
A Switched Gaussian Process for Estimating
Disparity and Segmentation in Binocular Stereo

Oliver Williams
Microsoft Research Ltd.

Cambridge, UK
omcw2@cam.ac.uk

Abstract

This paper describes a Gaussian process framework for inferring pixel-wise
disparity and bi-layer segmentation of a scene given a stereo pair of images.
The Gaussian process covariance is parameterized by a foreground-background-
occlusion segmentation label to model both smooth regions and discontinuities.
As such, we call our model aswitched Gaussian process. We propose a greedy in-
cremental algorithm for adding observations from the data and assigning segmen-
tation labels. Two observation schedules are proposed: the first treats scanlines as
independent, the second uses an active learning criterion to select a sparse subset
of points to measure. We show that this probabilistic framework has comparable
performance to the state-of-the-art.

1 Introduction

Given two views of the same scene, this paper addresses the dual objectives of inferring depth
and segmentation in scenes with perceptually distinct foreground and background layers. We do
this in a probabilistic framework using a Gaussian process prior to model the geometry of typical
scenes of this type. Our approach has two properties of interest to practitioners: firstly, it can be
employed incrementally which is useful for circumstances in which the time allowed for processing
is constrained or variable; secondly it is probabilistic enabling fusion with other sources of scene
information.

Segmentation and depth estimation are well-studied areas (e.g., [1] and [2, 3, 4]). However the in-
spiration for the work in this paper is [5] in which both segmentation and depth are estimated in
a unified framework based around graph cuts. In [5] the target application was video conferenc-
ing, however such an algorithm is also applicable to areas such as robotics and augmented reality.
Gaussian process regression has previously been used in connection with stereo images in [6] to
learn the non-linear mapping between matched left-right image points and scene points as an alter-
native to photogrammetric camera calibration [7]. In this paper we use a Gaussian process to help
discover the initially unknown left-right matches in a complex scene: a camera calibration procedure
might then be used to determine actual 3D scene geometry.

The paper is organized as follows: Sec. 2 describes our Gaussian process framework for inferring
depth (disparity) and segmentation from stereo measurements. Sec. 3 proposes and demonstrates
two observation schedules: the first operates along image scanlines independently, the second treats
the whole image jointly, and makes a sparse set of stereo observations at locations selected by an
active learning criterion [8]; we also show how colour information may be fused with predictions by
the switched GP, the results of which are comparable to those of [5]. Sec. 4 concludes the paper.



Figure 1: Anatomy of a disparity map. This schematic shows some of the important features in
short baseline binocular stereo for an horizontal strip of pixels. Transitions between foreground and
background at the right edge of a foreground object will induce adiscontinuityfrom high to low
disparity. Background–foreground transitions at the left edge of the foreground induce anocclusion
region in which scene points visible in the left image are not visible in the right. We use the data
from [5] which are available on their web site: http://research.microsoft.com/vision/cambridge/i2i

2 Single frame disparity estimation

This framework is intended for use withshort baselinestereo, in which the two images are taken
slightly to the left and the right of a midpoint (see Fig. 1). This means that most features visible in
one image are visible in the other, albeit at a different location: for a given pointx in the left image
L(x), our aim is therefore to infer the location of the samescenepoint in the right imageR(x′). We
assume that bothL andR have beenrectified [7] such that all corresponding points have the same
vertical coordinate; hence ifx = [x y]T thenx′ = [x− d(x) y]T whered(x) is called thedisparity
mapfor pointsx in the left image.

Because objects typically have smooth variations in depth,d(x) is generally smooth. However, there
are two important exceptions to this and, because they occur at the boundaries between an object
and the background, it is essential that they be modelled correctly (see also Fig. 1):

Discontinuity Discontinuities occur where one pixel belongs to the foreground and its neighbour
belongs to the background.

Occlusion At background–foreground transitions (travelling horizontally from left to right), there
will be a region of pixels in the left image that are not visible in the right since they areoc-
cludedby the foreground [3]. Such locations correspond to scene points in the background
layer, however their disparity is undefined.

The next subsection describes a prior for disparity that attempts to capture these characteristics by
modelling the bi-layer segmentation.

2.1 A Gaussian process prior for disparity

We model the prior distribution of a disparity map to be a Gaussian process (GP) [9]. GPs are defined
by a mean functionf(·) and a covariance functionc(·, ·) which in turn define the joint distribution
of disparities at a set of points{xi, . . . ,xn} as a multivariate Gaussian

P
(
d(xi), . . . , d(xn)|f, c

)
= Normal(f , C) (1)

wherefi = f(xi) andCij = c(xi,xj).

In order to specify a mean and covariance function that give typical disparity maps an high proba-
bility, we introduce a latent segmentation variables(x) ∈ {F,B,O} for each point in the left image.
This encodes whether a point belongs to the foreground (F), background (B) or is occluded (O) and
makes it possible to model the fact that disparities in the background/foreground are smooth (spa-
tially correlated) within their layers and are independent across layers. For a given segmentation,



the covariance function is

c(xi,xj ; s) =

 De−α‖xi−xj‖2 s(xi) = s(xj) 6= O
Dδ(xi − xj) s(xi) = s(xj) = O
0 s(xi) 6= s(xj)

(2)

whereD is the maximum disparity in the scene andδ is the Dirac delta function. The covariance of
two points will be zero (i.e., the disparities are independent) unless they share the same segmentation
label. Disparity is undefined within occlusion regions so these points are treated as independent
with high variance to capture the noisy observations that occur here, pixels with other labels have
disparities whose covariance falls off with distance engendering smoothness in the disparity map;
the parameterα controls the smoothness and is set toα = 0.01 for all of the experiments shown in
this paper (the pointsx are measured in pixel units). It will be convenient in what follows to define
the covariance for sets of points such thatc(X ,X ′; s) = C(s) ∈ Rn×n′

where the elementCij is the
covariance of theith element ofX andjth element ofX ′. The prior mean is also defined according
to segmentation to reflect the fact that the foreground is at greater disparity (nearer the camera) than
the background

f(x; s) =

{ 0.2D s(x) = B
0.8D s(x) = F
0.5D s(x) = O

. (3)

Because of the independence induced by the discrete labelss(x), we call this prior model aswitched
Gaussian process. Switching between Gaussian processes for different parts of the input space
has been discussed previously by [10] in which switching was demonstrated for a 1D regression
problem.

2.2 Stereo measurement process

A proposed disparityd(x) is compared to the data via thenormalized sum of squared differences
(NSSD) matching cost over a regionΩ (here a5 × 5 pixel patch centred at the origin) using the
normalized intensity is̄L(x) = L(x)− 1

25

∑
a∈Ω L(x + a) (likewise forR̄(x))

m(x, d) =
∑

a∈Ω

(
L̄(x + a)− R̄(x + a− d)

)2

2
∑

a∈Ω

(
L̄2(x + a) + R̄2(x + a + d)

) . (4)

This cost has been shown in practice to be effective for disparity estimation [11].

To incorporate this information with the GP prior it must be expressed probabilistically. We follow
the approach of [12] for this in which a parabola is fitted around the disparity with minimum score
m(x, d) ≈ ad2 + bd + c. Interpreting this as the inverse logarithm of a Gaussian distribution gives

d(x) = µ(x) + ε where ε ∼ Normal(0, v(x)) (5)

with µ(x) = − b
a andv(x) = 1

2a being the observation mean and variance.

Given a segmentation and a set of noisy measurements at locationsX = {xi, . . . ,xn}, the GP
can be used to predict the disparity at a new pointP (d(x)|X ). This is a Gaussian distribution
Normal(µ̃(x), ṽ(x)) with [9]

µ̃(x; s) = µTC̃(s)−1c(X ,x; s) and ṽ(x; s) = c(x,x; s)− c(X ,x; s)TC̃(s)−1c(x; s) (6)

whereC̃(s) = c(X ,X ; s) + diag
(
v(x1), . . . , v(xn)

)
andµ = [µ(x1), . . . , µ(xn)]T.

2.3 Segmentation likelihood

The previous discussion has assumed that the segmentation is known, yet this will rarely be the case
in practice:s must therefore be inferred from the data together with the disparity. For a given set of
observations, the probability that they are a sample from the GP prior is given by

E(X ) = log P
(
µ|s,v

)
= −

[
µ− f(s)

]T
C̃(s)−1

[
µ− f(s)

]
− log det C̃(s)− n

2
log 2π. (7)

This is theevidencefor the parameters of the prior model and constitutes a data likelihood for the
segmentation. The next section describes an algorithm that uses this quantity to infer a segmentation
whilst incorporating observations.



3 Incremental incorporation of measurements and model selection

We propose an incremental and greedy algorithm for finding a segmentation. Measurements are
incorporated one at a time and the evidence of adding theith observation to each of the three seg-
mentation layers is computed based on the precedingi − 1 observations and their labels. Theith

point is labelled according to which gave the greatest evidence. The firsti − 1 observation points
Xi−1 = {x1, . . . ,xi−1} are partitioned according to their labelling into the mutually independent
setsXF, XB andXO. Since the three segmentation layers are independent, some of the cost of com-
puting and storing the large matrix̃C−1 is avoided by constructing̃F−1 and B̃−1 instead where
F̃ = c(XF,XF) andB̃ = c(XB,XB). Observations assigned to the occlusion layer are independent
of all other points and contain no useful information. There is therefore no need to keep a covariance
matrix for these.

As shown in [13], the GP framework easily facilitates incremental incorporation of observations by
repeatedly updating the matrix inverse required in the prediction equations (6). For example, to add
theith example to the foreground (the process is identical for the background layer) compute

F̃−1
i =

[
F̃i−1 c(XF,xi)

c(XF,xi)T c(xi,xi) + v(x)

]−1

=
[
F̃−1

i−1 + qFqT
F/rF qF

qT
F rF

]
(8)

where

r−1
F = c(xn,xn) + v(xi)− c(XF,x)TF̃−1

i−1c(XF,x)

qF = −rFF̃
−1
i−1c(XF,x). (9)

Similarly, there is an incremental form for computing the evidence of a particular segmentation as
E(Xi|s(xi) = j) = E(Xi−1) + ∆Ej(xi) where

∆Ej(xi) = log(rj)−
(µ(Xj)Tqj)2

rj
− 2µ(xi)qT

j µ(Xj)− rjµ(xi)2 − 1
2 log 2π (10)

By computing∆Ej for the three possible segmentations, a new point can be greedily labelled as
that which gives the greatest increase in evidence.

Algorithm 1 gives pseudo-code for the incremental incorporation of a measurement and greedy
labelling. As with Gaussian Process regression in general, this algorithm scales asO(n2) for storage
andO(n3) for time and it is therefore impractical to make an observation at every pixel for images
of useful size. We propose two mechanisms to overcome this:

1. Factorize the image into several sub-images and treat each one independently. The next
subsection demonstrates this when each scanline (row of pixels) is handled independently.

2. Only make measurements at a sparse subset of locations. Subsection 3.2 describes an active
learning approach for identifying optimally informative observation points.

3.1 Independent scanline observation schedule

By handling the image pixels one row at a time, the problem becomes one-dimensional. Points
are processed in order from right to left: for each point the disparity is measured as described in

Algorithm 1 Add and label measurement atxi

input F̃−1, B̃−1, XF, XB andXO

Compute matrix building blocksrj∈{F,B} andqj∈{F,B} from (9)
Compute change in evidence for adding to each layer∆Ej∈{F,B,O} from (10)
Label points(xi) = arg maxj∈{F,B,O} ∆Ej(xi)
Add point to setXs(xi) ← Xs(xi) ∪ xi

if s(xi) ∈ F ∪ B then
Update matrixF̃−1 or B̃−1 as (8)

end if
i = i + 1
return F̃−1, B̃−1, XF, XB andXO



(a) (b) (c)

Figure 2:Scanline predictions.Disparity and segmentation maps inferred by treating each scanline
independently.(a) 320 × 240 pixel left input images.(b) Mean predicted disparity map̃µ(x). (c)
Inferred segmentations(x) with F = white,B = grey (orange) andO = black.

Sec. 2.2 and incorporated/labelled according to Algorithm 1. In this setting there are constraints on
which labels may be neighbours along a scanline. Fig. 1 shows the segmentation for a typical image
from which it can be seen that, moving horizontally from right to left, the only “legal” transitions in
segmentation areB → F, F → O andO → B. Algorithm 1 is therefore modified to consider legal
segmentations only.

Fig. 2 shows some results of this approach. Both the disparities and segmentation are, subjectively,
accurate however there are a number of “streaky” artifacts caused by the fact that there is no vertical
sharing of information. There are also a number of artifacts where an incorrect segmentation label
has been assigned; in many cases this is where a point in the foreground or background has been
labelled as occluded because there is no texture in that part of an image and measurements made for
such points have an high variance. The occlusion class could therefore be more accurately described
as a general outlier category.

3.2 Active selection of sparse measurement locations

As shown above, our GP model scales badly with the number of observations. The previous sub-
section used measurements at all locations by treating each scanline as independent, however a
shortcoming of this approach is that no information is propagated vertically, introducing streaky
artifacts and reducing the model’s ability to reason about occlusions and discontinuities.

Rather than introduce artificial independencies, the observation schedule in this section copes with
theO(n3) scaling by making measurements at only a sparse set of locations. Obvious ways of
implementing this include choosingn locations either at random or in a grid pattern, however these
fail to exploit information that can be readily obtained from both the image data and the current
predictions made by the model. Hence, we propose anactiveapproach, similar to that in [14]: given
the firsti− 1 observations, observe the point which maximally reduces the entropy of the GP [8]

∆H(x) = H
(
P (d|Xi−1)

)
−H

(
P (d|Xi−1 ∪ x)

)
= − 1

2 log det Σ + 1
2 log det Σ′ + const. (11)

whereΣ andΣ′ are the posterior covariances of the GP over all points in the image before and
after making an observation atx. To compute the entire posterior for each observation would be
prohibitively expense; instead we approximate it by the product of the marginal distributions at each



(a) (b) (c)

Figure 3:Predictions after sparse active observation schedule.This figure shows the predictions
made by the GP model with observations at 1000 image locations for the images used in Fig. 2.(a)
Mean predicted disparitỹµ(x); (b) Predictive uncertaintỹv(x); (c) Inferred segmentation.

point (i.e., ignore off-diagonal elements inΣ) which gives∆H(x) ≈ 1
2

(
log ṽ(x)− log v(x)

)
where

ṽ(x) is the predicted variance from (6) andv(x) is the measurement variance. Since the logarithm
is monotonic, an equivalent utility function is used:

U
(
x|Xi−1

)
=

ṽ(x)
v(x)

. (12)

Here the numerator drives the system to make observations at points with greatest predictive uncer-
tainty. However, this is balanced by the denominator to avoid making observations at points where
there is no information to be obtained from the data (e.g., the textureless regions in Fig. 2). To ini-
tialize the active algorithm, 64 initial observations are made in a evenly spaced grid over the image.
Following this, points are selected using the utility function (12) and incorporated into the GP model
using Algorithm 1.

Predicting disparity in the scanline factorization was straightforward because a segmentation label
had been assigned to every pixel. With sparse measurements, only the observation points have been
labelled and to predict disparity at an arbitrary location a segmentation label must also be inferred.
Our simple strategy for this is to label a point according to which gives the least predictive variance,
i.e.:

s(x) = arg min
j∈{F,B,O}

ṽ(x; s(x) = j). (13)

Fig. 3 shows the results of using this active observation schedule withn = 1000 for the images of
Fig. 2. As expected, by restoring 2D spatial coherence the results are smoother and have none of the
streaky artifacts induced by the scanline factorization. Despite observing only 1.3% of the points
used by the scanline factorization, the active algorithm has still managed to capture the important
features in the scenes. Fig. 4a shows the locations of then observation points; the observations are
clustered around the boundary of the foreground object in an attempt to minimize the uncertainty
at discontinuities/occlusions; the algorithm is dedicating its computational resources to the parts of
the image which are most interesting, important and informative. Fig. 4b demonstrates further the
benefits of selecting the points in an active framework compared to taking points at random.
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Figure 4: Advantage of active point selection. (a) The inferred segmentation from Fig. 3 with
spots (blue) corresponding to observation locations selected by the active criterion.(b) This plot
compares the accuracy of the segmentation against the number of sparse observations when the
observation locations are chosen at random and using our active schedule. Accuracy is measured
as the percentage of mislabelled pixels compared to a hand-labelled ground truth segmentation. The
active strategy achieves better accuracy with fewer observations.

(a) (b) (c)

Figure 5:Improved segmentation by fusion with colour.(a)Pixel-wise energy termV (x) combin-
ing segmentation predictions from both the switched GP posterior and a colour model;(b) Segmen-
tation returned by the Viterbi algorithm. This contains 0.5% labelling errors by area.(c) Inferred
foreground image pixels.

3.3 Adding colour information

The best segmentation accuracies using stereo information alone are around 1% labelling errors
(with n ≥ 1000). In [5], superior segmentation results are achieved by incorporating colour infor-
mation. We do the same here by computing a foreground “energy”V (x) at each location based
on the variances predicted by the foreground/background layers and a known colour distribution
P

(
F|Lc(x)

)
whereLc(x) is the RGB colour of the left image atx:

V (x) = log ṽ(x; s(x) = B)− log ṽ(x; s(x) = F)− log P
(
F|Lc(x)

)
. (14)

We represent the colour distribution using a10 × 10 × 10 bin histogram in red-green-blue colour
space. Fig. 5a shows this energy for the first image in Fig. 2. As in [5], we treat each scanline as
a binary HMM and use the Viterbi algorithm to find a segmentation. A result of this is shown in
Fig. 5c which contains 0.58% erroneous labels. This is comparable to the errors in [5] which are
around 0.25% for this image. We suspect that our result can be improved with a more sophisticated
colour model.

4 Discussion

We have proposed a Gaussian process model for disparity, switched by a latent segmentation vari-
able. We call this aswitched Gaussian processand have proposed an incremental greedy algorithm



for fitting this model to data and inferring a segmentation. We have demonstrated that by using
a sparse model with points selected according to an active learning criterion, an accuracy can be
achieved that is comparable to the state of the art [5].

We believe there are four key strengths to this probabilistic framework:

Flexibility The incremental nature of the algorithm makes it possible to set the number of observa-
tionsn according to time or quality constraints.

Extensibility This method is probabilistic so fusion with other sources of information is possible
(e.g., laser range scanner on a robot).

Efficiency For smalln, this approach is very fast (30ms per pair of images forn = 200 on a 3GHz
PC). However, higher quality results requiren > 1000 observations which reduces the
execution speed to a few seconds per image.

Accuracy We have shown that (for largen) this technique achieves an accuracy comparable to the
state of the art.

Future work will investigate the use of approximate techniques to overcome theO(n3) scaling
problem [15]. The framework described in this paper can operate at real time for lown, however any
technique that combats the scaling will allow higher accuracy for the same execution time. Also,
improving the approximation to the likelihood in (5), e.g., by expectation propagation [16], may
increase accuracy.
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