate channels and supports 4-way interleaving (write 
throughput of 30 MB/s is reported) [28, 29]. 

The obvious question is which of these issues is  the most 
significant—i.e., what approaches to improving performance 
provide the best  performance at the lowest  cost? In  this paper we 
present a simulation-based performance study of NAND Flash 
SSD architectures and measure the effectiveness of each of the 
mentioned mechanisms. We model various flash solid state disk 
architectures for a typical  portable computing environment and 
quantify their performance under diverse user applications such as 
browsing, listening to music, watching video, editing pictures, 
editing text and document creation, office applications and email 
applications.  We find the following:

• The flash memory bus does not need to scale up to HDD I/O 
speeds for good performance. Average read response times, a 
good indicator of system-level CPI [18, p. 52], do not 
improve much beyond 100 MB/s bus bandwidth. The real 
limitation to flash memory performance is not its bus speed 
but its core interface—the movement of data between the 
flash device’s internal storage array and internal 2KB data 
and cache registers. 

• SSD organizations with significant concurrency (e.g. RAID-
like organizations) do improve performance significantly. 
Methods that increase available concurrency by using 
multiple independent flash banks per channel combined with 
multiple independent channels provide a scalable storage 
system. Moreover, there is potential for further 
improvements by flash-oriented queuing algorithms, access 
reordering and bus ordering algorithms to accommodate 
asymmetric read and writes.

Our simulator is based on DiskSim v2.0 [13] and extends its 
capabilities by implementing NAND Flash memory read/write/
erase protocols while still emulating a block-device interface. We 
model 32 GB NAND Flash SSD system in various organizations 
by  using 1 to 16 flash memory chips connected with 1, 2 or 4 
channels with data widths of 8, 16 or 32 bits each, representing 
bandwidths of 25 to 400  MB/s. We focus on user level workloads 
in  a laptop environment  which represent everyday user-level 
tasks; details of the workload including several trace snapshots are 
given in Section 4). 

2. RELATED WORK
Min and Nam described basics of flash memory and its 
technological trends [24]. They also outlined various 
enhancements in the performance of flash memory such as write 
request interleaving and the need for higher bus bandwidth. 
Birrell et  al. investigated the write performance of flash disks by 



running micro-benchmarks for USB flash disks under Windows; 
they noted an increased latency for non-sequential  writes [4]. In a 
similar study Gray and Fitzgerald [14] tested 32 GB Flash SSD 
from Samsung and reported average request time of 37 msec for 8 
KB non-sequential writes. Dumitru [10] provides a comparison of 
Flash SSDs from various vendors and suggests techniques such as 
write caching to improve performance. Park et al. proposed high 
performance controllers for NAND SSDs which can support  2 
channels and up to 4-way interleaving in  order to hide write 
latency [29]. Kim and Ahn implement  a RAM buffer (similar to 
write buffers in  hard disks) to  improve latency of random writes 
[20]. Additionally, there are many studies that focus specifically 
on  flash memory erase performance and wear leveling. These 
works look at various ways to hide erase latency, to minimize cost 
of block cleaning and to ensure uniform wear leveling across flash 
memory blocks [2, 7, 32]. 

Flash solid state disks emulate a block-device interface. A 
different approach is using a file system specific for flash memory 
and letting  system software manage flash storage [9, 12, 19, 22]. 
These file systems usually employ a log-structured approach [30]. 
A survey on flash specific file systems and related patents can be 
found in [11]. This survey also discusses various sophisticated 
data structures and algorithms designed to overcome the 
limitations of flash memory.

Another use for flash memory in storage systems is in a hybrid 
setting. Bisson and Brandt use flash memory as a non-volatile 
cache called  NVCache to provide an extension to hard disks [5]. 
By using flash memory with hard disk drives in a hybrid 
configuration, storage sub-systems I/O performance is improved 
and power consumption is reduced. This is consistent with similar 
results from Jacob, Ng, and Wang [18]. Similar studies provide 
variations of hybrid storage systems which use both flash memory 
and hard disk [6, 21].

Recently, Myers discusses use of NAND Flash memory in 
relational databases. He investigates using log-structured file 
systems for improved write performance and focuses on available 
parallelism in multi-chip flash solid state disks. His work 
concludes that current flash memory technology is not mature 
enough to be used in high-performance relational databases [26].

Finally, Agrawal et al. provide a detailed discussion on design 
tradeoffs for NAND Flash SSDs [1]. Their work analyzes 
different SSD organizations using synthetic workloads and 
enterprise traces. In their work, the serial interface to flash 
memory is considered the primary  bottleneck for performance. By 
employing parallelism within a flash memory package and 
interleaving requests to a flash memory die, the overall system 
bandwidth is doubled. Although our study resembles theirs, there 
are major differences on the methodology and area of 
investigation between their work and ours. One of their 
conclusions is that SSD performance is highly  workload sensitive: 
they find that performance differs substantially if write requests 
are sequential or random (their synthetic traces are largely 
sequential; their enterprise traces are largely random; the 
performance improvements shown for the synthetic traces are far 
more significant  than those shown for the real-world traces). 
Additionally, the workloads used in their study are read oriented, 

with  roughly  a 2:1 read-to-write ratio, which helps to hide the 
problem of slow writes in an SSD. However, in PC applications 
(user-driven workloads), there tends to be a much higher 
proportion of writes:  in our workloads, we see a 50:50 ratio, 
which would tend to expose flash’s write problem. User driven 
workloads are not biased towards sequential  or random requests 
but provide a mix of random and sequential writes at a given time 
interval (see Figure 4). Agrawal’s study outlines core limitations 
of flash memory within the boundaries of a flash memory device/
package—limitations such as logical to  physical mapping 
granularity, limited serial interface, block erasure, cleaning 
frequency and wear leveling. Our study extends their work by 
focusing on exploiting concurrency in SSD organizations at both 
the system and device level (e.g. RAID-like organizations and 
Micron-style superblocks). These system- and device-level 
concurrency mechanisms are, to a significant degree, orthogonal: 
that is, the performance increase due to one does not come at the 
expense of the other, as each exploits a different facet of 
concurrency available within SSD organizations.

3. BACKGROUND
NAND Flash memory is a type of nonvolatile electrically erasable 
programmable read only memory (EEPROM) where memory 
cells are connected  in series between ground and bit lines. This 
cell organization allows NAND Flash memory to  have much 
smaller cell area and bit  cost and to consume less power [3, 27]. 
Data can be read from and written into  NAND Flash memory 
using an indirect I/O like interface via an 8-bit bus, which is used 
for both data and address information, and for issuing commands. 
Though the 8-bit I/O bus can be considered a limitation, it 
allowed industry-wide standardization of pin  counts for NAND 
Flash memory packages, and this commoditization helped propel 
the technology into its current  market position.  In addition to read 
and write operations, NAND Flash memory also supports a third 
type of operation, the erase command. Flash memory technology 
does not allow overwrite of data (in-place update of data is not 
allowed) since a write operation can only change bits from 1 to 0. 
Therefore, to change a cells value from 0 to 1, one has to erase a 
group of cells first by setting all of them to 1.

3.1. NAND Flash Array Structure 
NAND Flash memory is organized into blocks where each block 
consists of a fixed number of pages. Each page stores data and 
corresponding metadata and ECC information. A single page is 
the smallest  read and write unit. Earlier versions of flash memory 
had page sizes of 512 Bytes and block size of 16 KBytes (32 
pages). Currently a typical page size is 2 KBytes (4 sectors of 512 
Bytes each), and a typical block size is 128 KBytes (64 pages). 
The number of blocks and pages vary with  the size of the flash 
memory chip. In addition to storage cells for data and metadata 
information, each flash memory die includes a command register, 
an address register, a data register and a cache register. Figure 1 
shows NAND Flash memory array organization for a sample 1 Gb 
flash memory from Micron [25].

3.2. Read/Write Command
In NAND Flash memory, the smallest access unit  is a page. To 
read a page one issues a read command to the command register 



and then writes a block number and page number within the block 
into  the address register. The complete page data (2  KBytes) will 
be accessed in 25 μs and will  be loaded into the data register. 
Afterwards, data can be read from the data register via the 8-bit   
I/O bus. If sequential pages need to be accessed within a block, 
the read command can be used in cache mode. In this mode, when 
the first page is loaded into data register, it will be transferred 
from data register to the cache register. Typically, copying data 
from data register to cache register takes 3 μs. While data is read 
out from cache register via 8 bit  I/O bus, a subsequent page can be 
read into the data register. 

Similar to a read command, a write or program command must be 
issued at the page level, and pages within  a block are written in 
sequential order. To program a page, one issues a write command 
to  the command register, writes a block number and page number 
into  the address register and loads data into the data register. The 
data is programmed into the page in 200 μs. To program more 
than one page, the write command can be used in  cache mode , 
which is similar to the read-command cache mode described 
earlier and allows concurrent  access via the cache and data 
registers.

Figure 2 shows the timing of sample read and write commands for 
8 KByte read and write requests. The timing of read requests is 
heavily dependent on I/O bus speed, while the timing of write 
requests is determined by how quickly a page can be 
programmed.

1. Erase Command
As mentioned, a write operation in flash memory can only change 
bit values from 1 to 0. The only way to change bit values from 0 
to  1 is by erasing. Unlike read and write commands, the erase 
command can only be performed at the block level. Once issued, 
all bit values in all pages within a block are set  to 1. To erase a 
block, one issues the erase command to the command register and 
loads a block number into the address register. Then flash memory 
will  set its status to busy for 2 ms while the erase operation is 
performed and verified.

2. LBN-PBN Mapping and Block Cleaning
NAND Flash memory does not allow in-place update of data. 
Once a page is written, subsequent  writes to that page cannot 

proceed until the block in  which the page resides is erased. Since 
it  is clearly too expensive to perform an erase for every write, 
flash  memory allocates to write requests a different, newly erased 
page and redirects the write request  (and any subsequent read 
requests) to this new page. Thus, flash devices must manage a 
logical to physical address mapping.

Over time as more write requests are serviced, the number of 
pages with invalid data increases, and the number of newly erased 
pages decreases. To service more write requests, blocks with 
invalid pages need to be cleaned via the erase operation. This is a 
garbage-collection process and is managed by the flash controller, 
external to the devices.

3. FTL and Host Interface
Compared to HDD, flash memory provides a simpler read/write 
interface, one without the complexities of mechanical parts. On 
the other hand, flash memory has its own peculiarities of block 
erasing and logical-physical  address mapping. To use flash 
memory as a storage device, one needs to hide these peculiarities 
from the host system, since file systems and virtual memory 
systems assume a block device interface when accessing storage. 
For this purpose, Flash SSDs implement a software layer called 
Flash Translation Layer that  emulates an HDD for host systems. 
Figure 3 shows a sample 32 GB NAND Flash  SSD architecture 
from Samsung [28]. When the host  system calls for a block read 
or write, the host interface layer in Flash SSD interprets the host’s 
command and invokes associated FTL layer functions. The FTL 
converts the logical block address into a physical page address in 
the flash memory and initiates read, write or erase commands in 
NAND interface layer. In addition to logical to  physical address 
mapping, FTL is also responsible for implementing all features of 
flash  memory such as block management, erase unit  reclamation, 
wear leveling and internal data movements. A survey of 
algorithms and data structures implemented at FTL layer can be 
found at [11]. Finally, the NAND interface layer implements 
internal flash commands and accesses data in flash memory array. 
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2. EXPERIMENTAL METHODOLOGY
For accurate timing of disk requests for a flash SSD, we integrated 
our flash memory code into DiskSim v2.0. DiskSim is an efficient, 
accurate disk system simulator from Carnegie Mellon University 
and has been extensively used in various research projects 
studying  storage subsystem architectures [13]. Our modified 
version of DiskSim can simulate a generalized Flash NAND SSD 
by  implementing flash specific read, program, erase commands, 
block cleaning, LBN-PBN mapping, all while providing the 
illusion of representing an HDD.

In this study, we have modeled a 32 GB ATA 133 MB/s NAND 
Flash SSD with the following timing parameters:  page access time 
of 25 μs, page program time of 200 μs and block erase time of 
3 ms. We have assumed page sizes of 2 KBytes and block sizes of 
64  pages. Logical  to physical address mapping is performed at the 
granularity of a page. To measure the impact of media transfer 
rate, we varied the speed at which data can be read from the flash 
devices to the external controller (over the flash device’s external 
pins). We modeled 8-, 16- and 32-bit wide I/O busses at speeds of 
25, 50 and 100 MHz. 

We wanted  to model  today’s typical  SSDs which usually support  2 
channels and up to 4-way interleaving (e.g., the configuration 
modeled in [1]). Therefore we simulated various configurations of 
flash  memory banks on a shared bus or multiple independent 
channels to different flash banks or a combination of the two. In 
our simulations each flash memory bank (either a single device or 
a set  of interleaved devices, similar to Agrawal’s ganging) can 
accept one request  at a time and can operate independently of 
other banks unless they are linked together in Micron-style 
superblocks. The size of each flash memory bank can change, as 
the entire storage capacity is kept constant at 32 GB. For example, 
if 4 banks are connected  via a single shared bus, then each bank is 
8 GB in size. If a configuration with 4 independent I/O channels 
and 4 memory banks per channel is used, then each bank is 2 GB 
in size (system capacity is 16 x 2 GB). 

To simulate a realistic flash management  model, we have assumed 
modular striping for write requests. If we have a total of x banks, 
the Nth write request is assigned to bank number N(mod x). We 
have maintained a pool of free blocks for each bank and have 
allocated pages from the current working free block when a write 

request is received. For example; if a write request of 8 KBytes is 
received, data is written  into the next available 4 pages within the 
current working free block and  logical-to-physical address 
mapping is updated accordingly.

2.1. I/O Workloads
DiskSim can be used as a trace-driven simulator or can internally 
generate synthetic workloads [13]. In our study, we have used our 
own disk traces collected from portable computers and PCs 
running real user workloads. Our workloads represent typical 
multi-tasking user activity, which includes browsing files and 
folders, emailing, text editing and document creation, surfing the 
web, listening to  music and playing movies, editing pictures, and 
running office applications. 

The characteristics of our traces are consistent with expected I/O 
traffic for personal computer workloads reported by Hsu and 
Smith [16]. The average I/O per second in our traces ranges from 
1.6 Mbps to 3.5 Mbps, which is similar to 2.37 Mbps reported in 
[16]. Our personal computer workloads generate 4.6 to 21.35 I/O 
requests per second with  an average request size of 26 KB. 
Although this average request size is much higher than 7-9 KB 
expected by [16], it is weighted by a small number of large files: 
approximately half of the requests generated in our traces are 
4-8  KB. We observed that average request  size in our personal 
workloads is skewed by occasional very large write requests (of 
size 64 KB and higher). We have also  confirmed that I/O traffic in 
our workloads is bursty, localized and balanced—I/O requests 
arrive in groups, frequently access localized areas of the disk, and 
are partitioned roughly 50:50 between reads and writes. Figure 4 
summarizes properties of our traces and shows three different  8-
minute snapshots from three different traces, representing 
different mixes of reads and writes.

2.2. Average Read Latency
We present performance in terms of average request response 
time, average write request time, and average read request time. 
As shown in Jacob, Ng, & Wang [18 p. 52], overall  computer-
system performance (i.e., CPI) tracks disk’s average read 
response time and not the disk’s average request response time, 
which includes both reads and writes. The observation is true for 
both  read-dominated applications and applications with significant 
write activity. In our simulations, write-request behavior is 
modeled in  detail  to  address flash’s write-performance issue as 
well as to determine its effect on read performance. 

3. EXPERIMENTAL RESULTS

3.1. Banking and Interleaving
One way to  hide write (program) latency in flash memory has 
been interleaving sequential writes by dividing the flash array into 
banks where each bank can read/write/erase independently. Since 
flash  memory allocates a newly erased page for a write request, 
choosing an empty  page for each write becomes a run-time 
decision of resource allocation. When sequential write requests 
arrive, one can assign pages for these writes from different banks. 
This way sequential writes can be dispatched to  multiple 
independent banks in  parallel, and page write times can be 
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interleaved. Figure 5(a) shows a flash array organization with  4-
way interleaving and timing diagram for 4 sequential write 
requests of 2KB each.

Figure 6(a) shows the effect of increasing the degree of banking 
on  average disk-request response time. Note that  response time is 
sum of physical access time (time to read/write data to/from flash 
array) and queue wait time. One sees significant improvements in 
both  read and write request times, 50–80%,  when the level of 
banking is increased from 1 to 2 and 2 to 4. However, from 4- to 
8-way banking, reads and writes start to  show different 
performance characteristics. While request times continue to 
improve for writes, read-request performance starts to  flatten, 
moving from 4 to 8-way banking. This is explained by an increase 
in  the physical  access times at high levels of banking due to bus 
contention—especially for low bandwidth 8-bit 25 MHz bus 
configurations. The more banks per channel, the larger the degree 
of bus utilization, to  the point of traffic congestion. As shown 
before in Figure 2, read request timing mostly consists of time 
spent in reading data from the I/O bus and is thus more sensitive 
to  degradation in the I/O channel  than writes; any congestion in 
the I/O bus will  impact  reads more than writes. Performance of 
read requests is critical since overall  system performance tracks 
disk’s average read response time [18]. Therefore one does not 
gain much by increasing interleaving from 4 to 8 in a single 
channel configuration. If 8-way banking is supported by 2 
channels rather than a single channel, read performance does 
improve 20%. 4-way banking is the optimum level of concurrency 
on a single I/O bus for these workloads.

3.2. Superblocks
Another way to hide write latency in  flash memory and to 
improve both read and write performance is to gang blocks across 
individual flash banks to create superblocks [23]. Individual flash 
memory banks are combined by sharing chip-enable, command 
signals, and I/O signals. Sharing command signals enables 
merging physical blocks across flash arrays to create a designated 

superblock. This effectively increases the size of available data 
and cache registers and enables the superblock to process a higher 
volume of data in one step. Figure 5(b) shows a sample flash array 
organization with 4-way superblocks.

The effect of superblocks on average response time is shown in 
Figure 6(b). Similar to banking, superblocks also improve 
performance significantly in 2- and 4-way configurations, with 
diminishing  returns in read performance for 8-way configurations. 
Compared to banking, superblocks provide 10–60% better 
performance, especially  at higher I/O bandwidths. When the I/O 
bandwidth is low and the level of interleaving is high, banking 
outperforms superblocks by 27% in servicing write requests, as 
shown in Figure 6(c). 

Improving performance by banking is relatively cheap—
independent banks on a shared bus do not increase controller 
complexity, and bus arbitration can be implemented with low cost. 
On the other hand, superblocks require additional  controller 
complexity in managing blocks across flash memory banks, as 
each block must be checked independently (for example, compare 
Figures 5 & 6 in  [23]). Another trade-off with superblocks is the 
fact that blocks are linked together permanently, due to the 
hardwiring of control and I/O pins from multiple devices. If any 
one of the blocks in a superblock becomes bad, all  blocks in that 
superblock are considered unusable, thus reducing available 
storage. This represents a significant design trade-off: superblocks 
provide better performance than banking, but banking is a more 
reliable solution and is thus potentially more scalable.

3.3. Media Transfer Rate
One of the factors limiting flash memory performance is believed 
to  be its media transfer rate. In current flash devices, 8-bit 33MB/s 
I/O buses are common. As HDDs with 7200 or 10K RPM are 
popular, and disk-interface speeds are scaling up with serial 
interface and fiber channel, SSD performance is expected to be 
limited by the media transfer rate. We have measured the effect of 
media transfer rate on the performance of NAND Flash SSD by 
scaling I/O bus bandwidth from 25 MB/s (8-bit wide bus at  25 
MHz) up to 400 MB/s (32-bit wide bus at 100 MHz). As shown in 
Figure 7, performance does not improve significantly beyond 100 
MB/s.

However, note that, even when performance saturates at  high 
bandwidths, it is still possible to  achieve significant performance 
gains by increasing the level of concurrency by either banking or 
implementing superblocks. Performance saturates at 100MB/s 
because the real limitation to NAND Flash memory performance 
is the device’s core interface—the requirement to read and write 
the flash storage array through what is effectively a single port 
(the read/cache registers)—and this is a limitation that 
concurrency overcomes.

3.4. Increasing the Degree of Concurrency
As shown previously, flash memory performance can be improved 
significantly if request  latency is reduced by dividing the flash 
array into independent banks and exploiting concurrency. The 
flash  controller can support these concurrent requests through 
multiple flash memory banks via the same channel or through 
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multiple independent channels to  different  banks, or through a 
combination of the two. To get  a better idea of the shape of the 
design space, we have focused on changing the degree of 
concurrency one I/O bandwidth at a time. Figure 8 shows example 
configurations modeled  in our simulations with bandwidths 
ranging from 25 MB/s to 400 MB/s. This is equivalent to saying, 
“I have four 50 MHz 8-bit I/O channels ... what should I do? 
Gang them together, use them as independent channels, or try 
some combination of the two?”

The performance results are shown in Figure 9. Though 
increasing the available concurrency in the storage sub-system 
(number of banks x number of channels) typically increases 
performance, it does not always do so by very much. For 
example, consider Figure 9(a); comparing 4 banks with 2 
channels against 4 banks with 4  channels, adding 2 channels does 
not improve performance if the channels are already fast enough.

Trying to exploit concurrency by splitting an I/O bus into multiple 
narrow channels does not improve performance. Moreover, if the 
I/O bus is slow, it  has a negative effect, as is shown in Figure 9(b). 
Read and write requests show different trends. When total I/O 
bandwidth of the system is fixed, as in Figure 9(c), read requests 
prefer faster channels. On the other hand write requests prefer 
multiple channels. Given a storage sub-system with fixed media 
transfer bandwidth, there are always several  near-optimal 
configurations that are within several percent of each other.

1. Queueing and Read Priority
As mentioned  before, read and write requests in flash memory 
show different characteristics. One major difference is their 
asymmetric nature, as shown in Figure 2. Read request 
performance is heavily dependent on I/O bus width and  clock 
speed. On the other hand, write requests are limited by core 
programming time. Another difference is the scale factor in their 
timing:  a write request  usually executes 2–8 times slower than a 
read request, depending on the I/O bandwidth. These differences 
provide an additional opportunity to improve storage sub-system 
performance by giving priority to reads in request scheduling. For 
example, assume read access takes x and a write access takes 4x 
amount of time, and a read request is received immediately 
following a write request. Simply scheduling these requests in the 
order they are received will result in average response time of 
4.5x. However, if the read  request  is given priority and issued 
earlier, the average response time will be 3x. Moreover, read 
performance will improve by a factor of 5 while write 

performance is only effected by 25%. When combined with the 
fact that overall system performance tracks disk’s average read 
response time (not  the disk’s average response time) for both 
read-dominated applications and applications with significant 
write traffic, one can simply improve NAND Flash SSD 
performance by giving priority to read requests over write 
requests. 

As shown in Figure 10, we have simulated effects of read priority 
on  performance of flash memory with superblocks. When reads 
are given priority over writes, their performance improves 
significantly, by 30–50%. At the same time, writes show a slight 
performance degradation of roughly 5%. Superblocks provide a 
good  example because of their superior write performance—read 
and write timings show the smallest scale of difference. For other 
memory organizations such as banking and multiple channels, the 
impact will much bigger as asymmetry between reads and writes 
increase.

2. CONCLUSIONS
We have simulated various NAND Flash SSD architectures for a 
typical portable computing environment  and found that NAND 
Flash memory performance is not limited by its serial interface. 
Given a storage sub-system with fixed media transfer bandwidth, 
there are several configurations that result in excellent 
performance without significant costs—i.e., one need not move 
into  GB/s bandwidths or 128-bit data widths to achieve good 
performance. SSD organizations that exploit concurrency at both 
the system and device level (e.g. RAID-like organizations and 
Micron-style superblocks) improve performance significantly. 
Due to the asymmetric nature of read and write requests, one 
configuration that provides the best write performance may not be 
the best  choice for read performance. Moreover, asymmetry 
between reads and writes provide potential  for further 
performance improvements by flash oriented queueing algorithms.
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