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PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the “Guide for the

Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.
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ON THE PERFORMANCE OF LINEAR MIMO TRANSCEIVERS

Publication No.

Ahmed Mohammed Hesham Mehana, Ph.D.
The University of Texas at Dallas, 2012

Supervising Professor: Dr. Aria Nosratinia

In this dissertation, the reliability and throughput of equalization and precoding techniques

are analyzed in both several multiple-input multiple-output (MIMO) as well as single-input

single-output (SISO) scenarios, resulting in several new discoveries as well as explanation

certain phenomena that were known but not fully understood.

The first part of this dissertation establishes the diversity of the minimum mean square

error (MMSE) MIMO receiver for all fixed rates (spectral efficiencies) in the quasi-static

flat-fading MIMO channel. It is shown that full spatial diversity is achieved for all antenna

configurations if and only if the rate is below a threshold which itself is a function of the

number of antennas. The diversity of the MIMO multiple access channel (MAC) is also

obtained. Linear receivers for the quasi-static frequency selective MIMO channel are also

analyzed.

The second part of the dissertation is dedicated to linear MIMO precoders, including Wiener

filtering, regularized zero-forcing filtering and matched filtering. It is shown that regularized

zero-forcing or matched filter suffer from error floors for all positive multiplexing gains. In

the fixed-rate regime, these precoders achieve full diversity up to a certain spectral efficiency

vii



and zero diversity at rates above it. The diversity in the presence of both linear precoding

and linear equalization is also analyzed.

The third part of the dissertation investigates the performance of common transmit diversity

techniques, such as Alamouti and cyclic-delay diversity schemes, when used with linear

receivers. The effect of block length on the system performance is fully characterized.

The fourth and final part of the dissertation investigates decision feedback equalizers in

SISO ISI channels. As part of the developments of this part, the notion of the spectral

representation of random processes is used for a rigorous analytical framework of decision

feedback equalizers.
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CHAPTER 1

INTRODUCTION

1.1 Background

Wireless communications has seen a rise in popularity that has driven new discoveries. Many

factors have contributed to this trend, including the increasing demand for connectivity, the

progress of integrated circuit technology as well as the successful deployment of standards

that have rapidly expanded the availability of wireless connectivity, thus creating more de-

mand for new products and services, and the fundamental discoveries that make them pos-

sible. Despite great advances, many open problems in this area persist. This dissertation is

dedicated to the solution of several long-standing open problems in the analysis of popular

wireless transceivers.

Two phenomena in wireless communication produce challenges that are unique to the

medium: fading and interference phenomena. The former describes the variation of the

channel strength due to small-sale and large-scale effects of multipath fading; the latter

describes the interactions between different transmitted signals in the same medium. Inter-

ference can naturally occur in a multi-user scenario, but it can also occur in a single-user

scenario when multiple signal components of the same user interfere with each other, which

can be thought of as self-interference. Examples of self-interference include signals emitting

from multi-antenna transmitters (interference in space) or inter-symbol interference (ISI)

which is interference across time. This dissertation analyzes various transceivers that are

designed to efficiently address the question of fading and interference in wireless systems.

With very few exceptions, most of the transceivers analyzed in this dissertation are linear

and operate on multiple-input multiple-output (MIMO) channels.

1
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Several metrics have been widely adopted to characterize the performance of wireless

systems, among them the average probability of error and the outage probability. In the

fading channel, these quantities are partially characterized by the notion of diversity [1, 2],

i.e., the slope of error probability as a function of SNR in the log-log scale. While in non-

fading channels the probability of error decreases exponentially with the signal-to-noise ratio

(SNR), in fading channels the probability of error averaged over the channel distribution is

proportional to SNR−d, where d is the channel diversity.

At high SNR the channel throughput increases proportionally with log SNR. It has been

shown that a fundamental tradeoff exists between this throughput and the channel reliability

as expressed by the diversity. This tradeoff was characterized for the MIMO channel under

maximum likelihood decoding by the seminal paper of Zheng and Tse [2], leading to the

widespread use of the Diversity-Multiplexing Tradeoff (DMT) as a metric of quality for a

variety of wireless systems and algorithms.

1.2 Motivation and Objectives

The primary objective of this dissertation is an in-depth study of the performance limits of

multiple input multiple output (MIMO) systems in the presence of linear receivers and/or

linear precoders. Although several DMT results are also obtained, the main thrust of this

work is in the fixed-rate regime, i.e., when the spectral efficiency R is independent of SNR.

The DMT is a powerful framework but it is not able to describe the diversity in the

fixed rate regime, because the DMT cannot distinguish between different spectral efficiencies

R that correspond to the same multiplexing gain r. In several practical systems, various

spectral efficiencies R, all corresponding to the same multiplexing gain, indeed give rise to

different diversities [1, 2]. The difference between calculating the diversity in the fixed rate

regime versus in the DMT is further clarified in Chapter 2.

Fixed rate analysis of diversity requires new tools compared with DMT analysis, since

certain terms and mathematical expressions in DMT analysis are asymptotically negligible
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and can be ignored, while the counterparts in fixed-rate analysis are not negligible and must

be handled delicately.

1.3 Outline and Contributions

Chapter 2 briefly discusses the basics and background material on which the remainder of

the dissertation rests.

Chapter 3 analyzes the MIMO MMSE receiver under flat fading channel assumption and

the diversity is explicitly characterized as a function of spectral efficiency R and the number

of antennas. The MIMO multiple access channel (MAC) is similarly studied and the diversity

of reception is computed.

Chapter 4 extends the results of the previous chapter and studies the performance of the

MIMO MMSE receiver in the frequency selective channel under two common transmission

schemes: the zero-padding and the cyclic-prefix tranmission.

Chapter 5 studies the MIMO precoding systems when channel state information is avail-

able at the transmitter. Several precoding filters are analyzed, including the zero-forcing,

the regularized zero-forcing and the matched filter. The analysis reveals that the matched

filter and the regularized zero-forcing are not always interference-limited. Their performance

depends on the spectral efficiency and in some cases these two filters achieve the maximum

spatial diversity in contrast to the zero-forcing filtering. Several other results pertaining to

MIMO precoders were also obtained.

Chapter 6 extends the analysis of the previous chapters to MIMO systems with linear

transmit and receive filters under the flat fading channel.

Chapter 7 analyzes two common transmit diversity techniques, Alamouti signaling and

cyclic delay diversity, in the presence of the MMSE receiver. The effect of the block length,

the antenna configurations, and the spectral efficiency on the system performance is fully

characterized.
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In order to improve the performance of the MIMO linear receivers, lattice-reduction aided

equalization has been proposed in the literature for MIMO flat fading and SISO frequency

selective channels. Chapter 8 analyzes the LR-aided equalization for MIMO frequency se-

lective channel.

Chapter 9 analyzes the decision-feedback equalizer for the SISO ISI channel. As part of

the developments of this chapter, the spectral representation of random processes is used to

put the analysis of decision feedback equalizers on a more solid mathematical foundation.



CHAPTER 2

PRELIMINARIES

This chapter provides a review some information-theoretic concepts and performance mea-

sures used throughout this dissertation.

2.1 Information Rate and Decoding Reliability

The framework to study performance limits in communication systems is information theory

established by Claude Shannon in 1948. Shannon characterizes the limits of reliable commu-

nication by proving the surprising result that one can communicate at strictly positive rate

with as small error probability as required. 1 Consider the complex baseband representation

of the channel

y = hx + n (2.1)

where x and y are the input and the output of the channel respectively, h is the channel

(possibly fading) and n is the thermal noise at the receiver modeled as AWGN ∼ N (0, σ2
n)

where σ2
n is the noise variance. The maximum rate of reliable communication supported

by this channel depends on the process {h} as well as how much information about {h} is

available at the transmitter and the receiver.

Conditional on the realization of h and assuming that the transmitter does not know this

realization but the receiver does (this information denoted by the channel state information

at the receiver CSI-Rx), the maximum rate of reliable communication supported by this

channel is

log(1 + |h|2ρ) bits/s/Hz (2.2)

1Before Shannon it was widely believed that the only way to achieve reliable communi-
cation over a noisy channel was to reduce the data rate [3].

5
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which is the capacity of AWGN channel with a fixed gain h and ρ is the signal-to-noise ratio

(SNR). The quantity in (2.2) is indeed the Shannon capacity for AWGN under the above

assumptions.

2.2 Shannon Capacity vs. Fading Capacity

If the channel {h} is a fading process, as it is usually the case for wireless channel, then

the quantity in (2.2) is random. If the channel h remains fixed over the transmission period

of the the codeword then the model is slow fading model. It is quite possible that for

some realizations of {h} the channel cannot support the transmission rate. That is, if the

transmitter encodes the data at a rate (spectral efficiency) of R bits/s/Hz then there is a

non-zero probability that log(1 + |h|2ρ) < R in which case the error probability is strictly

positive. The Shannon capacity in this case is strictly zero. Instead it is possible to define

the outage probability

Pout(R) , P(log(1 + |h|2ρ) < R) (2.3)

and correspondingly define the ε-outage capacity [4], which is the largest rate for which

Pout(R) 6 ε,

Cε , sup
{
R : Pout 6 ε

}
. (2.4)

These two measures, Pout and Cε , are used to characterize the performance limits of the

slow fading model where the codeword only spans one coherence period (i.e. the channel

is fixed over this period). When the codeword spans more than one coherent periods the

model is fast fading model. The capacity of the fast fading channel can be shown to be

C = E[(log(1 + |h|2ρ)]. (2.5)

which is achieved by large number of coherence time intervals.

An extreme case for the fast fading model is when the channel is varying so fast such that

each codeword symbol experiences a different channel gain. An intermediate case between

the so-fast fading model and the slow fading model is when h remains fixed over a period of
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codeword symbols and is i.i.d. across different coherent periods. This model is called block

fading model and is widely adopted in practical applications.

2.3 Diversity: Fixed-Rate Regime vs. Variable-Rate Regime

Reliable communication over fading channel depends on the strength of the signal path, i.e.

the channel gain, which can sometime be in deep fade and therefore results in very poor

communication. A natural solution to improve the communication performance is to ensure

that the information symbol experience multiple independent channel gains through diversity

techniques. Diversity techniques can be performed over time or frequency (e.g. coding and

interleaving), space (e.g. multiple antennas) or networks (e.g. cellular networks) [3]. These

techniques result in a probability of error Pe that is proportional ρ−d at high SNR, where d

is the diversity order of the system.

Another important parameter, especially in MIMO systems, is the multiplexing gain or

degree of freedom. Consider an M × N MIMO channel model (where M and N are the

number of transmit and receive antennas respectively)

y = Hx + n (2.6)

where H is a stationary ergodic random fading process. For the fast fading model and

CSI-Rx and no CSI-Tx, a celebrated capacity result is given by

CMIMO = E
[(

log det
(
1 +

ρ

M
HHH

)]
. (2.7)

with the assumption of equal power allocations for all transmitted streams. At high SNR,

the MIMO capacity is approximated by

CMIMO = nmin log
( ρ

M

) ≈ nminCAWGN. (2.8)

where nmin , min(M,N) and CAWGN is the high-SNR capacity of AWGN single antenna

channel with transmit equivalent SNR ρ
M

.



8

For a square MIMO system where M = N = n we also have the following interesting

result. For a fixed SNR and large value of n [3]

CMIMO ≈ n c∗(ρ). (2.9)

where

c∗(ρ) = 2 log
(
0.25(

√
4ρ + 1 + 1)

)− log e

4ρ
(
√

4ρ + 1− 1)2

Equation (2.9) implies that the capacity increases linearly with n at any SNR.

The pre-log factor in (2.8) and (2.9) is called the multiplexing gain or degree of freedom,

and is usually denoted by r .

The dual benefits of MIMO communication at high SNR (represented by the multiplexing

gain r and the diversity gain d) is well captured by the diversity-multiplexing tradeoff (DMT)

framework formulated in the seminal work of Zheng and Tse [2].

Definition 2.3.1 Let the rate R scales with log ρ as [2,3]

R = r log ρ.

An outage diversity gain dout(r) is achieved at multiplexing gain r if the outage probability

satisfies

lim
ρ→∞

log Pout(r log ρ)

log ρ
= −dout(r)

This definition is used to characterize the slow fading performance of the channel [2, 3]. We

can correspondingly define a DMT framework for a communication scheme by replacing Pout

by Pe.

Definition 2.3.2 A space-time scheme is a family of codes, indexed by the signal-to-noise

ratio ρ, achieves a multiplexing gain r and a diversity gain d is the data rate scales as [2,3]

R = r log ρ

and the error-probability satisfies

lim
ρ→∞

log Pe

log ρ
= −d
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Usually outage analysis in many MIMO systems is more tractable than error analysis,

therefore DMT is often obtained via outage analysis and then rigorous proof is usually carried

out to bound, if possible, the error via outage and hence characterize the DMT.

The diversity in the fixed rate regime (i.e. R is not function of ρ) cannot be in general de-

duced from the DMT result by setting r = 0. The reason is that there is no solid relationship

between d(r) and d(0). The standard DMT arguments in [2] are based on developments that

depend critically on the positivity of r in two specific instances. One instance is the proof

of [2, Lemma 5], which depends critically on r being strictly positive.2 More importantly, the

asymptotic outage calculations in [2, p. 1079] implicitly use r > 0 and result in the outage

region:

A = {α :
∑

i

(1− αi)
+ < r}

where αi are the exponential order of the channel eigenvalues, i.e., λi = ρ−αi . If we set r = 0

this expression implies that the outage region is always empty, which is clearly not true.

Thus, the DMT as calculated by the standard methods of [2] cannot be assumed to

extend to r = 0. It is true that sometimes the function d(r) is indeed continuous at zero,

including all the examples in [2]. But it should not be assumed that this continuity always

holds. In fact, there are systems where d(0), the diversity at multiplexing gain zero, is not

even uniquely defined. Rather, it takes multiple values as a function of rate R. This fact

has been observed and analyzed, e.g., in [5–7]. The work in the present dissertation also

produces several examples of this phenomenon.

2This is not the most critical point, because a slightly reformulated version of this lemma
can be developed that holds at fixed rates [5].



CHAPTER 3

LINEAR RECEIVERS IN MIMO FLAT FADING

3.1 Introduction

Linear receivers are widely used for their low complexity compared to maximum likelihood

(ML) receivers. In the context of MIMO systems, linear receivers such as the minimum mean

square error (MMSE) receiver are adopted in some of the emerging standards, e.g. IEEE

802.11n and 802.16e. Therefore the analysis of MMSE receivers is strongly motivated by

both theoretical and practical considerations.

A significant amount of research has focused on linear receivers, however, their perfor-

mance is not fully understood in the MIMO channel. For instance, the distribution of the

output signal-to-interference-plus-noise ratio (SINR) of the linear MIMO receiver is still un-

known except in asymptotic regimes (large number of antennas, and high/low SNR) [8–11].

The outage and diversity of MMSE receiver have also been a subject of interest. It has been

observed [6, 7, 12] that while the MMSE receiver can extract the full spatial diversity of the

MIMO quasi-static channel at low rates, it does not enjoy this feature at high rates.

Figure 3.1 shows the outage probabilities (for various spectral efficiencies R bps/Hz) of

MMSE and ML receivers respectively. Clearly, one of the main differences between the two

characteristics is the slope of the error curves, i.e., the diversity. Figure 3.1 shows that

in a 2 × 2 MIMO system the ML receiver achieves diversity 4 at all rates. However, the

MMSE receiver diversity varies with the operating spectral efficiency. From a system design

perspective, obtaining the MMSE diversity is important in order to understand the broad

tradeoffs involved in the determination of the operating point of the system and predicting

its performance.

10
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Figure 3.1. Outage probability of ML receiver (left) and MMSE (right) with M = N = 2
antennas and for rates R= 1, 4, and 10 bps/Hz

In this work we seek answers for the following questions: when can the MMSE receiver

exploit the full diversity in MIMO channel? More generally, how does the diversity of the

MMSE receiver vary with the system parameters such as spectral efficiency R, the number

of antennas, and in case of inter-symbol interference channel (ISI), the channel memory?

The well-known and powerful framework of diversity-multiplexing tradeoff (DMT) is not

sufficient to answer the above questions, because the DMT framework cannot distinguish

between different spectral efficiencies that correspond to the same multiplexing gain. In the

MIMO MMSE receiver, rates that correspond to the same multiplexing gain can produce

different diversities.

We approach the problem of MMSE reception in MIMO flat fading channels through a

rate-dependent approximation of the outage probability and then proceed with bounding

the pairwise error probability (PEP) from both sides using the outage. This leads to a

closed-form expression for the diversity-rate tradeoff which reveals the relationship between

diversity, spectral efficiency, and number of transmit and receive antennas. The approxima-

tion of outage and PEP as functions of rate requires more delicate handling compared with

the DMT analysis, as certain ratios and terms that simply vanish in the DMT analysis are

in our case relevant and must be carefully handled.
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We then analyze the frequency-selective, quasi-static MIMO channel. Specifically we con-

sider single carrier (SC) MMSE equalization under zero-padding (ZP) and cyclic-prefix (CP)

transmission. SC-MMSE provides an attractive alternative to orthogonal frequency division

multiplexing (OFDM) due to its low complexity and natural avoidance of the peak-to-average

power ratio problem. The use of cyclic prefix and zero padding has been investigated in the

literature, but the explicit tradeoff between the spectral efficiency and diversity of MIMO

SC-MMSE under these two schemes has been unknown and is the subject of our work. We

show that the diversity is a function of number of antennas, channel memory and spectral

efficiency, and obtain the explicit tradeoff in the special case of SIMO under CP transmission.

The results of this chapter fully characterize the MIMO MMSE diversity in the fixed rate

flat quasi-static regime. We analyze both the cases N ≥ M and N < M , showing that in

either case it is possible for the system to be limited to a diversity strictly less than MN .

More specifically, the central result of the chapter is as follows: with M transmit and N

receive antennas (for any N and M) the diversity is d = d(M2−
R
M − (M −N)+

)+e2 + |N −
M |d(M2−

R
M −(M−N)+

)+e, where (·)+ = max(0, ·) and d·e denotes rounding up to the next

higher integer. Our results confirm and refine the earlier approximate results on the diversity

of MMSE MIMO receivers that were obtained for very high and very low rates [6,7,12]. The

MIMO MAC channel is also studied.

Some of the related literature is as follows. The performance of MMSE receiver in terms

of reliability goes back to [13] where outage analysis was performed for MMSE SIMO di-

versity combiner in a Rayleigh fading channel with multiple interferers. In the context of

point-to-point MIMO systems, Gore et al. [14] compared the performance of MMSE D-

BLAST with the ordered successive cancellation V-BLAST. They show that the former has

better throughput at low- and moderate SNR. Onggosanusi et al. [12] studied MMSE and

zero-forcing (ZF) MIMO receivers and noticed their distinct outage performance at high-

SNR, specifically for large number of transmit antennas and low spectral efficiencies R, but

provided no analysis.
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Hedayat and Nosratinia [6] considered the outage probability as a function of fixed rates

R under joint and separate spatial encoding, but for MMSE they obtained results only in the

extremes of very high and very low rates. Kumar et al. [7] provided a DMT analysis for the

system of [6] and observed that the DMT analysis does not predict the diversity of MMSE

receivers at lower rates. We note that all existing analyses are limited to the case where the

number of receive antennas (N) is greater than or equal the number of the transmit antennas

(M).

This chapter is organized as follows. Section 3.2 describes the system model. Section 3.3

finds the exponential order of outage. Section 3.4 bounds the codeword error probabilities

using the outage values, and derives the final result. Section 3.5 extends the result to the

MAC channel. Section 3.6 provides simulations that illuminate our results.

3.2 Linear Receivers

The input-output system model for flat fading MIMO channel with M transmit and N

receive antennas is given by

y = Hx + n (3.1)

where H ∈ CN×M is the channel matrix whose entries are independent and identically dis-

tributed complex Gaussian, x ∈ C M×1 is the transmitted vector, n ∈ C N×1 is the Gaussian

noise vector. The vectors x and n are assumed independent. We assume a quasi-static flat

fading channel and perfect channel state information (CSI) at the receiver (CSIR) and no

CSI at the transmitter (CSIT), therefore transmit antennas operate with equal power.

We aim to characterize the diversity gain, d(R,M, N), as a function of the spectral

efficiency R (bits/sec/Hz) and the number of transmit and receive antennas. This requires a

pairwise error probability (PEP) analysis which is not directly tractable. Instead, we find the

exponential order of outage probability and then demonstrate that outage and PEP exhibit

identical exponential orders.
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Figure 3.2. MIMO system with linear MMSE receiver

Following the notation of [15], we define the outage-type quantities

Pout(R,N, M) , P(I(x;y) < R) (3.2)

dout(R,N, M) , − lim
ρ→∞

log Pout(R,M, N)

log ρ
(3.3)

where ρ is the per-stream signal-to-noise ratio (SNR).

We say that the two functions f(ρ) and g(ρ) are exponentially equal, denoted by f(p)
.
=

g(p) when

lim
ρ→∞

log f(ρ)

log(ρ)
= lim

ρ→∞
log g(ρ)

log(ρ)

The ordering operators 6̇ and >̇ are also defined accordingly. If f(ρ)
.
= ρd, we say that

d is the exponential order of f(p).

3.2.1 MMSE Equalizer

The equalizer, denoted by W, decouples the M transmitted data streams at the receiver

(Figure 3.2). The MMSE equalizer is obtained by minimizing the mean square error (MSE)

defined as E[||x−WHy||2]. It is usually assumed [6,7] that the number of transmit antennas

M is no more than that of receive antennas N . In the following, we start with N ≥ M but

later generalize it to N < M as well.

For N ≥ M , using the orthogonality principle, the MMSE equalizer is given by [12,16]

W = HH(HHH + ρ−1I)−1

= (HHH + ρ−1I)−1HH (3.4)
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The corresponding signal-to-interference and noise ratio (SINR) of the output stream k

of the MMSE detector is

γk =
1

(I + ρHHH)−1
kk

− 1, 1 6 k 6 M (3.5)

where (·)H denotes matrix Hermitian, (·)−1
kk denotes the diagonal element k of the matrix

inverse.

For the case N < M , it can be shown using a technique1 very similar to [13, Appendix

A] that the SINR expression (3.5) is again valid.

The square matrix W = HHH is random, non-negative definite, and obeys the Wishart

Distribution [17,18]. In this work, the joint distribution of the eigenvalues of this equivalent

channel matrix opens the door to the development of our analysis, as is also the case in many

other MIMO results.

The equalizer output is

y = WHx + Wn. (3.6)

The signal streams of the transmit antennas may be either separately or jointly encoded.

Separate encoding is simpler and has been fully analyzed [6], but we mention the central

result for completeness.

Theorem 3.2.1 ( [6, 7]) In a MIMO system consisting of M transmit and N receive an-

tennas (N > M), under separate spatial encoding, the MMSE receiver achieves the diversity

dout(R, N, M) = N −M + 1 (3.7)

under either uniform or non-uniform rate assignment.

Furthermore, it has been established [6,7] that the zero forcing equalizer achieves diversity

N −M + 1 under both joint or separate spatial encoding.

According to Theorem 3.2.1, a MMSE receiver operating under separate spatial encoding

(e.g. horizontal encoding V-BLAST) will have no more diversity gain than ZF receiver.

1In [13] an MMSE diversity combiner is used at the receiver in the presence of one transmit
antenna and M interferers.
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3.3 Outage Analysis

We now consider the MMSE diversity where the data stream is first encoded then multiplexed

into M sub-streams, each transmitted by one antenna. This approach is known to improve

the performance compared with separate coding of the streams [3]. Outage occurs if the

channel fails to support the target rate [17]. After channel equalization, the M sub-streams

xk are decoupled and thus the mutual information between the transmitted vector x and the

received vector y given CSIR is [12]

I(x,y) =
M∑

k=1

I(xk, yk) (3.8)

Thus from (3.2) and (3.8), Pout is given by

Pout = P
( M∑

k=1

log(1 + γk) < R

)
(3.9)

Substituting MMSE SINR (γk) from (3.5) in (3.9) we get

Pout = P
( M∑

k=1

log(I + ρW)−1
kk > −R

)
(3.10)

The dependence on the diagonal elements of the random matrix (I+ρW)−1
kk makes further

analysis intractable. We instead proceed to provide lower and upper bounds on the outage

probability. In Section 3.4 we will show that outage probability (Pout) and pairwise error

probability (PEP) exhibit identical exponential error.

3.3.1 Outage Upper Bound

Lemma 3.3.1 For an MMSE MIMO system consisting of M transmit and N receive an-

tennas, under quasi-static Rayleigh fading, we have

Pout(R, M,N)6̇ρ−dout(R,M,N)
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where

dout(R, M, N) =

⌈(
M2−

R
M − (M −N)+

)+
⌉2

+

∣∣N −M
∣∣
⌈(

M2−
R
M − (M −N)+

)+
⌉
. (3.11)

where ()+ denotes the max(0, ·).

Proof We begin by bounding the sum in (3.10) via Jensen’s inequality

M∑

k=1

log
(
I + ρW)−1

kk
≤ M log

( M∑

k=1

1

M
(I + ρW)−1

kk

)

= M log
( 1

M
tr

(
(I + ρW)−1

))

= M log
( 1

M

M∑

k=1

1

1 + ρλk

)
(3.12)

where (3.12) is true because trace is equal to the sum of eigenvalues.

Notice that for N < M only N eigenvalues are non-zero. hence (3.12) can be written as

M log

(
1

M

L∑

k=1

1

1 + ρλk

+ (M −N)+

)
(3.13)

where L = min(M,N).

Substituting (3.13) in (3.10), we have

Pout ≤ P
( L∑

k=1

1

1 + ρλk

> M2−
R
M − (M −N)+

)
(3.14)

Define:

αk , − log λk

log ρ
, for k = 1, ..., n , (3.15)

based on which we can write the exponential equality

1

1 + ρλk

.
=





ραk−1 αk < 1

1 αk > 1

(3.16)
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Define α = [α1, ..., αn] and a new random variable

M(α) ,
∑
αk>1

1 (3.17)

This definition is based on the observation that the term 1
1+ρλk

defined in (3.16) is either

zero or one at high SNR, therefore to characterize
∑

k
1

1+ρλk
at high SNR we count the ones.

Thus

n∑

k=1

1

1 + ρλk

.
=

∑
αk>1

1 +
∑
αk<1

ραk−1 (3.18)

.
= M(α) + max

{αk:αk<1}
ραk−1 (3.19)

M(α) inherits its randomness from λ1, . . . , λn. The bound in (3.14) is evaluated by com-

puting the probability of {α ∈ A}, where A = {α : M(α) + max{αk:αk<1} ραk−1 > M2−
R
M −

(M − N)+} denotes the outage event based on the approximation in (3.14). In order to

evaluate the probability of this event we need the joint distribution of the eigenvalues, or

equivalently the distribution of α. The distribution follows Wishart distribution and was

initially discovered by [18] . The distribution of α can be easily evaluated as follows [2].

Let R be an m× n (m > n) random matrix whose entries are CN (0, 1). The joint PDF

of the ordered random variables α (defined in (3.15) for the eigenvalues of RHR) is given by

P(α) = K−1
m,n(log ρ)n

n∏
i=1

ρ−(m−n+1)αi

∏
i<j

|ρ−αi − ρ−αj |2 exp

[
−

n∑
i=1

ρ−αi

]
(3.20)

where K−1
m,n is a normalizing factor.

Using the distribution of α for the defined matrix R, the asymptotic outage bound is

Pout 6̇
∫

A

P(α)dα

= K−1
m,n(log ρ)n

∫

A

n∏
i=1

ρ−(m−n+1)αi

∏
i<j

|ρ−αi − ρ−αj |2 exp

[
−

n∑
i=1

ρ−αi

]
dα (3.21)

The simplification of the integral follows from [2]. The term outside the integral has

no effect on the exponent. The term |ρ−αi − ρ−αj | is dominated by ρ−αi at high SNR.
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We now divide the integration range into A′ = A ∩ Rn
+ and its complement. If α /∈ A′,

the exponential term will dominate the other terms and will drive the integral to zero. If

α ∈ A′, the exponential term is approximately 1 at high SNR and will disappear. Therefore

Pout 6̇
∫

A′

n∏
i=1

ρ−(m−n+1)αi

∏
i<j

|ρ−αi − ρ−αj |2 dα

.
=

∫

A′

n∏
i=1

ρ−(2i−1+m−n)αi dα (3.22)

where

A′ = {M(α) > M2−
R
M − (M −N)+}

= {α1 > 1, ..., αS > 1, αS+1 > 0, ...αL > 0} (3.23)

and S =
⌈(

M2−
R
M −(M−N)+

)+⌉
. The integration region A′ has boundaries that are parallel

to nonnegative orthant Rn
+, therefore the integration over multiple variables in (3.22) can be

separated:

Pout 6̇
n∏

i=1

∫

A′
ρ−(2i−1+m−n)αi dα (3.24)

= ρ−
∑S

i=1(2i−1+m−n)

= ρ−(S2+(m−n)S), for m > n (3.25)

= ρ−(S2+|m−n|S), for general m, n (3.26)

= ρ−dout

which establishes the proof of Lemma 3.3.1.

3.3.2 Outage Lower Bound

Lemma 3.3.2 For an MMSE MIMO system consisting of M transmit and N receive an-

tennas (and L = min{M, N}), operating under quasi-static Rayleigh fading, we have

Pout(R, M,N)>̇ρ−dout(R,M,N)
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where

dout(R, M, N) =

⌈(
M2−

R
M − (M −N)+

)+
⌉2

+
∣∣N −M

∣∣
⌈(

M2−
R
M − (M −N)+

)+
⌉
.

Proof The lower bound is also based on Jensen’s inequality. Recall

Pout = P
( M∑

k=1

log(1 + γk) < R

)

= P
( M∑

k=1

log
1

(I + ρW)−1
kk

< R

)

> P
(

M log
1

M

M∑

k=1

1

(I + ρW)−1
kk

< R

)
(3.27)

Let the eigen decomposition of HHH be given by HHH = UHΛU where U is unitary and Λ

is a diagonal matrix that has the eigenvalues of the Wishart matrix W on its diagonal. Let

the vector uk be the column k of the matrix U and u`k be the element ` of this column, we

have

(I + ρW)−1
kk = uH

k (I + ρΛ)−1uk

=
M∑

`=1

|u`k|2
1 + ρλ`

, Sk. (3.28)

Let k̄ = arg mink Sk. Using (3.28), we can bound the sum in (3.27)

1

M

M∑

k=1

1

(I + ρW)−1
kk

=
1

M

M∑

k=1

1

Sk

6 1

mink Sk

(3.29)

=
1

Sk̄

(3.30)
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thus the outage bound in (3.27) can be further bounded using (3.29)

Pout > P
(

M log
1

M

M∑

k=1

1

(I + ρW)−1
kk

< R

)

> P
(

M log
1

Sk̄

< R

)

= P
(

Sk̄ > 2−
R
M

)
(3.31)

We now bound (3.31) by conditioning on the event B ,
{|u`k̄|2 > a

M

}
where a is a

positive real number that is slightly smaller than one, i.e. a = 1− ε, and ε is a small positive

number. We then have

P
(

Sk̄ > 2−
R
M

)
> P

(
Sk̄ > 2−

R
M

∣∣B
)
P(B)

= P
( M∑

`=1

|u`k̄|2
1 + ρλ`

> 2−
R
M

∣∣∣∣B
)
P(B)

> P
(

1

M

M∑

`=1

a

1 + ρλ`

> 2−
R
M

)
P(B)

.
= P

(
1

M

M∑

`=1

a

1 + ρλ`

> 2−
R
M

)
(3.32)

= P
( M∑

`=1

1

1 + ρλ`

>
M

a
2−

R
M

)

= P
(

1

M

L∑

`=1

1

1 + ρλ`

>
M

a
2−

R
M − (M −N)+

)
(3.33)

where (3.32) follows because P(B) is finite and independent of ρ; this can be proved similarly

to [7, Appendix A]. To make the upcoming expressions compact, we introduce a new variabe

κ , M
a

2−
R
M − (M −N)+

P
(

1

M

L∑

`=1

1

1 + ρλ`

> κ

)
(3.34)

Whenever M2−
R
M is non-integer, the constant a can be chosen such that

⌈(
M2−

R
M −

(M − N)+
)+⌉

=
⌈(

M
a

2−
R
M − (M − N)+

)+⌉
. We note this is satisfied for all rates, with the
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exception of an isolated set of points. As long as M2
R
M /∈ N we have:

Pout > P
( L∑

`=1

1

1 + ρλ`

> κ

)

.
= P

( L∑

k=1

1

1 + ρλ`

> dκe
)

(3.35)

The remaining steps follow similarly to the proof of Lemma 3.3.1. Thus Pout >̇ ρ−dout with

dout is given by Lemma 3.3.2.

On the set of isolated points M2−
R
M ∈ N, the right hand side of Eq. (3.35) obeys a slightly

weaker upper bound by replacing κ with κ + 1. We can combine the cases where M2−
R
M is

integer and non-integer to write the upper bound compactly as follows:

dout(R, M,N) ≤
⌊(

M2−
R
M + 1− (M −N)+

)+
⌋2

+
∣∣N −M

∣∣
⌊(

M2−
R
M + 1− (M −N)+

)+
⌋
.

Inspection shows that this bound is tight against the lower bound everywhere except its

discontinuity points. In other words, the upper bound is left-continuous while the lower

bound was right-continuous at the discontinuity points.

3.4 PEP Analysis

Recalling that the diversity is roughly defined as the slope of PEP at high SNR, we now

proceed to bound the PEP tightly from both sides using the outage results already obtained.

3.4.1 PEP Upper Bound

We start by a lower bound that is inspired by [2, Lemma 5] but requires a more careful

treatment since we are analyzing rate, not the DMT (see the Introduction).

Lemma 3.4.1 For a quasi-static fading MIMO channel with MMSE receiver we have

dout(R,M, N) > d(R,M, N).
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Proof Denote E for an error event, and let x ∈ C be the transmitted codeword from a

codebook C of size 2Rl where R and l are code rate and code length respectively. Define

f = WHx that accounts for the combined effect of channel and equalizer. The transmit

messages are assumed equi-probable so the entropy H = log |C| = Rl. Applying the Fano

inequality [19]

P(E|f = f) > Rl − I(x;y|f = f)

Rl
− H(P(E)|f = f)

Rl
(3.36)

By defining Dδ for any δ > 0 as Dδ , {f : I(x;y|f = f) < l(R − δ)}, and noting that

H(P(E)|f ∈ Dδ) 6 H(P(E)) from (3.36), we get

P(E|f ∈ Dδ) > Rl − I(x;y|f ∈ Dδ)

Rl
− H(P(E))

Rl

> δ

R
− H(P(E))

Rl
. (3.37)

Also by using the definition of Pout we have

P(f ∈ Dδ) = P
(
I(x;y) < l(R− δ)

) .
= ρ−dout(R−δ,M,N) (3.38)

For small enough values of δ > 0, we have dout(R, M,N) = dout(R−δ,M, N) since dout(R,M, N)

is left-continuous with respect to R. Hence, by invoking (3.37) and (3.38), the error proba-

bility is given by

Perr(R, M,N) = P(E|f ∈ Dδ)P(f ∈ Dδ) + P(E|f /∈ Dδ)P(f /∈ Dδ)

> P(E|f ∈ Dδ)P(f ∈ Dδ)

>̇
(

δ

R
− H(P(E))

Rl

)
ρ−dout

.
= ρ−dout (3.39)

where we have used
(

δ
R
− H(P(E))

Rl

) .
= 1, which was derived in [15]. This establishes the proof

of the PEP upper bound.

3.4.2 PEP Lower Bound

We begin by writing the error probability in terms of error event E and outage event O

Perr(R, M, N) = P(E|O) · Pout + P(E, Ō)
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In Section 3.3.1 we have shown that, based on the event
{∑L

k=1
1

1+ρλk
> M2−

R
M − (M −

N)+
}
, the outage probability is upper bounded by Pout6̇ρ−dout . Hence, the error probability

can be bounded as

Perr(R, M,N)6̇P(E|O) ρ−dout + P(E, Ō)

6 ρ−dout + P(E, Ō) (3.40)

We intend to show that ρ−dout >̇ P(E, Ō), and thus Perr(R,M, N) 6̇ ρ−dout which produces

the following lemma.

Lemma 3.4.2 For a quasi-static fading MIMO channel with MMSE receiver we have

dout(R,M, N) 6 d(R,M, N).

Proof We begin by giving a sketch of the proof then we proceed with the details. The

first part of the proof consists of developing a bound on PEP conditioned on H, namely

P [sk → sj|H = H]. To do this we obtain an upper bound of the variance of the SINR which

is expressed in terms of the eigenvalues of the Wishart matrix W , resulting in P[E|H =

H] 6 4 exp(−( ∑L
k=1

ρλk

(1+ρλk)2

)−1
) . The PEP is used to derive a conditional union bound

on error. We then divide the channel events into two sets based on the exponential order

of the eigenvalues: the set where M(α) = 0 and otherwise. We apply Bayes theorem on

the union bound using these two sets. The calculation of the terms of the Bayesian gives

P(E, Ō)6̇ρ−MN 6 ρ−dout as desired.

We now proceed in detail. We want to compute the probability that the transmitted

symbol x(k) = sl is erroneously detected as x(k) = sj.

Recalling the equalizer output given by (3.6), define the noise-plus-interference signal

ñ = y −√ρx =
√

ρ(WH− I)x + Wn (3.41)

Using the eigen-decomposition of H and noting that E(n) = 0 and E(nnH) = I, we have

µñ , E(ñ) =
√

ρ(WH− I) = −ρ
1
2 (W + ρ−1I)−1x (3.42)

Rñ , E(ññH) = (W + ρ−1I)−1 (3.43)



25

Thus the variance of the noise sample ñ(k) is given by

σ2
ñ(k) = Rñ(k, k)− |µñ(k)|2

= (W + ρ−1I)−1
kk − ρ−1(W + ρ−1I)−2

kk (3.44)

where |µñ(k)|2 is the kth diagonal of the matrix E(ñ)E(ñH) and k counts from 1 to M .

By defining ejl , sj−sl

|sj−sl| , the probability of erroneous detection for channel realization is

given by

P[sl →sj|H = H]

= P
[
ρ

4
|sj − sl|2 6 |e∗jl(y(k)−√ρsl)|2

∣∣∣∣H = H

]

6 P
[
ρ

4
|sj − sl|2 6 |ñk|2

∣∣∣∣H = H

]
(3.45)

where the inequality holds since |e∗jl(y(k)−√ρsl)| 6 |e∗jl||(y(k)−√ρsl)| = |(y(k)−√ρsj)| =
|ñ(k)|.

Denoting the real and imaginary parts of ñ(k) by ñr(k) ∼ N (µr(k), σ2
r(k)) and ñi(k) ∼

N (µi(k), σ2
i (k)) respectively, we then have

{ρ

4
|sj − sl|2 6 |ñ(k)|2}

⊂ { ρ

16
|sj − sl|2 6 |ñr(k)|2} ∪ { ρ

16
|sj − sl|2 6 |ñi(k)|2} (3.46)

Applying the property of the Gaussian tail function Q(x) 6 e(−x2/2) for the pairwise error

probability, we obtain

P[sk → sj|H = H] 6 e

(
− (

√
ρ

4 |sj−sl|−µr(k))2

σ2
r (k)

)

+ e

(
− (

√
ρ

4 |sj−sl|+µr(k))2

σ2
r (k)

)

+ e

(
− (

√
ρ

4 |sj−sl|−µi(k))2

σ2
i
(k)

)

+ e

(
− (

√
ρ

4 |sj−sl|+µi(k))2

σ2
i
(k)

)

6 e

(
− (

√
ρ

4 |sj−sl|−µr(k))2

σ2
ñ

(k)

)

+ e

(
− (

√
ρ

4 |sj−sl|+µr(k))2

σ2
ñ

(k)

)

+ e

(
− (

√
ρ

4 |sj−sl|−µi(k))2

σ2
ñ

(k)

)

+ e

(
− (

√
ρ

4 |sj−sl|+µi(k))2

σ2
ñ

(k)

)

(3.47)
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where the last step holds as σ2
n(k) = σ2

r(k) + σ2
i (k) > σ2

r(k), σ2
i (k).

Now we proceed by showing that µi(k)6̇ρ
1
2 . Consider the eigen decomposition of

[W + ρ−1I]−1 = UH [Λ + ρ−1I]−1U

= UH
[
diag

{ 1

λk + ρ−1

}]
U (3.48)

where U is unitary matrix, and Λ is the eigen decomposition ofW . Note that λk+ρ−1>̇ρ−1 or

1
λk+ρ−1 6̇ρ. Therefore, all elements of the matrix±UH [Λ+ρ−1I]−1U, being linear combination

of { 1
λk+ρ−1}, cannot grow faster than O(ρ), and thus the elements of ±ρ

1
2 [W+ρ−1I]−1 cannot

grow faster than O(ρ
1
2 ), i.e. ±µñ(k)

˙6 ρ
1
2 and therefore ρ

1
2 ± µñ(k)

.
= ρ

1
2 . The same result

holds for µr(k) and µi(k).

As a result, for any sj and sl,
√

ρ

4
|sj − sl| ± µr(k)

.
= ρ

1
2 ± µr(k)

.
= ρ

1
2 and similarly

√
ρ

4
|sj − sl| ± µi(k)

.
= ρ

1
2 . Thus from (3.47), we have

P[sk → sj|H = H] 6̇ 4e
− ρ

σ2
ñ

(k) (3.49)

Now we bound the variance in (3.44) and apply it in (3.49)

σ2
ñ(k) 6

L∑

k=1

[
(W + ρ−1I)−1

kk − ρ−1(W + ρ−1I)−2
kk

]

=
L∑

k=1

[
ρ

1 + ρλk

− ρ

(1 + ρλk)2

]
=

L∑

k=1

ρ2λk

(1 + ρλk)2
(3.50)

Denoting the error event E and using (3.50), the probability of erroneous detection in

(3.49) is bounded as

P[E|H = H] 6 4e
−
(∑L

k=1
ρλk

(1+ρλk)2

)−1

(3.51)

Applying the union bound, we get

P(E|H = H)6̇2Rle
−
(∑L

k=1
ρλk

(1+ρλk)2

)−1

(3.52)



27

Based on (3.52), we can evaluate P (E, Ō) in (3.40) as follows. Recalling the exponential

inequality

n∑

k=1

1

1 + ρλk

.
=

∑
αk>1

1 +
∑
αk<1

ραk−1 (3.53)

.
= M(α) + max

{αk:αk<1}
ραk−1

.
= M(α) (3.54)

Consider the two regions: {α : M(α) = 0} and {α : M(α) > 1}. At high SNR the event

Ō is equivalent to {α : M(α)6̇dM2−
R
M − (M −N)+e}.

In the first region {M(α) = 0}, at any rate R > 0 we have {α : dM2−
R
M − (M −

N)+e>̇M(α) = 0 so there is no outage.

In the second region {M(α) > 1} the exponent order of the outage probability depends

on the rate. We investigate these two regions separately.

In the region {α : M(α) = 0}, we have maxk αk < 1 since all α′ks < 1. From (3.52) and

(3.54) we conclude that

P(E, Ō|M(α) = 0)6̇2Rle−ρ

(
maxk αk−1

)−1

= 2Rle−ρ

(
1−maxk αk

)
(3.55)

Since exponential function dominates all polynomials and 1−maxk αk > 0, we get

lim
ρ→∞

e−ρ

(
1−maxk αk

)

ρ−MN
= 0

which in turn yields

P(E, Ō|M(α) = 0)6̇2Rle−ρ

(
1−maxk αk

)

6̇ρ−MN (3.56)

We next show that the same result holds for the other region {α : M(α) > 1}.
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Following the same line of argument as we did for (3.56) but for M(α) > 1, we have

P (E, Ō|M(α) > 1) 6̇ 2Rle
−
(∑L

k=1
ρλk

(1+ρλk)2

)−1

6 e2Rl

e
−
(∑

k
1

1+ρλ
−∑

k
ρλk

(1:ρλk)2

)−1

= e2Rl

e
−
(∑

k
1

1+ρλk

)−1

︸ ︷︷ ︸
6̇1 since M(α)>1

e

[
−

∑
k

1
(ρλk+1)2(

∑
k

1
1+ρλk

)(
∑

k
ρλk

(1+ρλk)2

)
]

6̇ e2Rl

e

[
− LM(α)

LM(α)ρ−mink |1−αk|

]
(3.57)

.
= e−ρmink |1−αk|

6̇ eρ1−maxk αk 6̇ ρ−MN (3.58)

where (3.57) is direct application of (3.54) for M(α) > 1, and (3.58) follows from the fact

that |1 − αk| > 1. Note that (3.58) is true for any code length l. Invoking the results of

(3.56) and (3.58), we can now evaluate P(E, C̄) as follows

P(E, Ō) =

∫

M(α)=0

P(E, Ō|M(α) = 0)P(α) dα +

∫

M(α)>1

P(E, Ō|M(α) > 1)P(α) dα

6̇ ρ−MN

∫

M(α)=0

P(α) dα + ρ−MN

∫

M(α)>1

P(α) dα (3.59)

.
= ρ−MN (3.60)

Therefore, P(E, Ō)6̇ρ−MN for all regions of α. Finally, (3.40) becomes

Perr(R,M, N) 6̇ P(E|O) ρ−dout + P(E, Ō)

6 ρ−dout + P(E, Ō)

.
= ρ−dout + ρ−MN

.
= ρ−dout

= Pout(R, M,N) (3.61)

which establishes the lemma.
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From Lemma 3.4.1 and Lemma 3.4.2, we thus get

Theorem 3.4.3 For MMSE MIMO Receiver under quasi-static channel and joint spatial

encoding, the pairwise error probability (PEP) and the outage probability Pout are exponen-

tially equal and the diversity gain is d(R, M, N) = dout(R, M, N), where dout(R,M, N) is

given in (3.11).

3.5 Multiple-Access Channel (MAC)

We now extend the result to the MAC channel. Consider a MIMO MAC channel with K

users, M transmit antennas per user, N receive antennas (there is no condition on M,N and

k). Assume flat fading MIMO channel, the system model is given by

y =
K∑

i=1

Hixi + n = HeX + n (3.62)

where Hi ∈ CN×M is the user i channel matrix whose entries are independent and identically

distributed complex Gaussian, He = [H1H2 . . .HK ] is the overall equivalent channel matrix,

xi ∈ C M×1 is the transmitted vector of user i, X = [xT
1 xT

2 . . .xT
K ]T is the overall transmitted

vector, and n ∈ C N×1 is the Gaussian noise vector. The vectors X and n are assumed

independent. We keep the same assumptions about the channel. That is we assume a quasi-

static flat fading channel and perfect CSIR and no CSIT. We have the following theorem

Theorem 3.5.1 In a MIMO MAC system with MMSE receiver consisting of K users, M

transmit antennas per user and N receive antennas, the lower and upper bounds on the per

user diversity are respectively given by dMAC
L (R) and dMAC

U (R),

dMAC
L (R) =

⌈(
M2−R/M − (M −N)+

)+
⌉2

+
∣∣N −KM

∣∣
⌈(

M2−R/M − (M −N)+
)+

⌉

(3.63)

dMAC
U (R) =

⌈(
KM2−R/KM − (M −N)+

)+
⌉2

+
∣∣N −KM

∣∣
⌈(

KM2−R/KM − (M −N)+
)+

⌉
.

(3.64)
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From (3.63) it is straightforward to verify the single user case. The machinery of the

proof is mostly similar to the single user case. However, the outage upper and lower bounds

are obtained in a different manner that is pointed out in the following analysis for N > M .

The case N < M can be similarly obtained.

3.5.1 MAC Outage Upper Bound

The user i outage probability can be written as

P i
out = P

( iM∑

k=(i−1)M+1

log(1 + γi
k) < R

)
. (3.65)

where γi
k is the SINR of the stream k of user i. Specializing this to MMSE receiver we get

P i
out = P

( iM∑

k=(i−1)M+1

log(I + ρHe
HHe)

−1
kk > −R

)
. (3.66)

Using Jensen’s Inequality the outage probability can be bounded as

P i
out 6 P

(
log

( iM∑

k=(i−1)M+1

1

M
(I + ρHe

HHe)
−1
kk

)
>
−R

M

)

6 P
(
log

( KM∑

k=1

1

M
(I + ρHe

HHe)
−1
kk

)
>
−R

M

)
(3.67)

= P
( KM∑

k=1

1

1 + ρλk

> M2−
R
M

)
(3.68)

where (3.67) is true since the summation in the left-hand side of the inequality adds more

positive terms (recall that (I+ρHe
HHe) is a positive definite matrix [17]). Following similar

steps that were used to obtain (3.26) we can easily show that P i
out 6̇ ρ−dMAC

L , where dMAC
L is

given by (3.63).
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3.5.2 MAC Outage Lower Bound

The outage probability can be lower bounded as follows

P i
out = P

( iM∑

k=(i−1)M+1

log(I + ρHe
HHe)

−1
kk > −R

)

> P
( KM∑

k=1

log(I + ρHe
HHe)

−1
kk > −R

)
(3.69)

>̇ P
( KM∑

k=1

(I + ρHe
HHe)

−1
kk >

KM

a
2
−R
M

)
(3.70)

where (3.69) is a trivial bound based on dedicating all KM antennas to one user, and (3.70)

uses the same technique as in Section 3.3.2, and a is a positive number slightly less than one.

Following similar steps that were used to obtain (3.26) we can easily show that P i
out >̇ ρ−dMAC

U ,

where dMAC
U is given by (3.64).

3.6 Simulation Results

Simulations generate Monte Carlo random channel realizations and calculate outage proba-

bility by checking the appropriate linear MIMO receiver mutual information for the quasi-

static flat fading model. Figure 3.3 shows the case M = N = 3. According to Theorem 3.4.3,

dout = 1 for R > 4.755, dout = 4 for 4.755 > R > 1.755, and dout = 9 for R < 1.7549. Fig-

ure 3.3 shows the diversity step between R = 4.5 and 4.8bps/Hz. The slope of diversity 9 is

difficult to measure precisely with simulations, but it is approximately observed. Figure 3.4

shows the outage probability for R = 1, 4 and 10 with the Jensen bound, with a diversity

transition at R = 2. Figure 3.5 shows the case of M = 2, and N = 3 again with transition

at R = 2. In Figure 3.6, simulations results for N = 2 and M = 3 are given and compared

with N = 3 and M = 2. Theorem 3.4.3 gives the diversity for both systems. It is observed

that when N > M the break point of the slopes occurs before its counterparts in M > N

case. Lower rates were difficult to simulate precisely.
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Rates (left to right): 1, 1.5, 2, 3, 4.5, 4.8, 5, 10

Figure 3.3. Outage probability of MMSE Receiver, M = N = 3 for R=1, 1.5, 2, 3, 4.5, 4.8,
5, 10 bps/Hz
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Figure 3.4. Outage probability of MMSE Receiver, M = N = 2 for R (left to right)= 1, 4,
10 bps/Hz
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Figure 3.5. Outage probability of MMSE Receiver, M = 2, and N = 3 for R (left to right)=
1.5, 2.5, 4 bps/Hz
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Figure 3.6. Outage probability of MMSE Receiver for both cases N > M (solid) and M > N
(dashed). The spectral efficiency R (left to right)= 1.8, 4, and 10 bps/Hz
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3.7 Conclusion

This chapter settles the long standing problem of the diversity of the MMSE MIMO receivers

under all fixed rates for any number of transmit (M) and receive (N) antennas, giving the

result as d = dM2−
R
M −κe2 + |N−M |dM2−

R
M −κe, where κ = max(0,M−N). The analysis

confirms the earlier approximate results [6, 7] showing that the system diversity can be as

high as MN for low spectral efficiency and as low as N −M + 1 for high spectral efficiency.

The result is easily extended to the multiple access channel (MAC).



CHAPTER 4

LINEAR RECEIVERS IN MIMO FREQUENCY-SELECTIVE CHANNEL

4.1 Frequency-Selective Channel

4.2 Introduction

Broadband wireless systems usually operate in frequency-selective channels where, in addi-

tion to the spatial diversity obtained in MIMO broadband systems, frequency diversity can

be achieved. Broadband systems usually employ orthogonal frequency division multiplexing

(OFDM) or single carrier (SC) transmission [20]. Specifically, SC was shown to be attractive

for broadband wireless channels due to its lower complexity, lower peak-to-average power

ratio and reduced sensitivity to carrier frequency errors compared to OFDM [20,21].

In this section, we investigate the diversity achieved by SC-MMSE receivers for two block

transmission schemes, namely cyclic prefix (CP) and zero-padding (ZP) schemes. The CP

and ZP are commonly used for guard intervals in block quasi-static channels. Although CP

was initially proposed for both single carrier and multi-carrier systems, ZP was lately shown

to be an attractive alternative for both systems [22,23].

4.2.1 System Model

We consider a general MIMO system in a rich scattering quasi-static environment. The

equivalent baseband channel is given by multipath model with ν paths referred to as the

ISI channel in the sequel. The (ν + 1)-tap channel impulse response between the transmit

antenna m and receive antenna n is denoted by the vector hmn = [hmn,0, hmn,1, . . . , hmn,ν ].

We assume a block-fading model where hmn remains unchanged during a transmission block.

Assuming M transmit and N receive antennas, the received vector yk at time instant k is

35
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given by [15,24]

yk =
ν∑

i=0

Hixk−i + nk (4.1)

where Hi is the M ×N channel matrix that has hmn,i as its (m,n) element, xk−i is M × 1

transmitted vector at time index k − i, yk is the N × 1 received vector and nk is the N × 1

Gaussian noise vector at time index k.

Consider a transmission of Ld + Le spatial vectors each of size M × 1, where Ld is an

integer representing the number of transmissions over the quasi-static channel and Le is

the length of data extension to avoid inter-block interference, in the form of either zero-

padding or cyclic prefix. The receiver discards the Le vectors in the case of cyclic-prefix

transmission [24]. Stacking the transmitted vector in an M(Ld +Le)×1 vector, we can write

the stacked M(Ld + Le)× 1 transmitted as follows

x̄k = [xT
k(Ld+Le), . . . ,x

T
k(Ld+Le)+Ld+Le−1]

We can then rewrite (4.1) as

ȳcp = H̄ x̄ + n̄ (4.2)

where ȳcp is the NLd × 1 received vector, x̄ is the M(Ld + Le)× 1 transmitted vector, n̄ is

the white Gaussian noise vector ∈ C NLd×1 and H̄ is the channel matrix given by

H̄ =




H0 H1 · · · Hν 0 · · · 0

0 H0 H1 · · · Hν · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · H0 H1 · · · Hν




. (4.3)

The linear data extension operation maps the data vector x̂ to the transmitted vector x̄

and is shown by

x̄ = Ucpx̂ (4.4)

where Ucp is given by

Ucp =


 IMLd

IMLe 0MLe×(Ld−Le)M


 (4.5)
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The system model in (4.2) can now be written in terms of the unpadded data vector x̂ and

an equivalent channel matrix He as follows

ȳcp = He x̂ + n̄ (4.6)

where in a CP system, He = H̄Ucp is a NLd ×MLd block circulant matrix constructed by

block circulations of the matrix [H0,H1, . . . ,Hν , 0, . . . , 0]T .

For the zero-padding transmission, we can rewrite (4.1) as

ȳzp = He x̂ + n̄ (4.7)

where ȳzp is the N(Ld + Le)× 1 received vector, x̄ is the MLd × 1 transmitted vector, n̄ is

the white Gaussian noise vector ∈ CN(Ld+Le)×1 and H̄ is the channel matrix given by

He =




H0 0 · · · 0
... H1

. . .
...

Hν
...

. . . H0

0 Hν
. . .

...
...

...
... Hν




. (4.8)

Assuming perfect channel state information at the receiver (CSIR) and that the channel

remains unchanged during the transmission of Ld + Le vectors, the MMSE equalizer W is

applied to decouple the received streams (after removing the Le extension vectors in case of

cyclic-prefix transmission). The MMSE equalizer is given by

W = (ρ−1I + He
HHe)

−1He
H (4.9)

and the unbiased decision-point SINRs of the equalizers output for detecting the kth trans-

mitted stream are

γk =
1

(I + ρHe
HHe)

−1
kk

− 1 k = 1, . . . , MLd. (4.10)

In the following sections we analyze the outage diversity for the ZP and CP systems. The

PEP analysis follows in a direct manner as in the flat fading case so we omit it.
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4.2.2 The Zero Padding MMSE Receiver

It is known that in a point-to-point single-antenna ISI channel, linear receivers can achieve

full multipath diversity under zero-padding transmission [23,25,26]. In this section we inves-

tigate the similar question for MIMO systems whose receivers use linear MMSE operations in

both the spatial and temporal dimensions. We provide lower and upper bounds on diversity.

The bounds are not always tight, but the diversity is fully characterized for SIMO systems.

We begin by analyzing the tradeoff between the spectral efficiency R and the diversity of

MMSE receiver in the single-antenna ISI channel dISI
MMSE under ZP transmission. Tajer et

al [15] shows that dISI
MMSE varies with R under CP transmission and MMSE equalization, in

particular, for a quasi-static single-antenna ISI channel with ν + 1 taps, the diversity of the

SC-MMSE receiver under CP transmission is dCP
MMSE = 1+min(ν, b2−RLdc), where Ld is the

transmission data block length. We show that the same is not true for ZP transmission.

Lemma 4.2.1 For a quasi-static single-antenna ISI channel with ν + 1 taps, the diversity

of the SC-MMSE receiver under ZP transmission is dZP
MMSE = ν + 1 irrespective of R.

Proof See Appendix 4.3.1.

We proceed with lower and upper bounds on diversity for MIMO ISI channel.

Diversity Upper Bound

Applying the MMSE equalizer given by (4.9) to the received vector in (4.6), the effective

mutual information between x̂ and Wȳ is equal to the sum of mutual information of their

components [12]

I(x̂,Wȳ) =
1

Ld

MLd∑

k=1

I(xk, yk).
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Thus the outage probability is given by

Pout = P
(

1

Ld

MLd∑

k=1

log(1 + γk) < R

)
(4.11)

= P
(

1

Ld

MLd∑

k=1

log
1

(I + ρHe
HHe)

−1
kk

< R

)
(4.12)

> P
(

M log
1

MLd

MLd∑

k=1

1

(I + ρHe
HHe)

−1
kk

< R

)
(4.13)

where we have used Jensen’s inequality as in Section 3.3.2. Let the eigen decomposition of

He
HHe be given by He

HHe = UHΛU where U is unitary and Λ is a diagonal matrix that

has the eigenvalues of the matrix He
HHe on its diagonal. Let the eigenvalues of He

HHe be

given by {λ`} with λ1 > λ2 · · · > λMLd
. Let the vector uk be the column k of the matrix U,

we have

(I + ρHe
HHe)

−1
kk = uH

k (I + ρΛ)−1uk

=

MLd∑

`=1

|u`k|2
1 + ρλ`

, Sk.

Let k̄ = arg mink Sk. we can bound the sum in (4.13)

1

MLd

MLd∑

k=1

1

(I + ρHe
HHe)

−1
kk

=
1

MLd

MLd∑

k=1

1

Sk

6 1

mink Sk

=
1

Sk̄

(4.14)

thus the outage bound in (4.13) can be further bounded

Pout > P
(

M log
1

MLd

M∑

k=1

1

(I + ρHe
HHe)

−1
kk

< R

)

> P
(

M log
1

Sk̄

< R

)

= P
(

Sk̄ > 2−
R
M

)
(4.15)
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We now bound (4.15) by conditioning on the event

B ,
{
|u`k̄|2 > a

M
, ` = MLd −M + 1, · · · ,MLd

}
(4.16)

where a is a positive real number that is slightly smaller than one a = 1− ε1, and ε1 is a

small positive number. We then have

Pout = P
(

Sk̄ > 2−
R
M

)

> P
(

Sk̄ > 2−
R
M

∣∣B
)
P(B)

= P
( MLd∑

`=1

|u`k̄|2
1 + ρλ`

> 2−
R
M

∣∣∣∣B
)
P(B)

> P
( MLd∑

`=MLd−M+1

|u`k̄|2
1 + ρλ`

> 2−
R
M

∣∣∣∣B
)
P(B) (4.17)

> P
(

1

M

MLd∑

`=MLd−M+1

a

1 + ρλ`

> 2−
R
M

)
P(B)

.
= P

(
1

M

MLd∑

`=MLd−M+1

a

1 + ρλ`

> 2−
R
M

)
(4.18)

= P
( MLd∑

`=MLd−M+1

1

1 + ρλ`

>
M

a
2−

R
M

)
(4.19)

where (4.17) follows by removing some of the elements of the sum corresponding to the

largest eigenvalues. The steps used to obtain Eq. (4.18) are similar to the steps used in

Section 3.3.2.

Note that He
HHe is not a Wishart matrix, hence the analysis of Section 3.2 does not

directly apply here. The block diagonal elements of He
HHe are similar and are given by

D =
ν∑

i=0

HH
i Hi. (4.20)

The matrix He
HHe is Toeplitz and Hermitian. Moreover, the matrix D given by (4.20)

is a Wishart matrix1.
1 Let W(n,

∑
) denote a Wishart distribution with degree of freedom n and covariance

(also called scale) matrix
∑

. Any of the diagonal block matrices Dj given by (4.20) follows
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Observe that the probability in (4.19) depends on the M smallest eigenvalues. We now

bound these eigenvalues with the eigenvalues of the matrix D via the Sturmian separation

theorem [27, P.1077].

Theorem 4.2.2 (Sturmian Separation Theorem) Let {Ar, r = 1, 2, . . .} be a sequence of

symmetric r × r matrices such that each Ar is a submatrix of Ar+1. Then if {λk(Ar) , k =

1, . . . , r} denote the ordered eigenvalues of each matrix Ar in descending order, we have

λk+1(Ai+1) ≤ λk(Ai) ≤ λk(Ai+1).

For our purposes, we consider a special case of the Sturmian Theorem by constructing

a set of matrices AM ,AM+1, . . . ,ALdM starting by the largest one ALdM
4
= He

HHe and

making all other matrices Ai to be (successively embedded) i × i principal submatrices of

He
HHe, such that the smallest matrix is AM = DLd

. Then we repeatedly apply the first

inequality in the Sturmian to get:

λMLd
(AMLd

) ≤ λMLd−1(AMLd−1) ≤ · · · ≤ λM(AM)

λMLd−1(AMLd
) ≤ λMLd−2(AMLd−1) ≤ · · · ≤ λM−1(AM)

...
...

λMLd−M+1(AMLd
) ≤ λMLd−M(AMLd−1)≤ · · · ≤ λ1(AM)

This implies that the smallest M eigenvalues of He
HHe are bounded above by the M eigen-

values of D, respectively. Hence:

Pout>̇ P
( M∑

k=1

1

1 + ρλk(D)
>

M

a
2−

R
M

)
. (4.21)

D is a sum of (ν + 1) central Wishart matrices each with N degrees of freedom and with

identity covariance matrix, i.e. D ∈ W((ν + 1)N, I). Therefore the analysis of Section 3.2

applies here and we have the following lemma.

a Wishart distribution since if B1 ∈ W(n1,
∑

) and B2 ∈ W(n2,
∑

) then B1 +B2 ∈ W(n1 +
n2,

∑
).
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Lemma 4.2.3 In a MIMO quasi-static frequency-selective system (with channel memory ν)

consisting of M transmit and N receive antennas, the MMSE receiver diversity under joint

spatial encoding and zero-padding transmission is upper bounded as

dZP 6
⌊(

M2−
R
M + 1− (M − N̄)+

)+
⌋2

+
∣∣N̄ −M

∣∣
⌊(

M2−
R
M + 1− (M − N̄)+

)+
⌋

(4.22)

where N̄ = (ν + 1)N .

Diversity Lower Bound

We can upper bound the outage probability as follows.

Pout = P
(

1

Ld

MLd∑

k=1

log(1 + γk) < R

)

= P
(

1

Ld

MLd∑

k=1

log(I + ρHe
HHe)

−1
kk > −R

)

6 P
(

M log
1

MLd

MLd∑

k=1

(I + ρHe
HHe)

−1
kk > −R

)
(4.23)

6 P
(

M log
1

M

MLd∑

k=1

(I + ρHe
HHe)

−1
kk > −R

)

= P
( MLd∑

k=1

1

1 + ρλk(He
HHe)

> M2−
R
M

)

6 P
( M∑

k=1

1

1 + ρλk(He
HHe)

+ LdM −M > M2−
R
M

)
(4.24)

= P
( M∑

k=1

1

1 + ρλk(He
HHe)

> M2−
R
M − (MLd −M)

)
(4.25)

where (4.23) follows from Jensen’s inequality and (4.24) follows from setting the smallest

LdM −M eigenvalues to zero.
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Now we repeatedly use the second inequality in the Sturmian theorem to get

λM(AM) ≤ · · · ≤ λM(AMLd−1) ≤ λM(AMLd
)

λM−1(AM) ≤ · · ·≤ λM−1(AMLd−1) ≤ λM−1(AMLd
)

...
...

λ1(AM) ≤ · · · ≤ λ1(AMLd−1) ≤ λ1(AMLd
)

with AMLd

4
= He

HHe and AM
4
= D, similar to the earlier case. Therefore the largest M

eigenvalues of He
HHe are bounded below by the M eigenvalues of D, respectively. Therefore

Pout6̇ P
(

M log
1

M

M∑

k=1

1

1 + ρλk(D)
> Q

)
. (4.26)

where Q = max
(
0, M2−

R
M − (MLd−M)

)
. Recall that D is a Wishart matrix, therefore the

analysis of Section 3.2 follows and we obtain the following lemma.

Lemma 4.2.4 In a MIMO quasi-static frequency-selective system (with channel memory

ν) consisting of M transmit and N receive antennas, the MMSE receiver diversity is lower

bounded as

dZP >
⌈
Q

⌉2
+ |(ν + 1)N −M |⌈Q⌉

(4.27)

under joint spatial encoding and zero-padding transmission. Q = max
(
0,M2−

R
M − (MLd −

M)
)
.

Remark 4.2.1 Notice that both lower and upper bounds differ only in the second term of

Q, i.e. (MLD −M). The diversity lower bound for Ld = 1 is tight against the upper bound,

but for Ld > 1 the lower bound (4.27) is trivial.

4.2.3 The Cyclic Prefix MMSE Receiver

For the single-antenna ISI channel under CP transmission, the explicit tradeoff between

spectral efficiency and diversity was found [15] to be dCP
MMSE = 1 + min(ν, b2−RLdc). In this
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x(0)

DataExtension 
(zero-padding)

H ZF
Equalizer

x(Ld-1)x(Ld)x(Ld+Le-1)

Mux FEC Decoder
DeMux
Symbol
mapper

FEC 

Figure 4.1. Single-carrier block transmission in a frequency-selective channel. In the case of
CP, the extension is removed at the receiver prior to equalization.

section, we extend the analysis to the MIMO case. The system model is shown in Figure 4.1.

We start with the general M ×N MIMO system.

The system model is again given by (4.6) where He = H̄Ucp and x̂ is generated by taking

the IDFT of the information vector x [28], i.e.

x̂ = QH
Txx (4.28)

where QTx is the augmented DFT matrix given by QTx = Q⊗ IM , where IM is the identity

matrix, Q is the normalized DFT matrix, and ⊗ is the Kroenecker product.

The NLd ×MLd block-circulant matrix He has eigen decomposition He = QH
RxΛQTx,

where QRx = Q⊗ IN . Both QTx and QRx are unitary matrices. The block diagonal matrix

Λ is given by

Λ =




B1 0

B2

. . .

0 BLd




(4.29)

where the matrix Bk is given by [29]

Bk =
ν∑

i=0

Hie
−j

2πi(k−1)
Ld for k = 1, . . . , Ld (4.30)



45

and Hi is the instantaneous MIMO channel (cf. Section 4.2.1).

Analogous to the proof of [15], we first consider the case where the transmission data-

block length is equal to the number of channel taps, i.e. Ld = ν + 1. In this case, the entries

of Bk
′s are i.i.d. normal complex Gaussian.

Outage upper bound

The outage probability of the MMSE receiver is given by

Pout = P
(

1

Ld

MLd∑

k=1

log(
1

(I + ρHe
HHe)

−1
kk

) < R

)
(4.31)

= P
(

1

Ld

MLd∑

k=1

log((I + ρHe
HHe)

−1
kk ) > −R

)

6 P
(

M log

MLd∑

k=1

1

MLd

(I + ρHe
HHe)

−1
kk > −R

)
(4.32)

= P
(

M log

MLd∑

k=1

1

MLd

(I + ρΛHΛ)−1
kk > −R

)
(4.33)

= P
( MLd∑

k=1

(I + ρΛHΛ)−1
kk > MLd2

− R
M

)

= P
( Ld∑

i=1

tr(I + ρBH
i Bi)

−1 > MLd2
− R

M

)

= P
( Ld∑

i=1

M∑

k=1

1

(1 + ρλk,i)
> MLd2

− R
M

)
(4.34)

Where (4.32) follows from Jensen’s inequality, (4.33) follows from the eigen decomposition

of He, and λk,i is k-th eigenvalue of the i-th Wishart matrix BH
i Bi.

Recall from Section 3.3 that the eigenvalues of a Wishart matrix have the asymptotic

property
M∑

k=1

1

1 + ρλk

.
=

∑
αk>1

1 +
∑
αk<1

ραk−1 (4.35)



46

based on which we established in Lemmas 3.3.1 and 3.3.2 the following

P
( M∑

k=1

1

1 + ρλk

> s
) .

= ρ−(s2+|N−M |s) (4.36)

where αk is defined in (3.15) and s,M , and N are arbitrary integers. Define

θi
4
=

∑
αk,i>1

1

θi are i.i.d. discrete random variables with the following asymptotic distribution (cf. Sec-

tion 3.3, Equations (3.22)-(3.26))

P
(
θi = ni

) .
= ρ−(n2

i +|N−M |ni) for ni = 1, . . . ,M (4.37)

Using (4.36), the outage probability in (4.34) can be evaluated as

Pout 6̇ P
( Ld∑

i=1

M∑

k=1

1

(1 + ρλk,i)
> MLd2

− R
M

)

.
= P

( Ld∑
i=1

θi > Ω
)

(4.38)

where Ω = dMLd2
− R

M e. Evaluating the probability in (4.38) in a combinatorial manner, we

get

P
( Ld∑

i=1

θi > Ω
) .

= P
( Ld∑

i=1

θi = Ω
)

=̇
∑

n1,n2,...,nLd

ρ−(n2
1+|N−M |n1) . . . ρ−(n2

p+|N−M |nLd
) (4.39)

=̇ max
n1,n2,...,nLd

ρ−(n2
1+|N−M |n1) . . . ρ

−(n2
Ld

+|N−M |nLd
)

(4.40)

where ni ∈ [0,M ] for (i = 1, 2, . . . , Ld) is the value of the i-th discrete random variable θi,

and (4.40) is true since the summation in (4.39) is dominated by the maximum element.

Let the set {n∗k, k = 1, . . . , Ld} be the set of indices of the optimal solution of (4.40). The

set {n∗k} is obtained by solving the following optimization problem

min
n1,n2,...,nLd

Ld∑

k=1

(n2
k + |N −M |nk)
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subject to

Ld∑

k=1

nk = Ω

0 6 nk 6 M

or equivalently,

min
n1,n2,...,nLd

Ld∑

k=1

n2
k (4.41)

subject to

Ld∑

k=1

nk = Ω

nk ≥ 0

The problem in (4.41) is a quadratic integer-programming (QIP) problem (see e.g. [30]

). Integer programming problems are in general NP-hard. However, due to the simple

structure of the objective function in (4.41), we can efficiently solve it, thus obtain a closed

form expression for {n∗k} and hence (4.40).

Lemma 4.2.5 For the QIP given by (4.41), the optimum solution is given by:

n∗i = u for 1 6 i 6 t

n∗j = u + 1 for t + 1 6 j 6 Ld

where u = b Ω
Ld
c and t = Ld(u + 1)− Ω.

Proof See Appendix 4.3.2

Using Lemma 4.2.5, we can now evaluate the outage upper bound given by (4.40) as

Pout 6̇ ρ−dcp (4.42)

where dcp = Ω(2u + 1)− uLd(u + 1) + |N −M |Ω and u = b Ω
Ld
c.
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Outage lower bound

The bound is obtained using the same steps to obtain the lower bound in Section 4.2.2. It

can be shown that

Pout = P
(

1

Ld

MLd∑

k=1

log((I + ρHe
HHe)

−1
kk ) > −R

)
(4.43)

>̇ P
( Ld∑

i=1

M∑

k=1

1

(1 + ρλk,i)
> MLd2

− R
M

)
(4.44)

The bound in (4.44) is the same as the upper bound in (4.34), thus the bound is tight and

the diversity is given by (4.42). The PEP analysis follows in a manner similar to Section 3.4.

Recall that so far we have considered data block length Ld = ν + 1. It can be shown

that the diversity for any Ld > ν + 1 is upper bounded by the computed diversity for the

case Ld = ν + 1. This bounding is derived from (4.33) via FFT arguments similar to those

used in [15], which we omit for brevity. A tight diversity lower bound for data block lengths

Ld > ν + 1 remains an open problem, except for the SIMO system as discussed in the next

section.

Diversity of CP Transmission in the SIMO Channel

Theorem 4.2.6 In a SIMO quasi-static frequency-selective channel with memory ν, N re-

ceive antennas and data-block length Ld, the MMSE receiver diversity is dCP
MMSE = N min(ν+

1, b2−RLdc+ 1) under joint spatial encoding and cyclic prefix transmission.

In order to prove Theorem 4.2.6, we first analyze the case of Ld = ν+1 and then generalize

the result for Ld > ν +1. The system model is given by (4.6) where the NLd×Ld equivalent

channel matrix is given by

He =




h0 h1 · · · hν 0 · · · 0

0 h0 h1 · · · hν · · · 0
...

. . . . . . . . . . . . . . .
...

h1 h2 · · · hν 0 · · · h0




. (4.45)



49

where hi (for i = 0, 1, . . . , ν) is N × 1 SIMO channel. Note that the diagonal elements of

(He
HHe) are identical and equal to

∑ν
i=0 hH

i hi. Thus the MMSE SINR for each output

information stream is

γk =
1

(I + He
HHe)kk

− 1 =
1

1
Ld

tr(I + He
HHe)kk

− 1 (4.46)

Evaluating the outage probability as in (4.31)

Pout = P
(

1

Ld

Ld∑

k=1

log(
1

(I + ρHe
HHe)

−1
kk

) < R

)

= P
(

log
1

Ld

Ld∑

k=1

1

(I + ρHe
HHe)

−1
kk

< R

)
(4.47)

= P
( Ld∑

k=1

1

(1 + ρλk)
> Ld2

−R

)
(4.48)

where (4.47) follows from (4.46) and (4.48) follows similarly to (4.34).

In a manner similar to (4.34) we have λk = BH
k Bk because now B is simply a N × 1

vector. For the case Ld = ν + 1, the eigenvalues {λk} are distributed according to Gamma

distribution with shape parameter N and scale parameter 1, i.e. λk ∼ Γ(N, 1). For Ld > ν+1

the Gaussian variables in Bk are no longer independent and thus analyzing this case requires

the unknown distribution {λk}. Instead, we indirectly show that the diversity of Ld = ν + 1

also holds for Ld > ν + 1.

Lemma 4.2.7 In a SIMO quasi-static frequency-selective channel with memory ν, N re-

ceive antennas and data-block length Ld = ν + 1, the MMSE receiver diversity is dCP
MMSE =

N(bLd2
−Rc+ 1) under joint spatial encoding and cyclic prefix transmission.

Proof The outage probability can be written as

Pout = P
( Ld∑

k=1

1

(1 + ρλk)
> Ld2

−R
)

=̇ P
(
M(α) > Ld2

−R
)

(4.49)
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where we use M(α) =
∑

αk>1 1 from (4.35). We thus need to evaluate P(α > 1). The

probability density function of λk is

fλk
(x) =

1

Γ(N)
xN−1 e−x (4.50)

The distribution of αk is thus given by

fαk
(x) =

1

Γ(N)
ρ−Nx e−x ln

1

ρ
(4.51)

The cumulative distribution function of αk is

Fαk
(x) =

∫ x

−∞
fαk

(y) dy

=
1

Γ(N)

∫ ∞

ρ−x

rN−1e−rdr (4.52)

=
1

Γ(N)

( ∫ ∞

0

rN−1e−rdr −
∫ ρ−x

0

rN−1e−rdr

)
(4.53)

= e−ρ−α
N−1∑

k=0

ρ−xk

k!
(4.54)

where we have made a change of variables r = ρ−x in (4.52), and evaluate the integral

according to [27, P.334 and P.336]. Thus we have

P (αk > 1) = 1− e−ρ

N−1∑

k=0

ρ−k

k!

.
= 1− (

1− 1

N !
ρ−N

)
(4.55)

.
= ρ−N (4.56)

where (4.55) follows from the Taylor expansion for (4.54).

From the independence of {λk}, and subsequently the independence of {αk}, we conclude

that M(α) in (4.49) is binomially distributed with parameter ρ−N . Hence, similar to [15],
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we have

P
( Ld∑

k=1

1

1 + ρλk

> Ld2
−R

)
.
= P(M(α) > Ld2

−R)

=

Ld∑

i=bLd2−Rc+1

P(M(α) = i)

.
=

Ld∑

i=bLd2−Rc+1


Ld

i


 ρ−Ni (1− ρ−N)n−i

︸ ︷︷ ︸
.
=1

.
= ρ−N(bLd2−Rc+1).

which concludes the proof for Ld = ν + 1

For Ld > ν + 1 we follow steps similar to [15].

Lemma 4.2.8 Consider two SIMO systems both operating under quasi-static frequency-

selective channels with memory ν. One system has data block length Ld1 > ν + 1 and

the other Ld2 ≥ Ld1, we have the following property

P
( Ld1∑

k=1

1

(1 + ρλk)
> m

)
.
= P

( Ld2∑

k=1

1

(1 + ρλk)
> m

)

for any m ∈ R.

Proof The proof has similarities with the SISO case developed in [15, Lemma 2], but is not

a trivial extension (see Appendix 4.3.3).

Using Lemma 4.2.8 and the results in [15, Theorem 2], Theorem 4.2.6 is established.

4.3 Appendix

4.3.1 Proof of Lemma 4.2.1

Consider a single-antenna ISI channel h = [h0, . . . , hν ], where ν is channel memory. The

transmitter sends a block of Ld + ν symbols (i.e. the extension Le = ν), the last ν symbols
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of which are zeros to remove the inter-block interference. The system model is given by

y = Hex + n (4.57)

where x is the transmitted length-(Ld + ν) vector. We consider the case where the padding

length is equal to the memory of the channel. The results are also valid for Le > ν as a

direct result of [15, Theorem 2].

The outage probability of MMSE receiver under ZP transmission is given by [15]

Pout = P
( 1

Ld

Ld∑

k=1

log(
1

(I + ρHe
HHe)

−1
kk

) < R
)

6 P
( 1

Ld

Ld∑

k=1

log(1 +
ρ

(He
HHe)

−1
kk

) < R
)

(4.58)

6 P
(
log

1

Ld

Ld∑

k=1

1

ρ
(He

HHe)
−1
kk > −R

)
(4.59)

= P
( Ld 2−R

tr(He
HHe)−1

< ρ−1
)

(4.60)

where (4.58) represents the outage probability of zero-forcing equalizer which upper bounds

that of the MMSE. The bound in (4.59) follows from Jensen’s inequality.

We want to show that tr(He
HHe)

−1 in (4.60) is proportional to ||h||−2. Thus it is

straightforward to obtain full-diversity at any R since [2]

P
(
c ||h||2 < ρ−α

)
=̇ρ−Lα (4.61)

where c is a constant that is independent of h.

To show that this is indeed the case, we use the result of Tepedelenlioglu [25, 31] which

provides a family of linear zero-forcing equalizers that is capable of achieving full multipath

diversity in zero-padded systems under certain constraints. We paraphrase the result for

convenience.

Lemma 4.3.1 ( [25,31]) Under zero-padded transmission, there exists a family of left-

inverses of He, denoted by G, such that ||G||−2 > C||h||2 for some constant C independent
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of the channel vector h. Moreover, we have ||WZF || 6 ||G||, for any G satisfying GHe = I,

and WZF is given by

WZF = (He
HHe)

−1He
H . (4.62)

Applying the ZF equalizer WZF on the channel output given by (4.57) we get the equal-

ized signal ỹ = x + z, where z = WZFn. The filtered noise power Pz can be evaluated

as

Pz = E tr[zzH ]

= tr
[
E((He

HHe)
−1He

HnnHHe(He
HHe)

−1)
]

= tr[(He
HHe)

−1] (4.63)

where we assume the noise is uncorrelated and has variance equal to one.

Using the properties of the Frobenius norm, Pz can be bounded as

Pz = E(||Wzfn||2)
6 E(||Wzf ||2||n||2) = Ld||Wzf ||2. (4.64)

Using (4.63), (4.64) and Lemma 4.3.1, the trace in (4.60) can be bounded by

tr[(He
HHe)

−1] 6 Ld||Wzf ||2 6 Ld

C ||h||2 . (4.65)

Thus from (4.60) we have

Pout 6̇ P
(
C2||h||2 < ρ−1

)

.
= ρ−(ν+1). (4.66)

where C2 = C 2−R is a constant independent of h and ρ.

Note that the constraints and construction methods in [25,31] for the zero-forcing equal-

izers to achieve full multipath diversity in ZP systems do not apply in CP systems. That is,

Lemma 4.3.1 is not true for CP transmission. This is because the equivalent channel in CP

systems does not have the same properties that were used in [25,31].
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4.3.2 Proof of Lemma 4.2.5:(QIP Problem)

Consider the following Quadratic Integer Programming (QIP) problem

min
n1,n2,...,n`

∑̀

k=1

n2
k (4.67)

subject to
∑̀

k=1

nk = Ω

nk ≥ 0.

where Ω and ` are integers.

Consider a candidate solution vector [n1, . . . , nk, . . . , n`]. We partition the variables in

this vector according to their values into Ω + 1 sets Nj = {nk : nk = j} for 0 ≤ j ≤ Ω;

clearly some of these sets may be empty. Denote the membership of each set Sj = |Nj|.
Furthermore, let Ω = m` + K where m is the divisor and K is the remainder of the division

of Ω by `. From the constraint in (4.67) we have

∑̀

k=1

nk =
Ω∑

j=0

jSj = m` +
Ω∑

j=0

(j −m)Sj = m` + K. (4.68)

Evaluating the objective function:

∑̀

k=1

n2
k =

Ω∑
j=0

(m + j −m)2Sj

= `m2 + 2m
Ω∑

j=0

(j −m)Sj +
Ω∑

j=0

(j −m)2Sj

= `m2 + 2mK +
Ω∑

j=0

(j −m)2Sj (4.69)

> `m2 + 2mK +
Ω∑

j=0

(j −m)Sj (4.70)

= `m2 + 2mK + K (4.71)

where (4.69) and (4.71) use
∑Ω

j=0(j −m)Sj = K, which follows from (4.68).
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We now propose that one may achieve optimality when all variables take values either m

or m + 1. In that case,

∑

k

nk = mSm + (m + 1)(`− Sm) = m` + (`− Sm)

∑

k

n2
k = m2Sm + (m + 1)2(`− Sm) = `m2 + 2mK + K.

where we substituted the value of ` − Sm from the first equation into the second equation

above. This shows that the variables taking values m or m + 1 achieves the lower bound

in (4.71). At optimality Sm = (m + 1)`− Ω.

4.3.3 Proof of Lemma 4.2.8

We begin by showing that for any integer multiplier of Ld1 = ν + 1 denoted by Ld2 = TLd1

(T ∈ N) and any real-valued m ∈ (0, Ld1), we have

P
( Ld1∑

q=1

1

(1 + ρλq)
> m

)
.
= P

( Ld2∑
q=1

1

(1 + ρλq)
> m

)
(4.72)

Note that for SIMO-CP system, λq = bH
q bq, where bq is the N × 1 vector given by

b(i)
q =

ν∑
n=0

hn e
−j

2π(q−1)
Ldi for q = 1, . . . , Ldi

(4.73)

where hn is the channel gain as a function of the tap index n, and the superscript i = 1, 2 is

used to distinguish the variables in two systems with data block lengths Ld1 and Ld2 .

Recall that we can take a Ld1-point signal and apply a Ld2-point DFT on it (after zero-

padding), which will result in a resampling in the Fourier domain at Ld2 points. Following [15]

we can write the explicit relationship between entries of b(1) and b(2) as

b
(1)
q,l =

Ld1∑
i=1

b
(2)
i,l ψi q = 1, 2 . . . , Ld2 and l = 1, 2, . . . , N. (4.74)

where

ψi =
1

Ld1

1− e
−j

(q−1)2πLd1
Ld2

1− e
−j

(
2π(q−1)

Ld2
− 2π(i−1)

Ld1

) .
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Define α
(i)
q,l =

log |b(i)q,l|2
log ρ

. Note that b
(1)
T (q−1),l = b

(2)
q,l and α

(2)
T (q−1),l = α

(1)
q,l for q = 1, 2 . . . , Ld1

since Ld2 = TLd1 . From (4.74), we have

|b(1)
q,l |2 =

Ld1∑
i=1

|ψi|2|b(2)
i,l |2 +

Ld1∑
i=1

Ld1∑
s=1

ψiψsb
(2)
i,l b

∗(2)
s,l

︸ ︷︷ ︸
, η

. (4.75)

We now analyze each part of the sum in (4.75). For the set of indices A , {i : i =

T (k− 1) + 1, k = 1, . . . , Ld1}, the coefficients {ψi} are non-zero constants, then |ψi|2|b(2)
i,l |2 .

=

|b(2)
i,l |2 ∀l. Noting that η must be real-valued, and defining αη , − log |η|

log ρ
, Eq. (4.75) can be

written as

ρ−α
(2)
q,l =̇

Ld1∑
i=1

ρ−α
(1)
i,l +

η

|η|ρ
−αη

=̇ρ−mini α
(1)
i,l +

η

|η|ρ
−αη . (4.76)

Note that if η < 0 the second term in (4.76) should be smaller than the first term

since otherwise the right-hand side of (4.76) will be negative while the left-hand side is

positive. Thus for η < 0 we have αη > mini α
(1)
i.l . Also, for a > 0 we have ρ−mini α

(1)
i,l +

η
|η|ρ

−αη>̇ρ−mini α
(1)
i,l . Thus we always have ρ−mini α

(1)
i,l + η

|η|ρ
−αη>̇ρ−mini α

(1)
i,l , leading to the

following lemma.

Lemma 4.3.2 For α
(1)
q,l and α

(2)
q,l defined above we have: ρ−α

(2)
q,l >̇ρ−mini α

(1)
i,l ⇒ α

(2)
q,l 6 mini α

(1)
i,l

for q ∈ A.

We now partition the DFT points into two sets A = {T (i − 1) + 1, i = 1, . . . , Ld1} and

B = {1, . . . , Ld2}\{T (i− 1) + 1, i = 1, . . . , Ld1} We now define the event:

D 4
= {min

i
α

(1)
i,1 < 1 , min

i
α

(1)
i,2 < 1 , . . . , min

i
α

(1)
i,N < 1}
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and proceed to evaluate the probability

P
( Ld2∑

q=1

1

(1 + ρλq)
> m

)
= P

( Ld2∑
q=1

1

1 + ρ
∑N

l=1 |b(1)
q,l |2

> m

)
(4.77)

= P
( ∑

q∈A

1

1 + ρ
∑N

l=1 |b(1)
q,l |2

+
∑
q∈B

1

1 + ρ
∑N

l=1 |b(1)
q,l |2

> m

)

.
= P

(
S1 + S2 > m

)
(4.78)

where (4.77) follows since λq = bH
q bq and S1 and S2 are given by

S1 ,
Ld1∑
q=1

1

1 +
∑N

l=1 ρ1−α
(1)
q,l

S2 ,
∑
q∈B

1

1 +
∑N

l=1 ρ1−α
(2)
q,l

We now evaluate (4.78)

P
(

S1 + S2 > m

)
= P

(
S1 + S2 > m

∣∣∣∣ D
)
× P(D) + P

(
S1 + S2 > m

∣∣∣∣ D̄
)
× P(D̄) (4.79)

Note that subject to the event D, we have

S2 =
∑
q∈B

1

1 +
∑N

l=1 ρ1−α
(2)
q,l

.
= 0

Therefore this term can be asymptotically ignored. Also subject to D̄, we have

S1 =

Ld1∑
q=1

1

1 +
∑N

l=1 ρ1−α
(1)
q,l

.
= Ld1

and since with probability one, Ld1 ≥ m, the other (non-negative) term can be asymptotically

ignored. Thus, both the terms involving the set B can be altogether ignored and we have:

P
( Ld2∑

q=1

1

(1 + ρλq)
> m

)
.
= P

(
S1 > m|D

)
P(D) + P

(
S1 > m|D̄

)
P(D̄)

.
= P

( Ld1∑
q=1

1

(1 + ρλq)
> m

)
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We have thus established (4.72) when Ld1|Ld2 . We must now show that the same result

holds for any T ′ when Ld1 - T ′. To do so, let Ld2 = T ′Ld1 , then we have

P
( Ld2∑

q=1

1

(1 + ρλq)
> m

)
.
= P

( T ′∑
q=1

1

(1 + ρλq)
> m

)
. (4.80)

Using (4.72) when Ld1|Ld2 and (4.80) when T ′|Ld2 together establishes (4.72) for any two

positive integers.



CHAPTER 5

MIMO LINEAR PRECODING

5.1 Introduction

Precoding is a preprocessing technique that exploits channel-state information at the trans-

mitter (CSIT) to match the transmission to the instantaneous channel conditions [4,24,32].

Linear and non-linear precoding designs are available in the literature [33]. Linear precoding

in particular provides a simple and efficient method to utilize CSIT. Linear precoding has

been shown to be optimal in certain situations involving partial CSIT [34, 35], however, in

many instances the main motivation of linear precoders is to simplify the MIMO receiver.

Linear precoders include zero-forcing (ZF), matched filtering (MF), Wiener filtering, and

regularized zero-forcing (RZF). The ZF precoding schemes were extensively studied in mul-

tiuser systems as the ZF decouples the multiuser channel into independent single-user chan-

nels and has been shown to achieve a large portion of dirty paper coding capacity [36]. ZF

precoding often involves channel inversion, using the pseudo-inverse of the channel or other

generalized inverses [33]. Matched filter (MF) precoding [37], similarly to the MF receiver,

is interference limited at high SNR but it outperforms the ZF precoder at low SNR [33].

The regularized ZF precoder, as the name implies, introduces a regularization parameter

in channel inversion. If the regularization parameter is inversely proportional to SNR, the

RZF of [38] is identical to the Wiener filter precoding [33]. Peel et al. [38] introduce a vector

perturbation technique to reduce the transmit power of the RZF method, showing that in

this way RZF can operate near channel capacity.

This chapter analyzes the diversity of MIMO linear precoding, with or without linear

receivers, under flat fading. We show that in a M ×N MIMO channel with M ≥ N , the ZF

precoder has diversity M −N + 1. We show that Wiener precoders produce a diversity that

59
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Figure 5.1. MIMO with linear precoder

is a function of spectral efficiency as well as the number of transmit and receive antennas.

At very low rates, the Wiener precoder enjoys diversity MN , while at very high rates it

achieves diversity M −N + 1. These results are reminiscent of MIMO linear equalizers [5],

even though in general the behavior of equalizers (receive side) can be very different from

precoders (transmit side) and the analysis does not carry from one to the other. We also

show that MIMO systems with RZF and MF precoders (together with optimal receivers)

exhibit a new kind of rate-dependent diversity that has not to date been observed or reported,

i.e., they either have full diversity or zero diversity (error floor) depending on the operating

spectral efficiency R.

We also provide DMT analysis for all precoders mentioned above. The fact that DMT

and the diversity under fixed-rate regime require separate analyses has been established for

MIMO linear equalizers [5, 6] and is explained in Chapter 2 and Chapter 3. Essentially,

the reason is that various fixed rates (spectral efficiencies) for MIMO precoding result in

distinctly different diversities, whereas DMT analysis assigns only a single value of diversity

to all fixed rates (all fixed rates correspond to multiplexing gain zero).

This chapter is organized as follows. Section 5.2 describes the system model. Section 5.3

provides outage analysis of many precoded MIMO systems. Section 5.4 provides the DMT

analysis. Section 3.6 provides simulations that illuminate our results.
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5.2 System Model

A MIMO system with linear precoding is depicted in Fig. 5.1. This system uses the linear

precoder to manage the interference between the streams in a MIMO system to avoid a

requirement of optimal joint decoding in the receiver, which is costly. We consider a flat

fading channel H ∈ CN×M , where M and N are the number of transmit and receive antennas,

respectively. While M > N when using linear precoding alone, we have N > M or M > N

when using precoding together with receive-side linear equalization depending on whether

the precoder is designed for the equalized channel or the equalizer is designed for the precoded

channel (see Figure 6.1). The input-output system model for flat fading MIMO precoded

channel with M transmit and N receive antennas is given by

y = HTx + n

where T ∈ CM×B is the precoder matrix. In Chapter 6, we will consider the joint effect of

precoding and equalization, where the system model will be

y = WHTx + Wn (5.1)

where W ∈ CB×N is the receiver side equalizer. The number of information symbols is

B 6 min(M,N), the transmitted vector is x ∈ C B×1, and n ∈ C N×1 is the Gaussian noise

vector. The vectors x and n are assumed independent.

We aim to characterize the diversity gain, d(R,M, N), as a function of the spectral

efficiency R (bits/sec/Hz) and the number of transmit and receive antennas. This requires

a Pairwise Error Probability (PEP) analysis which is not directly tractable. Instead, we

find the exponential order of outage probability and then demonstrate that outage and PEP

exhibit identical exponential orders.

The objective of linear precoding/equalization is to transform the MIMO channel into

min(M,N) parallel channels that can be described by

yk =
√

γkxk + ñk, k = 1, . . . , B (5.2)
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where γk is the SINR at the k-th receiver output and B = min(M,N), and ñk are the

decision point noise coefficients.

The outage probabilities of MIMO systems under joint spatial encoding is respectively

given by [6, 7]

Pout , P
( B∑

k=1

log(1 + γk) 6 R

)
(5.3)

We shall perform outage analysis for different precoders/equalizers as the first step to-

wards deriving the diversity function. We then provide lower and upper bounds on error

probability via outage probabilities. This two-step approach was first proposed in [2] due to

the intractability of the direct PEP analysis for many MIMO architectures.

We denote the exponential equality of two functions f(ρ) and g(ρ) as f(ρ)
.
= g(ρ) when

lim
ρ→∞

log f(ρ)

log(ρ)
= lim

ρ→∞
log g(ρ)

log(ρ)

The exponential inequalities >̇ and 6̇ are defined in a similar manner. In the following,

we shall need to specify various upper and lower bounds or approximations of the SINR γ,

which will give rise to a number of variables such as γ̂, γ̆, and γ̄.

5.3 Precoding Diversity

In this section we analyze a linearly precoded MIMO system where M ≥ N and the number

of data streams B is equal to N . For the purposes of the developments in this section, there

is no receive-side equalization.

5.3.1 Zero-Forcing Precoding

The ZF precoder completely eliminates the interference at the receiver. ZF precoding is well

studied in the literature via performance measures such as throughput and fairness under a

total (or per antenna) power constraint [39, and references therein].
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Design Method I

One approach to design the ZF precoder is to solve the following problem [33]

T = arg min
T
E

[||Tx||22
]

(5.4)

subject to HT = I

The resulting ZF transmit filter is given by

T = β HH(HHH)−1 ∈ CM×N (5.5)

where β is a scaling factor to satisfy the transmit power constraint, that is [33]

β2tr
(
TTH

)
6 ρ (5.6)

where we assume that the noise power is one and that the information streams are indepen-

dent. From (5.6), the received SINR per stream is thus given by

γZFP
k =

ρ

tr((HHH)−1)
. (5.7)

Using (5.3), the outage probability is given by

Pout = P
(

N log
(
1 +

ρ

tr((HHH)−1)

)
6 R

)
(5.8)

A direct evaluation of (5.8) is intractable since the diagonal elements of (HHH)−1 are

distributed according to the inverse-chi-square distribution [6, 40]. We instead bound (5.8)

from below and above and show that the two bounds match asymptotically.

Let {λk} be the eigenvalues of HHH . Equation (5.8) can be written as

Pout = P
(

N log
(
1 +

ρ∑N
k=1

1
λk

)
6 R

)

which can be bounded as

Pout 6 P
(

N log(1 +
ρ

N
λmin) 6 R

)
(5.9)

= P
(

λmin 6 N(2
R
N − 1)Rρ−1

)

=̇ P
(
λmin 6 ρ−1

)
. (5.10)
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The marginal probability density of λmin is approximately proportional to: f1(λ) ∝
λ(M−N) whenever λ ¿ 1 [7, 17]. Therefore the bound in (5.10) can be evaluated to yield:

Pout 6̇ ρ−(M−N+1). (5.11)

We now proceed with a lower bound on outage. The outage probability in (5.8) can be

bounded:

Pout = P
(

N log(1 +
ρ

tr(HHH)−1
) 6 R

)

> P
(

N log(1 +
ρ

(HHH)−1
kk

) 6 R

)

=̇ P
(
z 6 ρ−1

)
(5.12)

where we have made a change of variable z = 1
(HHH)−1

kk

.

The random variable z in (5.12) is distributed according to the chi-square distribution

with 2(M − N + 1) degree of freedom, i.e. z ∼ χ2
2(M−N+1) [40]. Thus the bound in (5.12)

can be evaluated [6] yielding:

Pout >̇ ρ−(M−N+1). (5.13)

From (5.11) and (5.13), we conclude that the diversity of MIMO system using the ZF

precoder given by (5.4) and joint spatial encoding is

dZFP = M −N + 1. (5.14)

5.3.2 Zero-Forcing Precoding: Design Method II

Notice that the ZF precoder design in (5.4) minimizes the transmitted power. Another

approach for ZF precoding design allocates unequal power levels across the transmit antennas

to optimize some performance measure. For instance, consider the optimization problem [39]

max
pk,T

∑

k

log(1 + γZFP
k )

subject to HT = diag{√p1, . . . ,
√

pN}
E||Tx||2 6 ρ (5.15)
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where pk is the transmit power for stream k. The optimal solution for (5.15) (assuming

independent transmit signaling) has the following form [39, Theorem 1]:

T = HH(HHH)−1diag{√p1, . . . ,
√

pN} (5.16)

where pk are the solution to:

max
pk

∑

k

log(1 + γZFP
k )

subject to
∑

k

pk

[
(HHH)−1

]
kk

6 ρ (5.17)

Due to the logarithmic form of the cost function, the solution has the familiar form of

waterfilling. It is well-known that water-filling may drive some pk to zero. Depending on

the value of ρ and realization of HHH , it may also happen that all optimal pk are positive.

The set of realizations of HHH that satisfy this condition are collected into an event that

we denote P . Conditioned on P it is easy to verify that the optimal solution is given by:

pk =
ρ +

∑N
k=1(HHH)−1

kk

N(HHH)−1
kk

− 1 k = 1, . . . , N (5.18)

The outage probability can then be evaluated as follows

Pout = P
(

log
N∑

k=1

(pk + 1) < R

)

= P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P
)
P
(P)

+ P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P̄
)
P
(P̄)

(5.19)

We will now calculate P
(P̄)

. Using (5.18), we have

P
(P̄)

= P
(

N(HHH)−1
kk −

N∑

k=1

(HHH)−1
kk > ρ

)

6 P
(

N(HHH)−1
kk > ρ

)

6 P
(

Nλmax(HHH)−1 > ρ

)

= P
(

λmin(HHH) < Nρ−1

)

.
= ρ−(M−N+1). (5.20)
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where (5.20) is again due to the marginal distribution of λmin via the method of [7].

We now bound other terms of (5.19).

P
( N∑

k=1

log(
ρ +

∑N
k=1(HHH)−1

kk

M(HHH)−1
kk

) 6 R

)
6 P

( N∑

k=1

log(
ρ

M(HHH)−1
kk

) 6 R

)
(5.21)

= P
( N∑

k=1

log(
M(HHH)−1

kk

ρ
) > −R

)
(5.22)

6 P
(

N log
N∑

k=1

(
(HHH)−1

kk

ρ
) > −R

)
(5.23)

= P
( N∑

k=1

1

ρλk

> 2−
R
N

)

6 P
(

1

ρλmin

> 1

N
2−

R
N

)

.
= P

(
λmin 6 ρ−1

)
(5.24)

.
= ρ−(M−N+1), (5.25)

where (5.21) holds by discarding the positive element
∑N

k=1(HHH)−1
kk . Equation (5.23) fol-

lows from Jensen’s inequality, and the transition from (5.24) to (5.25) is again due to the

marginal distribution of λmin via the method of [7]. Thus

Pout = P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P̄
)
P
(P̄)

+ P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P
)
P
(P)

6 P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P̄
)

+ P
(P)

.
= ρ−(M−N+1). (5.26)

where we have used (5.20) and (5.25) to obtain (5.26).
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A lower bound on the outage probability can be given as follows.

Pout = P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P̄
)
P
(P̄)

+ P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P
)
P
(P)

> P
(

log
N∑

k=1

(pk + 1) < R

∣∣∣∣P̄
)
P
(P̄)

.
= P

(
log

N∑

k=1

(pk + 1) < R

∣∣∣∣P̄
)

. (5.27)

where (5.27) follows since P(P̄) = 1−P(P)
.
= 1. Thus the outage probability can be bounded

as follows

Pout >̇ P
( N∑

k=1

log(
ρ +

∑N
k=1(HHH)−1

kk

M(HHH)−1
kk

) 6 R

)

> P
( N∑

k=1

log(
ρ + N

λmin

M(HHH)−1
kk

) 6 R

)

> P
(

N log
1

MN

N∑

k=1

ρ + 1
λmin

(HHH)−1
kk

6 R

)
. (5.28)

The singular value decomposition of H and the corresponding eigen decomposition of

HHH are given by

H = UΓVH

HHH = UΛUH

where U ∈ CN×N and V ∈ CM×M are unitary matrices, Γ ∈ RN×M is a rectangular matrix

with non-negative real diagonal elements and zero off-diagonal elements, and Λ = ΓΓT ∈
RN×N is a diagonal matrix whose diagonal elements are the eigenvalues of HHH . Let uk be

the k-th column of UH . We have

(HHH)−1
kk = uH

k Λ−1uk =
N∑

l=1

|ukl|2
λl

(5.29)

where ukl is the (k, l) entry of the matrix U.
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The bound in (5.28) can be rewritten

Pout >̇ P
(

N log
1

MN

N∑

k=1

1∑N
l=1

|ukl|2
(ρ+ 1

λmin
)λl

6 R

)

> P
(

N log
1

MN

N∑

k=1

1∑N
l=1

|ukl|2
1+(ρ+ 1

λmin
)λl

6 R

)
(5.30)

We can bound the sum in the left hand side of (5.30) similarly to the bound in [7, Eq.(18)]

N∑

k=1

1∑N
l=1

|ukl|2
1+(ρ+ 1

λmin
)λl

6
(
1 + (ρ +

N

λmin

)λmin

) N∑

k=1

1∑N
l=1 |u1`|2

=
(
N + ρλmin

) N∑

k=1

1∑N
l=1 |u1`|2

is similar to [7, Eq.(18)], thus the analysis of [7] applies and we obtain

Pout >̇ P
(
λmin 6 ρ−1

)
= ρ−(M−N+1). (5.31)

Thus, the MIMO ZF precoding with unequal power allocation (5.17) achieves diversity

order M −N + 1.

Recall that the diversity is defined based on the error probability. In Appendix 5.7.1 we

provide the pairwise error probability (PEP) analysis for the zero-forcing and regularized

zero-forcing precoded systems and show that the outage and error probabilities exhibit same

diversity.

5.3.3 Regularized Zero-Forcing Precoding

In general, direct channel inversion performs poorly due to the singular value spread of the

channel matrix [38]. One technique often used is to regularize the channel inversion:

T = β HH(HHH + c I)−1 (5.32)

where β is a normalization factor and c is a fixed constant.
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Recall

y = HTx + n = βUΛ(Λ + c I)−1UHx + n (5.33)

allowing us to decompose the received waveform at each antenna into signal, interference,

and noise terms:

yk = β

( N∑

l=1

λl

λl + c
|ukl|2

)
xk + β

N∑

i=1,i 6=k

( N∑

l=1

λl

λl + c
uklu

∗
il

)
xi + nk (5.34)

where the scaling factor β is given by β = 1√
η

and

η = tr
[
(HHH + c I)−1HHH(HHH + c I)−1

]

= tr
[
(UΛUH + c I)−1UΛUH(UΛUH + c I)−1

]

= tr
[
U(Λ + c I)−1Λ(Λ + c I)−1UH

]

= tr
[
Λ(Λ + c I)−2

]
=

N∑

l=1

λl

(λl + c )2
. (5.35)

The received signal power is given by

PT = E||HTx||2

= E
[
β2tr

(
UΛ(Λ + c I)−1UHxxHU(Λ + c I)−1ΛUH

)]

= E
[
β2tr

(
Λ(Λ + c I)−1UHxxHU(Λ + c I)−1ΛUHU

)]

= β2tr

(
Λ(Λ + c I)−1UHE(xxH)U(Λ + c I)−1Λ

)

=
β2ρ

N
tr

[
(Λ + c I)−2Λ2

]
=

β2ρ

N

N∑

l=1

λ2
l

(λl + c )2
. (5.36)

where we have used E(xxH) = ρ
N
I.

The SINR is evaluated by computing the signal and interference powers from (5.34). For

a given channel H, the power of desired and interference signals at the k-th receive antenna
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are respectively given by

P
(k)
D =

β2ρ

N

( N∑

l=1

λl

λl + c
|ukl|2

)2

(5.37)

P
(k)
I =

β2ρ

N

N∑

i=1,i 6=k

∣∣∣∣
N∑

l=1

λl

λl + c
uklu

∗
il

∣∣∣∣
2

. (5.38)

Thus the SINR for the k-th signal stream is given by

γk =
P

(k)
D

P
(k)
I + 1

=

β2ρ
N

( ∑N
l=1

λl

λl+c
|ukl|2

)2

β2ρ
N

∑N
i=1,i6=k

∣∣∣∣
∑N

l=1
λl

λl+c
uklu∗il

∣∣∣∣
2

+ 1

(5.39)

Defining the exponential order of eigenvalues λl = ρ−αl in a manner similar to [2], and

using the definition of η = β−2,

γk =

( ∑
l

ρ−αl

ρ−αl+c
|ukl|2

)2

∑
i 6=k

∣∣∣∣
∑N

l=1
ρ−αl

ρ−αl+c
uklu∗il

∣∣∣∣
2

+ N ρ−1 η

=̇

( ∑
l ρ
−αl |ukl|2

)2

∑
i 6=k

∣∣∣∣
∑N

l=1 uklu∗ilρ
−αl

∣∣∣∣
2

+ N ρ−1
∑N

l=1 ρ−αl

(5.40)

where we have substituted for η using (5.35), and the asymptotic equality follows because

constant c dominates ρ−αl , a fact that also implies η
.
=

∑
l ρ
−αl .

Multiplying the numerator and denominator of (5.40) by ρ2, we have

γk=̇

( ∑
l ρ

1−αl|ukl|2
)2

∑
i6=k

∣∣∣∣
∑N

l=1 uklu∗ilρ
1−αl

∣∣∣∣
2

+ N
∑N

l=1 ρ1−αl

. (5.41)
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The sum in the numerator of (5.41) is, in the SNR exponent, equivalent to:

∑

l

ρ1−αl|ukl|2 .
= ρ1−αmin

∑

l

|ukl|2

= ρ1−αmin (5.42)

where we use the fact that
∑

l |ukl|2 = 1. Similarly, for the first term in the denominator

of (5.41)

∑

i 6=k

∣∣∣∣
N∑

l=1

uklu
∗
ilρ

1−αl

∣∣∣∣
2

.
= ρ2−2αmin

∑

i6=k

∣∣∣∣
N∑

l=1

uklu
∗
il

∣∣∣∣
2

= ρ2−2αmin

∑

i6=k

wki (5.43)

where we define wki ,
∣∣∣∣
∑N

l=1 uklu
∗
il

∣∣∣∣
2

. Notice that wki ≤ 1.

Using (5.42) and (5.43), the SINR in (5.41) is given by

γk=̇

(
ρ1−αmin

)2

ρ2−2αmin
∑

i6=k wki + N
∑N

l=1 ρ1−αl

. (5.44)

If all α` > 1 then the exponents of ρ are negative and the denominator is dominated by

its second term, which also dominates the numerator. If at least one of the α` ≤ 1, then the

maximum exponent which corresponds to αmin dominates each summation. Thus we have:

γk
.
=





ρ1−αmin α1 > 1 , . . . , αN > 1(
ρ1−αmin

)2

ρ2−2αmin
∑N

i=1
i 6=k

wki+N ρ1−αmin
otherwise

(5.45)

We now concentrate on the case where there exists at least one α` ≤ 1. We define

µmin , min
k,i
k 6=i

wki (5.46)
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therefore in this special case we have:

γk6̇
(
ρ1−αmin

)2

(N − 1)
(
ρ1−αmin

)2
µmin + N ρ1−αmin

(5.47)

.
=

1

(N − 1)µmin

(5.48)

, γ̄

Thus in general

γk 6̇ ν

(N − 1)µmin

(5.49)

, γ̄

where ν is a new random variable defined as:

ν =





κα if αk > 1 ∀k

1 otherwise

(5.50)

where κα , ρ1−αmin .

We can now bound the outage probability as follows

Pout = P
( N∑

k=1

log(1 + γk) 6 R

)

>̇ P
( N∑

k=1

log(1 + γ̄) 6 R

)

= P
(

ν

(N − 1)µmin

6 2R/N − 1

)

= P
(

ν

µmin

6 Θ

)
(5.51)

where Θ , (2R/N − 1)(N − 1).

The bound in (5.51) can be evaluated as follows

P
(

ν

µmin

6 Θ

)
= P

(
ν

µmin

6 Θ
∣∣ν = κα

)
P
(
ν = κα

)
+ P

(
ν

µmin

6 Θ
∣∣ν = 1

)
P
(
ν = 1

)

= P
(
κα 6 Θ µmin

)
P
(
ν = κα

)
+ P

( 1

µmin

6 Θ
)
P
(
ν = 1

)
. (5.52)
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Notice that P
(
κα 6 Θ µmin

) .
= 1 since κα is vanishing at high SNR and Θ and µmin are

positives. We now need to compute P
(
ν = κα

)
and P

(
ν = 1

)
, or equivalently P

({
αk >

1 ∀k})
and its complement. We use one of the results of [5].

Lemma 5.3.1 Let {λn} denotes the eigenvalues of a Wishart matrix HHH , where H is an

N ×M matrix with i.i.d Gaussian entries, and let αn = − log(λn)
log(ρ)

. If 1αn denotes the number

of αn that are greater than one, then for any integer s 6 N we have [5, Section III-A] 1

P
(
1αn = s

) .
= ρ−(s2+(M−N)s). (5.53)

Thus setting s = N (i.e. all αn > 1) in (5.53) yields

P
(
ν = κα

)
= P

(
1αn = N

) .
= ρ−MN (5.54)

P
(
ν = 1

) .
= O(1) (5.55)

where O(1) is a non-zero constant with respect to ρ.

Evaluating (5.52) depends on the values of Θ which is always real and positive. If Θ < 1

then we have

P
(

ν

µmin

6 Θ

)
.
= ρ−MN (5.56)

because P
(

1
µmin

6 Θ
)

= 0 as 1/µmin > 1. On the other hand if Θ > 1 then

P
(

ν

µmin

6 Θ

)
.
= ρ−MN + P

( 1

µmin

6 Θ
)
O(1) (5.57)

.
= O(1) (5.58)

since P
(

1
µ

6 Θ
)

is not a function of ρ because µ is independent ρ. For the set of rates where

Θ > 1, equation (5.58) implies that the outage probability in (5.82) is not function of ρ and

thus the diversity is zero, i.e. the system will have error floor. The set of rates for which

Θ > 1 are

R > N log
( N

N − 1

)
, Rth. (5.59)

1Note that [5] analyzes linear MIMO receiver where it is assumed N > M . It can be
easily shown that the above Lemma 5.3.1 applies for the case considered here where M > N .
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This concludes the calculation of a lower bound on the outage probability. A similar

approach will yield a corresponding upper bound, as follows. Let

µmax , max
k 6=i

|ukl′u
∗
il′|2 (5.60)

A lower bound on the SINR is given as

γk >̇ ν

(N − 1)µmax

(5.61)

, γ̂.

The outage probability is bounded as

Pout 6̇ P
( N∑

k=1

log(1 + γ̂) 6 R

)

= P
(

ν

µmax

6 Θ

)
. (5.62)

We can evaluate (5.62) in a similar way as (5.52), establishing that the outage diversity

dRZF
out = MN if the operating spectral efficiency R is less than Rth = N log ( N

N−1
), and

dRZF
out = 0 if R > Rth. This shows that the performance of RZF precoder can be much better

than that of the conventional ZF precoder MIMO system whose diversity is M − N + 1

independent of rate.

Recall that diversity is the SNR exponent of the probability of codeword error. In Ap-

pendix 5.7.1, we show that the outage exponent tightly bounds the SNR exponent of the

error probability. Thus we have the following theorem.

Theorem 5.3.2 For an M × N MIMO system that utilizes joint spatial encoding and reg-

ularized ZF precoder given by (5.32), the outage diversity is dRZF = MN if the operating

spectral efficiency R is less than Rth = N log ( N
N−1

), and dRZF = 0 if R > Rth .

Remark 5.3.1 Rth is a monotonically decreasing function of N with the asymptotic value

limN→∞ Rth = 1
ln 2

≈ 1.44. Overall we have 1.44 ≤ Rth ≤ 2, leading to an easily remembered

rule of thumb that applies to all antenna configurations. Regularized ZF precoders always

exhibit an error floor at spectral efficiencies above 2 b/s/Hz, and enjoy full diversity at

spectral efficiencies below 1.44 b/s/Hz.
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5.3.4 Matched Filter Precoding

The transmit matched filter (TxMF) is introduced in [33, 37]. The TxMF maximizes the

signal-to-interference ratio (SIR) at the receiver and is optimum for high signal-to-noise-ratio

scenarios [33]. The TxMF is also proposed for non-cooperative cellular wireless network [41].

The TxMF is derived by maximizing the ratio between the power of the desired signal portion

in the received signal and the signal power under the transmit power constraint, that is [33]

T = arg max
T

E
(||xH ỹ||2)

E
(||n||2) (5.63)

subject to: E||Tx||2 6 ρ

where ỹ is the noiseless received signal ỹ = Tx.

The solution to (5.63) is given by

T = βHH (5.64)

with

β =

√
1

tr(HHH)
. (5.65)

We now analyze the diversity for the MIMO system under TxMF. The received signal is

given by

y = HHHx + n = βUΛUHx + n.

The received signal at the k-th antenna

yk = β

( N∑

l=1

λl|ukl|2
)

xk + β

N∑

i=1,i 6=k

( N∑

l=1

λluklu
∗
il

)
xi + nk (5.66)

The SINR at k-th receive antenna is

γk =

β2 ρ
N

( ∑N
l=1 λl|ukl|2

)2

β2 ρ
N

∑N
i=1,i6=k

∣∣∣∣
∑N

l=1 λluklu∗il

∣∣∣∣
2

+ 1
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Substitute with the value of β and λl = ρ−αl

γk =

( ∑N
l=1 ρ−αl |ukl|2

)2

∑N
i=1,i6=k

∣∣∣∣
∑N

l=1 ρ−αluklu∗il

∣∣∣∣
2

+ N ρ−1
∑N

l=1 ρ−αl

(5.67)

Observe that (5.67) is the same as the SINR of the RZF precoded system given by (5.40).

Hence the analysis in the present case follows closely that of the outage lower bound of the

RZF precoder, with the following result: the system can achieve full diversity as long as the

operating rate is less than Rth given in (5.59). The pairwise error probability analysis is also

similar to that of the RZF precoding system (given in Appendix 5.7.1) which we omit for

brevity. Thus we conclude that Theorem 5.3.2 applies for the TxMF precoder.

5.3.5 Wiener Filter Precoding

The transmit Wiener filter TxWF minimizes the weighted MSE function.

{T, β} =argminT,βE
(||x− β−1ỹ||2)

subject to E
(||Tx

∣∣|2) 6 ρ. (5.68)

Solving (5.68) yields

T = βF̄−1HH (5.69)

with

F̄ =

(
HHH +

N

ρ
I

)

β =

√
1

tr(F̄−2HHH)
(5.70)

where β can be interpreted as the optimum gain for the combined precoder and channel [33].

Notice that the TxWF precoding function is similar to that of the MMSE equalizer [16].

Indeed the SINR of both systems are equivalent. To see this, we first compute the SINR for
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the precoded H ∈ CM×N (with M > N) MIMO channel

γk =
ρ β
N
|(T H)kk|2

ρ β
N

∑N
i6=k |(T H)ki|2 + 1

(5.71)

=
ρ
N
|(T H)kk|2

ρ
N

∑N
i6=k |(T H)ki|2 + tr(F̄−2HHH)

(5.72)

where we have used the independence of the transmitted signal to compute (5.71).

Now consider a MIMO channel H2 = HT ∈ CN×M . The MMSE equalizer for this channel

is given by

We = (HH
2 H2 +

N

ρ
I)−1HH

2 . (5.73)

The received SINR for that system is given by

γMMSE
k =

ρ
N
|(We H2)kk|2

ρ
N

∑N
i6=k |(We H2)ki|2 + tr(WeWe)

. (5.74)

Since We H2 = TWFPH and tr(WeWe) = tr(F̄−2HHH), we conclude that γMMSE
k =

γWFP
k . Hence the diversity analysis of [5, 7] for the MIMO MMSE receiver applies for the

MIMO Wiener precoding system. It is shown in [5] that this diversity is a function of rate

R and number of transmit and receive antennas. We thus conclude the following.

Lemma 5.3.3 Consider a channel H ∈ CM×N the diversity of the MIMO system under

Wiener filter precoding is given by

dWFP = dN2−
R
N e2 + (M −N)dN2−

R
N e (5.75)

where (·)+ = max(·, 0) and d·e.

Remark 5.3.2 It is commonly stated that MMSE and ZF operators “converge” at high SNR.

The developments in this chapter as well as [6] serve to show that although not false, this

comment is essentially fruitless because the performance of MMSE and ZF at high SNR are

very different. This apparent incongruity is explained in the broadest sense as follows: Even

though the MMSE coefficients converge to ZF coefficients as ρ → ∞, the high sensitivity
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of logarithm of errors (especially at low error probabilities) to coefficients is such that the

convergence of MMSE to ZF coefficients is not fast enough for the logarithm of respective

errors to converge.

5.4 Diversity-Multiplexing Tradeoff in Precoding

For increasing sequence of SNRs, consider a corresponding sequence of codebooks C(ρ),

designed at increasing rates R(ρ) and yielding average error probabilities Pe(ρ). Then define

r = lim
ρ→∞

R(ρ)

log ρ

d = − lim
ρ→∞

log Pe(ρ)

log ρ
.

For each r the corresponding diversity d(r) is defined (with a slight abuse of notation) as

the supremum of the diversities over all possible codebook sequences C(ρ).

From the viewpoint of definitions, the traditional notion of diversity can be considered

a special case of the DMT by setting r = 0. However, from the viewpoint of analysis, the

approximations needed in DMT calculation make use of R(ρ) being a strictly increasing

function, while for diversity analysis R is constant (not strictly increasing function of ρ).

Thus, although sometimes DMT analysis may produce results that are luckily consistent

with diversity analysis2 (r = 0), in other cases the DMT analysis may produce results that

are inconsistent with diversity analysis. Certain equalizers and precoders fall into the latter

category. In the following, we calculate the DMT of the various precoders considered up to

this point.

2E.g. the point-to-point MIMO channel with ML decoding.
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ZF Precoding

Recall that two ZF precoding designs have been considered. For the ZF precoder minimizing

power, given by (5.5), the outage upper bound in (5.9) can be written as

Pout 6 P
(
λmin 6 ρ( r

N
−1)

)
(5.76)

.
= ρ−(M−N+1)(1− r

N
) (5.77)

where we substitute R = r log ρ to obtain (5.76), and equation (5.77) follows in a manner

identical to the procedure that led to (5.11).

Similarly the outage lower bound (5.12) can be written as

Pout > P
(
z 6 ρ( r

N
−1)

)

.
= ρ−(M−N+1)(1− r

N
). (5.78)

From (5.77) and (5.78) we conclude

dZFP (r) = (M −N + 1)
(
1− r

N

)+
. (5.79)

The DMT of the ZF precoder maximizing the throughput, given by (5.16), is obtained in

an essentially similar manner to the above, therefore the discussion is omitted in the interest

of brevity.

Regularized ZF Precoding

We begin by producing an outage lower bound. To do so, we start by the bound on the

SINR of each stream k obtained in (5.45), and further bound it by discarding some positive
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terms in the denominator.

γ̄k =

(
ρ1−αmin

)2

∑
i6=k

∣∣uklu∗il ρ
1−αmin

∣∣2 + Nρ1−αmin

6





(
ρ1−αmin

)2

ρ2(1−αmin)
∣∣ukl′u∗2l′

∣∣2+Nρ1−αmin

k = 1

(
ρ1−αmin

)2

ρ2(1−αmin)
∣∣ukl′u∗1l′

∣∣2+Nρ1−αmin

k > 1

.
=





1
|ukl′u∗2l′ |2

k = 1

1
|ukl′u∗1l′ |2

k > 1

We can now bound the outage probability

Pout = P
( N∑

k=1

log(1 + γk) 6 R

)

>̇ P
( N∑

k=1

log(1 + γ̄k) 6 R

)

> P
(

N log
N∑

k=1

1

N
(1 + γ̄k) 6 R

)
(5.80)

.
= P

( N∑

k=1

1

N
(1 + γ̄k) 6 ρ

r
N

)
(5.81)

.
= P

( N∑

k=1

γ̄k 6 ρ
r
N

)

>̇ P
(

ν

|ukl′u∗2l′ |2
+

N∑

k=2

ν

|ukl′u∗1l′|2
6 ρ

r
N

)
. (5.82)

where we have used Jensen’s inequality in (5.80).

For notational convenience define

ψ
4
=

1

|ukl′u∗2l′|2
+

N∑

k=2

1

|ukl′u∗1l′|2
.
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Then the bound in (5.82) can be evaluated as follows:

P
(
νψ 6 ρ

r
N

)

= P
(
νψ 6 ρ

r
N

∣∣ν = 0
)
P
(
ν = 0

)
+ P

(
νψ 6 ρ

r
N

∣∣ν = 1
)
P
(
ν = 1

)

= P
(
0 6 ρ

r
N

)
P
(
ν = 0

)
+ P

(
ψ 6 ρ

r
N

)
P
(
ν = 1

)

.
= ρ−MN + P

(
ψ 6 ρ

r
N

)
O(1). (5.83)

> ρ−MN + O(1) (5.84)

= O(1) (5.85)

where (5.83) follows from Lemma 5.3.1, and (5.84) is true as long as P
(
ψ 6 ρ

r
N

)
= O(1),

the proof of which is relegated to Appendix 5.7.2.

Since the outage lower bound (5.84) is not a function of ρ, the system will always have

an error floor. In other words the DMT is given by

dRZFP (r) = 0 0 < r ≤ B (5.86)

We saw earlier that in the fixed-rate regime RZF precoding enjoys full diversity for

spectral efficiencies below a certain threshold, but it now appears that DMT shows only zero

diversity. DMT is not capable of predicting the complex behavior at r = 0 because the DMT

framework only assigns a single value diversity to all distinct spectral efficiencies at r = 0.

A similar behavior was observed and analyzed for the MMSE MIMO receiver [5–7].

Matched Filter Precoding

The DMT of the MIMO system with TxMF is the same as the DMT given by (5.86) due to

the similarity in the outage analysis (see Section 5.3.4). We omit the details for brevity.

Wiener Filter Precoding

Since the the received SINR of the MIMO system using TxWF precoding is the same as

that of MIMO MMSE receiver, we conclude from [7] that the DMT for the TxWF precoding
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Figure 5.2. Outage probability of the ZF and Wiener filtering precoded MIMO 2× 2 system
for rates (left to right): R = 1.9, 2.5, and 3 b/s/Hz.

system is

dWFP (r) = (M −N + 1)
(
1− r

N

)+
. (5.87)

Similarly to the MIMO MMSE receiver [5,7], we observe that DMT for the MIMO system

with TxWF does not always predict the diversity in the fixed rate regime given by (5.75).

5.5 Simulation Results

This section produces numerical results for the outage probabilities of ZF, regularized ZF

(RZF), matched filter (MF) and Wiener precoding systems. Figure 5.2 shows the outage

probabilities of the ZF and Wiener-filter precoded 2 × 2 MIMO systems. The diversity in

the case of the ZF case is the same as the one predicted by the DMT. In the case of Wiener

precoding, the diversity is the same as the one predicted by the DMT for high rate (R) values

and it departs from the DMT for low rate values. A complete diversity characterization is

given by (5.75) which is similar to that of the MMSE MIMO equalizer [5]. Figure 5.3 shows
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R = 1.9, 2.5, and 4 b/s/Hz. The diversity is d = 4 for R = 1.5 b/s/Hz and d = 0 otherwise.
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outage probabilities for a 3× 3 MIMO system with Wiener precoding. The diversity for the

rates R = 1.5, 4, and 5 b/s/Hz is 9, 4 and 1 respectively. Figure 5.4 shows an error floor for

the regularized ZF and matched filtering precoded 2 × 2 system at high rates. However we

observe that the maximum diversity is achieved for any rate R < 2 (c.f. Equation (5.59)).

5.6 Conclusion

Linear precoders provide a simple and efficient processing, and have been shown to be op-

timal in some scenarios [34–36]. This chapter studies the high-SNR performance of linear

precoders. It is shown that the zero-forcing precoder under two common design approaches,

maximizing the throughput and minimizing the transmit power, achieves the same DMT as

that of MIMO systems with ZF equalizer. When a regularized ZF (RZF) precoder (for a

fixed regularization term that is independent of the signal-to-noise ratio) or matched filter

(MF) precoder is used, we have d(r) = 0 for all r, implying an error floor under all condi-

tions. It is also shown that in the fixed rate regime, RZF and MF precoding achieve full

diversity up to a certain spectral efficiency, while at higher spectral efficiencies they produce

an error floor. If the regularization parameter in the RZF is optimized in the MMSE sense,

the RZF precoded MIMO system exhibits a complex rate-dependent behavior. In partic-

ular, the diversity of this system (also known as Wiener filter precoding) is characterized

by d(R) = dN2−
R
N e2 + (M − N)dN2−

R
N e where M and N are the number of transmit and

receive antennas. This is the same behavior observed in linear MMSE MIMO receivers [5].

5.7 Appendix

5.7.1 Pairwise error Probability (PEP) Analysis

In this section we perform PEP analysis for the the zero-forcing (ZF) and the regularized

ZF (RZF) precoding systems. The presented analysis can be easily extended to all other

precoding systems. The basic strategy is to show the SNR exponent of outage probability



85

bounds the SNR exponent of PEP from both sides The PEP analysis follows from [5, 15],

with careful attention to the system model given by Equation (5.1).

The lower bound immediately follows from [15, Lemma 3] by recognizing that although

it was developed for SISO block equalization, nowhere in its development does it depend on

the number of receive antennas, therefore we can directly use it for our purposes:

Perr >̇ Pout. (5.88)

The upper bound on PEP for the ZF/RZF precoding systems receiver is developed using

the union bound. Denote the channel outage event by O and the error event by E. The

PEP is given by

Perr = P (E|O) Pout + P (E, Ō)

6 Pout + P (E, Ō). (5.89)

In order to show that Pout dominates the right hand side of (5.89), it is shown in [5] that

the probability P (E, Ō) can be bounded as follows using the union bound

P(E, Ō) 6̇ 2Rle
− ρ/N

σ2
ñ

(k) 6̇ ρ−MN (5.90)

where l is the codeword length and σ2
ñ(k) is the variance of the interference plus noise signal

ñ in the k-th receive stream 3. The proof of [15] does not depend on the codeword length for

both upper and lower PEP bounds. The bound are tight and were confirmed by simulations

for outage and error probabilities.

We now show that a similar proof holds for regularized zero-forcing (RZFP). Recall that

the outage probability of the RZFP can be upper bounded by (5.62)

Pout 6 P
( ν

µmax

6 Θ
)

, P b
out (5.91)

We will use P b
out to further bound (5.89). Moreover P (E, Ō) can be upper bounded by

bounding the noise variance σ2
ñ(k) in (5.90)

σ2
ñ(k) = PI + Pn < PT + 1 (5.92)

3 [15] analyzes linear receivers so ñ is the k-th output filtered interference plus noise
signals. By symmetry assumption all the equalizer outputs have equal noise variance.
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where we have used the noise power Pn = 1, and bound the interference power by the

total received power PT . We will first consider the case of RZF precoding since the case

of ZF precoding can be easily deduced from RZF by substituting setting the regularization

parameter c = 0. For the RZF precoding system we use the PT given by (5.36) which can

be simplified in a way similar to earlier sections

PT =
β2ρ

N

N∑

l=1

λ2
l

(λl + c )2

=
1∑N

l=1
λl

(λl+c )2

ρ

N

N∑

l=1

λ2
l

(λl + c )2

=
1∑N

l=1
ρ−αl

(ρ−αl+c )2

ρ

N

N∑

l=1

ρ−2 αl

(ρ−αl + c )2

.
=

1

ρ−αmin

ρ

N
ρ−2 αmin

=
1

N
ρ1−αmin . (5.93)

Using the union bound (5.90),

P (E, Ō) 6̇





2Rle−ραmin αmin < 1

2Rle−
ρ
N αmin > 1

(5.94)

Since the exponential function dominates polynomials we have

lim
ρ→∞

e−ραmin

ρ−MN
= 0

and

lim
ρ→∞

e−ρ

ρ−MN
= 0

which in turns gives

P (E, Ō) 6̇ ρ−MN . (5.95)



87

Using (5.91) and (5.95), the PEP given by (5.89) is bounded as

Perr 6̇ Pout + P (E, Ō)

6̇ P b
out + ρ−MN

.
= P b

out

= ρ−dout . (5.96)

therefore d > dout which concludes the proof for the RZF system.

For the ZF precoding system, it can be directly shown that a similar proof holds for both

ZF precoding designs.

5.7.2 Proof of Eq. (5.84)

Recall that

ψ , 1

|u1l′u∗2l′ |2
+

N∑

k=2

1

|ukl′u∗1l′|2
.

All terms of ψ the common factor 1
|u1l′ |2 . Thus we have

ψ = ψaψb

ψa =
1

|u1l′|2

ψb =

(
1

|u∗2l′|2
+

1

|u2l′|2 +
1

|u3l′|2 +
1

|u4l′ |2 + · · ·+ 1

|uNl′|2
)

. (5.97)

Observe that all the terms of ψb are distinct except for the first two.

We now bound the probability P
(
ψ 6 ρ

r
N

)
.

P
(
ψ 6 ρ

r
N

)
> P

(
ψ 6 ρ

r
N | ψ < c

)
P(ψ < c)

> P
(
c 6 ρ

r
N

)
P(ψ < c)

.
= P(ψ < c) (5.98)
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Using ψ = ψaψb we can further bound (5.98)

P(ψ < c) = P(ψaψb < c)

> P
(
ψaψb 6 c

∣∣ψa < c2

)
P(ψa < c2)

> P
(
c2ψb 6 c

)
P(ψa < c2).

We thus have

P
(
ψ 6 ρ

r
N

)
> P

(
ψb 6 c′

)
P(ψa < c2) (5.99)

and c′ = c/c2.

We now evaluate the two probabilities in the right hand side of (5.99). The first probabil-

ity P
(
ψb 6 c′

)
= O(1). The proof easily follows from [7, Appendix A] with the observation

that this proof holds even when the two first elements of ψb are the same. The second prob-

ability P(ψa < c2) is evaluated as follows. Let q = |u1l′|2. We use the following distributions

from [38, Appendix A]

f(q) = (N − 1)(1− q)N−2, 0 6 q 6 1

then

P(ψb < c2) = P(q >
1

c2

)

=

∫ 1

1
c2

f(q) dq

= (1− 1

c2

)N−2 (5.100)

Observing that (5.100) is not a function of ρ concludes the proof.



CHAPTER 6

EQUALIZATION FOR LINEARLY PRECODED TRANSMISSION

6.1 Introduction

The objective of a precoded transmitter is to separate the data streams at the receiver. In

other words, linear precoding is a method of interference management at the transmitter. In

general, precoded systems do not require interference management at the receiver, however,

once a transmitter is designed and standardized (as precoders have been), some standards-

compliant receivers may opt to further equalize the precoded channel (see Figure 6.1). This

section analyzes the equalization of precoded transmissions.

When the transmit and receive filters can be designed jointly and from scratch, singular

value decomposition becomes an attractive option whose diversity has been analyzed in [42].

The distinction of the systems analyzed in this section is that the precoders can be used

with or without the receive filters, while with the SVD solution neither the transmit nor the

receive filters can operate without each other.

A snapshot of some of the results of this section is as follows. It is shown that equalization

at the receiver can alleviate the error floor that was observed in matched filter precoding as

well as regularized ZF precoding. It is shown that MMSE equalization does not affect the

diversity of Wiener filter precoding, but ZF equalization does indeed affect the diversity of

Wiener filter precoding in a negative way.

89
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Figure 6.1. MIMO with linear precoder with receive-side equalization

6.2 System Model

The input-output system model for an M × N flat fading MIMO channel with a precoder

matrix T ∈ CM×B and a receiver equalizer W ∈ CB×N is

y = WHTx + Wn. (6.1)

where B is the number of data streams, with B ≤ min(M, N). In most wireless systems, the

equalizer at the receiver is designed to equalize the compound channel (HT) composed of

the precoder and the channel (rather than designing the precoder for the equalized channel

(WH) although it is possible). In such case we have M > N and we set B = N .

6.2.1 ZF Equalizer

The ZF equalizer is analyzed when operating together with various precoders, as follows.

Wiener Filter Precoding

The TxWF precoder is given by

T = β

(
HHH +

N

ρ
I

)−1

HH

= βHH

(
HHH +

N

ρ
IN

)−1

(6.2)



91

where (6.2) follows from [43, Fact 2.16.16] 1. The scalar coefficient β is given in (5.70) and,

similar to (5.35), it can be written as β = 1/
√

η

η = tr
[
Λ(Λ + Nρ−1 I)−2

]
=

N∑

l=1

λl

(λl + Nρ−1 )2

The ZF equalizer for the precoder and the channel is given by

WZF = (HHH)−1HH (6.3)

The composite channel H is given by

H = HT.

The received signal is given by

y = WZFHTx + WZFn. (6.4)

The filtered noise ñ = WZFn is is a complex Gaussian vector with zero-mean and

covariance matrix Rñ given by

Rñ = [HHH]−1

=
[
(HHH + Nρ−1 I)−1(HHH)2(HHH + Nρ−1 I)−1

]−1

=
[
UΛ(Λ + Nρ−1 I)−1UHUΛ(Λ + Nρ−1 I)−1UH

]−1

=
[
UΛ2(Λ + Nρ−1 I)−2UH

]−1

where we have used the eigen decomposition HHH = UΛUH . The noise variance of the

output stream k is therefore

Rñ(k, k) =
N∑

l=1

(
λl + Nρ−1

λl

)2

|ukl|2 (6.5)

1Let A ∈ Cn×m and B ∈ Cm×n then (In + AB)−1A = A(Im + BA)−1. This fact can be
proved via Matrix Inversion Lemma.
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where (6.5) follows in a similar manner as (5.29). We can compute the signal-to-noise ratio

of the ZF filter output:

γk =
ρ β2

N Rñ(k, k)

=
ρ/N∑N

j=1
λj

(λj+Nρ−1 )2

∑N
l=1

(
λl+Nρ−1

λl

)2|ukl|2
. (6.6)

Due to the complexity of (6.6) we proceed to bound the outage from above and below.

The upper bound on outage is calculated as follows. Since |ukl| 6 1,

γk > ρ/N∑N
j=1

λj

(λj+Nρ−1 )2

∑N
l=1

(
λl+Nρ−1

λl

)2 (6.7)

=
1/N

∑N
j=1

ρ1−αj

(ρ1−αj +N )2

∑N
l=1

(
ρ1−αl+N

ρ1−αl

)2
(6.8)

, γ̂. (6.9)

where we have substituted λl = ρ−αl in (6.8). Thus the outage probability is bounded as

Pout = P
( N∑

k=1

log(1 + γk) 6 R

)

6 P
( N∑

k=1

log(1 + γ̂) 6 R

)

= P
(
γ̂ 6 2

R
N − 1

)
(6.10)

Similarly to the analyses of earlier cases, we examine the SINR bound γ̂ for different values

of αl. Define the set B = {l | αl > 1} and the event

L = {|B| = N} (6.11)

we have

Pout 6 P
(
γ̂ 6 2

R
N − 1

)

= P
(

γ̂ 6 2
R
N − 1

∣∣∣∣L
)
P(L) + P

(
γ̂ 6 2

R
N − 1

∣∣∣∣L̄
)
P(L̄) (6.12)

6 P
(

γ̂ 6 2
R
N − 1

∣∣∣∣L
)

+ P
(

γ̂ 6 2
R
N − 1

∣∣∣∣L̄
)

. (6.13)
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To calculate the first term in (6.13), we evaluate γ̂ when αl > 1 ∀l

γ̂
.
=

1/N∑N
j=1 ρ1−αj

∑N
l=1

1
ρ2(1−αl)

(6.14)

>̇ 1/N∑N
l=1

1
ρ2(1−αl)

(6.15)

.
=

1

N
ρ2(1−αmax) =

1

N
ρ2λ2

min (6.16)

where (6.14) follows because ρ1−αl +N
.
= N , (6.15) follows because

∑N
j=1 ρ1−αj6̇1, and (6.16)

follows because the sum in (6.15) is asymptotically dominated by the largest component.

We further bound the first term in (6.13)

P
(

γ̂ 6 2
R
N − 1

∣∣L
)

6̇ P
(

1

N
ρ2λ2

min 6 2
R
N

)

.
= P

(
λmin 6 ρ−1

)
(6.17)

.
= ρ−(M−N+1) (6.18)

where (6.17) is the same as (5.10) , hence (6.18) follows.

To calculate the second term in (6.13), we evaluate γ̂ when one or more αl 6 1. Consider

the the two summations in the denominator of (6.8). The first one can be asymptotically

evaluated as

N∑
j=1

ρ1−αj

(ρ1−αj + N )2

.
=

∑
αj<1

1

ρ1−αj
+

∑
αj>1

ρ1−αj

.
=





ρ−(1−αmax) |L̄| = N

max(ρ−1+α′ , ρ1−α′′) 6̇ ρ−(1−αmax) 1 6 |L̄| < N

(6.19)

where α′ = maxαj<1 αj and α′′ = minαj>1 αj and Eq. (6.19) follows because

min(ρ−1+α′ , ρ1−α′′) 6̇ ρ−(1−αmax).
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The second summation in the denominator of (6.8) can be evaluated as follows

N∑

l=1

(
ρ1−αl + N

ρ1−αl

)2
.
=

∑
αl<1

1 +
∑
αl>1

1

ρ2(1−αl)

.
=





1 |L̄| = N

ρ−2(1−αmax) 1 6 |L̄| < N

(6.20)

We now use (6.19) and (6.20) to bound γ̂

γ̂>̇





ρ1−αmax = ρλmin |L̄| = N

ρ2−2αmax = ρ3λ3
min 1 6 |L̄| < N

, γ̄ (6.21)

We thus have

Pout 6 P
(

γ̂ 6 2
R
N − 1

∣∣∣∣L̄
)

6 P
(

γ̄ 6 2
R
N − 1

∣∣∣∣L̄
)

< P
(

γ̄ 6 2
R
N − 1

∣∣∣∣ |B| = 0

)
+ P

(
γ̄ 6 2

R
N − 1

∣∣∣∣ 0 < |B| < N

)

.
= P

(
λmin 6 ρ−1

)
+ P

(
λ3

min 6 ρ−3
)

.
= P

(
λmin 6 ρ−1

)

.
= ρ−(M−N+1). (6.22)

This concludes the calculation of outage upper bound. We now proceed with the outage

lower bound.

Define the event Q = {|akl| > ε ∀ k, l} where akl is the (k, l) entry of the unitary matrix

U (c.f. equation (5.29)). Define

γ̆ =
1/N

∑N
j=1

ρ1−αj

(ρ1−αj +N )2

∑N
l=1

(
ρ1−αl+N

ρ1−αl

)2
ε

(6.23)

Notice that γ̆ > γ because |akl| > ε ∀ k, l.
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The outage probability is bounded as

Pout = P
( N∑

k=1

log(1 + γk) 6 R

)

> P
( N∑

k=1

log(1 + γk) 6 R

∣∣∣∣Q
)
P(Q)

> P
( N∑

k=1

log(1 + γ̆) 6 R

)
P(Q) (6.24)

= P
(
γ̆ 6 2

R
N − 1

)
P(Q) (6.25)

The probability P(Q) = O(1), i.e. non-zero constant with respect to ρ. The proof is

similar to the one in [7, Appendix A] and omitted here for brevity. We thus have

Pout >̇ P
(
γ̂ 6 2

R
N − 1

)

= P
(

γ̂ 6 2
R
N − 1

∣∣∣∣L
)
P(L)P

(
γ̂ 6 2

R
N − 1

∣∣∣∣L̄
)
P
(L̄)

> P
(

γ̂ 6 2
R
N − 1

∣∣∣∣L̄
)
P(L̄)

.
= P

(
γ̂ 6 2

R
N − 1

∣∣∣∣L̄
)

(6.26)

where (6.26) holds since P(L̄)
.
= O(1) as given by (5.55).

We further bound the outage probability by bounding γ̂ as follows. Once again consider

the two summations in the denominator of (6.23). For the first summation of (6.23), we

have

N∑
j=1

ρ1−αj

(ρ1−αj + N )2

.
=

∑
αj<1

1

ρ1−αj
+

∑
αj>1

ρ1−αj

.
=





ρ−(1−αmax) |L̄| = N

max(ρ−1+α′ , ρ1−α′′) >̇ ρ1−αmax 1 6 |L̄| < N

(6.27)

where the bound in the second line (6.27) is true because

∑
αj<1

1

ρ1−αj
+

∑
αj>1

ρ1−αj >
∑
αj>1

ρ1−αj .
= ρ1−αmax



96

Using (6.19) and (6.27) to bound γ̂ Substituting back in (6.23) gives:

γ̆6̇





ρ1−αmax = ρλmin |L̄| = N

ρ1−αmax = ρλmin 1 6 |L̄| < N

, ˘̆γ (6.28)

Thus the outage bound in (6.26) can be then evaluated as we did for the upper bound

Pout 6 P
(

γ̂ > 2
R
N − 1

∣∣∣∣L̄
)

6 P
(

˘̆γ 6 2
R
N − 1

∣∣∣∣L̄
)

< P
(

˘̆γ 6 2
R
N − 1

∣∣∣∣|B| = 0

)
P
(|B| = 0

)
+ P

(
˘̆γ 6 2

R
N − 1

∣∣∣∣L̄, 0 < |B̄| < N

)
P
(|L̄| < N

)

.
= P

(
λmin 6 ρ−1

)
O(1) + P

(
λmin 6 ρ−1

)
O(1) (6.29)

.
= P

(
λmin 6 ρ−1

)

.
= ρ−(M−N+1). (6.30)

where (6.29) follows as a direct result of Lemma 5.3.1. From (6.22) and (6.30), we conclude

that the diversity of MIMO system using TxWF precoder and ZF equalizer is

dWFP−ZF = M −N + 1.

Regularized Zero Forcing Precoding

The ZF equalizer is given by (6.3) where the composite channel H = HT. The received

signal to noise ratio of the k-th output symbol of the ZF filter as

γk =
ρ β2

N Rñ(k, k)

=
ρ/N∑N

j=1
λj

(λj+N )2

∑N
l=1

(
λl+N

λl

)2|ukl|2
. (6.31)

The process of obtaining lower and upper bound has many similarities with the devel-

opments of Section 6.2.1, therefore we omit many of the steps in the interest of brevity by

referring to the previous developments.
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We begin with the outage upper bound, which is developed in a manner similar to (6.10).

Pout = P
( N∑

k=1

log(1 + γk) 6 R

)

6 P
( N∑

k=1

log(1 + γ̂) 6 R

)

= P
(
γ̂ 6 2

R
N − 1

)
(6.32)

where

γ̂ =
ρ/N∑N

j=1
λj

(λj+N )2

∑N
l=1

(
λl+N

λl

)2

=
ρ/N

∑N
j=1

ρ−αj

(ρ−αj +N )2

∑N
l=1

(
ρ−αl+N

ρ−αl

)2

.
=

ρ/N∑N
j=1 ρ−αj

∑N
l=1 ρ2αl

(6.33)

>̇ ρ/N∑N
l=1 ρ2αl

.
=

ρ/N

ρ2αmax
. (6.34)

Thus the outage in (6.32) can be bounded as

Pout 6 P
(
γ̂ 6 2

R
N − 1

)

6̇ P
(

ρ/N

ρ2αmax
6 2

R
N − 1

)

.
= P(λmin 6 ρ−0.5)

.
= ρ−

1
2
(M−N+1). (6.35)

We now turn to the lower bound, which is obtained in the same manner as (6.26):

Pout = P
( N∑

k=1

log(1 + γk) 6 R

)

>̇ P
( N∑

k=1

log(1 + γ̆) 6 R

)

= P
(
γ̆ 6 2

R
N − 1

)
(6.36)
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where

γ̆ =
ρ/N∑N

j=1
λj

(λj+N )2

∑N
l=1

(
λl+N

λl

)2
ε

=
ρ/N

∑N
j=1

ρ−αj

(ρ−αj +N )2

∑N
l=1

(
ρ−αl+N

ρ−αl

)2
ε

.
=

ρ/N∑N
j=1 ρ−αj

∑N
l=1 ερ2αl

6 ρ/N

ρ−αj
∑N

l=1 ερ2αl

for arbitrary j

.
=

ρ/N

ε ρ−αjρ2αmax

=
ρ/Nλ2

min

ε λj

, ˘̆γ. (6.37)

Let C1 = (2
R
N − 1) εN , C2 = C1ξ where ξ is a fixed positive constant (independent of ρ),

we have

Pout >̇ P
(
γ̆ 6 2

R
N − 1

)

>̇ P
(
˘̆γ 6 2

R
N − 1

)

>̇ P
(

ρλ2
min

λj

6 C1

)

> P
(

ρλ2
min

λj

6 C1

∣∣∣∣λj > ξ

)
P
(
λj > ξ

)

> P
(
ρλ2

min 6 C2

)
P
(
λj > ξ

)

.
= P

(
ρλ2

min 6 C2

)
. (6.38)

The exponential inequality (6.38) holds because P
(
λj > ξ

)
= O(1), as proved in Ap-

pendix 6.5.1. We thus conclude:

dRZFP−ZF =
1

2
(M −N + 1).
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Remark 6.2.1 We note that the diversity of regularized zero-forcing precoder together with

a zero-forcing equalizer can be fractional. To our knowledge this is the first instance of

fractional diversity uncovered in the literature.

Matched Filter Precoding

In this case, the composite channel is

H = HT = βHHH .

The noise correlation matrix is given by

Rñ = [HHH]−1 =
1

β2
[(HHH)2]−1 =

1

β2
(UΛ2UH)−1.

Thus

Rñ(k, k) =
1

β2

B∑

l=1

1

λ2
l

|ukl|2 (6.39)

The precoder normalization factor β = 1/
√

η, where η is given by

η = tr
[
HHH ] =

N∑

l=1

λl

The signal to noise ratio of the k-th symbol of the ZF filter is

γk =
ρ

N Rñ(k, k)

=
ρ/N∑N

j=1 λj

∑N
l=1

1
λ2

l
|ukl|2

. (6.40)

Notice that the SINR γk in (6.40) is similar to the SINR γk of the RZF precoding system

with ZF equalizer given by (6.31). The only difference is the term λk + N which, when

applying the transformation of λk = ρ−αk , has no effect on the diversity analysis as detailed

in the previous section. We then conclude that the diversity of the MIMO system applying

MF precoder and ZF equalizer is the same as the diversity of the RZF precoder with ZF

equalizer. Thus:

dMFP−ZF =
1

2
(M −N + 1). (6.41)
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6.2.2 MMSE equalizer

The MMSE equalizer has better performance compared to ZF and is therefore widely pop-

ular. We investigate the diversity of MIMO systems that deploy different precoders at the

transmitter and MMSE equalizer at the receiver.

MFTx Precoding

The MFTx precoder, TMFP , is given by (5.64). The MMSE equalizer for the precoded

channel is given by

WMMSE =

[
HHH+ Nρ−1I

]−1

HH (6.42)

where H = HTMFP = βMFPHHH and βMFP is given by (5.65).

The SINR at the output of the MMSE filter is given by [16]

γk =
ρ

N
hk

[
I +

ρ

N
HkHH

k

]−1

hk

=
1[

I + ρ
N
HHH

]−1

kk

− 1 (6.43)

where Hk is a submatrix of H obtained by removing the k-th column, hk.

The diversity analysis of the precoded system uses some results from the un-precoded

MMSE MIMO equalizers [5], which we quote in the following lemma.

Lemma 6.2.1 consider a quasi-static Rayleigh fading MIMO channel H̄ ∈ CM×N (M > N),

the outage probability of the MMSE receiver satisfies

Pout
.
= P

(
tr(I +

ρ

N
H̄HH̄)−1 > N2−

R
N

)
(6.44)

= P
( N∑

k=1

1

1 + ρ
N

λ′k
> N2−

R
N

)
(6.45)

.
= ρ−dMMSE

(6.46)

where {λ′k} are the eigenvalues of H̄ and dMMSE is given by (5.75).
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Substituting λ′k = ρ−α′k , we have

1

1 + ρ
N

λ′k

.
=





ρα′k−1 α′k < 1

1 α′k > 1

(6.47)

thus the term 1
1+ρλ′k/N

is either zero or one at high SNR, and therefore to characterize the

sum in (6.45) at high SNR we count the number of ones, or equivalently the number of

α′k > 1. Hence the outage probability reduces to [5]

Pout
.
= P

( ∑

α′k>1

1 =
⌈
N2−

R
N

⌉)
. (6.48)

Now we apply the matched filter precoder. Similarly to (6.44), the outage portability is

given by

Pout
.
= P

(
tr(I +

ρ

N
HHH)−1 > N2−

R
N

)
(6.49)

= P
( N∑

k=1

1

1 + ρ
Nη

λ2
k

> N2−
R
N

)
(6.50)

where we have used HHH = 1
η
(HHH)2 = 1

η
UΛ2UH to obtain (6.50),and {λk} are the

eigenvalues of the Wishart matrix HHH . The scaling factor η = tr(HHH) =
∑N

l=1 λl.

We begin with a hypothetical precoder whose transmit power is not normalized, i.e.,

η = 1. The outage probability of this un-normalized precoder is similar to that of the

MMSE receiver with no precoding at the transmitter, as given in (6.46), except that the

eigenvalues are now squared. Thus similarly to (6.47), we have the exponential inequality

1

1 + ρ
N

λ2
k

.
=





ρ2αk−1 αk < 0.5

1 αk > 0.5

. (6.51)

The analysis of [5] then follows and we have

d =
1

2

(
dN2−

R
N e2 + (M −N)dM2−

R
N e

)
. (6.52)
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We conclude that the un-normalized matched filter precoding with MMSE receiver results

in 50% diversity loss compared to MMSE receiver with no transmit precoding.

For the normalized precoder, we begin with the outage probability in (6.50). Assume

α1 > α2 · · · > αN , the sum term in (6.50) is given by

N∑

k=1

1

1 + ρ
Nη

λ2
k

=
N∑

k=1

η

η + ρ
N

λ2
k

=
N∑

k=1

∑
l ρ
−αl

∑
l ρ
−αl + ρ

N
ρ−2αk

.
=

N∑

k=1

ρ−αN

ρ−αN + ρ1−2αk
. (6.53)

where we have used the fact that the
∑

l ρ
−αk is dominated by the maximum element at

high SNR. It is easy to see that the terms of (6.53) are either one or zero at high SNR,

depending on whether ρ−αN asymptotically dominates ρ1−2αk or vice versa. These two cases

are delineated with the threshold αk ≶ 0.5 max(1 , αN+1), or, considering that αN is positive,

αk ≶ 0.5(αN + 1). Thus at high SNR, the outage probability is evaluated by counting the

ones

Pout
.
= P

( N∑

k=1

1

1 + ρ
Nη

λ2
k

> N2−
R
N

)

.
= P

( ∑

αk>0.5 (αN+1)

1 > N2−
R
N

)

.
= P

( ∑

αk>0.5 (αN+1)

1 = L

)
(6.54)

where L =
⌈
N2−

R
N

⌉
. The conversion from inequality to equality in equation (6.54) follows

from arguments developed in [5, Section III-A] .

Therefore, the outage probability is asymptotically evaluated by:

Pout
.
=

∫

S+

P(α) dα (6.55)

where P(α) is the joint distribution of the ordered α1 > · · · > αN and the region of integra-

tion is defined as S+ = S ∩ RN+, where S is given as follows:
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• If L = N , then we seek the probability that αk > 1
2
(αN + 1) for k = 1, . . . , N , which

implies αN ∈ (1,∞). Thus the integration region can be tightly represented as:

S =
{
αN > 1 , min

1≤k<N
αk > 0.5(αN + 1)

}

• If L < N , then we seek the joint probability that αk > 1
2
(αN + 1) for k = 1, . . . , L

and αk ≤ 1
2
(αN + 1) for k = L + 1, . . . , N , implying αN ∈ (0, 1). Thus the region of

integration is represented as:

S =
{
αN < 1 , min

1<k≤L
αk > 0.5(αN + 1) , max

L<k<N
αk < 0.5(αN + 1)

}

Using methods similar to [2] and [5, Eq (18) - (20)], exponential equality relations can

be used to reduce the integrand to the following:

P out
.
=

∫

S+

∏

k

ρ−(2k−1+M−N)αk d(α) (6.56)

First we consider L = N . The probability expression is evaluated by simply taking the

integral over all variables except αN , and then taking an integral over αN .

P out
.
=

∫ ∞

αN=1

ρ−(2N−1+M−N)αN

N−1∏

k=1

ρ−(2k−1+M−N)(0.5+0.5αN )d(α) (6.57)

.
=

N∏

k=1

ρ−(2k−1+M−N)

= ρ
∑N

k=1−(2k−1+M−N) (6.58)

= ρ−MN . (6.59)
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When L < N , we repeat the same integration strategy.

Pout
.
=

∫ 1

αN=0

ρ−(2N−1+M−N)αN

N∏

l=L+1

(
1− ρ−(2l−1+M−N)(0.5+0.5αN )

)

×
L∏

k=1

ρ−(2k−1+M−N)(0.5+0.5αN )d(α) (6.60)

.
=

∫ 1

αN=0

ρ−(2N−1+M−N)αN

L∏

k=1

ρ−(2k−1+M−N)(0.5+0.5αN )d(α) (6.61)

.
=

L∏

k=1

ρ−
1
2
(2k−1+M−N)

= ρ
∑L

k=1− 1
2
(2k−1+M−N)

= ρ−
1
2
(L2+(M−N)L) (6.62)

In deriving (6.60) and (6.61) we have used
∫ b

a
ρ−ckαkd(αk)

.
= ρ−ack [5]. Equations (6.59)

and (6.62) show that the system exhibits two distinct diversity behaviors based on whether

L = dN2−
R
N e < N . We can solve to find the boundary of the two regions R = N log N

N−1
.

To summarize:

dMFP−MMSE =





1
2

(dN2−
R
N e2 + (M −N)dM2−

R
N e) R > N log N

N−1

MN otherwise

. (6.63)

Remark 6.2.2 The outcome is interesting for its practical implications: An MMSE receiver

working with matched-filter precoding will suffer a significant diversity loss compared to an

MMSE receiver without precoding, except for very low rates corresponding to R < N log N
N−1

,

where the combination of MMSE receiver with matched filter precoding has exactly the same

diversity as the MMSE receiver alone.

Remark 6.2.3 Recall that R = N log N
N−1

is exactly the same threshold below which matched

filter precoding (without receiver-side equalization) achieves full diversity.
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WFTx Precoding

Using the Wiener filter precoding at the receiver results in the composite channel

H = HT = βHHH(HHH + ρ−1NI)−1.

Using the eigen decomposition HHH = UΛUH , it can be shown that

HHH = β2U(Λ + ρ−1NI)−2Λ2UH (6.64)

Similar to the case of MF precoder with MMSE receiver, the outage probability of WF

precoder with MMSE receiver is given by (c.f. (6.49))

Pout
.
= P

(
tr(I +

ρ

N
HHH)−1 > N2−

R
N

)

= P
( N∑

k=1

1

1 + ρ
Nη

λ̂k

> N2−
R
N

)
(6.65)

where {λ̂k} are the eigenvalues of HHH and η is the scale factor. Using (6.64), {λ̂k} are

given by

λ̂k =
λ2

k

(λk + ρ−1N)2
, k = 1, . . . , N (6.66)

The scale factor η is calculated as in (5.35)

η =
N∑

l=1

λl

(λl + ρ−1N )2
.

Thus the outage probability can be written as

Pout
.
= P

( N∑

k=1

γk > N2−
R
N

)
(6.67)

where

γk , 1

1 + ρ
Nη

λ̂k

=
ρ−1η

ρ−1η + 1
N

λ̂k

=
ρ−1η

ρ−1η + υk
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where we define υk = 1
N

λ̂k. We now proceed to express both ρ−1η and υk in terms of {αk},
the exponential orders of {λk}.

ρ−1η =
N∑

l=1

ρ−1λl

(ρ−1λl + N )2
=

N∑

l=1

ρ1−αl

(ρ1−αl + N )2

.
=

∑
αl>1

ρ1−αl +
∑
αl<1

ραl−1 (6.68)

observe that all the terms in (6.68) have negative exponent. Using (6.66),

υk =
1

N

ρ−2αk

(ρ−αk + ρ−1N)2

=
1

N

ρ2(1−αk)

(ρ1−αk + N)2

.
=





1 αk < 1

ρ2(1−αk) αk > 1

. (6.69)

From (6.68) and (6.69), we see that when αk < 1 then υk + ρ−1η
.
= υk

.
= 1. On the other

hand, when αk > 1 then

υk + ρ−1η
.
= ρ2(1−αk) +

∑
αl>1

ρ1−αl +
∑
αl<1

ραl−1

= ρ2(1−αk) + ρ1−αk +
∑
αl>1
l 6=k

ρ1−αl +
∑
αl<1
l 6=k

ραl−1

.
= ρ1−αk +

∑
αl>1
l 6=k

ρ1−αl +
∑
αl<1
l 6=k

ραl−1 (6.70)

.
= ρ−1η (6.71)

where (6.70) follows because αk > 1. Thus we have

γk =
ρ−1η

ρ−1η + υk

.
=





ρ−1η αk < 1

1 αk > 1

(6.72)

and ρ−1η has negative exponent thus vanishes at high SNR.
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Observe that (6.72) is similar to (6.47) which corresponds to the case of the MMSE-only

system (i.e. with no precoding). Thus substituting (6.72) in the outage probability (6.67)

and repeating the same analysis of the MMSE-only system as in [5], we conclude that the

diversity of the MMSE receiver when using WFTx precoding is the same as the diversity of

the MMSE receiver with no linear precoding, which is given by (5.75).

RZF Precoding

Using the Regularized Zero Forcing precoding at the receiver results in the composite channel

H = HT = βHHH(HHH + c I)−1.

where c is a fixed constant, β = 1/η and η is given by (5.35)

η =
N∑

l=1

λl

(λl + c )2
=

N∑

l=1

ρ−αl

(ρ−αl + c )2
. (6.73)

Similar to (6.65), the outage probability of RZF precoder with MMSE receiver is given

by

Pout
.
= P

( N∑

k=1

γk > N2−
R
N

)

and

γk , η

η + ρ
N

λ̄k

where {λ̄k} are the eigenvalues of HHH given by

λ̄k =
λ2

k

(λk + c)2
=

ρ−2αk

(ρ−αk + c)2
, k = 1, . . . , N (6.74)

Notice that at high SNR we have

η
.
=

N∑

l=1

ρ−αl

c2

λ̄k
.
=

ρ−2αk

c2
.
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Thus the SINR is given by (c.f. (6.53))

γk
.
=

∑N
l=1 ρ−αl

∑N
l=1 ρ−αl + ρ−2αk

.
=

ρ−αN

ρ−αN + ρ1−2αk
,

k = 1, . . . , N

which are the same terms as in (6.53), implying that the outage probability of the MMSE

receiver working with the regularized zero-forcing precoder is asymptotically the same as the

outage probability of the MMSE receiver working with the matched filter precoder. This

means:

dRZFP−MMSE = dMFP−MMSE

=





1
2

(dN2−
R
N e2 + (M −N)dM2−

R
N e) R > N log N

N−1

MN otherwise

(6.75)

6.3 Simulation Results

This section produces numerical results for the outage probabilities of ZF, regularized ZF

(RZF), matched filter (MF) and Wiener precoding systems under ZF and MMSE equaliza-

tion. Figure 6.2 shows outage probabilities for a 2 × 2 and a 3 × 2 MIMO system with

matched filter precoding and ZF equalization. The observed diversity values are consistent

with Eq. (6.41). Figure 6.3 shows outage probabilities for a 2× 2 and a 3× 2 MIMO system

with Wiener filter precoding and ZF equalization. Figure 6.4 and Figure 6.5 show outage

probabilities for a 2×2 and a 3×3 MIMO system, respectively, with Wiener filter precoding

and MMSE equalization. The diversity for the 3 × 3 system is the same as the diversity of

the Wiener filtering precoding-only (c.f. Figure 5.3).

Figure 6.6 shows the outage probability of a 2 × 2 MIMO system with matched filter

precoding and MMSE equalization, which is consistent with Eq. (6.63). We also plot the

outage probability of the MMSE MIMO equalizer (without any precoding) for comparison.
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Figure 6.2. MIMO system with matched filtering precoding and ZF equalization for rates
(left to right): R = 1, 2, and 4 b/s/Hz. The diversity is d = 0.5 for a 2 × 2 MIMO system
and d = 1 for a 3× 2 MIMO system.

6.4 Conclusion

This chapter obtains various results for the diversity in the presence of both precoding and

equalization.

6.5 Appendix

6.5.1 Proof of P
(
λl > ξ

)
= O(1) for any l

Define a Wishart matrix W using the Gaussian matrix H.

W =





HHH M > N

HHH N 6 N

.

Let n = max(M, N) and m = min(M,N). The matrix W is m×m random non-negative

definite that has real, non-negative eigenvalues with λ1 > · · · > λm0. The joint density of
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Figure 6.3. Outage probability of MIMO system with Wiener filtering precoding and ZF
equalization for rates (left to right): R = 1, 2, and 4 b/s/Hz. The diversity is d = 1 for a
2× 2 MIMO system and d = 2 for a 3× 2 MIMO system.
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Figure 6.4. 2X2 MIMO system with Wiener filtering precoding and MMSE equalization for
rates (left to right): R = 1.5, 3, and 4 b/s/Hz. The diversity d = 1 for R = 3 and 4 b/s/Hz,
and the diversity d = 4 for R = 1.5 b/s/Hz
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Figure 6.5. 3X3 MIMO system with Wiener filtering precoding and MMSE equalization for
rates (left to right): R = 1.5, 4, and 5 b/s/Hz. The diversity is the same as the diversity of
Wiener precoding without MMSE equalization which is given by (5.75).
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Figure 6.6. 2X2 MIMO system with MF precoding and MMSE equalization system for
rates (left to right): R = 1.5, 2.5, and 3 b/s/Hz. The diversity can be easily verified from
Eq. (6.63).
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the ordered eigenvalues is [17]

f(λ) = K−1
m,ne−

∑
i λi

∏
i

λn−m
i

∏
i<j

(λi − λj)
2. (6.76)

Thus the marginal distribution of λl is given by [17]

fλl
(λl) =

∫
. . .

∫
f(λ) dλ2 . . . dλm

=
1

m

m∑
i=1

ϕi(λl)
2λn−m

l e−λ1

where

ϕk+1(λ) =

[
k!

(k + n−m)!

]1/2

Ln−m
k (λ), k = 0, . . . , m− 1

where Ln−m
k (x) = 1

k!
exxm−n dk

dxk (e−xxn−m+k) (with L0 = 1) is the associated Laguerre poly-

nomial of order k.

We now compute P
(
λl > ξ

)
,

P
(
λl > ξ

)
=

∫ ∞

ξ

1

m

m∑
i=1

ϕi(λl)
2λn−m

1 e−λldλl

>
∫ ∞

ξ

1

m
ϕ1(λl)

2λn−m
l e−λldλl

=

∫ ∞

ξ

1

m(n−m)!
λn−m

l e−λldλl

=
1

m(n−m)!

(
− e−λlλn−m

l − e−λl

n−m∑

k=1

n(n− 1) . . . (n− k + 1)λn−m−k

)∣∣∣∣
∞

ξ

(6.77)

=
1

m(n−m)!

(
e−ξξn−m + e−ξ

n−m∑

k=1

n(n− 1) . . . (n− k + 1)ξn−m−k
)

(6.78)

where (6.77) follows from [27, Section 2.32]. The right hand side of Eq. (6.78) is a non-zero

constant bounded away from zero. This concludes the proof.



CHAPTER 7

SINGLE-CARRIER EQUALIZER WITH MULTI-ANTENNA TRANSMIT

DIVERSITY

7.1 Introduction

Single-Carrier Frequency Domain Equalization (SC-FDE) is an alternative to OFDM that

avoids several OFDM drawbacks, including peak-to-average power ratio and the high sensi-

tivity to carrier frequency offset [44]. SC-FDE has been adopted for the LTE uplink [44,45].

In this chapter, we analyze the performance of SC-FDE in conjunction with either cyclic

delay diversity (CDD) or Alamouti signaling, fully characterizing the diversity as a function

of transmission-block length, data rate, channel memory, and number of antennas. In the

process, we obtain a threshold rate (as a function of data-block length, channel memory,

and number of antennas) below which the full spatial-temporal diversity is achieved, while

at higher rates the diversity of both schemes diminishes, albeit not in quite the same way.

Our analysis shows that at high rates the CDD diversity degenerates to the diversity of the

SISO SC-FDE, while Alamouti signaling provides twice the diversity of SISO SC-FDE.

We find that beyond a certain rate threshold in either CDD or Alamouti signaling, an

increase in transmission rate can reduce the diversity, but this diversity can be recovered by

increasing the FFT block length. Specifically, in this operating regime, the diversity can be

maintained if every additional bit/s/Hz of transmission rate is accompanied by a doubling

of FFT block length. Naturally the block length cannot exceed the coherence time of the

channel, therefore equalizer performance is in practice also limited by the coherence time.

A brief survey of related literature is as follows. It has been known that SC-FDE in single-

antenna (SISO) systems displays a diversity that is a function of data rate and transmission

block length (hence the FFT size) [15]. The behavior of SC-FDE has also been analyzed
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in multi-stream (BLAST-type) MIMO systems, where its diversity multiplexing tradeoff

(DMT) and bounds on its diversity have been obtained [46]. Al-Dhahir [20] proposed the

Alamouti SC-FDE, but [20] only went so far as to show that the effective channel gain of

Alamouti SC-FDE is a sum of two independent components, which only suggests that the

diversity is at least two. The present work conclusively settles the question of the diversity

of Alamouti SC-FDE.

Design rules are provided in [47] for achieving maximum diversity gains with linearly pre-

coded OFDM but it requires ML decoding. Tepedelenlioglu [31] showed that linear equalizers

achieve the maximum multipath diversity in linearly precoded OFDM systems. The zero-

padded SC system with linear equalization was analyzed in [48] where it was shown that the

full diversity is achievable by ZF equalizer. Muquet et al. [22] compared the performance

of ZP-OFDM and CP-OFDM. Coded OFDM (COFDM) schemes were considered in [49],

showing that COFDM achieves the maximum channel diversity with ML decoding. It was

shown that the zero-padded and cyclic-prefix single-carrier system are special cases of the

COFDM of [49] and thus achieve the maximum diversity with ML.

This chapter is organized as follows. Section 7.2 provides the system model for cyclic-

prefix transmission and reviews the recent result for the SC MMSE-FDE receiver diversity.

Section 7.3 provides the performance analysis for the CDD systems. Section 7.4 provides the

performance analysis for the Alamouti (orthogonal-space time coded) systems. Section 7.5

provides simulations that illuminate our results.

7.2 Cyclic-Prefix Transmission

7.2.1 System Model

We consider a frequency selective quasi-static wireless fading channel. The equivalent base-

band model for this inter-symbol interference (ISI) channel is given by a multipath model

with ν paths. The channel vector is denoted by h = [h0, . . . , hν ] and the channel coefficients

are assumed independent and identically distributed ∼ CN (0, 1). We assume a block-fading
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model where the channel is fixed over the transmission block. To remove the inter-block

interference at the receiver, a cyclic-prefix (CP) with length at least ν is inserted at the

beginning of each data-block of length L. The CP also transforms linear convolution into

circular convolution and thus permits channel diagonalization. The input-output system

model for a block transmission scheme with length-ν CP is

y =
√

ρHx + n (7.1)

where x ∈ C(L+ν)×1, y ∈ CL×1 and n ∈ C N×1 denote the transmitted, received and noise

vectors respectively. The noise vector is assumed white, Gaussian, and zero-mean with

covariance matrix σ2
nI and ρ is the transmitted signal power. Without loss of generality we

assume σ2
n = 1. The matrix H ∈ CL×(L+ν) is the convolution channel matrix. The linear data

extension operation that maps the data block, denoted by s̄, of length L to the transmitted

vector of length L + ν can be expressed by x = Ucp s̄ where Ucp is the CP matrix given by

Ucp =


 IL

Iν 0ν×(L−ν)


 .

Hence the model in (7.1) is equivalent to:

y =
√

ρHUcps̄ + n =
√

ρHes̄ + n (7.2)

where He = HUcp is the equivalent L× L circulant channel matrix. given by

He =




h0 h1 · · · hν 0 · · · 0

0 h0 h1 · · · hν · · · 0
...

. . . . . . . . . . . . . . .
...

h1 h2 · · · hν 0 · · · h0




. (7.3)

Note that He has eigen decomposition He = QHΛQ where Q is the unitary discrete Fourier

transform matrix. The diagonal elements of Λ are given by [15]

λk =
ν∑

i=0

hie
−j

2πi(k−1)
L for k = 1, . . . , L.
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In single-carrier frequency domain equalizer (SC-FDE), the DFT/IDFT operation is per-

formed at the receiver. The DFT/IDFT in the SC-FDE diagonalizes the channel thus a

single-tap equalizer can be used, reducing the complexity of equalization. The DFT-domain

version of Equation (7.2) is

Y = Qy =
√

ρ ΛS + N (7.4)

where S, Y and N are the DFT of the transmitted, received and noise vectors respectively.

Assuming perfect channel state information at the receiver (CSIR), the linear zero-forcing

(ZF) and MMSE equalizers are given by [13]:

W = (c ρ−1I +HHH)−1HH (7.5)

where the constant c = 1 for MMSE equalizer and c = 0 for ZF equalizer. The matrix H is

the channel to be equalized. The corresponding unbiased decision-point SINR is

γk =
1

(c I + ρHHH)−1
kk

− c k = 1, . . . , L.

For completeness we mention the definition of the diversity gain

d , − lim
ρ→∞

log Pe

log ρ
(7.6)

and the outage diversity

dout , − lim
ρ→∞

log Pout

log ρ
(7.7)

where Pe is the pairwise error probability, Pout is the outage probability given by Pout ,
P(I(x;y) < R).

7.2.2 The Diversity of the MMSE Receiver in SC-FDE System

In [15] the linear MMSE receiver is analyzed for SC-FDE, a result that we shall refer to

later in this chapter and therefore we review it here briefly. In [15] the received signal after

equalization is given by

ỹ = Wy =
√

ρWHes̄ + Wn. (7.8)
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and subject to this model it was shown that MMSE SC-FDE can achieve full diversity for

certain values of block length and operating rate R b/s/Hz. The process of developing this

result was as follows.

The analysis performed in [15] consists of two main steps. The system outage diversity

is first characterized. Then lower and upper bounds on the error probability via outage are

provided. It is shown in [15] that these two bounds are tight and thus the diversity is fully

characterized. This two-steps approach was first proposed in [2] due to the intractability of

the direct pairwise error probability (PEP) analysis for many MIMO architectures.

The diversity of the MMSE SC-FDE is [15]

dout =





ν + 1 R ≤ log L
ν

b2−RLc+ 1 R > log L
ν

(7.9)

7.3 Cyclic-Delay Diversity

One common transmit diversity technique used for single carrier and multicarrier systems

is antenna delay diversity, which can take the form of time delay, cyclic delay and phase

delay [50, 51]. Among them, cyclic delay diversity (CDD) is more widely adopted for single

carrier and multicarrier applications as CDD can be applied to any number of transmit

antennas without any rate loss or change in the receiver structure [51–53]. In this section

we show that linear MMSE receivers can achieve the maximal spatio-temporal diversity

provided that the equalizer and the cyclic delay taps are properly designed.

System Model

Consider a MISO system with M transmit antennas and a block fading channel model where

the channel remains unchanged during the block transmission. The channel impulse response

from the transmit antenna i to the received antenna is given by hi = [hi,0, . . . , hi,νi
] with

channel memory length denoted by νi. We also define ν = maxi νi. We adopt the system

model of [51]. The model is shown in Figure 7.1 which displays the front end of a single
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Figure 7.1. Single-carrier and multicarrier MISO system with transmitter sided CDD scheme
and the proposed MMSE receiver.

carrier and multicarrier MISO system with CDD. In vector form, the received signal can be

written as

y =
M−1∑
i=0

√
ρHi ˆ̄si + n (7.10)

where Hi is an L×L circulant channel matrix whose first row is [hi,0, . . . , hi,νi
, 0, . . . , 0], ˆ̄si is

the L× 1 transmitted data-block (without the CP) from transmit antenna i. CDD converts

the MISO channel into a SISO channel with increased channel selectivity. The model can

be written as [52]

y =
√

ρHcir s̄ + n =
√

ρQHΛQ s̄ + n (7.11)

where Hcir is L× L circulant matrix, s̄ is the L× 1 modulated symbols (cf. Figure 7.1), Q

is the L×L normalized DFT matrix, and Λ is a diagonal matrix whose diagonal entries are

the DFT point of the first row of Hcir which are given by [ĥ(0), . . . , ĥ(L− 1)], and

ĥ(l) , 1√
M

M−1∑
i=0

hi(l − δi)mod L. (7.12)

The selection of the delay samples {δi} and its impact on the data rate, the signal-to-

interference-and-noise ratio (SINR) and maximum achievable diversity is studied in [52,54].

While the CP length is independent of δi, it must be no less than the maximum channel

delay spread ν [54]. Also for the receiver to exploit the full diversity the delays can be chosen

as δi > δi−1 + ν [52] or simply δi = iδ with δ > ν [53].
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Diversity Analysis of MMSE Receiver

We first consider the case where νi = ν = 0 ∀i (i.e. flat MISO channel) and the symbol

delays δi = i. In this case, the system model is equivalent to a SISO ISI channel under CP

transmission. If the equalizer is designed according to Hcir, it is known that in the SISO

ISI CP transmission a rate-dependent diversity is observed [15], and due to equivalence of

channel models this result can be directly lifted to the flat MISO CDD system. This result

will be extended to the general case of the multipath MISO channel under CDD.

For a flat channel (νi = 0 ∀i) and the delays δi = i, it can be shown that the first row

of the L × L circulant channel matrix Hcir is [h0, h1, · · · , hM−1, 0, · · · , 0] where the channel

entries {ĥ(l)} are given by (7.12). The equalized signal is

ỹ =
√

ρW Hcir s̄ + Wn. (7.13)

The system model in (7.13) is equivalent to (7.8) and we have the following lemma.

Lemma 7.3.1 Consider the M × 1 MISO flat-fading channel. The diversity of the MMSE

receiver under uncoded CDD transmission and L data-blocks is given by

d =





M R ≤ log L
(M−1)

b2−RLc+ 1 R > log L
(M−1)

.

(7.14)

Remark 7.3.1 Note that the uncoded CP systems can suffer from loss of multipath diver-

sity [55]. However if a linear receiver is used and the system parameters (rate, transmit

antenna delays, and FFT block length) are appropriately designed, Lemma 7.3.1 indicates

that the maximum diversity can be achieved. Specifically, the maximum diversity is achieved

when

bL2−Rc+ 1 > M or R 6 log
L

M − 1
, Rth (7.15)

For any given values of R and M , the data block length L can be chosen such that R 6 Rth.

Therefore if we have flexibility in assigning data block length, maximum diversity can always

be achieved.
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Remark 7.3.2 The developments in this chapter do not depend on whether the equalization

matrix W is multiplied by the received data in the time domain, or is applied in the frequency

domain (via FFT/IFFT). Both approaches lead to the same SINR and outage. Therefore, the

results of this chapter are valid for single-carrier systems regardless of whether the receiver

operates in the time domain or frequency domain.

We now consider the second case: the frequency selective channel, i.e., νi 6= 0. The

delay taps are chosen such that δi = niδ with δ > ν and {ni} are distinct integers, and the

block length L is chosen such that the transmitted blocks s̄i are distinct. Notice that the

condition on the block length guarantees that the channel coefficients seen at the receiver

are independent. Thus the delay taps and the block length L must be chosen to satisfy two

conditions

niδ0 mod L = njδ0 mod L ∀i 6= j (7.16)

L > M(ν + 1). (7.17)

We now consider the following case1: νi = ν ∀i, δi = i(ν + 1). It can be shown that this

system is equivalent to (7.13) where the variable M in (7.13) is replaced by M(ν + 1). Thus

we obtain the diversity

d =





M(ν + 1) R ≤ log L
(M(ν+1)−1)

b2−RLc+ 1 R > log L
(M(ν+1)−1)

.

(7.18)

The maximum diversity is achieved when

R 6 log
L

M(ν + 1)− 1
, Rth. (7.19)

Other choices of {δi} that satisfy (7.16) exist. Each of these choices yields a new Hcir

whose first row is a permutation of the first row of Hcir under δi = i(ν +1). We thus have L!

1We assume νi = ν for simplicity. The general case can be obtained in a straightforward
manner.
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different choices for the set {δi}. Since these circulant matrices have different structures, the

diversity analysis of [15] does not directly follow. We study the diversity of these systems

and show that the L!− 1 remaining choices {δi} yield the same diversity as shown in (7.18).

The outage probability of the system model in (7.13) is given by [15]

Pout
.
= P

( L∑

k=1

1

1 + ρ|λk|2 > L2−R

)

where λk are the eigenvalues of Hcir. Since each eigenvalue is a linear combination (DFT

points) of channel coefficients h = [h0 h1 · · · hM(ν+1)−1] then the eigenvalues {λk} obey a

zero-mean complex Gaussian distribution. In the special case L = M(ν + 1) the eigenvalues

{λk} are independent and it can be shown that [15]

Pout
.
= P

( M(ν+1)∑

k=1

1

1 + ρ|λk|2 > L2−R

)
.
= ρ−d (7.20)

where d is given by (7.18).

Now let L > M(ν + 1) and δi = i(ν + 1). The channel matrix is circulant with first-row

vector h(1) = [h0 · · ·hM(ν+1)−1 0 . . . 0] and the corresponding eigenvalues {λ(1)
k }L

k=1 are the

DFT points of this zero-padded channel vector h(1). In this case, [15, Lemma 2] applies and

we have

P
( L∑

k=1

1

1 + ρ|λ(1)
k |2

> m

)
.
= P

( M(ν+1)∑

k=1

1

1 + ρ|λk|2 > m

)

.
= ρ−d (7.21)

where m = L2−R and d is given by (7.18).

We now continue with L > M(ν + 1) but we discard the assumption δi = i(ν + 1).

Instead, the delays {δi} are only required to satisfy (7.16). In this case the zero-padded

channel vector is

h(2) = [0 · ·h0 · · 0 · ·h1 · · 0 · ·hM(ν+1)−1 · · 0]

where the locations of zeros depend on the particular choice of the {δi} via Eq. (7.12). We

have the following lemma.
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Lemma 7.3.2 The DFT of h(2) and the DFT of h(1) satisfy the following equality

P
( L∑

k=1

1

1 + ρ|λ(2)
k |2

> m

)
= P

( L∑

k=1

1

1 + ρ|λ(1)
k |2

> m

)
(7.22)

where m is a positive number.

Proof Please refer to Appendix.

Setting m = L2−R, we conclude from (7.21) and (7.22) that

P
( L∑

k=1

1

1 + ρ|λ(2)
k |2

> m

)
.
= ρ−d

where d is given by (7.18).

Diversity Analysis of Zero-Forcing Receiver

The SINR of the ZF receiver is given by (7.5)

γk =
ρ

[(He
HHe)−1]kk

=
L ρ

tr[(He
HHe)−1]

(7.23)

=
L ρ∑L

k=1
1

|λk|2
(7.24)

where (7.23) follows since He is circulant thus the diagonal elements of (He
HHe)

−1 are equal,

and (7.24) follows from the equivalence of the trace and the sum of eigenvalues.

Let us first consider the case of L = M(ν+1). In this case the eigenvalues are independent

Gaussian random variables. We perform the outage analysis for this case and then show that

the result holds for the more general case L > M(ν + 1). Let αk be the SNR exponent of

the channel eigenvalues, i.e.

αk , − log |λk|2
log ρ

.
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The outage probability is

Pout = P
(

1

L

L∑

`=1

log(1 + γ`) < R

)

= P
( L∑

k=1

1

ρ|λk|2 >
L

2R − 1

)

> P
(

1

ρ|λk|2 >
L

2R − 1

)

= P
(

ραk−1 >
L

2R − 1

)

.
= P(αk − 1 > 0)

= P(αk > 1)

= ρ−1 (7.25)

Eq. (7.25) follows because |λk|2 is exponential random variable and thus we have P(αk >

1)
.
= 1− e−ρ−1

via arguments similar to [15, Lemma 1]. We now obtain an upper bound on

outage. The outage probability can be bounded as follows.

Pout = P
( L∑

k=1

1

ρ|λk|2 >
L

2R − 1

)

6 P
(

L

mink ρ|λk|2 >
L

2R − 1

)

= P
(

ραmax−1 >
1

2R − 1

)

.
= P(αmax > 1)

= 1− P
( L⋂

k=1

{
αk < 1

})

= 1− [P(αk < 1)]L (7.26)

where (7.26) follows since L = M(ν + 1) and thus {αk} are independent. Since P(αk > 1)
.
=

1− e−ρ−1 .
= ρ−1 then P(αk < 1)

.
= 1− ρ−1 and thus

1− [P(αk < 1)]L
.
= ρ−1 (7.27)
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where we have used the fact that ρ−i +ρ−ni .
= ρ−i for any positive integers i and n. We then

conclude from (7.25) and (7.27) that, when L = M(ν + 1),

Pout = P
( L∑

k=1

1

ρ|λk|2 >
L

2R − 1

)

.
= ρ−1 (7.28)

We now consider the case L > M(ν + 1). We have the following lemma.

Lemma 7.3.3 Consider the MISO CDD under two transmission scenarios that are similar

in all respects except their data-block lengths L, L̃ where we assume L̃ > L = M(ν + 1). The

eigenvalues of the channel are denoted {λk} when data block length is L, and are denoted

{λ̃k} when data block length is L̃. Let m be a positive number. We have the following property

P
( L∑

k=1

1

ρ|λk|2 > m

)
.
= P

( L̃∑

k=1

1

ρ|λ̃k|2
> m

)

Proof We start with [15, Lemma 2], which states:

P
( L∑

k=1

1

1 + ρ|λk|2 > m

)
.
= P

( L̃∑

k=1

1

1 + ρ|λ̃k|2
> m

)

We note the difference with our desired result is only a constant term in the denominators.

Close inspection reveals that the proof outlined in [15, Appendix A] goes through even

without these constant (identity) terms, therefore the proof of our desired result parallels

step-by-step the proof of [15, Lemma 2].

Thus setting m = L
2R−1

in Lemma 7.3.3 and using (7.28) we conclude that the ZF receiver

achieves diversity order one irrespective of the block length.

(Non-Cyclic) Delay Diversity

In this section we consider the more traditional delay diversity without cyclic prefix. We

establish the equivalence between the delay diversity (DD) single carrier or multicarrier
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MISO system2 and the zero-padding single carrier or multicarrier SISO system. We then

apply the result of [48] which shows that linear receiver achieves full multipath diversity

for the zero-padding SISO system. In order to transform DD MISO channel into SISO ISI

channel, the delays are set to δi = iδ with δ > ν symbols. For simplicity, let δ = ν + 1

(the proof is easily extended to other cases). It can be shown that the received signal after

removing the padding is3

y =
√

ρ H̄ s̄ + n. (7.29)

In the case of single carrier system with no CP extension [50], s̄ ∈ CL×1 is the data block and

H̄ ∈ CL×L is the truncated Toeplitz channel matrix and the model is equivalent to the SISO

ISI channel under single carrier zero-padding transmission. Using linear equalizers in (7.29)

achieves the full diversity d = M(ν + 1) [26, 48]. In the case of multicarrier system, the

channel H̄ ∈ CL×L is a circulant channel matrix. Hence the result of Section 7.3 applies.

However, the DD multicarrier system incurs a rate loss compared to the CDD system

RCDD

RDD

=
1

η
=

NFFT + δmax + ν

NFFT + ν

where NFFT is the DFT size [54]. The diversity gain obtained in Section 7.3 is modified to

d =





M(ν + 1) R′ ≤ η log L
(M(ν+1)−1)

b2−R′Lc+ 1 R′ > η log L
(M(ν+1)−1)

.

(7.30)

7.4 Alamouti Signaling

The Alamouti method of space-time signaling can also be characterized as a transmit diver-

sity scheme. Unlike the CDD system, our analysis shows that Alamouti signaling preserves

the transmit diversity and thus provides a larger diversity gain compared with the CDD

2For DD SC system, we adopt the model of [50] where there is no CP insertion.
3In the DD multicarrier system, the received signal has a CP extension (added by the

multicarrier modulator) and a ZP extension (due to the delays δi). In the DD single carrier
system the received signal only has a ZP extension.
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scheme above a rate threshold Rth. We consider single-carrier block transmission over an

additive-noise frequency-selective channel with memory ν, similar to [20]. The model sup-

ports a 2× 1 system and can be extended to 2×N system.

Each data-block of length L is appended with a CP of length ν to eliminate interblock

interference. x
(k)
i (n) denotes the symbol n of the transmitted block k from antenna i. At

even time slots, pairs of length-N blocks x
(k)
1 (n) and x

(k)
2 (n) are generated. The transmission

scheme proposed by [20] is

x
(k+1)
1 (n) = −x∗(k)

2 ((−n)N)

x
(k+1)
2 (n) = −x∗(k)

1 ((−n)N) (7.31)

for n = 0, 1, . . . , N − 1 and k = 0, 2, 4 . . . , (·)∗ denotes conjugate. A length-ν CP is added to

each transmitted block. The total transmit power is divided equally among the antennas.

The transmission scheme is shown in Figure 7.2.

The received blocks at time k and k + 1 are given by

y(j) =
√

ρH
(j)
1 x

(j)
1 +

√
ρH

(j)
2 x

(j)
2 + n(j) for j = k, k + 1

where H
(j)
1 and H

(j)
2 are both circulant, and n(j) is the noise vector for block j. A DFT is

then applied to y(j) to diagonalize the channels as follows

Y(j) =
√

ρ Λ
(j)
1 X

(j)
1 +

√
ρ Λ

(j)
2 X

(j)
2 + N(j) for j = k, k + 1

where Y(j), X(j) and N(j) are the DFT vectors of y(j), x(j) and n(j) respectively, and Λi

(for i = 1, 2) are diagonal matrices containing the DFT coefficients of the channel impulse

responses. Using (7.31) and assuming the channels are fixed over two consecutive blocks

(indexed by k and k + 1), it can be shown that

Y ,


 Y(k)

Y∗(k+1)


 =


Λ1 Λ2

Λ∗2 −Λ∗1




︸ ︷︷ ︸
,Λ



√

ρX
(k)
1

√
ρX

∗(k)
2


 +


 N(k)

N∗(k+1)


 . (7.32)
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2(1).... CPCP
Ant. 2

-x*
1(0) -x*

2(0)

Figure 7.2. Transmission scheme proposed by Al-Dhahir for communication over frequency-
selective fading channels.

By multiplying both sides of (7.32) by the orthogonal matrix Λ∗ defined in (7.32)

Ỹ , Λ∗Y =


Λ̃ 0

0 Λ̃






√

ρX
(k)
1

√
ρX

∗(k)
2


 + Ñ (7.33)

where Ỹ and Ñ are the transformed receive vector Y and noise vector N respectively, and

Λ̃ , ΛH
1 Λ1 + ΛH

2 Λ2 is a N ×N diagonal matrix whose diagonal element i is

|Λ1(i, i)|2 + |Λ2(i, i)|2. (7.34)

7.4.1 MMSE Receiver

We now show that the 2 × N Alamouti SC-FDE can achieve full diversity 2N(ν + 1) as

long as the transmission rate is below a certain threshold, and otherwise full spatio-temporal

diversity is not achieved. We fully characterize the diversity in all cases. We start by

considering N = 1 receive antenna.

The received signal for two blocks indexed by k and k + 1 is given by (7.32) which can

be written as

Y =
√

ρ ΛX + N.

The MMSE equalizer is

W =
(
ΛHΛ + ρ−1I

)−1
ΛH .
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In other words, the coefficients of the MMSE FDE are given by

Wk,k =
Λ∗k,k

|Λk,k|2 + ρ−1
.

Performing the equalization process followed by the IDFT operation yields

ỹ1 , √
ρQH

(
ΛHΛ + ρ−1I

)−1
ΛHΛQx1 + ñ1

ỹ2 , √
ρQH

(
ΛHΛ + ρ−1I

)−1
ΛHΛQx2 + ñ2

where ñ1 and ñ2 are the filtered noise signals. Assuming the transmitted vectors have equal

power, the unbiased decision-point SINR of the MMSE SC-FDE for detecting the symbol k

of the vector x1 and x2 are denoted by γ1,k and γ2,k and are given by

γ1,k = γ2,k , γk =
ρ

[(ρ−1I + QHΛ̃Q)−1]kk

− 1,

Observe that all γk are equal because the matrix QHΛ̃Q is circulant. Thus γk can be written

as

γk =
ρ

1
L
tr(ρ−1I + QHΛ̃Q)−1

− 1

=
ρ

1
L
tr(ρ−1I + Λ̃)−1

− 1

=
1

1
L
tr(I + ρΛ̃)−1

− 1. (7.35)

The mutual information is given by

IMMSE =
L∑

k=1

log(1 + γk)

= L log(1 + γk) (7.36)

= L log

(
1

1
L
tr(I + ρΛ̃)−1

)

= −L log

(
1

L

L∑

k=1

[(I + ρΛ̃)−1]kk

)

= −L log

(
1

L

L∑

k=1

1

1 + ρλ̃k

)
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the eigenvalues λ̃k are the diagonal elements of Λ̃, and are given by λ̃k = |λ1,k|2 + |λ2,k|2

whereλi,k are the eigenvalues of the channel Hi for i = 1, 2 (cf. Equation (7.34)). The outage

probability of the MMSE receiver the is given by

Pout = P
(

1

L
IMMSE < R

)

= P
( L∑

k=1

1

1 + ρλ̃k

> L2−R

)
. (7.37)

Similar to the SISO analysis presented in [15], we first consider the case when L = ν + 1

and later extend it to the other cases when L > ν + 1. When L = ν + 1 all the elements

of {Λ1(k, k)} and {Λ2(k, k)} are i.i.d. Gaussian variables and hence the eigenvalues {Λ̃kk}
obey the Gamma distribution with shape parameter M = 2 and scale parameter 1, i.e.

λ̃k ∼ Γ(M, 1). When L > ν + 1 the elements {Λi(k, k)}i=1,2 are no longer independent and

thus analyzing this case requires the unknown distribution of {λk}. Instead, we indirectly

show that the diversity of L = ν + 1 also holds for L > ν + 1. We continue with the case

L = ν + 1

Let α̃k , − log λ̃k

log ρ
, we have

1

1 + ρλ̃k

=
1

1 + ρ1−α̃k
.

Observe that the term 1
1+ρ1−α̃k

is either zero or one at high SNR depending on the value of

α̃k [15]

lim
ρ→∞

1

1 + ρλ̃k

=





ρα̃k−1 ᾱk < 1

1 ᾱk > 1

.

therefore to characterize the sum
∑

k
1

1+ρλk
in (7.37) at high SNR, we basically count the

ones. The outage probability can be written as

Pout = P
( L∑

k=1

1

(1 + ρλ̃k)
> L2−R

)

.
= P

( ∑
α̃k>1

1 > L2−R
)
. (7.38)
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A rigorous proof for (7.38) follows similarly to [5, Section III-A]. We thus need to evaluate

P(α̃ > 1). The probability density function of λ̃k is

fλ̃k
(x) =

1

Γ(M)
xM−1 e−x. (7.39)

where Γ(M) = (M − 1)! is the Gamma function.

We want to evalaute the probability P (α̃k > 1) which is the same as P (λ̃k < ρ−1).

Using (7.39) we have

P (λ̃k < ρ−1) =

∫ ρ−1

0

fλ̃k
(x) dx

=
1

Γ(M)

∫ ρ−1

0

xM−1e−xdx (7.40)

=
1

Γ(M)

(
Γ(M)− e−ρ−1

M−1∑

k=0

Γ(M) ρ−1

k!

)
(7.41)

= 1− e−ρ−1
M−1∑

k=0

ρ−1

k!
(7.42)

where we have evaluated the integral in (7.40) according to [27, P.336]. Thus we have

P (α̃k > 1) = P (λ̃k < ρ−1)

= 1− e−ρ−1
M−1∑

k=0

ρ−1

k!

.
= 1− (

1− 1

M !
ρ−M

)
(7.43)

.
= ρ−M (7.44)

where (7.43) follows from the Taylor expansion of the exponential function in (7.42) and the

fact that ρ−i + ρ−ni .
= ρ−i for any positive integers i and n.

From the independence of {λ̃k}, and subsequently the independence of {α̃k}, we conclude

that M(α̃) in (7.38) is binomially distributed with parameter ρ−M . Hence, similar to [15],
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we have

P
( L∑

k=1

1

1 + ρλ̃k

> L2−R

)
.
= P(M(α̃) > L2−R)

=
L∑

i=bL2−Rc+1

P(M(α̃) = i)

.
=

L∑

i=bL2−Rc+1


L

i


 ρ−Mi (1− ρ−M)n−i

︸ ︷︷ ︸
.
=1

.
= ρ−M(bL2−Rc+1).

which concludes the proof for L = ν + 1

For the case of P > ν + 1, we will need the following lemma.

Lemma 7.4.1 Consider the MISO Alamouti signaling given by (7.31) under two transmis-

sion scenarios that are similar in all respects except their data-block lengths L1, L2 where we

assume L2 > L1 = ν + 1. The eigenvalues of channels H1 and H2 are denoted {λ1,k} and

{λ2,k} respectively when data block length is L1, and are denoted {λ̆1,k} and {λ̆2,k} when data

block length is L2. We have the following property

P
( L1∑

k=1

1

(1 + ρ (|λ1,k|2 + |λ2,k|2) > L2−R

)

.
= P

( L2∑

k=1

1

(1 + ρ (|λ̆1,k|2 + |λ̆2,k|2)
> L2−R

)

Proof The proof is similar to [56, Lemma 11].

Thus the data block length does not affect the diversity of 2 × 1 Alamouti scheme under

MMSE SC-FDE is

d =





2(ν + 1) R ≤ log L
ν

2
(b2−RLc+ 1

)
R > log L

ν
.

(7.45)

where L is the data block length.
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Remark 7.4.1 The result above shows that the Alamouti SC-FDE provides twice the di-

versity of SISO-SC-FDE. At first sight this result seems to be a straight forward product

decomposition of a so-called “transmit diversity,” i.e., a factor of two due to Alamouti sig-

naling, and a term due to SC-FDE [15]. However, it is important to note that the problem

was not fundamentally separable, therefore the results could not be deduced from [15, 20]

without a proof, because the distribution of the summation of eigenvalues squared in [20, Eq.

(11)] is needed before one can make a conclusive statement about the overall diversity of the

system. This subtle point can be further appreciated by noting that diversity in frequency-

selective channels cannot in general be decomposed into separate components, e.g., due to

the transmitter signaling and otherwise. For example in the earlier case of CDD, the diver-

sity was not a multiple of the diversity of SISO SC-FDE.4 Thus, the result above was not

preordained, even though its form is unsurprising.

The analysis can easily be generalized for N > 1 receive antennas. The outage in the case

of N receive antennas will depend on eigenvalues λ̃k
4
=

∑2N
i=1 |λi,k|2 that have distribution

λ̃k ∼ Γ(2N, 1). Following a similar line of reasoning as earlier, full diversity is achieved when

R ≤ log L
ν
. More broadly, the diversity for all spectral efficiencies is given by the following

theorem.

Theorem 7.4.2 In a 2 × N quasi-static frequency-selective channel with channel memory

ν, using Alamouti signaling given by (7.31) the diversity of the MMSE-SC-FDE is given by

d =





2N(ν + 1) R ≤ log L
ν

2N
(b2−RLc+ 1

)
R > log L

ν
.

(7.46)

where L is the data block length.

4There are also other examples showing the non-decomposability of diversity in frequency-
selective channels, e.g. [56].
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7.4.2 Zero-Forcing Receiver

We now analyze the zero-forcing equalization for Alamouti transmission. It can be shown

that the outage probability is

Pout = P
( L∑

k=1

1

ρλ̃k

>
L

2R − 1

)
(7.47)

with λ̃k = |λ1,k|2 + |λ2,k|2, and λi,k is the k-th eigenvalue of the channel Hi (i = 1, 2) and λ̃k

obey the Gamma distribution. Similarly to Section 7.3, it is straightforward to show that

the diversity of the ZF receiver is only dzf = 2. The analysis details are omitted for brevity.

7.5 Simulation Results

Figure 7.3 shows the outage probability Pout for the MMSE receiver in the CDD CP MISO

flat fading channel with 3 transmit antennas, under various choices of the cyclic delay taps.

The rate is R = 2 b/s/Hz and L = 5. In this case, the MMSE diversity is two (as predicted

from (7.18)) since this rate is greater than Rth given by (7.19). Figure 7.4 compares CDD-

CP and DD-without-CP systems in a 2× 1 MISO flat fading channel. The latter system is

equivalent to zero-padding transmission over a SISO ISI channel with three channel coeffi-

cients and thus achieves the full diversity for all rates [48]. However, the CDD CP-system

only achieves full diversity for the rates that satisfy (7.19).

Figure 7.5 compares the performance of zero-forcing and MMSE receivers in 2× 1 Alam-

outi transmission for block-length L = 4. The diversity of the ZF is two for all rates R,

whereas the diversity of the MMSE is greater than or equal to two depending on the value

of rate R (cf. Eq. (7.45)).

Figure 7.6 compares the performance of zero-forcing receiver in 2 × 1 CDD and 2 × 1

Alamouti transmission wth ν = 1. The diversity of the ZF-CDD is one whereas the diversity

of the ZF-Alamouti is two. The diversities of both systems are independent of R.
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Figure 7.3. The Outage probability of SC/MC CDD MISO under flat fading with three
transmit antennas and R = 2 b/s/Hz.
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7.6 Conclusion

This chapter analyzes the single-carrier frequency domain equalizer (SC-FDE) for two com-

mon transmit diversity schemes: cyclic delay diversity (CDD) and Alamouti signaling. We

characterize the diversity for both schemes at all spectral efficiencies. In the process, we

obtain a threshold rate (as a function of data-block length, channel memory, and number

of antennas) below which the full spatial-temporal diversity is achieved. Our analysis shows

that at high rates the CDD diversity degenerates to the diversity of the SISO SC-FDE, while

Alamouti signaling provides twice the diversity of SISO SC-FDE.

7.7 Appendix

7.7.1 Proof of Lemma 7.3.2

Recall that the channel vectors h(1) and h(2) are given by

h(1) = [h0 h1 · · · hM(ν+1)−1, 0, · · · , 0]

h(2) = [0 · ·h0 · · 0 · ·h1 · · 0 · ·hM(ν+1)−1 · · 0]

and the corresponding DFT vectors are respectively given by

λ
(1)
k =

ν∑
i=0

h(1)(i) e−j
2πi(k−1)

L for k = 1, . . . , L

λ
(2)
k =

ν∑
i=0

h(2)(i) e−j
2πi(k−1)

L for k = 1, . . . , L. (7.48)

Note that {h0, . . . , hM(ν+1)−1} comprise the non-zero elements of both h(1) and h(2). The

channel coefficients {hi} are assumed independent and identically distributed circular com-

plex normal random variable with zero mean. Thus the vector h = [h0 h1 · · · hM(ν+1)−1]

obeys the complex normal distribution CN (0, Γ) given by

f(h) =
1

πM(ν+1) det(Γ)
e−hΓ−1hH

. (7.49)
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where the covariance matrix Γ, considering that h is a row vector, is given by Γ = E[hHh].

We now construct a vector h̄ that has the same distribution as h

h̄ = [h0e
jθ0 h1e

jθ1 · · · hM(ν+1)−1e
jθM(ν+1) ]

= hΘ (7.50)

where the matrix Θ is a diagonal matrix that has {ejθi} on its diagonal, and {θi} are arbitrary

real-valued constants. Eq. (7.50) shows that h̄ is a linear transform of h. Thus h̄ obeys

CN (0, ΘHΓΘ). However, since the coefficients {hi} are independent, the covariance matrix

Γ is diagonal and we have

ΘHΓΘ = ΘHΘΓ

= Γ. (7.51)

Therefore

h̄ ∼ CN (0, Γ). (7.52)

We thus have

h̄
d
= h (7.53)

where
d
= denotes equality in distribution.

Define a vector h̄(2) that is of length L via appropriate number of zero-padding in arbitrary

locations of vector h, for example:

h̄(2) , [0 h0e
jθ0 0 0 h1e

jθ1 0 · · · 0 hM(ν+1)−1e
jθM(ν+1) 0].

Let {λ̄(2)
k } be the DFT of h̄(2)

λ̄
(2)
k =

ν∑
i=0

h̄(2)(i) e−j
2πi(k−1)

L for k = 1, . . . , L. (7.54)

Note that

h̄(2) d
= h(2)
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and therefore

{λ̄(2)
k } d

= {λ(2)
k }. (7.55)

The phases {θi} can be chosen such that for k = 1, . . . , L,

ν∑
i=0

h̄(2)(i) e−j
2πi(k−1)

L =
ν∑

i=0

h(1)(i) e−j
2πi(k−1)

L

= λ
(1)
k (7.56)

Using (7.55) and (7.56) we get

{λ̄(2)
k } d

= {λ(2)
k }

= {λ(1)
k }.

Therefore

P
( L∑

k=1

1

1 + ρ|λ(2)
k |2

> m

)
= P

( L∑

k=1

1

1 + ρ|λ(1)
k |2

> m

)



CHAPTER 8

LATTICE-REDUCTION AIDED EQUALIZATION

8.1 Introduction

The main problem with zero-forcing equalization, which also manifests itself in the system

diversity, is noise enhancement. When He is near-singular, zero-forcing amplifies the noise

strongly along the smaller eigenvectors of the channel, causing difficulties for the detector.

One way to address this problem is Lattice Reduction (LR) [57,58]. In this section we show

that lattice reduction aided equalization achieves full diversity. We begin with a short review

of LR-aided detection.

The orthogonality of a matrix H can be quantified using the notion of orthogonality defect

defined as [59]

δ =
(||b1||2||b2||2 . . . ||bMLd

||2)
detHHH

(8.1)

where H = [b1 . . .bMLd
]. Moreover, the orthogonality defect can be bounded as follows [59]

1 6 δ 6 c = 22MLd(MLd−1). (8.2)

If the matrix H has orthogonal columns then HHH is diagonal and thus using ZF equalizer

yields same performance as the ML detector, since the decision regions in both cases are the

same. However, since H is in general not orthogonal, linear equalization does not perform

as well as ML.

Lattice reduction finds a mapping of the lattice onto itself so that from the viewpoint

of the detector, the columns of the transformed equivalent channel are near-orthonormal.

More specifically, lattice reduction finds a unimodular1 matrix T such that H = HeT is

1A unimodular matrix is has the following property: the entries of both the matrix and
its inverse are complex integers and det(T) = ±1 or ±j.
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approximately orthogonal.2 The process is as follows:

y = Hex + n = (HeT) T−1x︸ ︷︷ ︸
x̂

+ n (8.3)

Denoting with WZF the ZF equalizer for the reduced channel H = HeT, we have

z = WZF y = x̂ + WZF n (8.4)

Now x̂ is decoded and x is recovered by multiplying with T.

Lattice reduction aided detection has been proposed and analyzed in several scenarios.

A quantative analysis was presented in [57] where it shown that the error rate performance

of LR is within 3 dB of ML for a 2 × 2 Gaussian MIMO channel model. The LR-aided

detection (LRAD) is known to achieve full receive diversity in uncoded flat MIMO broadcast

channel [61]. It is also shown [62] that LRAD ( with its modified version complex LLL [63])

achieves full receive diversity in MIMO flat V-BLAST channel. LRAD was also studied

for OFDM SIOSO channel [64]. The diversity of lattice-reduction-aided receivers in the

frequency-selective MIMO channel has been an open problem, which is addressed in this

section.

8.1.1 Diversity Analysis

An n-dimensional lattice L in the m-dimensional space is generated by linear combination

of n linearly independent vectors {bi}

L =

{ n∑
i=1

xibi

∣∣xi ∈ Z,bi ∈ Cm

}

Each lattice can be represented by (infinitely) many different bases. Lenstra et al. [60]

proposed the first polynomial time algorithm (LLL) that finds a near-orthogonal basis whose

vectors are all roughly the same size, specifically, the ratio of the second norm of any two

vectors of the basis is no bigger than 2(n−1)/2. The LLL algorithm was originally introduced

2Various algorithms exist for efficiently finding this transformation, among them the LLL
algorithm [60].
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dZF dILD

b1

b2

Figure 8.1. Decision regions of ZF (dashed) and infinite lattice decoding (solid) with the
corresponding minimum distances in a 2-dimensional lattice

for real lattice bases and was shown to require O(n4) arithmetic operations. Complex LLL

(CLLL) algorithms have been proposed in [62, 63] that yield similar performance as LLL

when applied to complex channel but with reduced complexity.

We start with outlining a recent result from [65] which characterizes the performance

of lattice-reduction-aided detection in infinite lattice decoding (ILD). Let dILD denote the

Euclidean distance between a lattice point to the closest boundary of the corresponding

Voronoi cell, and dZF denote the distance between the same lattice point and the closest

boundary of the decision region of the ZF detector (c.f. Figure 8.1). The term “proximity

factor” is defined in [65] as follows

κzf , sup
H∈Hreduced

d2
ILD

d2
ZF

(8.5)

where the supremum is taken over the set Hreduced of basis matrices satisfying a certain

reduction criterion.

The factor κzf is a function of not only the lattice, but also the basis that is used to

represent it, and without lattice reduction κzf is unbounded. With reduction, this factor

is upper bounded by a constant that is a function of the cardinality of the basis of the

lattice [65]. Although [65] is based on a real channel model, the analysis is easily extended

to the complex case by rewriting the system model in (8.3) as

Re{y}

Im{y}


 =


Re{H} −Im{H}

Im{H} Re{H}





Re{x}

Im{x}


 +


Re{n}

Im{n}


 .
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Similar to the analysis of [65], by using (8.5) for a complex lattice it can be shown that

the error probability of the LR-aided ZF detector is upper bounded as

Pe,ZF 6 2MLdPe (8.6)

where Pe is the error probability of the infinite lattice decoding. It is known that for suf-

ficiently large block lengths the outage and error probabilities decay at the same rate with

increasing SNR and we thus have [1, 2]

Pe
.
= P (O). (8.7)

Therefore we concentrate on outage calculations. The outage probability P(O) is given by

P (O) , P
(

1

MLd

I(x;y) < R

)
(8.8)

where I(x;y) = log det(I + ρ−1HH
e He) [66]. We now bound det(I + ρ−1HH

e He)

det(I + ρ−1HH
e He) =

MLd∏

k=1

(1 + ρλk)

> 1 + ρλmax

> 1 + ρ
1

MLd

MLd∑

k=1

λk (8.9)

where {λk} are the eigenvalues of HH
e He. We can thus bound the outage probability in (8.8)

P (O) 6 P
(

1

MLd

log
(
1 + ρ

1

MLd

MLd∑

k=1

λk

)
< R

)

= P
(

ρ
1

MLd

MLd∑

k=1

λk < 2RMLd − 1

)

= P
(

ρ

MLd∑

k=1

λk < MLd(2
RMLd − 1)

)

.
= P

( MLd∑

k=1

λk < ρ−1
)

(8.10)
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Recall from the definition of the Frobenius norm

||He||2F =

√∑
i,j

|hij|2 =

√
tr (He

HHe) =

√√√√
MLd∑

k=1

λk

where hi,j is the entry (i, j) of the matrix He. Since He is block Toeplitz it can be easily

verified that

∑
i,j

|hij|2 = Ld

M∑
m=1

N∑
n=1

ν∑

k=0

|hmn,k|2 (8.11)

Using (8.10) and (8.11) we have

P (O) 6̇ P
(

Ld

∑

m,n,k

|hmn,k|2 < ρ−1

)
(8.12)

Since
∑

m,n,k |hmn,k|2 is a chi-square random variable with 2MN(ν + 1) degree of freedom,

evaluating (8.12) yields [2, 6]

P (O) 6̇ ρ−MN(ν+1). (8.13)

Thus the outage diversity of the LR-aided ZF is lower bounded dout ≥ MN(ν + 1). We

also know dout ≤ MN(ν + 1) via the diversity of the optimum ML receiver. Therefore we

conclude that the LR-aided ZF outage diversity is dLR
out = MN(ν + 1).

Remark 8.1.1 We note that the identical proof easily follows for the MMSE equalizer, there-

fore it is established that the lattice-reduction MMSE equalizer also enjoys full diversity.



CHAPTER 9

FINITE LENGTH DECISION FEEDBACK EQUALIZER

9.1 Introduction

Single-carrier frequency domain equalizer (SC-FDE) is attractive for broadband wireless com-

munication and has been proposed for 3GPP long term evolution (LTE) standard. Compared

to OFDM, the SC-FDE is robust with respect to peak-to-average power ratio and has lower

sensitivity to frequency offset [44]. The performance of the FIR SC-MMSE-LE has been

analyzed in [15] where it is shown that the diversity is a function of spectral efficiency in the

fixed-rate regime. In this section we provide an in-depth analysis for the SC-MMSE-DFE.

Belfiore and Park [67] produced a slightly different DFE structure known as noise predic-

tive (NP) DFE. This method is motivated by the fact that the feed-forward filter colors the

noise which can be partially predicted. Structurally, this method adds a feed-forward loop

(see Figure 9.1). Operationally, in the MMSE-DFE the two filters are jointly optimized,

but in the noise-predictive DFE they are sequentially optimized. It is known that when

the feed-forward filter is implemented in a single-carrier mode, the MSE of the two DFE

HCyclic
Prefix DFT

MMSE
IDFT

FBF

+ Detector

bk

x k

+

-

Remove
 CP

FD Feedforward Filter

ω k 

TD Feedback Filter

x k y k

-

s k z k

d kg k

Figure 9.1. Block Diagram for the SC DFE NP

.

146



147

methods are identical [68] (subject to assumption of no error propagation). Therefore the

MMSE-DFE and noise-predictive DFE, when using single-carrier feed-forward filters, have

identical diversity. In this chapter we choose to analyze the noise-predictive DFE, noting

that the results apply directly to MMSE-DFE.

9.2 System Model

We consider an ISI wireless channel (with channel memory ν) that is assumed fixed over

the transmission block. To remove the inter-block interference at the receiver, a cyclic-prefix

(CP) of at least ν-length is inserted at the beginning of each data-block of length L and

discarded at the receiver. The input-output system model for block transmission scheme is

y = HUcpx + n (9.1)

where x ∈ C(L+ν)×1, y ∈ CL×1 and n ∈ CL×1 denote the transmitted, the received and the

noise vectors respectively. The noise vector is assumed white and Gaussian with zero mean

and covariance matrix σ2I (where σ2 is the noise variance). The matrix H ∈ CL×(L+ν) is the

convolution channel matrix. The linear data extension operation that maps the data block

of length L to the transmitted vector of length L + ν can be expressed by x̄ = Ucpx where

Ucp is the the CP matrix given by

Ucp =


 IL

Iν 0ν×(L−ν)


 .

Hence we can rewrite the model in (9.1) as

y = HUcpx + n = Hex + n (9.2)

where He = HUcp is the equivalent L× L circulant channel matrix given by

He =




h0 h1 · · · hν 0 · · · 0

0 h0 h1 · · · hν · · · 0
...

. . . . . . . . . . . . . . .
...

h1 h2 · · · hν 0 · · · h0




. (9.3)
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Note that He has eigen decomposition He = QHΛQ where Q is the unitary discrete Fourier

transform matrix. The diagonal elements of Λ are given by [69]

λk =
ν∑

i=0

hie
−j

2πi(k−1)
L for k = 1, . . . , L. (9.4)

9.2.1 Optimum Filters – Methodology

It is well-known that MMSE estimation of one random variable from another (including

random vectors) is made possible via manipulating the second-order properties of the vari-

ables, i.e., the power- and cross-spectral densities, and then applying spectral factorization.

However, in our case (as we shall see shortly) one must obtain multiple filters that depend

not only on “observation” random variables, but also on other random variables that pro-

duce affine terms and do not participate in the application of the orthogonality principle.

In such complicated scenarios, the power spectral density (Fourier transform of the auto-

correlation) is not sufficient to derive the resulting filters, and a Fourier-like representation

of the random processes themselves is needed. This was recognized, e.g., in [70], where the

notion of the D-transform was used on a discrete random process sk to arrive at the following

transform-domain random process:

X(D) =
∑

k

xk Dk (9.5)

where D is a complex number, and when D = ejω we have the Fourier transform. This

approach has been widely followed in the DFE literature since the appearance of [70].

Unfortunately, from an analytical viewpoint this approach is not completely satisfactory:

the infinite sum in (9.5) does not converge in any sense (e.g. in quadratic mean or with

probability 1) for any value of D on the unit circle. In fact it is well known that stationary

random processes do not admit a Fourier transform in the usual sense [71].

The authors of [70] were aware that a power spectral density cannot be directly calculated

from (9.5) and defined the spectral density via a truncation and normalization [70, Page 2583,

footnote 1]:

Sx(D) = lim
M→∞

1

2M + 1
E

[
XM(D)X∗

M(D−∗)
]
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where XM(D) =
∑M

k=−M xkD
k. By (effectively) allowing the exchange of XM(D) and X(D)

freely, [70] arrives at a semantic sequence of equations that are manipulated to arrive at

an answer. Needless to say these manipulations are not problem-free, not least because

they require X(D) which does not exist. Thus the intermediate steps in [70], especially

those involving filtering, are not on solid mathematical ground, albeit the correct end results

provided in [70].

We are thus motivated to use a more robust approach based on the classical spectral rep-

resentation of random processes, itself based on the generalized harmonic analysis devised by

Wiener [72]. This classical branch of the theory of random processes defines a Fourier-like

representation of the sample-paths of the random process, and links the behavior of this

Fourier-like representation to the autocorrelation function and its Fourier transform (power

spectral density). Unfortunately, the formal literature on random processes can be some-

what dense, and even the friendlier developments such as [71] have not found wide favor

among information theorists and communication professionals. We suspect one reason is

that the results are often developed in the continuous time and are presented in a way that

does not immediately suggest the sampled-time counterpart. Motivated by the above con-

siderations, this chapter also produces a compact and self-contained introduction to spectral

representations, developed completely in sampled-time domain.

The spectral representation is defined using the inverse Fourier transform integral. Let

xk, k = 0,±1, · · · , denote a stationary random process with discrete time parameter. The

spectral representation of xk is defined via1

xk =

∫ π

−π

ejωk dX(ω). (9.6)

where ω is the variable representing frequency and X(ω) is called the spectral process of

xk. Note that (9.6) is a Stieltjes integral as X(ω) is not differentiable for stationary random

1In the literature on stochastic processes and some other fields, the Fourier transform
appears with the kernel ejω while in engineering the kernel e−jω is common. This makes
no difference in the substance of the arguments and is equivalent to exchanging negative
and positive frequencies. In this chapter, we adopt the inverse Fourier transform as used in
engineering.



150

processes. A basic but reasonably rigorous grounds-up treatment of spectral representation

is given in Appendix 9.5.1.

9.2.2 Optimum Filters – Design

In the NP-DFE, the feedforward filter and the feedback filter are designed sequentially. The

optimum feedforward MMSE filter coefficients, denoted by wk, are given by

wk , Wk =
λ∗k

|λk|2 + ρ−1
(9.7)

In order to find the MSE we define the following signals. Let Bn be the L-size DFT of

the feedback filter coefficients

Bn =
ν∑

k=1

bke
−j2π nk

L , n = 1, 2 · · ·L− 1. (9.8)

We also define H(ω) and B(ω) to be the the discrete-time Fourier transforms of the channel

and the feedback filters respectively. Let W (ω) be the discrete-time Fourier transform of the

IDFT(wk), that is wk is the sampling of the DTFT

wk = W (ω)|ω= 2πk
L

(9.9)

where

W (ω) , H∗(ω)

|H(ω)|2 + ρ−1
. (9.10)

Following the notation of [70] we derive the MSE of the DFE-NP filter. The error signal,

defined as the noise plus distortion, is given by

ek = zk − xk.

Using the spectral representation of the above equation

∫ π

−π

ejωk dE(ω) =

∫ π

−π

ejωk dZ(ω)−
∫ π

−π

ejωk dX(ω) ∀k ∈ Z
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Using the completeness of the exponential basis, we have:

dE(ω) = dZ(ω)− dX(ω)

From the system model given by Figure 9.1, we have

dZ(ω) =
(
1−B(ω)

) [
W (ω)H(ω) dX(ω) + W (ω) dN(ω)

]

and thus

dE(ω) =
(
1−B(ω)

) [(
W (ω)H(ω)− 1

)
dX(ω) + W (ω) dN(ω)

]
. (9.11)

Due to the orthogonal increment property of the spectral process (see Appendix 9.5.1) the

power spectral densities2 of the error, the input, and the noise signal can be found as follows

E
[
dE(ω)dE∗(ω)

]
= Se(ω)dω (9.12)

E
[
dX(ω)dX∗(ω)

]
= Sx(ω)dω

E
[
dN(ω)dN∗(ω)

]
= Sn(ω)dω

Define B̄(ω)
4
= 1−B(ω), we have

E
[|dE(ω)|2] = E

[
dE(ω)dE∗(ω)

]

=
∣∣B̄(ω)

∣∣2
(∣∣W (ω)H(ω)− 1

∣∣2Sx(ω)d(ω) + |W (ω)|2Sn(ω)d(ω)

)

=

∣∣B̄(ω)
∣∣2

|H(ω)|2 + ρ−1

[
ρ−2

|H(ω)|2 + ρ−1
Sx(ω)d(ω) +

|H(ω)|2
|H(ω)|2 + ρ−1

Sn(ω)d(ω)

]

(9.13)

=

∣∣B̄(ω)
∣∣2

|H(ω)|2 + ρ−1

[
ρ−2

|H(ω)|2 + ρ−1
σ2

x d(ω) +
|H(ω)|2

|H(ω)|2 + ρ−1
σ2

n d(ω)

]
(9.14)

=

∣∣B̄(ω)
∣∣2

|H(ω)|2 + ρ−1
σ2

n d(ω). (9.15)

2Denoted “spectral density function” in the random process literature
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where (9.13) follows by using (9.10), Eq. (9.14) assumes that both the input and noise signals

possess a white spectrum3, and Eq. (9.15) uses ρ = σ2
x

σ2
n
. Now, using (9.12) and (9.15) we

conclude

Se(ω) =

∣∣B̄(ω)
∣∣2

|H(ω)|2 + ρ−1
σ2

n. (9.16)

which can also be written in the z domain

Se(z) =
B̄(z)B̄∗(z−∗)

H(z)H∗(z−∗) + ρ−1
σ2

n (9.17)

We now use a celebrated result form discrete-time spectral factorization theory [70,73].

Lemma 9.2.1 Let S(z) denote a power spectral density with finite power, i.e.,

1

2π

∫ π

−π

S(ejω) dω < ∞ (9.18)

and it satisfies the Paley-Wiener condition

1

2π

∫ π

−π

ln
[
S(ejω)

]
dω > −∞ . (9.19)

Then a unique spectral factorization for S(z) exists:

S(z) = g0 v(z)v∗(z−∗)

where v(z) is canonical4 and g0 is given by the so-called Szegö formula

g0 = exp

[
1

2π

∫ π

−π

ln S(ejω) dω

]

3Using an equalizer implies that residual interference is treated as noise (otherwise one
may as well use an ML decoder). Thus the equalized channel is treated as a AWGN channel,
and for that channel the optimal codebook is white. Incidently, the whiteness of the input
signal was also implicit in [70, Eq. (26) and (27)]. With our method, it is also possible
to design DFE or linear equalizers for any non-white input power spectral density: it is
sufficient to use the appropriate Sx(ω) in Eq. (9.13). The following spectral factorization
steps will naturally be affected.

4A filter response is canonical if it is causal, monic (v(0) = 1) and minimum phase (all
the poles are outside the unit circle and all the zeros are on or outside the unit circle).
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Lemma 9.2.1 together with Eq. (9.17) imply that for the error to be white, the feedback

filter must satisfy the following factorization

H(z)H∗(z−∗) + ρ−1 = g0 B̄(z) B̄∗(z−∗) (9.20)

which also means

Se(z) =
σ2

n

g0

. (9.21)

Thus the MSE is σ2
n/g0. The constant g0 is given by

g0 = exp

[
1

2π

∫ π

−π

ln
(|H(ω)|2 + ρ−1

)
dω

]
(9.22)

The unbiased SINR at the output of the DFE-NP filter is

γDFE-NP =
σ2

x

MSE
− 1 = g0ρ− 1 (9.23)

This expression does not include the power loss due to boundary effects (e.g. cyclic prefix

or zero padding), therefore it is only accurate at L → ∞. We shall evaluate the outage

probability for asymptotically large L, and then show that the result holds for arbitrary

block length L.

9.3 Outage Analysis

The outage probability is

Pout = P
(
log(γDFE-NP + 1) < R

)

= P
(

ρ exp

[
1

2π

∫ π

−π

ln
(|H(ω)

∣∣2 + ρ−1) dω

]
< 2R

)

< P
(

ρ exp

[
1

2π

∫ π

−π

ln
∣∣H(ω)

∣∣2 dω

]
< 2R

)

= P
(

exp

[
1

2π

∫ π

−π

ln
∣∣H(ω)

∣∣2 dω

]
< ρr

)

.
= ρ−(ν+1)(1−r) (9.24)
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The proof of (9.24) ignores error propagation and closely follows the proof of the infinite-

length DFE presented in [26, Section IV-E] and is omitted here for brevity. Moreover one can

show that (9.24) also holds for the fixed rate regime r = 0 thus (9.24) is valid for r ∈ [0, 1]

(the closed interval, instead of a semi-open interval).

We now proceed to consider a finite L, where we will show with a bounding technique

that the same diversity as Eq. (9.24) is obtained. Recall that {λk} are the DFT of the

channel coefficients (cf. (9.4)). The mean square error for finite L is given by [74]

J =
σ2

n

L

L−1∑

k=0

|1−Bk|2
|λk|2 + ρ−1

(9.25)

where the coefficients Bk are optimized for the specific block length L. The unbiased SINR

of the noise-predictive DFE with block length L is

γ =
σ2

x

MSE
− 1 =

(
1

L

L−1∑

k=0

|1−Bk|2
ρ|λk|2 + 1

)−1

− 1.

So the outage of the system with length L is:

Pout,L = P(log
(
γ + 1) < R

)

= P
( L−1∑

k=0

|1−Bk|2
ρ|λk|2 + 1

> L2−R

)
(9.26)

We now consider another block length L̃ = TL, where T is a positive integer, and

recalculate the outage. Using the same arguments as above, the outage for length L̃ is:

Pout,L̃ = P
( L̃−1∑

k=0

|1− B̃k|2
ρ|λ̃k|2 + 1

> L̃2−R

)
(9.27)

where now B̃k are the coefficients optimized specifically for block length L̃. To find the

relation of Pout,L̃ and Pout,L, we first concentrate on the respective channel eigenvalues. Recall

that {λk} = DFT(h) where h = [h0, . . . , hν , 0, . . . , 0] is a vector of length-L. The eigenvalues

{λ̃} = DFT(h̃), where h̃ is a zero-padded version of h:

h̃
4
= [h0, h1, · · · , 0, · · · , 0︸ ︷︷ ︸

L̃−ν−1

]
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Using the DFT properties, zero-padding in the time domain is equivalent to interpolation in

the DFT domain:

λ̃Tk = λk k = 0, . . . , L− 1 (9.28)

Let us denote by A the subset of {λ̃} that are identical to {λk}, i.e., A = {λ̃i, i = 1, T +

1, · · · , T (L− 1) + 1}. It immediately follows:

Pout,L = P
( ∑

k

|1−Bk|2
ρ|λk|2 + 1

> L2−R

)

6 P
( ∑

k

|1− B̃Tk|2
ρ|λk|2 + 1

> L2−R

)
(9.29)

.
= P

( L−1∑

k=0

|1− B̃Tk|2
ρ|λk|2 + 1

> L̃2−R

)
(9.30)

= P
( L−1∑

k=0

|1− B̃Tk|2
ρ|λ̃Tk|2 + 1

> L̃2−R

)
(9.31)

6 P
( TL−1∑

`=0

|1− B̃`|2
ρ|λ̃`|2 + 1

> L̃2−R

)

= Pout,L̃ (9.32)

where (9.29) holds because B̃Tk may not be the same as the optimized coefficients for block-

length L, thus they increase outage probability; Eq. (9.30) holds because this exponential

relationship is not affected by the magnitude of a constant; (9.31) holds by noting λ̃Tk = λk,

and the following inequality holds due to addition of positive terms inside the probability

expression. Overall, we conclude Pout,L 6̇ Pout,L̃

Recall that L̃ = TL. When T is sufficiently large, Eq. (9.24) indicates that Pout,L̃
.
=

ρ−(ν+1)(1−r), therefore Pout,L 6̇ ρ−(ν+1)(1−r). Since (ν + 1)(1 − r) is the best possible SNR

exponent in this system, we must have Pout,L
.
= ρ−(ν+1)(1−r) for all L.

Note that the analysis so far ignores error propagation. We now complete the analysis by

accounting for error propagation. For the initial symbol there is no ISI from the past (and

hence no error propagation) therefore from (9.24) we have an error probability

P(E0)
.
= ρ−(ν+1)(1−r) .
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For the next symbol

P(E1) = P(E1|E0)P(E0) + P(E1|Ē0)P(Ē0) (9.33)

.
= ρ−(ν+1)(1−r) + ρ−(ν+1)(1−r) (9.34)

.
= ρ−(ν+1)(1−r) (9.35)

where we have used P(E1|E0)
.
= 1 and P(Ē0)

.
= 1. Using mathematical induction it can

be shown that P(Ek) = ρ−(ν+1)(1−r) for all k. We thus conclude that the DMT of the FIR

MMSE-DFE is

dDFE MMSE(r) = (ν + 1)(1− r), r ∈ [0, 1] (9.36)

Remark 9.3.1 As far as diversity is concerned, avoiding error propagation effects is rela-

tively easy. If ν successive symbols are known at the receiver with error probability 6̇ρ−(ν+1)(1−r),

the subsequent symbols will be detected with full diversity. This condition is easily satisfied,

e.g., if the system starts from the zero state, or if the transmitter sends at least ν consecutive

known symbols (pilots).

Remark 9.3.2 The coefficients {Bk} are the DFT of the coefficients {bk} (cf. Equation (9.8)).

Considering that {bk} are complex-valued, the optimal J must satisfy:

∂J

∂Re(bk)
= 0

∂J

∂Im(bk)
= 0 (9.37)

The vector b = {bk} is then obtained by solving the linear system of equations [74]

Ab = q̄ (9.38)

where

Am,l =
L−1∑
n=0

e−j2π
n(l−m)

L

|λn|2 + ρ−1
1 6 m, l 6 ν (9.39)

q̄m,l =
L−1∑
n=0

ej2π nm
L

|λn|2 + ρ−1
1 6 m 6 ν (9.40)
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9.4 Conclusion

This chapter addressed several open problems in the area of the asymptotic performance of

linear- and decision-feedback equalizers. In the area of linear equalization, the DMT of the

IIR zero-forcing equalizer as well as the FIR MMSE equalizer were studied. The diversity

of the MMSE FIR equalizer in the fixed rate regime was calculated. The performance

of decision-feedback equalizers was also studied under both IIR and FIR assumptions. In

addition to the new results, this chapter also provides a self-contained introduction to spectral

representations of random processes in the sampled-time domain and uses this technique to

put the analysis of DFEs on a much firmer footing than was earlier available.

9.5 Appendix

9.5.1 Spectral Representation of Random Process

Spectral analysis of stochastic processes, and in particular the spectral representation, has

a long and distinguished history. This appendix presents a brief and self-contained intro-

duction, aimed at producing only the needed results for a communications engineer with

a minimal amount of machinery. It is hoped that this approach leads to a more accessi-

ble treatment of the subject. The authors must acknowledge their debt to two excellent

texts [71, 75] whose sharpness and economy of expression has been very inspiring.

A deterministic, periodic discrete-time signal x(k) under certain conditions admits a

Fourier series:

x(k) =
∞∑

r=0

αr cos(2πk/N) + βr sin(2πk/N)

Non-periodic functions, on the other hand, are more suited to the Fourier transform

x(k) =

∫ π

−π

{A(ω) cos(ωk) + B(ω) sin(ωk)} dω
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The two forms were combined and generalized in 1930 by Wiener [72] into a Fourier-Stieltjes

integral5 to produce a generalized harmonic analysis:

x(k) =

∫ π

−π

ejωk dX(ω). (9.41)

Clearly, if X(ω) is a piecewise constant function, we have a Fourier series while a continuous

and differentiable X(ω) yields the usual Fourier transform integral, where then X(ω) above

would be the integral of the Fourier spectrum. The beauty of this representation is that it

also applies to cases where X(ω) is neither piece-wise constant nor differentiable, and in that

way provides a perfect vehicle for a spectral characterization of stationary random processes.

Spectral Representation of Stationary Random Process

Now, with an abuse of notation, consider a stationary random process x(k). The sample

paths of this process do not admit a Fourier series because they are not periodic with

probability 1, and also do not admit a Fourier integral since with probability 1 they are not

absolutely integrable. However, a spectral process X(ω) exists [76] such that

x(k) =

∫ π

−π

ejωk dX(ω). (9.42)

It is easy to show then that among random processes, linear operations such as

z(k) = x(k) + y(k)

are conserved in the spectral domain, i.e.,

dZ(ω) = dY (ω) + dX(ω).

If x(k) and y(k) are respectively the input and output of a discrete-time linear time-invariant

filter h(k), that is,

x(k) =
∞∑
−∞

h(`)x(k − `). (9.43)

5In fact Wiener’s generalization did not even require X(ω) to be of bounded variation,
but for our purposes this statement suffices.
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it is straight forward to show:

y(k) =
∞∑
−∞

h(`)

∫ π

−π

ejω(k−`) dX(ω)

=

∫ π

−π

ejωk

{ ∞∑
−∞

h(`)ejω`

}
dX(ω)

=

∫ π

−π

ejωkH(ω) dX(ω). (9.44)

Thus, we have the useful property of filtering in the spectral representation:

dY (ω) = H(ω)dX(ω) (9.45)

We now proceed to describe the connection of this spectral representation to the Fourier

transform of the autocorrelation, which will enable us to use spectral factorization and design

the needed filters for estimation.

Definition 9.5.1 A continuous-parameter random process X(ω) is an orthogonal incre-

ments process if it satisfies:

E
[
(X(ω1)−X(ω2)

)(
X∗(ω3)−X∗(ω4))

]
= 0. (9.46)

whenever [ω1, ω2) ∩ [ω3, ω4) = ∅

Theorem 9.5.1 (Doob [76, Chapter X, Theorem 4.1]) For every discrete-time wide-sense

stationary random process x(k) there exists an essentially unique spectral representation

x(k) =

∫ π

−π

ejωk dX(ω)

where X(ω) process has orthogonal increments.

This result is surprisingly fussy to show, especially when X(ω) is discontinuous at the bound-

aries. However, once established, the orthogonal increment property of the spectral process
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has interesting consequences for the autocorrelation function:

Rx(n) = E
[
x(k)x∗(k − n)

]

= E
[ ∫ π

−π

ejωkdX(ω)

∫ π

−π

e−jω
′
(k−n)dX∗(ω

′
)

]

= E
[ ∫ π

−π

∫ π

−π

ej(ω−ω
′
)kejω

′
ndX(ω)dX∗(ω

′
)

]

=

∫ π

−π

∫ π

−π

ej(ω−ω
′
)kejω

′
n E

[
dX(ω)dX∗(ω

′
)
]

(9.47)

Since E
[
dX(ω)dX∗(ω

′
)
]

has orthogonal increment then E
[
dX(ω)dX∗(ω

′
)
]

= 0 unless ω = ω
′

and thus

E
[
dX(ω)dX∗(ω

′
)
]

= δωω′dS̄x(ω), (9.48)

where δωω′ is the Kroenecker delta function. Equivalently:

E
[|dX(ω)|2] = dS̄x(ω).

The properties of S̄x are clarified by the celebrated Wiener-Kintchine theorem:

Theorem 9.5.2 (Wiener-Kintchine) A necessary and sufficient condition for Rx to be the

autocorrelation function of some stationary process is that there exists a bounded, positive

non-decreasing function S̄x(ω) such that for all n,

Rx(n) =

∫ π

−π

ejωndS̄x(ω)

Remark 9.5.1 When Rx(n) dies fast enough, S̄x(ω) is absolutely continuous and a spectral

density may be defined.

Rx(n) =

∫ π

−π

ejωnSx(ω)dω (9.49)

The latter is the case that is often represented in the engineering literature. However, the

main point of the Wiener-Kintchine theorem is the generality of a spectral representation of

the autocovariance, whose existence is guaranteed via Bochner’s theorem.
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To summarize, for each stationary random process x(n) there exists a spectral process

X(ω) with the usual linearity and convolution properties, and furthermore it is related to

the spectral density function via E[|dX(ω)|2] = Sx(ω)dω. This machinery is sufficient to

fully support the developments of this chapter.



CHAPTER 10

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the contributions of this dissertation and provides some possible

avenues for future directions. The findings also appear in [5, 46, 56,77–81]

Chapter 3 provides the first contribution in this dissertation. The work settles the long

standing problem of the diversity of the MMSE MIMO receivers under all fixed rates for

any number of transmit (M) and receive (N) antennas, giving the result as d = dM2−
R
M −

κe2 + |N −M |dM2−
R
M − κe, where κ = max(0,M − N). The analysis confirms the earlier

approximate results [6, 7] showing that the system diversity can be as high as MN for low

spectral efficiency and as low as N −M + 1 for high spectral efficiency. The result is easily

extended to the multiple access channel (MAC).

Chapter 4 extends the results of the previous chapter and studies the performance of the

MIMO MMSE receiver in the frequency selective channel under two common transmission

schemes, the zero-padding and the cyclic-prefix tranmission. The explicit tradeoff between

rate and diversity in these two cases are provided.

Chapter 5 studies the high-SNR performance of MIMO linear precoding. It is shown that

the zero-forcing precoder under two common design approaches, maximizing the throughput

and minimizing the transmit power, achieves the same diversity function as that of MIMO

systems with ZF equalizer. When a regularized ZF (RZF) precoder (for a fixed regularization

term that is independent of the signal-to-noise ratio) or matched filter (MF) precoder is used,

we have d(r) = 0 for all r, implying an error floor under all conditions. However, in the fixed

rate regime, RZF and MF filtering achieve full diversity up to a certain spectral efficiency,

while at higher spectral efficiencies they produce an error floor. If the regularization parame-

ter in the RZF is optimized in the MMSE sense (also known as Wiener filter precoding), the

162
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RZF precoded MIMO system exhibits a complex rate-dependent behavior. In particular, the

diversity of this system is characterized by d(R) = dN2−
R
N e2 + (M − N)dN2−

R
N e where M

and N are the number of transmit and receive antennas. This is the same behavior observed

in linear MMSE MIMO receivers in Chapter 3.

Chapter 6 extends the results of the previous chapters and analyze the case of MIMO

systems with linear transmit and receive filters in the flat fading channel. It is shown that

using linear equalization and precoding can remove the error floor observed when MF or

RZF precoding is used.

Chapter 7 provides the analysis for common transmit diversity techniques when used with

MMSE receiver. Alamouti and cyclic delay diversity schemes are analyzed and compared.

In order to improve the performance of the MIMO linear receivers, lattice-reduction aided

equalization has been proposed in the literature for MIMO flat fading and SISO frequency

selective channels. Chapter 8 analyzes the LR-aided equalization for MIMO frequency selec-

tive channel. It is shown that the maximum diversity is obtained for all spectral efficiencies.

Chapter 9 provides the analysis for the decision-feedback equalizer. As part of the de-

velopments of this chapter, the notion of the spectral representation of random processes is

used to provide a rigorous analytical-framework for decision feedback equalizers.

Future work may be pursued for projects related to the work discussed in this dissertation.

We provide some of these projects as well as other possible future work below.

• The current research mainly focused on linear filtering. Similar analysis is also needed

for non-linear operations such as decision-feedback and successive interference cancel-

lation techniques. The diversity analysis of these feedback systems is interesting and

it is shown that error propagation which is one of the main challenges in analyzing

feedback systems, can be taken into consideration and exact results are obtainable.

• It is also interesting to investigate the DMT (as well as the diversity in the fixed

rate regime) of infinite impulse response (IIR) and finite (FIR) equalizers in SISO
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channel as well as zero-padding and cyclic-prefix block transmission in MIMO channel.

Preliminary results obtain the following:

dFIR
MMSE(r) =





1− r r ∈ (0, 1]

ν + 1 r = 0

(10.1)

dFIR
ZF (r) = 1− r r ∈ [0, 1] (10.2)

dCP
MMSE(r) =





1− r r ∈ (0, 1]

min
(
ν, bN2−Rc) + 1 r = 0

(10.3)

dCP
ZF (r) = (1− r) r ∈ [0, 1] (10.4)
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