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Self-Organizing Hierarchical Particle Swarm
Optimizer With Time-Varying
Acceleration Coefficients
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Abstract—This paper introduces a novel parameter automation
strategy for the particle swarm algorithm and two further exten-
sions to improve its performance after a predefined number of gen-
erations. Initially, to efficiently control the local search and con-
vergence to the global optimum solution, time-varying acceleration
coefficients (TVAC) are introduced in addition to the time-varying
inertia weight factor in particle swarm optimization (PSO). From
the basis of TVAC, two new strategies are discussed to improve
the performance of the PSO. First, the concept of ‘“mutation” is
introduced to the particle swarm optimization along with TVAC
(MPSO-TVAC), by adding a small perturbation to a randomly se-
lected modulus of the velocity vector of a random particle by prede-
fined probability. Second, we introduce a novel particle swarm con-
cept “self-organizing hierarchical particle swarm optimizer with
TVAC (HPSO-TVAC).” Under this method, only the “social” part
and the “cognitive” part of the particle swarm strategy are con-
sidered to estimate the new velocity of each particle and particles
are reinitialized whenever they are stagnated in the search space.
In addition, to overcome the difficulties of selecting an appropriate
mutation step size for different problems, a time-varying mutation
step size was introduced. Further, for most of the benchmarks, mu-
tation probability is found to be insensitive to the performance of
MPSO-TVAC method. On the other hand, the effect of reinitializa-
tion velocity on the performance of HPSO-TVAC method is also ob-
served. Time-varying reinitialization step size is found to be an ef-
ficient parameter optimization strategy for HPSO-TVAC method.
The HPSO-TVAC strategy outperformed all the methods consid-
ered in this investigation for most of the functions. Furthermore, it
has also been observed that both the MPSO and HPSO strategies
perform poorly when the acceleration coefficients are fixed at two.

Index Terms—Acceleration coefficients, hierarchical particle
swarm, mutation, particle swarm, reinitialization.

I. INTRODUCTION

ARTICLE swarm optimization (PSO) is a popula-
tion-based, self-adaptive search optimization technique
first introduced by Kennedy and Eberhart [1] in 1995. The
motivation for the development of this method was based on
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the simulation of simplified animal social behaviors such as
fish schooling, bird flocking, etc.

Similar to other population-based optimization methods such
as genetic algorithms, the particle swarm algorithm starts with
the random initialization of a population of individuals (parti-
cles) in the search space [30]. However, unlike in other evo-
lutionary optimization methods, in PSO there is no direct re-
combination of genetic material between individuals during the
search. The PSO algorithm works on the social behavior of par-
ticles in the swarm. Therefore, it finds the global best solution by
simply adjusting the trajectory of each individual toward its own
best location and toward the best particle of the entire swarm at
each time step (generation) [1], [9], [10]. The PSO method is
becoming very popular due to its simplicity of implementation
and ability to quickly converge to a reasonably good solution.

In the particle swarm algorithm, the trajectory of each indi-
vidual in the search space is adjusted by dynamically altering
the velocity of each particle, according to its own flying experi-
ence and the flying experience of the other particles in the search
space. The position vector and the velocity vector of the sth par-
ticle in the d-dimensional search space can be represented as
Xi = (%i1, iz, i3, - - -, ia) and V; = (i1, vi2, Vi3, - - -, Via)
respectively. According to a user defined fitness function, let
us say the best position of each particle (which corresponds
to the best fitness value obtained by that particle at time ¢) is
P; = (pi1,pi2, pi3, - - -, pia), and the fittest particle found so far
at time ¢ is Py = (pg1,pg2; .. ., Pga)- Then, the new velocities
and the positions of the particles for the next fitness evaluation
are calculated using the following two equations:

Vid =via + ¢1 X rand(+) X (pia — Tia)
+ c2 x Rand(+) X (pga — i) (H
Tid = Tid + Vid (2)

where ¢; and ¢y are constants known as acceleration coeffi-
cients, and rand(-)and Rand(-)are two separately generated
uniformly distributed random numbers in the range [0,1].

The first part of (1) represents the previous velocity, which
provides the necessary momentum for particles to roam across
the search space. The second part, known as the “cognitive”
component, represents the personal thinking of each particle.
The cognitive component encourages the particles to move to-
ward their own best positions found so far. The third part is
known as the “social” component, which represents the col-
laborative effect of the particles, in finding the global optimal
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solution. The social component always pulls the particles to-
ward the global best particle found so far.

Initially, a population of particles is generated with random
positions, and then random velocities are assigned to each par-
ticle. The fitness of each particle is then evaluated according to
a user defined objective function. At each generation, the ve-
locity of each particle is calculated according to (1) and the po-
sition for the next function evaluation is updated according to
(2). Each time if a particle finds a better position than the pre-
viously found best position, its location is stored in memory.
Generally, a maximum velocity (V maxg) for each modulus of
the velocity vector of the particles (v;q) is defined in order to
control excessive roaming of particles outside the user defined
search space. Whenever a viq exceeds the defined limit, its ve-
locity is set to V maxy.

In this paper, we propose a novel parameter automation
strategy and two new extensions to the particle swarm concept.
The major objective of this development is to improve the
performance after a predefined number of generations, through
empirical simulations with well-known benchmarks.

Initially, we introduce the concept of time-varying accelera-
tion coefficients (TVAC) ¢; and c» in addition to time-varying
inertia weight factor [14], [15], to effectively control the global
search and convergence to the global best solution. The major
consideration of this modification is to avoid premature conver-
gence in the early stages of the search and to enhance conver-
gence to the global optimum solution during the latter stages of
the search.

First, in addition to TVAC, we introduce a “mutation” oper-
ator to the particle swarm concept (MPSO-TVAC). Under this
new development, when the global best value remains constant
with increasing generations, a particle is randomly selected with
a predefined probability (mutation probability). Then, a random
perturbation is given to a randomly selected modulus of the ve-
locity vector of the selected particle.

Second, we introduce a novel PSO concept ‘“self-orga-
nizing hierarchical particle swarm optimizer with TVAC
(HPSO-TVAC).” Under this method, the previous velocity term
in (1) is kept constant at zero. The momentum for the particles
to roam through the search space is maintained by reinitializing
particles with random velocities, whenever they stagnate in the
search space.

Finally, we apply the PSO method to estimate the operating
parameters for optimum performance of internal combustion
spark ignition engines. In this investigation, the objective func-
tion is defined through an engine simulation program, which
evaluates the performance in terms of power output for a given
set of input conditions and geometrical parameters.

The rest of this paper is organized as follows. In Section II, we
summarize two significant previous developments to the orig-
inal PSO methodology. One method was used as the basis for
our novel developments, whereas the other one was selected
as comparative measure of performance of the novel methods
proposed in this paper. In Section III, we introduce the three
new extensions to PSO proposed in this paper. Experimental set-
tings for the benchmarks and simulation strategies are explained
in Section IV and the results in comparison with the two pre-
vious developments are presented in Section V. In Section VI,

we apply particle swarm methods to investigate their ability to
find the design parameters for optimum performance of internal
combustion engines.

II. SOME PREVIOUS WORK

Since the introduction of the PSO method in 1995, there has
been a considerable amount of work done in developing the
original version of PSO, through empirical simulations [1]-[8],
[11]-[19], [22]-[26]. In this section, we summarize two signif-
icant previous developments, which serve as both a basis for
and performance gauge of the novel strategies introduced in this
paper.

In population-based optimization methods, proper control of
global exploration and local exploitation is crucial in finding
the optimum solution efficiently [8], [15]. Shi and Eberhart [15]
introduced the concept of inertia weight to the original version
of PSO, in order to balance the local and global search during
the optimization process.

Generally, in population-based search optimization methods,
considerably high diversity is necessary during the early part
of the search to allow use of the full range of the search space.
On the other hand, during the latter part of the search, when the
algorithm is converging to the optimal solution, fine-tuning of
the solutions is important to find the global optima efficiently.

Considering these concerns, Shi and Eberhart [17] have
found a significant improvement in the performance of the
PSO method with a linearly varying inertia weight (w) over the
generations. The mathematical representation of this concept is
given by (3) and (4)

Vid = w X Vig + ¢1 X rand(+) X (pia — Zia)
+co x Rand(+) X (pga — zia) (3)
where w is given by

(MAXITER - iter)
MAXITER

w= (w1 —ws) X + wa 4
where wy and ws are the initial and final values of the inertia
weight, respectively, iter is the current iteration number and
MAXITER is the maximum number of allowable iterations.

Through empirical studies, Shi and Eberhart [17] have ob-
served that the optimal solution can be improved by varying the
value of w from 0.9 at the beginning of the search to 0.4 at the
end of the search for most problems. This modification to the
original PSO concept has been considered as the basis for two
novel strategies introduced in this paper. Hereafter, in this paper,
this version of PSO is referred to as time-varying inertia weight
factor method (PSO-TVIW).

Most early developments in PSO have been proven to be ef-
fective in optimizing static problems [31], [32], [36], [37]. How-
ever, most real-world applications are identified as nonlinear dy-
namic systems. Eberhart and Shi [31] found that the PSO-TVIW
concept is not very effective for tracking dynamic systems. In-
stead, considering the dynamic nature of real-world applica-
tions, they have proposed a random inertia weight factor for
tracking dynamic systems.
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In this development, the inertia weight factor (w) is set to
change randomly according to the following equation:
rand(+)

> &)
where rand(-) is a uniformly distributed random number within
the range [0,1]. Therefore, the mean value of the inertia weight
is 0.75. This modification was inspired by Clerc’s constriction
factor concept [10], [11], [34] in which the inertia weight is
kept constant at 0.729 and both acceleration coefficients are kept
constant at 1.494. Therefore, when random inertia weight factor
method is used the acceleration coefficients are kept constant at
1.494. In the remainder of this paper, this method is referred to
as PSO-RANDIW.

Through empirical studies with some of the well-known
benchmarks, it has been identified that the random inertia
weight method shows rapid convergence in the early stages
of the optimization process and can find a reasonably good
solution for most of the functions. Therefore, comparing the
results reported in the literature with the same benchmarks, this
method was selected to compare the effectiveness of the novel
PSO strategies introduced in this paper. However, since two
of the new strategies introduced in this development are based
on the TVIW concept, the performance of novel strategies was
also compared with the PSO-TVIW method.

w=0.>5+

III. PROPOSED NEW DEVELOPMENTS

Even though the PSO-TVIW method is capable of locating
a good solution at a significantly faster rate, when compared
with other evolutionary optimization methods, its ability to fine
tune the optimum solution is comparatively weak, mainly due
to the lack of diversity at the end of the search [8]. On the other
hand, in PSO, problem-based tuning of parameters is also a key
factor to find the optimum solution accurately and efficiently
[14]. Considering these concerns, in this paper, we propose three
strategic developments to improve the performance of PSO.

A. Time-Varying Acceleration Coefficients (TVAC)

It is clear from (1) that, in PSO, the search toward the
optimum solution is guided by the two stochastic acceleration
components (the cognitive component and the social compo-
nent). Therefore, proper control of these two components is
very important to find the optimum solution accurately and
efficiently.

Kennedy and Eberhart [1] described that a relatively high
value of the cognitive component, compared with the social
component, will result in excessive wandering of individuals
through the search space. In contrast, a relatively high value of
the social component may lead particles to rush prematurely to-
ward a local optimum. Moreover, they suggested setting either
of the acceleration coefficients at 2, in order to make the mean
of both stochastic factors in (1) unity, so that particles would
over fly only half the time of search. Since then, this suggestion
has been extensively used for most studies.

Suganthan [19] tested a method of linearly decreasing both
acceleration coefficients with time, but observed that the fixed
acceleration coefficients at 2 generate better solutions. However,
through empirical studies he suggested that the acceleration co-
efficients should not be equal to 2 all the time.

Generally, in population-based optimization methods, it is de-
sirable to encourage the individuals to wander through the entire
search space, without clustering around local optima, during the
early stages of the optimization. On the other hand, during the
latter stages, it is very important to enhance convergence toward
the global optima, to find the optimum solution efficiently.

Considering those concerns, in this paper, we propose time-
varying acceleration coefficients as a new parameter automation
strategy for the PSO concept. The objective of this development
is to enhance the global search in the early part of the optimiza-
tion and to encourage the particles to converge toward the global
optima at the end of the search.

Under this new development, we reduce the cognitive compo-
nent and increase the social component, by changing the accel-
eration coefficients ¢; and ¢, with time. With a large cognitive
component and small social component at the beginning, par-
ticles are allowed to move around the search space, instead of
moving toward the population best. On the other hand, a small
cognitive component and a large social component allow the
particles to converge to the global optima in the latter part of the
optimization. We suggest this method be run with a time-varying
inertia weight factor as given in (4). Hereafter, this will be re-
ferred to as PSO-TVAC method.

This modification can be mathematically represented as fol-
lows:

iter

c1 = (le - Cli)m + c1; (6)
iter

co =(cay — Czi)m + c2i @)

where c1;, c1f, c2i, and coy are constants, iter is the current
iteration number and MAXITR is the maximum number of al-
lowable iterations.

Simulations were carried out with numerical benchmarks
(all benchmarks are discussed in Section IV), to find out the
best ranges of values for ¢; and co. Results are presented in
Section V. An improved optimum solution for most of the
benchmarks was observed when changing ¢; from 2.5 to 0.5
and changing co from 0.5 to 2.5, over the full range of the
search. Therefore, these values are used for the rest of the work.

With this modification, a significant improvement of
the optimum value and the rate of convergence were ob-
served, particularly for unimodal functions, compared with
the PSO-TVIW. However, it has been observed that the
performance of the PSO-TVAC method is similar or poor
for multimodal functions. In contrast, compared with the
PSO-RANDIW method an improved performance has been
observed with the PSO-TVAC for multimodal functions.
However, for unimodal functions, the PSO-RANDIW method
showed significantly quick convergence to a good solution
compared with the PSO-TVAC method. The results are pre-
sented and discussed in Section V.

B. Particle Swarm Optimizer With “Mutation” and
Time-Varying Acceleration Coefficients (MPSO-TVAC)

In PSO, lack of diversity of the population, particularly
during the latter stages of the optimization, was understood as
the dominant factor for the convergence of particles to local
optimum solutions prematurely. Recently, several attempts on
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improving the diversity of the population have been reported
in the literature, considering the behavior of the particles in
the swarm during the search [22]-[25]. Further, possible use
of the concept of “mutation” in PSO (as explained in genetic
algorithms), as a performance enhancing strategy, has also been
investigated [38].

In this paper, we introduce “mutation” to the particle swarm
strategy (MPSO), to enhance the global search capability of the
particles by providing additional diversity. Mutation is widely
used in most evolutionary optimization methods, such as evolu-
tionary programming and genetic algorithms, to guide and en-
hance the search toward the global best solution [8], [13], [31],
[35].

In evolutionary programming, a mutation function is defined
to control the search toward the global optimum solution. How-
ever, different forms of mutation functions are used in evolu-
tionary programming and the severity of mutation is decided on
the basis of the functional change imposed on the parents [8],
[35]. On the other hand, in genetic algorithms, the search toward
the global optimum solution is mostly guided by the crossover
operation [31], [35]. However, in genetic algorithms, a mutation
operator is defined to introduce new genetic material into the in-
dividuals to enhance the search in new areas within the search
space.

In PSO, the search toward the global optimum solution is
guided by the two stochastic acceleration factors (the cogni-
tive part and the social part), of (1). Therefore, Angeline [8]
related these two acceleration factors to the mutation function
in evolutionary programming, whereas Shi and Eberhart [13]
related these two factors to the crossover operation in genetic
algorithms.

It has been observed through simulations with numerical
benchmarks that PSO quickly finds a good local solution
but it sometimes remains in a local optimum solution for a
considerable number of iterations (generations) without an
improvement. Therefore, to control this phenomenon, we
enhance the global search via the introduction of a mutation
operator, which is conceptually equivalent to the mutation in
genetic algorithms. Under this new strategy, when the global
optimum solution is not improving with the increasing number
of generations, a particle is selected randomly and then a
random perturbation (mutation step size), is added to a ran-
domly selected modulus of the velocity vector of that particle
by a predefined probability (mutation probability). However,
in this paper, the mutation step size is set proportionally to the
maximum allowable velocity. The pseudocode for the MPSO
method is as follows.

begin
initialize the population

while (termination condition= false)
do
for (i=1 to number of particles)

evaluate the fitness:=f
update Pjy and P,
for d =
dimensions
calculate new velocity := viq
update the position
increase d

(x)

1 to number of

increase i
select a random particle := k
select a random dimension := 1
if (Aglobal <= 0)
if (randl(-) < pm)
if (rand2(-) < 0.5)
vkl = vk + rand3(-)*vmax/m;

else
vkl = vk — rand4(-)*vmax/m;
end if

end if

end if

end do
end
Where randi(-), ¢ = 1,2,...,4 are separately generated, uni-

formly distributed random numbers in the range [0,1], p,, is
the mutation probability, Aglobal is the rate of improvement
of the global solution over the generations and m, k, and [ are
constants.

The effect of the mutation step size and mutation probability
on the optimal solution of the MPSO method along with TVAC
(MPSO-TVAC) was observed through empirical simulations.
A significant improvement of performance with most of the
chosen benchmarks was observed with the MPSO-TVAC
method, when compared with the PSO-TVIW method. Further,
compared with the PSO-RANDIW method, a significant
improvement was observed for the Rastrigrin function with
PSO-RANDIW strategy. However, competitive performance
was observed with the MPSO-TVAC and the PSO-RANDIW
for most of the other functions. Further, when compared with
the MPSO-TVAC method, the PSO-RANDIW method showed
significantly quick convergence to an optimum solution for
unimodal functions. It has also been observed that proper selec-
tion of the mutation step size can enhance the performance for
some functions. Alternatively, time-varying mutation step size
was found to be an effective parameter automation strategy for
most of the test functions. However, it has been observed that
the performance of the MPSO method with fixed acceleration
coefficients at 2 (MPSO-FAC) is significantly poor for most
of the benchmarks. The results are presented and discussed in
Section V.

C. Self-Organizing Hierarchical Particle Swarm Optimizer
With Time-Varying Acceleration Coefficients (HPSO-TVAC)

It has been understood that most of the previous empirical
developments of PSO are based on either the inertia weight
factor method, with a linear varying inertial weight factor, or
the constriction factor method [18]-[20], [22]-[25]. However,
Shi and Eberhart [14] suggested that for complex multimodal
functions, the control of diversity of the population with a lin-
early varying inertia weight may lead the particles to converge
to a local optimum prematurely. On the other hand, the work
done by Eberhart and Shi [12] clearly shows that the constriction
factor method is ineffective for complex multimodal functions,
despite its ability to converge to stopping criteria at a signifi-
cantly faster rate for unimodal functions.

By contrast, Kennedy and Eberhart [1] proposed a version of
PSO without the velocity of the previous iteration in (1). Later,
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they concluded that since this version is very simple, it is quite
ineffective in finding the global optima for most of the complex
problems.

In this paper, we observed the behavior of the particles in the
swarm without the previous velocity term in (1). Through sim-
ulations with some well-known benchmarks, we observed that
in the absence of the previous velocity term, particles rapidly
rush to a local optimum solution and stagnate due to the lack
of momentum. Indeed, without the previous velocity term in
(1), the optimum solution is highly dependent on the popula-
tion initialization.

Considering these concerns, we introduce the novel con-
cept “self-organizing hierarchical particle swarm optimizer
(HPSO)” to provide the required momentum for particles to
find the global optimum solution, in the absence of the previous
velocity term in (1).

In this method, we keep the previous velocity term at zero,
and reinitialize the modulus of velocity vector of a particle with
a random velocity (reinitialization velocity) should it stagnate
(via = 0) in the search space. Therefore, in this method, a se-
ries of particle swarm optimizers are automatically generated
inside the main particle swarm optimizer according to the be-
havior of the particles in the search space, until the convergence
criteria is met. In this paper, we set the reinitialization velocity
proportional to the maximum allowable velocity (V' max).

The pseudocode for HPSO is as follows.

begin

initialize the population

while (termination condition= false)
do
for (1=1 to number of particles)

evaluate the fitness:=f (x)
update Pjq and Pgg
for d=1 to number of dimensions

calculate the new velocity

via = c¢1 * rand1(:) * (pia — Ziq) + c2%
rand2(-) * (pgd — Zid)
if (Vid = 0)

if (rand3(-) < 0.5)
vig = rand4(-) * v
else
via = —rand5(-) x v
end if
end if
Viq = sign(viq) * min(abs(viq, vimax)
update the position
increase d
increase i
end do
end

Where randi(+), ¢ = 1,2,...,5 are separately generated uni-
formly distributed random numbers in the range [0, 1] and v is
the reinitialization velocity.

The effect of the reinitialization velocity on the optimal solu-
tion of HPSO along with TVAC (HPSO-TVAC) was observed
through empirical simulations. To overcome the difficulties
of selecting appropriate reinitialization velocities for different
problems, a time-varying reinitialization velocity strategy

TABLE 1
BENCHMARKS FOR SIMULATIONS

Name of the Mathematical representation
function
H
Sphere function i (x)= xlz
=1
Rosenbrock & 2 _
function Sl )_;[100( i ) + o =1) ]
Rastrigrin £,6)=3 [¥2 ~10 cos (27, )+ 10]
function 3 =
Griewank 7 (x) ix _H oS +1
function 4 4000 A «/7
Schaffer’s 6 f(x)=05- (sin JxZ+y? ) -0.5
function ° {1.0+0.001(> + 2))?
TABLE II

INITIALIZATION RANGE AND DYNAMIC RANGE
OF THE SEARCH FOR BENCHMARKS

Range of

Function Range of search L
initialization

fi (-100, 100)" (50, 100)"

f, (-100, 100)" (15, 30)"
3 (-10, 10)" (2.56,5.12)"

fy (-600, 600)" (300, 600)"

fs (-100, 100)° (15, 30)

Where n is the number of dimensions

TABLE III
MAXIMUM VELOCITY FOR BENCHMARKS
Function Vmax
f, 100
f, 100
fy 10
f, 600
6 100

was used. A significant improvement of the performance was
observed with the HPSO-TVAC method. In contrast, it has
been observed that the performance in terms of the optimum
solution is significantly poor for most of the benchmarks, with
the HPSO method when the acceleration coefficients are fixed
at 2 (HPSO-FAC). The results are presented and discussed in
Section V.

IV. EXPERIMENTAL SETTINGS AND SIMULATION STRATEGIES
FOR BENCHMARK TESTING

A. Benchmarks

Five of the well-known benchmarks used in evolutionary op-
timization methods, were used to evaluate the performance, both
in terms of the optimum solution after a predefined number of
iterations, and the rate of convergence to the optimum solu-
tion, of all the new developments introduced in this paper. These
benchmarks are widely used in evaluating performance of PSO
methods [5], [7], [12], [15]-[21]. The performance of all new
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TABLE 1V
CALIBRATION OF ACCELERATION COEFFICIENTS FOR TIME VARYING ACCELERATION COEFFICIENT METHOD
Average optimum value / (Standard deviation)
function Dimension Gmax for 50 trials for different ranges of ¢;and ¢,
c1=2 c=2-0 c1=2-025 c1=2-05 c1=2-0.75
02:2 0220-2 02:0.25-2 02:0.5-2 Co= 0.75-2
0.000 1511.514 0.000 0.000 0.000
fi 30 2000
(0.000) (1315.094) (0.000) (0.000) (0.000)
297.627 14362.517 149.604 83.184 58.147
f, 30 2000
(402.585) 30082.886 (148.300) (88.041) (64.714)
39.426 85.295 58.985 56.295 56.0361
f3 30 2000
(9.471) (19.511) (19.455) (13.223) (12.716)
0.0178 10.804 0.041 0.021 0.016
s 30 2000
(0.0222) (7.591) (0.048) (0.030) (0.021)
(a)
Average optimum value / (Standard deviation)
function Dimension Gmax for 50 trials for different ranges of cjand c,
c=2-1 c1=225-0.5| ¢1=25-05] ¢;=2.75-0.5| ¢;=2.5-0.75
= 1-2 = 0.5-225 Cr= 05-25 Cr= 05-275 C= 0.75-2.5
0.000 0.000 0.000 0.000 0.000
fi 30 2000
(0.000) (0.000) (0.000) (0.000) (0.000)
69.126 72.061 68.462 68.708 58.998
f 30 2000
(96.294) (74.796) (85.505) (68.230) (90.981)
57.110 53.489 45907 49.131 52.036
f3 30 2000
(15.280) (13.400) (11.454) (12.724) (11.613)
0.017699 0.016 0.016 0.015 0.014
fa 30 2000
(0.0190) (0.015) (0.019) (0.023) (0.017)
(b)

methods is compared with the PSO-TVIW method, as well as
the PSO-RANDIW method.

The first two functions are simple unimodal functions
whereas the next two functions are multimodal functions
designed with a considerable amount of local minima. All
functions have the global minimum at the origin or very close
to the origin [17]. Simulations were carried out to find the
global minimum of each function. All benchmarks used are
given in Table I.

B. Population Initialization

During the early stages of the development of the PSO
method, symmetric initialization was widely used, where
the initial population is uniformly distributed in the entire
search space. Later, Angeline [8] introduced the asymmetric
initialization method, in which the population is initialized only
in a portion of the search space.

Since most of the benchmarks used in this paper have the
global minimum at or close to the origin of the search space,
we use the asymmetric initialization method to observe the per-
formance of the new developments introduced in this paper.
The most common dynamic ranges used in the literature for the
benchmarks considered in this paper were used and the same dy-
namic range is used in all dimensions [11], [21]. Table II shows
the range of population initialization and the dynamic range of
the search for each function.

It is quite common in PSO methods to limit the maximum
velocity of each modulus of the velocity vector of a particle
(viq) to a maximum allowable velocity, in order to limit ex-
cessive searching outside the predefined search space. Through
empirical studies on numerical benchmarks, Eberhart and Shi
[12] suggested that it is good to limit the maximum velocity
V max to the upper value of the dynamic range of search
X max. Therefore, this limitation was used for the simulation
in this paper. Table III shows the maximum velocity with the
limitation of X max = V max for the benchmarks considered
in this paper.

C. Simulation Strategies

Simulations were carried out to observe the rate of con-
vergence and the quality of the optimum solution of the new
methods introduced in this investigation in comparison with
both PSO-TVIW and PSO-RANDIW. All benchmarks with the
exception of Schaffer’s f6 function, which is two-dimensional
(2-D), were tested with dimensions 10, 20, and 30. For each
function, 50 trials were carried out and the average optimal
value and the standard deviation (inside the brackets) are pre-
sented. A different number of maximum generations (Gmax)
is used according to the complexity of the problem under
consideration.

Use of different stopping criteria for different benchmarks
is reported in the literature [5], [20]. However, all benchmarks
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have the global optimum value of 0.00. Therefore, for all of the
benchmarks (excluding Schaffer’s {6), the stopping criteria are
set to 0.01. However, for Schaffer’s f6, widely used error limit
of 0.00001 was used for this investigation [5], [20].

D. Population Size

Work done by Eberhart and Shi [12] indicated that the effect
of population size on the performance of the PSO method is
of minimum significance. However, it is quite common in PSO
research to limit the number of particles to the range 20 to 60
[12]-[14]. van den Bergh and Engelbrecht [20] suggested that
even though there is a slight improvement of the optimal value
with increasing swarm size, it increases the number of function
evaluations to converge to an error limit. Therefore, in this paper,
all empirical experiments were carried out with a population
size of 40.

V. RESULTS FROM BENCHMARK SIMULATIONS

Initially, we observed the performance in terms of quality of
the average optimum value for 50 trials, of each new develop-
ment in comparison with the PSO-TVIW method, as well as
the PSO-RANDIW method. For the HPSO-TVAC method, the
effect of the reinitialization velocity on the average optimum
solution was also observed. In addition, for the MPSO-TVAC
method, the effects of mutation step size and mutation proba-
bility on the average optimum solution were investigated. Fi-
nally, the rate of convergence of all methods was observed for
all the functions in 30 dimensions. The average and the stan-
dard deviation (inside brackets) of the optimum solution for 50
trials are presented in Tables IV-IX. In Table X, the number
of trials, which converged to the stopping criteria, and the av-
erage number of generations for convergence (inside brackets)
is presented. In all the tables, figures in bold represent the com-
paratively best values.

A. Time-Varying Acceleration Coefficients (TVAC)

The optimum range for the acceleration coefficients was em-
pirically investigated through benchmark simulations. All the
benchmarks, except Schaffer’s f6 function, were used in 30 di-
mensions for this investigation. The maximum number of iter-
ations was set to 2000. For all simulations, the inertia weight
factor was set to change from 0.9 to 0.4 over the generations.
The results are presented in Table IV.

Note: the initial value and the final value of the acceleration
coefficients c; and cy are presented in the table and Gmax is the
maximum number of generations

It has been identified from the results that the best ranges for
c1 and co are 2.5-0.5 and 0.5-2.5, respectively.

The performance of the PSO-TVAC method was then ob-
served in comparison with both the PSO-TVIW and the PSO-
RANDIW methods. Results are presented in Table V.

It is clear from the results that all of the methods perform
well for the Sphere function and Schaffer’s f6 function. How-
ever, for the Rosenbrock function, the introduction of TVAC
has improved the average optimum solution significantly when
compared with the PSO-TVIW strategy, but its performance is
competitive with the PSO-RANDIW in all dimensions for most

TABLE V
AVERAGE VALUE AND THE STANDARD DEVIATION
OF THE OPTIMAL VALUE FOR 50 TRIALS

Average
Function Dimen Gmax (Standard Deviation)
-sion PSO- PSO- PSO-
TVIW | RANDW | TVAC
10 1000 0.01 0.01 0.01
fi 20 2000 0.01 0.01 0.01
30 3000 0.01 0.01 0.01
27.11 2.102 9.946
10 3000
(58.312) 3.218) (32.127)
51.56 28.1788 17.944
f, 20 4000
(119.79) | (73.072) | (46.296)
63.35 35.277 28.97
30 5000
(71.210) | (55.751) | (51.638)
2.069 4.63 2.268
10 3000
(1.152) (2.366) (1.333)
11.74 26.293 15.323
f3 20 4000
(3.673) | (8.176) | (5.585)
29.35 69.7266 36.236
30 5000
(6.578) | (20.700) | (8.133)
0.0675 0.0661 0.05454
10 3000
0.029) | (0.030) | (0.025)
0.0288 0.0272 0.0293
fy 20 4000
(0.023) (0.025) (0.027)
0.0167 0.0175 0.0191
30 5000
0.013) | (0.018) | (0.015)
0.0039 0.0029 0.0039
fs 2 1000
0.0019) | (0.004) | (0.0019)

of the other functions. However, for the Rastrigrin function a
slight reduction of the quality of the average optimum solu-
tion was observed with the PSO-TVAC strategy compared with
the PSO-TVIW method, even though it performed significantly
well compared with the PSO-RANDIW method. Further, for the
Griewank function and Schaffer’s f6 function, competitive re-
sults were observed with all methods.

In general, using the time-varying acceleration coefficients
along with the time-varying inertia weight factor, consistent per-
formance has been observed for all benchmarks considered in
this investigation.

B. Particle Swarm Optimizer With “Mutation” and
Time-Varying Acceleration Coefficients (MPSO-TVAC)

The effect of mutation probability and mutation step size on
the best solution was investigated through empirical simula-
tions. Further, the effect of linearly decreasing mutation step
size with increasing generations was also investigated.

The maximum velocity for each function was set to the upper
limit of the dynamic range of the search (V max = X max)
and the mutation step size is presented as a percentage of max-
imum velocity. In the case of the time-varying mutation step size
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TABLE VI
VARIATION OF THE AVERAGE AND THE STANDARD DEVIATION OF THE OPTIMAL VALUE FOR
50 TRIALS WITH MUTATION STEP SIZES FOR MPSO-TVAC METHOD

Average Optimum value / (Standard deviation )
With respect to the mutation step size as a % of Vmax
. Dime Time
Function nsion Gmax varvin
100% 50% 20% 10% 5% 2% i i
10%)
10 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 20 2000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
30 3000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10 3000 8.784 9.80 7.437 8.622 6.3035 4.75 12.536
(19.311) (20.832) (20.077) (18.912) (16.59) (17.462) (30.081)
24.678 14.261 21.656 10.908 15.026 22.587 18.974
£ 20 4000
(49.025) (26.473) (40.432) (17.229) (32.479) (58.138) (25.512)
30 5000 37.623 43.757 30.888 33.965 2791 28.871 31.55
(42.727) (64.956) (63.357) (57.921) (40.167) (54.056) (46.412)
09172 2.05026 2.567 0.00669
10 3000 0.01 0.01 0.01
(0.847) (1.353) (1.363) (0.003)
0.044 0.0436 0.421 8.1785 14.665 14.685 0.361
f; 20 4000
’ (0.1959) (0.196) (1.378) (3.329) (4.644) (5.335) (0.558)
30 5000 0.579 0.669 2.4092 20.814 33.768 36.316 1.712
(0.696) (0.808) (2.559) (8.097) (9.1154) (10.524) (1.956)
10 3000 0.050 0.0441 0.0470 0.0446 0.0513 0.055 0.0445
0.022 (0.022) (0.020) (0.020) (0.022) (0.027) (0.022)
0.0254 0.0238 0.0220 0.0217 0.0222 0.0301 0.0239
£ 20 4000
(0.187) (0.021) (0.015) (0.018) (0.02) (0.023) (0.015)
30 5000 0.0185 0.0146 0.017 0.0165 0.017 0.0149 0.0188
(0.016) (0.008) (0.014) (0.011) (0.011) (0.013) (0.019)
5 1000 0.0002 0.00039 0.00078 0.00058 0.0078 0.0078 0.0002
fs (0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001)

strategy, the mutation step size was set to change from V' max to
0.1 V max over the search. Table VI displays the effect of mu-
tation step size on the optimum solution. In this investigation,
the mutation probability was set to 0.8.

The results indicate that the effect of mutation step size on
the optimum solution is insignificant for the sphere function,
the Griewank function and Schaffer’s {6 function.

Only a slight variation of the optimum value was observed for
the Rosenbrock function for different mutation step sizes. How-
ever, it is clear from the results that for the Rosenbrock function,
itis good to keep the mutation step size at 5%—10% of the max-
imum velocity. Further, high standard deviation for 50 trials was
observed with the MPSO-TVAC strategy for the Rosenbrock
function. Therefore, there is a higher chance for premature con-
vergence to a local optimum solution with the MPSO-TVAC
method, despite the low average optimum value.

In contrast, the performance for the Rastrigrin function is
found to be highly sensitive to the mutation step size. The best
performance with the Rastrigrin function was observed when
mutation step size was equal to V max.

Therefore, it is good to keep the mutation step size high for
the Rastrigrin function. Moreover, for the Rastrigrin function
with ten dimensions, the MPSO-TAVC method converged to the
stopping criteria (0.01) in all 50 trials when mutation step size
is higher that 20% of V max.

In conclusion, it is clear from the results that the average op-
timum solution can be dependent on the mutation step size, for
some problems ( f3). Therefore, to obtain an improved solution,
proper selection of the mutation step size may be a key factor
for some problems. However, the use of a time-varying muta-
tion step size can be identified as a good strategy to overcome
the difficulties of selecting a proper mutation step size.

Table VII shows the effect of the mutation probability on the
optimum solution. In this investigation, the mutation step size
was set to change linearly from V' max to 10% of the value of
V max. A slight variation of the average optimum solution was
observed with different mutation probabilities for most of the
benchmarks. However, it is clear from the results that it is good
to set the mutation probability in the range of 0.8-0.4 for most
of the functions.
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TABLE VII
VARIATION OF THE AVERAGE AND THE STANDARD DEVIATION OF THE OPTIMAL VALUE FOR
50 TRIALS WITH MUTATION PROBABILITY FOR MPSO-TVAC METHOD

Di Average Optimum Solution / (Standard Deviation)
ime
Function ) Gmax With respect to the mutation probability
nsion
1 0.8 0.6 0.4 0.2
10 1000 0.01 0.01 0.01 0.01 0.01
fi 20 2000 0.01 0.01 0.01 0.01 0.01
30 3000 0.01 0.01 0.01 0.01 0.01
19.729 12.536 4.727 4.247 6.256
10 3000
(38.67) (30.08) (13.414) (7.961) (25.74)
18.163 18.974 10.899 17.7148 10.034
£ 20 4000
(30.434) (25.512) (24.415) (60.306) (23.978)
37.623 31.550 35.555 18.633 18.957
30 5000
(48.492) (46.412) (52.708) (25.122) (36.234)
0.01 0.01 0.01 0.027
10 3000 0.01
(0.0031) (0.003) (0.0033) (0.1401)
0.183 0.361 0.1827 0.3415 0.797
f 20 4000
(0.4779) (0.558) (0.4337) (0.588) (0.875)
1.534 1.712 1.990 2.050 3.621
30 5000
(1.831) (1.956) (2.145) 1.910 (3.176)
0.047 0.0445 0.0519 0.0469 0.0517
10 3000
(0.0233) (0.0219) (0.0197) (0.0256) (0.0245)
0.0276 0.0239 0.0247 0.0239 0.0258
£ 20 4000
(0.0252) (0.0154) (0.0193) (0.0172) (0.019)
0.0164 0.0188 0.0199 0.0169 0.0159
30 5000
(0.01406) (0.0199) (0.0202) (0.0149) (0.0129)
0.0005 0.0002 0.0012 0.0012 0.0011
fs 2 1000
(0.0023) (0.0013) (0.00312) (0.00311) (0.00302)

C. Self-Organizing Hierarchical Particle Swarm Optimizer
With Time-Varying Acceleration Coefficients (HPSO-TVAC)

The effect of the reinitialization velocity on the average op-
timum solution for 50 trials was observed. The results are pre-
sented in Table VIIIL.

The reinitialization velocity is presented as a percentage of
the maximum velocity (V' max). In the case of time-varying
reinitialization velocity, the reinitialization velocity was set to
decay from V maxto 0.1 V maxduring the search. The max-
imum velocity is set to the upper limit of the dynamic range of
the search (V' max = X max) for all benchmarks. Only a small
variation of the average optimum solution was observed with
different reinitialization velocities for most of the benchmarks.

Moreover, for the Rastrigrin function in 10 dimensions, as
well as Griewank function in 30 dimensions, the HPSO-TAVC
method converged to the stopping criteria (0.01) irrespective
of the reinitialization velocity. Further, it is clear from the re-
sults that the time-varying reinitialization velocity is an effec-
tive strategy to overcome the difficulties of proper selection of
reinitialization velocities for different problems.

Finally, we summarize the performance for all PSO concepts
introduced in this paper, in Tables IX and X.

In order to make a fair conclusion, the performance of
the MPSO method and the HPSO method together with the
PSO-TVIW method (MPSO-FAC and HPSO-FAC), where the
acceleration coefficients are fixed at 2, are also observed. Re-
sults are compared with the performance of both PSO-TVIW
and PSO-RANDIW methods. In this investigation for the
MPSO strategy, the mutation probability was set to 0.4 and the
mutation step size was set to decay from V max to 0.1 V max
during the search. For the HPSO strategy, reinitialization
velocity was set to change from V max to 0.1 V max during
the search. From the results presented in Table IX, it has been
understood that the HPSO-TVAC method is superior to all
the other methods for most of the benchmarks considered in
this investigation. However, for the Rosenbrock function in
small dimensions (ten dimension), the performance of the
HPSO-TVAC was found to be poor compared with most of the
other methods.

However, the performance in terms of average optimum so-
lution for Schaffer’s f6 function was found to be significantly
poor with the HPSO-TVAC strategy.

On the other hand, with the HPSO-TVAC concept, the
standard deviation of the final solution for 50 trials is found to
be significantly low for most of the functions in all dimensions
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TABLE VIII
VARIATION OF THE AVERAGE AND THE STANDARD DEVIATION OF THE OPTIMAL VALUE FOR
50 TRIALS WITH THE RE-INITIALIZING VELOCITY FOR HPSO-TVAC METHOD

Average Optimum Solution / (Standard Deviation)
With respect to the re-initialization velocity as a % of maximum velocity
) Dime Time
Function . Gmax )
nsion varying
100% 50% 20% 10% 200% 500%
(100% -
10%)
10 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 20 2000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
30 3000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10 3000 14.834 11.7067 11.252 10.046 16.527 17.984 12.967
(9.863) | (11.126) | (8.736) (7.158) | (12.713) | (20.923) (11.538)
20 2000 15.537 12.93 11.378 9.389 14.700 12.319 14.093
f (10.295) | (6.734) (8.254) (5.364) | (10.968) | (8.494) (9.641)
30 5000 13.980 15.979 12.640 9.855 14.748 16.172 13.666
(7.93) (12.5227)| (6.899) (6.725) (8.972) | (10.446) (11.006)
10 3000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.043 0.023 0.083
20 4000 0.01 0.01 0.01 0.01
f3 (0.1961) (0.140) (0.337)
30 5000 0.124 0.103 0.302 0.361 0.1827 0.163 0.044
(0.4319) | (0.361) (1.225) (1.403) (0.625) (0.544) (0.196)
10 3000 0.056 0.055 0.057 0.048 0.05 0.060 0.057
(0.0272) | (0.0242) | (0.022) | (0.0255) | (0.0252) | (0.0291) (0.0264)
0.0157 0.011 0.011 0.012 0.012 0.012 0.011
f4 20 4000
(0.016) (0.005) (0.005) | (0.0065) | (0.008) (0.009) (0.005)
0.01 0.01 0.01 0.01 0.011 0.01 0.01
30 5000
(0.001) (0.004) (0.002) (0.003) | (0.0051) [ (0.003) (0.0035)
5 1000 0.008 0.010 0.007 0.01 0.008 0.007 0.007
fo (0.007) (0.007) (0.003) (0.008) (0.005) (0.003) (0.007)

compared with all of the other methods. Therefore, the
HPSO-TVAC method was identified as a highly consistent
strategy in finding the optimum solution compared with the
other methods. Further, for the Rastrigrin function in all the
dimensions, both the MPSO-TVAC method, as well as the
HPSO-TVAC method significantly outperformed all the other
methods and converged to the stopping criteria or very close
to it at each trial. However, the performance in terms of the
optimum solution for both the MPSO-FAC and the HPSO-FAC
methods are found to be significantly poor.

In Table X, we summarize the results related to the conver-
gence of each method to the stopping criteria. From the re-
sults, it is clear that even though all the methods have con-
verged to the stopping criteria for the Sphere function, the PSO-
RANDIW method is significantly faster than all of the other
methods. However, with the Rastrigrin function except in 30 di-
mensions, HPSO-TVAC method has converged to the stopping
criteria in all 50 trials. Further, for the Rastrigrin function in 30
dimensions, 48 out of 50 trials have converged to the stopping
criteria. In addition, for the Griewank function, particularly at

higher dimensions, the HPSO-TVAC method significantly out-
performed the all the other methods.

Fig. 1 displays the variation of the optimum solution over the
generations for PSO strategies considered in this investigation.
All the benchmarks except Schaffer’s f6 function, which
is 2-D, are considered in 30 dimensions for this paper. For
MPSO-TVAC method, mutation probability was set to 0.4 and
mutation step size was set to change from V max to 0.1 V max
during the search. For the HPSO-TVAC method, reinitialization
velocity was set to change from V max to 0.1 V max during
the search.

From Fig. 1, it is clear that the PSO-RANDIW method
converges significantly faster than all of the other methods at
the early stage of the optimization process for all the functions.
However, its improvement was found to be significantly poor at
the latter stages of the process for all the benchmarks, except for
the sphere function. In contrast, the HPSO-TVAC method has
shown to have improved the solution continuously throughout
the simulation and has found better solutions for most of
the functions except for Schaffer’s f6 function. Further, for
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TABLE IX
AVERAGE AND THE STANDARD DEVIATION OF THE OPTIMAL VALUE FOR
50 TRIALS FOR DIFFERENT METHODS DISCUSSED IN THIS STUDY

Average
Dimens (Standard Deviation)
Function ) Gmax
-ion PSO- PSO- PSO- MPSO- MPSO - HPSO- HPSO-
TVIW RANDIW | TVAC TVAC FAC TVAC FAC
10 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
20 2000 0.01 0.01 0.01 0.01 0.01 0.01 0.01
fi 0230
30 3000 0.01 0.01 0.01 0.01 0.01 0.01
(0.173)
10 3000 27.11 2.102 9.946 4247 11.12 12.967 12.693
(58.312) (3.218) (32.127) (7.961) (14.243) | (11.538) | (14.397)
20 2000 51.56 28.1788 17.944 17.7148 54.402 14.093 101.126
B (119.79) (73.072) | (46.296) (60.306) (92.88) (9.641) | (129.56)
30 5000 63.35 35.277 28.97 18.633 135.08 13.666 706.28
(71.210) (55.751) | (51.638) (25.122) (306.07) | (11.006) | (951.95)
2.069 4.63 2.268 0.01 19.54 0.0671
10 3000 0.01
(1.152) (2.366) (1.333) (0.0033) (36.577) (0.237)
11.74 26.293 15.323 0.3415 2.786 11.391
i 20 4000 0.01
’ (3.673) (8.176) (5.585) (0.588) (1.808) (6.489)
30 5000 29.35 69.7266 36.236 2.050 12.477 0.044 36.847
(6.578) (20.700) (8.133) 1.910 (5.990) (0.196) | (10.626)
10 3000 0.0675 0.0661 0.05454 0.0469 0.065 0.057 0.057
(0.029) (0.030) (0.025) (0.0256) (0.2373) (0.026) (0.023)
0.0288 0.0272 0.0293 0.0239 0.027 0.011 0.055
£ 20 4000
(0.023) (0.025) (0.027) (0.017) 0.025 (0.005) (0.085)
30 5000 0.0167 0.0175 0.0191 0.0169 0.018 0.01 0.116
(0.013) (0.018) (0.015) (0.0149) (0.051) (0.0035) | (0.193)
fs 5 1000 0.0039 0.0029 0.0039 0.0012 0.004 0.01 0.003
(0.0019) (0.004) (0.0019) (0.0031) (0.026) (0.007) | (0.0047)

Schaffer’s f6 function, the MPSO-TVAC strategy outperformed
all of the other methods.

VI. APPLICATION TO PARAMETER SELECTION OF
INTERNAL COMBUSTION ENGINES

As a case study, the PSO strategies discussed in this paper
were used to find the best set of operating parameters of an in-
ternal combustion engine for optimum power output.

In general, performance of spark ignition engines depends on
operating parameters such as spark timing, air-fuel ratio, ex-
haust gas recirculation, valve timing, and geometrical param-
eters such as compression ratio, combustion chamber shape,
piston ring geometry, spark plug location, and so on. In addition,
performance of internal combustion engines is highly restricted
to constraints such as abnormal combustion like knocking [40];
a penalty is introduced if the engine in knocking.

Seven different engine operation parameters are identified
as input parameters for the present study. They are as follows:
compression ratio, equivalence ratio, spark timing, inlet valve

opening timing, inlet valve duration, exhaust valve opening
timing, exhaust valve duration, and the maximum allowable
inlet valve lift. A detailed description about these input
variables is given in [39] and [40]. The engine power output
(fitness), for a given set of input variables is evaluated using
a thermodynamic engine simulation model developed by the
authors.

The fitness function of the engine power optimization was
formulated as follows:

Engine power = f(operation parameters)

Fitness = Engine Power.

If the engine knocks for a particular set of operating parameters,
a penalty is introduced as follows:

Fitness = 0.2 « Engine Power.

The PSO methods discussed in this paper were used to find
the optimal values of input variables, which maximize the
engine power. The structure of the implementation of particle
swarm algorithms to find the maximum power through engine
simulation model is given in Fig. 2.
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NUMBER OF TRIALS THAT CONVERGED TO THE STOPPING CRITERIA AND AVERAGE NUMBER

OF GENERATIONS FOR CONVERGENCE FOR 50 TRIALS
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No of trails converged to the stopping criteria
Function| Dime (Average number of generations)
Gmax
nsion PSO- PSO- PSO- MPSO- MPSO - HPSO- HPSO-
TVIW RANDIW TVAC TVAC FAC TVAC FAC
50 50 50 50 50 50 50
10 1000
(554.2) (136.1) (290.1) (572.5) 573 (245.1) (175.8)
50 50 50 50 50 50
fi 20 2000 %0 (274.1) (592.3) (1305.7) (1315.7) (547.7) (1808.2)
(1274.5) ) ' ' ' ' '
50 50 50 50 50 50
30 3000 0
(2060.1) 452.1) (909.6) 977.1) (2122.9) (862.1)
3 7 4 1 1
10 3000 0 0
(2906.5) (2926.7) (2945.0) (2973.4) (2997.2)
2 1 1
£, 20 4000 0 0 0 0
(3941.88) (2972.0) (3995.8)
2
30 5000 0 0 0 0 0 0
(4976.1)
2 1 2 50 47 50 47
10 3000
(2965.2) (2947.7) (2928.7) (1269.8) (2197.5) (1249.7) (1637.7)
36 5 50
f; 20 4000 0 0 0 0
(2991.3) (3956.8) (2467.3)
12 48
30 5000 0 0 0 0 0
(4690.8) (3752.4)
1 2 2 3 3 1
10 3000 0
(2974.2) (2897.6) (2926.0) (2907.8) (2930.7) (2989.9)
14 17 13 17 19 40 11
£, 20 4000
(3521) (2752.3) (3233.3) 3013.5 (3405.4) (1550.7) (3535.9)
29 30 24 27 29 39
30 5000 0
(3933.9) (2298.7) (3252.0) (3155.7) (4029.1) (2202.7)
45 46 48 48 46 19 12
fs 2 1000
(520.2) (462.1) (374.9) (386.8) (521.5) (750.8) (618.9)

The maximum allowable velocity (V' max) is set to the upper
limit of the dynamic range of the search. The dynamic range of
the search and the maximum velocity for each input variable are
given in Table XI.

All the simulations were carried out with a population size of
40. The maximum number of iterations was set to 150.

As stated above, it is common practice in PSO to limit the
maximum velocity of each dimension (v;q) to a maximum al-
lowable velocity (V' max,) to avoid excessive searching outside
the predefined search space. Even though this is generally lim-
ited to the upper limit of the search (V max; = X maxg), it
does not confine the search to the predefined search space and
overshoots can occur at any time.

In the engine optimization problem, particles should be
highly confined to the defined search space as input parameters

outside the search space are not practically viable. Therefore,
whenever a dimension of a particle moves away from the
predefined search space it is replaced with a corresponding
random value inside the search space.

The performance of the newly developed PSO methods ap-
plied to engine optimization, were observed in comparison with
two previous developments considered in this research. Results
are shown in Fig. 3 and parameters for optimum performance
for each method are listed in Table XII for an engine speed of
1500 rev/min. Spark timing and valve open angles are presented
in reference to the top most piston position (top dead center) or
bottom most piston position (bottom dead center).

From the results, it is clear that most of the methods consid-
ered in this paper are competitive in finding the optimal solu-
tion. However, the performance of PSO-TVIW and PSO-TVAC
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Fig. 1. Variation of the average optimum value with time. (a) Sphere function. (b) Rosenbrock function. (c) Rastrigrin function. (d) Griewank function.

(e) Schaffer’s f6 function.

method was found to be relatively poor in finding the optimum the performance in terms of the optimal solution within a rea-

solution within the predefined number of generations.

VII. CONCLUSION

sonable number of generations. Then, we applied these novel
PSO strategies to select the design parameters for the optimum
power output of an internal combustion engine.

We have described a novel parameter automation strategy and Initially, we introduced time-varying acceleration coef-
two further extensions to the PSO method aiming to improve ficients (PSO-TVAC) to reduce premature convergence in
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Fig. 2. Data flow diagram between two programs.

TABLE XI
DYNAMIC RANGE OF SEARCH AND THE MAXIMUM VELOCITY
Variable Dynamic rage Vmax
Compression ratio (5, 15) 15
Spark timing (-30, 10) 10
Equivalence ratio (0.5, 1.5) 1.5
Inlet valve opening angle (-50, 50) 50
Inlet valve duration (-180, 100) 100
Exhaust valve opening angle (-50, 50) 50
Exhaust valve duration (100, -100) 100
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Fig. 3. Variation of optimum power with generations.

the early part of the search and to improve convergence at
the end of the optimization. From the results of empirical
simulations with five of the well-known benchmarks, a sig-
nificant improvement of the optimum solution, especially
for unimodal functions was observed with PSO-TVAC com-
pared with the PSO with time-varying inertia weight method
(PSO-TVIW) method. In contrast, it has also been observed
that for multimodal functions, especially for the Rastrigrin
function, the introduction of time-varying acceleration co-
efficients encourages the particles to converge to a local
optimum prematurely. However, the performance in terms of
optimum solution of the PSO-TVAC method was found to be
competitive with PSO method with a random inertia weight
factor (PSO-RANDIW) for unimodal functions. In contrast,
compared with the PSO-RANDIW method a significant
improvement was observed with PSO-TVAC method for the
Rastrigrin function. From the basis of varying acceleration

coefficients, we introduced two new strategies to improve the
performance of PSO.

First, we introduced the concept of “mutation” to the PSO
(MPSO) aiming to improve the performance by providing ad-
ditional diversity into the swarm. A significant improvement
in terms of the optimum solution was observed with the intro-
duction of mutation along with time-varying acceleration coef-
ficients (MPSO-TVAC) for all the benchmarks in comparison
with the PSO with time-varying inertia weight (PSO-TVIW).
The performance of the MPSO-TVAC method on the Rastri-
grin function in all dimensions showed significant improvement
compared with both the PSO-TVIW and the PSO-RANDIW
methods. However, the performance of MPSO-TVAC with all
of the other functions was found to be competitive with the
PSO-RANDIW method.

Further, the mutation step size and the mutation probability
were found to be less sensitive to the performance for most of the
test functions considered. However, for the Rastrigrin function,
a high mutation step size and mutation probability are preferred.
Therefore, to address the difficulties of selecting the appropriate
mutation step size for different problems, we successfully in-
troduced a strategy of time-varying mutation step size. On the
other hand, it has been observed that the rate of convergence at
the early stages of the simulation of the MPSO-TVAC method is
significantly similar to the PSO-TVAC for most of the functions
despite the significant improvement of the optimum value. Fur-
thermore, the performance of the MPSO-FAC where the accel-
eration coefficients are fixed at 2 is significantly poor for most
of benchmarks.

Second, we introduced another novel concept “self-orga-
nizing hierarchical particle swarm optimizer” (HPSO) as a
performance improvement strategy. A significant improve-
ment of performance, compared with both PSO-TVIW and
PSO-RANDIW methods, was observed with this method along
with time-varying acceleration coefficients (HPSO-TVAC) for
most benchmarks considered in this paper. However, the perfor-
mance of the HPSO-TVAC method on Schaffer’s f6 function,
and the Rosenbrock function in small dimensions was found to
be relatively poor. The effect of the reinitialization velocity on
the performance was also studied, but a significant variation
was not observed for most functions. However, for a more gen-
eralized conclusion, we introduced the concept of time-varying
reinitialization velocity as a parameter independent strategy of
the HPSO-TVAC method. It has also been observed that the
performance of the HPSO method is significantly poor with
fixed acceleration coefficients (¢; = co = 2).

Therefore, in conclusion, we propose the HPSO-TVAC
method with time-varying reinitialization velocity as a robust
and consistent optimization strategy. However, compared with
all of the methods the PSO-RANDIW method showed signifi-
cantly faster convergence at the early stages of the optimization
process.

Finally, we applied these new PSO methods to select the de-
sign parameters for the optimum performance of an internal
combustion spark ignition engine. Seven operating parameters
were considered and PSO methods were used to obtain the best
set of parameter values for maximum power output. Compet-
itive results were observed with all the methods considered in
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TABLE XII
OPTIMUM DESIGN PARAMETERS

Optimizati- Spark Equivale- | Compres- Inlet valve Inlet valve | Exhaust valve Exhaust Power
on strategy timing nce ratio sion ratio open angle duration open angle valve / kW
BTDC BTDC/ CAD /CAD BBDC/CAD duration
/ CAD /CAD
Normal 23 1.0 9.65 12 264 58 262 7.45
operating
conditions
PSO-TVIW 3.71 1.14 11.95 11.82 196.62 108.0 316.34 8.106
PSO- 9.85 1.13 11.95 14.55 191.04 75.0 276.40 8.415
RANDIW
PSO-TVAC 4.02 1.12 14.87 19.87 199.98 65.37 262.22 8.410
MPSO- 9.35 1.13 11.97 18.70 196.63 53.60 252.35 8.352
TVAC
HPSO- 7.57 1.13 12.82 13.42 190.70 53.65 264.01 8.405
TVAC

Note: BTCD—before top dead center, BBDC—before bottom dead center, CAD—crank angle degrees.

this paper. Further, PSO methods were found to be a promising
technique to optimize the performance of internal combustion
engines.
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