
Application of Dependence Analysis and Runtime

Data Flow Graph Scheduling to Matrix Computations

by

Ernie W. Chan, B.S; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2010

SuperMatrix
Ernie Chan, Ph.D.

Department of Computer Science
The University of Texas at Austin

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; 19:1749–1783
Published online 5 July 2007 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1206

Collective communication:
theory, practice, and
experience

Ernie Chan1,∗,†, Marcel Heimlich1, Avi Purkayastha2

and Robert van de Geijn1

1Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712,U.S.A.
2Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78712,U.S.A.

SUMMARY

We discuss the design and high-performance implementation of collective communications operations on
distributed-memory computer architectures. Using a combination of known techniques (many of which
were first proposed in the 1980s and early 1990s) along with careful exploitation of communication
modes supported by MPI, we have developed implementations that have improved performance in most
situations compared to those currently supported by public domain implementations of MPI such as
MPICH. Performance results from a large Intel Xeon/Pentium 4 (R) processor cluster are included.
Copyright © 2007 John Wiley & Sons, Ltd.

Received 14 September 2006; Revised 24 January 2007; Accepted 10 March 2007

KEY WORDS: collective communication; distributed-memory architecture; clusters

1. INTRODUCTION

This paper makes a number of contributions to the topic of collective communication:

1. A review of best practices: Collective communication was an active research in the 1980s and
early 1990s as distributed-memory architectures with large numbers of processors were first
introduced [1–7]. Since then an occasional paper has been published [8–16], but no dramatic
new developments have been reported.

∗Correspondence to: Ernie Chan, Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712,
U.S.A.

†E-mail: echan@cs.utexas.edu

Contract/grant sponsor: National Science Foundation; contract/grant number: CCF-0540926

Copyright q 2007 John Wiley & Sons, Ltd.

14

Programming Matrix Algorithms-by-Blocks for
Thread-Level Parallelism

GREGORIO QUINTANA-ORTı́ and ENRIQUE S. QUINTANA-ORTı́

Universidad Jaume I

and

ROBERT A. VAN DE GEIJN, FIELD G. VAN ZEE, and ERNIE CHAN

The University of Texas at Austin

With the emergence of thread-level parallelism as the primary means for continued performance
improvement, the programmability issue has reemerged as an obstacle to the use of architectural
advances. We argue that evolving legacy libraries for dense and banded linear algebra is not a
viable solution due to constraints imposed by early design decisions. We propose a philosophy of
abstraction and separation of concerns that provides a promising solution in this problem domain.
The first abstraction, FLASH, allows algorithms to express computation with matrices consisting
of contiguous blocks, facilitating algorithms-by-blocks. Operand descriptions are registered for a
particular operation a priori by the library implementor. A runtime system, SuperMatrix, uses this
information to identify data dependencies between suboperations, allowing them to be scheduled
to threads out-of-order and executed in parallel. But not all classical algorithms in linear algebra
lend themselves to conversion to algorithms-by-blocks. We show how our recently proposed LU
factorization with incremental pivoting and a closely related algorithm-by-blocks for the QR fac-
torization, both originally designed for out-of-core computation, overcome this difficulty. Anecdotal
evidence regarding the development of routines with a core functionality demonstrates how the
methodology supports high productivity while experimental results suggest that high performance
is abundantly achievable.

This research was partially sponsored by NSF grants CCF-0540926 and CCF-072714. Additional
support came from the J. Tinsley Oden Faculty Fellowship Research Program of the Institute
for Computational Engineering and Sciences (ICES) at UT-Austin. Gregorio Quintana-Ortı́ and
Enrique S. Quintana-Ortı́ were supported by the CICYT project TIN2005-09037-C02-02 and
FEDER, and projects P1B-2007-19 and P1B-2007-32 of the Fundación Caixa-Castellón/Bancaixa
and UJI. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation
(NSF).
Authors’ addresses: G. Quintana-Ortı́ and E. S. Quintana-Ortı́, Departamento de Ingenierı́a y
Ciencia de Computadores, Universidad Jaume 1, Campus Riu Sec, 12.071, Castellón, Spain;
email: {gquintan,quintana}@icc.uji.es; R. A. van de Geijn, F. G. Van Zee, and E. Chan,
Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712; email:
{rvdg,field,echan}@ cs.utexas.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0098-3500/2009/07-ART14 $10.00
DOI 10.1145/1527286.1527288 http://doi.acm.org/10.1145/1527286.1527288

ACM Transactions on Mathematical Software, Vol. 36, No. 3, Article 14, Publication date: July 2009.

56 THIS ARTICLE HAS BEEN PEER-REVIEWED. COMPUTING IN SCIENCE & ENGINEERING

S O F T W A R E
E N G I N E E R I N G

Researchers from the Formal Linear Algebra Method Environment (Flame) project have
developed new methodologies for analyzing, designing, and implementing linear algebra
libraries. These solutions, which have culminated in the lib!ame library, seem to solve many
of the programmability problems that have arisen with the advent of multicore and many-
core architectures.

The lib!ame Library for Dense
Matrix Computations

How do we convince people that in program-
ming simplicity and clarity—in short: what math-
ematicians call “elegance”—are not a dispensable
luxury, but a crucial matter that decides between
success and failure?

—Edsger W. Dijkstra

O ver the past decade, the University
of Texas at Austin and Universidad
Jaime I de Castellón have collabo-
rated on the Formal Linear Algebra

Method Environment (Flame) project, developing
a unique methodology, notation, tools, and APIs set
for deriving and representing linear algebra librar-
ies. To better promote the Flame project’s charac-
teristic techniques, we’ve implemented a functional
library—lib!ame—that demonstrates "ndings and
insights from our 10 years of research.

The primary purpose of lib!ame is to give the
scienti"c and numerical computing communities
a modern, high-performance dense linear algebra
library that is extensible, easy to use, and available
under an open source license. We’ve published two

books, numerous papers, and even more working
notes over the last decade documenting the chal-
lenges and motivations that led to the lib!ame
library’s APIs and implementations (see www.
cs.utexas.edu/users/!ame/publications). Seasoned
users in scienti"c and numerical computing circles
will quickly recognize lib!ame’s target functional-
ity set. In short, in lib!ame, our goal is to provide
not only a framework for developing dense linear
algebra solutions, but also a ready-made library
that is, by almost any metric, easier to use and of-
fers competitive (and in many cases superior) real-
world performance when compared to the more
traditional Basic Linear Algebra Subprograms
(BLAS)1 and Linear Algebra Package (Lapack)
libraries.2

Here, we brie!y introduce both the library it-
self and its underlying philosophy. Using perfor-
mance results from different architectures, we
show how easily it can be retargeted to “hostile”
environments. Our hope is that the combination
of lib!ame’s functionality and performance will
lead the scienti"c computing community to in-
vestigate our other publications.

What Makes lib!ame Different?
Adopting lib!ame makes sense for numerous rea-
sons. In addition to expected attractions—such
as a detailed user manual3 that we routinely up-
date and cross-platform support for both GNU/
Linux and Microsoft Windows—lib!ame offers us-
ers and software developers several key advantages.

Field G. Van Zee, Ernie Chan, and Robert A. van de Geijn
The University of Texas at Austin
Enrique S. Quintana-Ortí and Gregorio Quintana-Ortí
Universidad Jaime I de Castellón

1521-9615/09/$26.00 © 2009 IEEE
COPUBLISHED BY THE IEEE CS AND THE AIP

Collective Communication on Architectures that Support
Simultaneous Communication over Multiple Links

Ernie Chan Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austinfe
han, rvdgg�
s.utexas.edu William Gropp Rajeev Thakur

Mathematics and Computer Science Division
Argonne National Laboratoryfgropp, thakurg�m
s.anl.gov

Abstract
Traditional collective communication algorithms are designed with
the assumption that a node can communicate with only one other
node at a time. On new parallel architectures such as the IBM Blue
Gene/L, a node can communicate with multiple nodes simultane-
ously. We have redesigned and reimplemented many of the MPI
collective communication algorithms to take advantage of this abil-
ity to send simultaneously, including broadcast, reduce(-to-one),
scatter, gather, allgather, reduce-scatter, and allreduce. We show
that these new algorithms have lower expected costs than thepre-
viously known lower bounds based on old models of parallel com-
putation. Results are included comparing their performance to the
default implementations in IBM’s MPI.

Categories and Subject Descriptors D.m [Software]: Miscella-
neous

General Terms Algorithms, Performance

1. Introduction
Extensive research over the past decade has been reported oncol-
lective communication and implementations of algorithms for dis-
tributing data between processors [6, 7, 9, 13, 14, 15, 16, 20, 25,
27, 28, 29, 30, 33]. It has been shown that effective communi-
cation algorithms can be implemented with simple yet powerful
techniques [2, 3, 4, 5, 10, 12, 17, 18, 21, 22, 31, 32]. Those tech-
niques inherently assumed that a single node can at most sendand
receive with one other node at a time. That assumption gave rise
to many algorithms, including bidirectional exchange algorithms
such as recursive-doubling and halving. Many of those algorihtms
are optimal for either startup costs, per data transmissiontime, or
both, based on old models of parallel computation given the con-
straint on communication.

Given the advent of new parallel architectures, new models of
parallel computation can be developed that dramatically decrease
the perceived lower bounds of collective communication. Wehave
revisited, redesigned, and reimplemented to take advantage of the
new feature where a single node can communicate with multiple
nodes simultaneously in order to achieve the new lower bounds of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’06 March 29–31, 2006, New York, New York, USA.
Copyright c
 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

communication. In practice, our implementations show a perfor-
mance increase of up to a factor of eight from IBM’s MPI default
collective implementations.

Frequently, collective communication involving all nodesis re-
quired. Examples include simple collective communications, such
as broadcast, and more complex ones like the various reduction op-
erations. These operations are generally implemented by individual
calls to the send and receive routines.

We use broadcast (Bcast) as a motivating example, which can be
described as follows: initially a single node, the root, owns a vector
of data,x, of lengthn. Upon completion, all nodes own a copy ofx. All operations are illustrated in Fig. 1.

The rest of the paper is organized as follows. In Section 2 we
describe our new model of parallel computation onN -dimensional
tori where a node can communicate over multiple links. Giventhat
new model, lower bounds for each collective operation are given
in Section 3. We present the generalization of several well-known
algorithms adapted for the new model in order to achieve the lower
bounds in Section 4. Descriptions of the IBM Blue Gene/L and
its compability to communicate to multiple nodes simultaneously
are given in Section 5.1. We provide performance results of the
implementations of our new algorithms in Section 5.2.

2. Model of Parallel Computation
To analyze the performance of the presented algorithms, it is useful
to assume a simple model of parallel computation. The following
assumptions are made in this report:

Target architectures: The target architectures are distributed-
memory parallel architectures.

Indexing: The parallel architecture containsp computational
nodes (nodes hereafter). The nodes are indexed from0 to p�1.
Each node has one computational processor.

Logically fully connected: Any node can send directly to any
other node where a communication network provides automatic
routing.

Topology: The underlying topology is anN -dimensional torus.
Each node is directly connected to each of its 2N nearest
neighbors where two are on opposing sides of a dimensional
axis.

Communicating between nodes:At any given time, a single node
can sendor receive messages from 2N other nodes. A single
node can do sosimultaneouslyonly if each of the messages are
sent or received on each of its2N different links.

Cost of communication: The cost of sending a message between
two nodes will be modeled by�+n�, in the absence of network
conflicts. Here � and � respectively represent the message

SuperMatrix Out-of-Order Scheduling of Matrix Operations
for SMP and Multi-Core Architectures

Ernie Chan
Department of Computer

Sciences
The University of Texas at

Austin
Austin, Texas 78712

echan@cs.utexas.edu

Enrique S. Quintana-Orti
Departamento de Ingenieria y

Ciencia de Computadores
Universidad Jaume I

12.071–Castellon, Spain
quintana@icc.uji.es

Gregorio Quintana-Orti
Departamento de Ingenieria y

Ciencia de Computadores
Universidad Jaume I

12.071–Castellon, Spain
gquintan@icc.uji.es

Robert van de Geijn
Department of Computer

Sciences
The University of Texas at

Austin
Austin, Texas 78712

rvdg@cs.utexas.edu

ABSTRACTWe dis
uss the high-performan
e parallel implementationand exe
ution of dense linear algebra matrix operations onSMP ar
hite
tures, with an eye towards multi-
ore pro
es-sors with many
ores. We argue that traditional implemen-tations, as those in
orporated in LAPACK,
annot be easilymodi�ed to render high performan
e as well as s
alability onthese ar
hite
tures. The solution we propose is to arrangethe data stru
tures and algorithms so that matrix blo
ksbe
ome the fundamental units of data, and operations onthese blo
ks be
ome the fundamental units of
omputation,resulting in algorithms-by-blo
ks as opposed to the moretraditional blo
ked algorithms. We show that this fa
ili-tates the adoption of te
hniques akin to dynami
 s
hedulingand out-of-order exe
ution usual in supers
alar pro
essors,whi
h we name SuperMatrix Out-of-Order s
heduling. Per-forman
e results on a 16 CPU Itanium2-based server areused to highlight opportunities and issues related to thisnew approa
h.
Categories and Subject DescriptorsD.m [Software℄: Mis
ellaneous
General TermsAlgorithms, Performan
e
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07, June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

Keywordsdata aÆnity, data-
ow parallelism, dense linear algebra li-braries, dynami
 s
heduling, out-of-order exe
ution
1. INTRODUCTIONThis paper explores the bene�ts of storing and indexingmatri
es by blo
ks when exploiting shared-memory paral-lelism on SMP and/or multi-
ore ar
hite
tures. For denselinear algebra matrix operations, the observation is madethat if blo
ks are taken to be the units of data, and oper-ations on blo
ks are the units of
omputation (tasks), thente
hniques for dynami
 s
heduling and out-of-order (OO)exe
ution in supers
alar pro
essors
an be extended, in soft-ware, to the systemati
 management of independent and de-pendent tasks. A system that fa
ilitates this in a transparentmanner both to the library developer and user is dis
ussed,and its potential performan
e bene�ts are illustrated withexperiments that are spe
i�
 to the parallelization of theCholesky fa
torization but are also representative of manydense linear algebra operations.It has been observed that the storage of matri
es by blo
ks,possibly re
ursively, has a number of advantages, in
ludingbetter data lo
ality when exploiting one or more levels ofmemory [10, 15, 19, 27℄ and
ompa
t storage of symmet-ri
/triangular matri
es [3℄. In [25℄, it was shown how theFLASH extension of the FLAME Appli
ation ProgrammingInterfa
e (API) for the C programming language greatly re-du
es the
omplexity of
ode by viewing matri
es stored byblo
ks as a tree stru
ture of matri
es of matri
es where theleaf nodes are blo
ks that
an be stored as
onvenient [8,17℄ The idea of indexing matri
es by blo
ks, re
ursively, wasalso su

essfully explored in [2, 12, 13, 18, 20, 21℄.The main
ontributions of the present paper in
lude:� Storage by blo
ks allows submatri
es to repla
e s
alarsas the basi
 units of data and operations on blo
ks asthe basi
 units of
omputation (tasks). This is shownto greatly redu
e the
omplexity of managing data

Satisfying Your Dependencies with SuperMatrix

Ernie Chan #1, Field G. Van Zee #2, Enrique S. Quintana-Ortı́ ∗3, Gregorio Quintana-Ortı́ ∗4, Robert van de Geijn #5

#Department of Computer Sciences, The University of Texas at Austin
Austin, Texas, USA

1echan@cs.utexas.edu
2field@cs.utexas.edu
5rvdg@cs.utexas.edu

∗Departamento de Ingenierı́a y Ciencia de Computadores, Universidad Jaume I
Campus Riu Sec, 12.071, Castellón, Spain

3quintana@icc.uji.es
4gquintan@icc.uji.es

Abstract— SuperMatrix out-of-order scheduling leverages
high-level abstractions and straightforward data dependency
analysis to provide a general-purpose mechanism for obtaining
parallelism from a wide range of linear algebra operations.
Viewing submatrices as the fundamental unit of data allows
us to decompose operations into component tasks that operate
upon these submatrices. Data dependencies between tasks are
determined by observing the submatrix blocks read from and
written to by each task. We employ the same dynamic out-
of-order execution techniques traditionally exploited by modern
superscalar micro-architectures to execute tasks in parallel ac-
cording to data dependencies within linear algebra operations.
This paper provides a general explanation of the SuperMatrix
implementation followed by empirical evidence of its broad ap-
plicability through performance results of several standard linear
algebra operations on a wide range of computer architectures.

I. INTRODUCTION

This paper explores the broad applicability of SuperMatrix

out-of-order scheduling. In [7] we used storage by blocks [8],

[18], [24] to view submatrices as the basic unit of data

and tasks that perform operations on those blocks as the

basic unit of computation, which results in algorithms-by-
blocks [2], [9], [10], [17], [19]. After calculating all data

dependencies between tasks, dynamic out-of-order execution

techniques similar to Tomasulo’s algorithm [26] can be used

to exploit parallelism within linear algebra operations.

The main contributions of the present paper include:

• Using the simple high-level abstractions [6], [16], [22]

presented in [7], we apply SuperMatrix to a wide range of

linear algebra operations to exploit parallelism sometimes

unattainable by traditional methods [1], [20], [25] without

adding additional complexity to the code [27].

• The implementation details of the SuperMatrix mecha-

nism are exposed.

• We provide empirical evidence that the performance

of generalized SuperMatrix implementations match or

even exceed the performance of linear algebra operations

linked with multithreaded BLAS libraries [3], [11] across

several different computer architectures.

• The next phase of research to improve performance and

expand SuperMatrix functionality is discussed.

The rest of the paper is organized as follows. In Section II

we explain the general implementation of SuperMatrix out-

of-order scheduling. Section III provides a wide variety of

performance graphs. We conclude the paper in Section IV.

II. SUPERMATRIX OUT-OF-ORDER SCHEDULING

We designed the SuperMatrix mechanism to resemble the

inspector–executor method for parallelism [23], [29]. We

delay the execution of tasks during the analyzer phase to

calculate data dependencies. We then execute the tasks in

parallel according the explicit data flow specified by their data

dependencies during the scheduler/dispatcher phase.

A. Analyzer
Currently the SuperMatrix mechanism assumes that the

input matrices are stored hierarchically with one level of block-

ing where submatrices are square. We provide the FLASH

API [22] to create and access these hierarchical matrices since

users do not need to know the underlying storage of matrices.

Using this API, users create a matrix of matrices where each

element in the top level matrix is a pointer to another matrix.

Given this level of indirection, the SuperMatrix mechanism

appends information detailing the tasks that read from and

write to each block.
As each task is enqueued onto the task queue in sequential

program order, each submatrix structure tracks the tasks that

read from and write to its data in order to compute flow,

anti, and output data dependencies between all tasks. This

data dependency information is stored explicitly within the

SuperMatrix task structure.
In Fig. 1 (left), we present the SuperMatrix implemen-

tation of LU factorization without pivoting. The calls to

FLASH LU nopiv, FLASH Trsm, and FLASH Gemm de-

compose themselves into component tasks operating on square

blocks and then place those tasks onto the task queue. In

a corresponding sequential implementation, those routines

would execute the operations without delay.

B. Scheduler/Dispatcher
Once all the tasks are enqueued onto the task queue, the

call to FLASH Queue exec initiates the parallel execution,

1-4244-1388-5/07/$25.00 © 2007 IEEE 2007 IEEE International Conference on Cluster Computing91

Scheduling of QR Factorization Algorithms
on SMP and Multi-Core Architectures

Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́,
Departamento de Ingenierı́a y Ciencia de Computadores,

Universidad Jaume I, 12.071 - Castellón (Spain),
{gquintan,quintana}@icc.uji.es.

Ernie Chan, Robert A. van de Geijn, Field G. Van Zee
Department of Computer Sciences,
The University of Texas at Austin,

Austin, Texas 78712,
{echan,rvdg,field}@cs.utexas.edu

Abstract

This paper examines the scalable parallel implementa-
tion of the QR factorization of a general matrix, target-
ing SMP and multi-core architectures. Two implementa-
tions of algorithms-by-blocks are presented. Each imple-
mentation views a block of a matrix as the fundamental unit
of data, and likewise, operations over these blocks as the
primary unit of computation. The first is a conventional
blocked algorithm similar to those included in libFLAME
and LAPACK but expressed in a way that allows operations
in the so-called critical path of execution to be computed as
soon as their dependencies are satisfied. The second algo-
rithm captures a higher degree of parallelism with an ap-
proach based on Givens rotations while preserving the per-
formance benefits of algorithms based on blocked House-
holder transformations. We show that the implementation
effort is greatly simplified by expressing the algorithms in
code with the FLAME/FLASH API, which allows matrices
stored by blocks to be viewed and managed as matrices of
matrix blocks. The SuperMatrix run-time system utilizes
FLASH to assemble and represent matrices but also pro-
vides out-of-order scheduling of operations that is trans-
parent to the programmer. Scalability of the solution is
demonstrated on ccNUMA platform with 16 processors and
an SMP architecture with 16 cores.

1. Introduction

The process of extracting parallelism from commonly
used libraries must be reevaluated with the emergence of
SMP architectures with many processors, multi-core sys-

tems that will soon have many cores, and hardware acceler-
ators such as the Cell processor. These “many-threaded” ar-
chitectures change many of the parameters that have driven
the development of previous generations of such libraries.
In particular, cores will be faster, latencies will be lower, the
amount of memory per core will be smaller—causing data
locality to be of greater concern—and parallelism will be
demanded for smaller problems. In this paper, we explore
techniques that may become part of the solution in the con-
text of one dense linear algebra operation, the QR factoriza-
tion [10], which is among the most useful (and challenging)
operations to parallelize.

Traditional algorithms for the QR factorization based on
Householder transformations, along with LU factorization
with partial pivoting, exhibit a shared property: periodi-
cally, a column of the matrix must be updated as part of
a sub-operation that resides along the critical path of execu-
tion. In order to compute the k-th Householder transforma-
tion, the k-th column must have been updated with respect
to all previous transformations. This property significantly
constrains the order in which the computations can be per-
formed.

The problem is compounded by the fact that, for scala-
bility and data locality, it is best to view and store the matrix
as a two dimensional array of submatrices (blocks) and to
compute sub-operations (tasks) with these blocks. This fact
creates a situation where the column needed for comput-
ing the Householder transformation most likely spans more
than one block. Viewing and storing matrices by blocks was
also observed for out-of-core dense linear algebra computa-
tions [20] and the implementation of dense linear algebra
operations on distributed-memory architectures [22].

In this paper we explain how to achieve high perfor-

16th Euromicro Conference on Parallel, Distributed and Network-Based Processing

0-7695-3089-3/08 $25.00 © 2008 IEEE
DOI 10.1109/PDP.2008.37

301

16th Euromicro Conference on Parallel, Distributed and Network-Based Processing

0-7695-3089-3/08 $25.00 © 2008 IEEE
DOI 10.1109/PDP.2008.37

301

SuperMatrix: A Multithreaded Runtime Scheduling System for
Algorithms-by-Blocks

Ernie Chan Field G. Van Zee
Robert van de Geijn

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{echan,field,rvdg}@cs.utexas.edu

Paolo Bientinesi
Department of Computer Science

Duke University
Durham, NC 27708
pauldj@cs.duke.edu

Enrique S. Quintana-Ortı́
Gregorio Quintana-Ortı́

Departamento de Ingenierı́a y Ciencia de
Computadores

Universidad Jaume I
12.071–Castellón, Spain

{quintana,gquintan}@icc.uji.es

Abstract
This paper describes SuperMatrix, a runtime system that paral-
lelizes matrix operations for SMP and/or multi-core architectures.
We use this system to demonstrate how code described at a high
level of abstraction can achieve high performance on such archi-
tectures while completely hiding the parallelism from the library
programmer. The key insight entails viewing matrices hierarchi-
cally, consisting of blocks that serve as units of data where oper-
ations over those blocks are treated as units of computation. The
implementation transparently enqueues the required operations, in-
ternally tracking dependencies, and then executes the operations
utilizing out-of-order execution techniques inspired by superscalar
microarchitectures. This separation of concerns allows library de-
velopers to implement algorithms without concerning themselves
with the parallelization aspect of the problem. Different heuristics
for scheduling operations can be implemented in the runtime sys-
tem independent of the code that enqueues the operations. Results
gathered on a 16 CPU ccNUMA Itanium2 server demonstrate ex-
cellent performance.

Categories and Subject Descriptors D.m [Software]: Miscella-
neous

General Terms Algorithms, Performance

Keywords algorithms-by-blocks, dependency analysis, dynamic
scheduling, out-of-order execution

1. Introduction
Architectures capable of simultaneously executing many threads of
computation will soon become commonplace. This fact has brought
about a renewed interest in studying how to intelligently schedule
sub-operations to expose maximum parallelism. Specifically, it is
possible to schedule some computations earlier, particularly those
operations residing along the critical path of execution, to allow
more of their dependent operations to execute in parallel. This in-
sight was recognized in the 1960s at the individual instruction level,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’08, February 20–23, 2008, Salt Lake City, Utah, USA.
Copyright c© 2008 ACM 978-1-59593-960-9/08/0002. . . $5.00

which led to the adoption of out-of-order execution in many com-
puter microarchitectures [32]. For the dense linear algebra opera-
tions on which we will concentrate in this paper, many researchers
in the early days of distributed-memory computing recognized that
“compute-ahead” techniques could be used to improve parallelism.
However, the coding complexity required of such an effort proved
too great for these techniques to gain wide acceptance. In fact,
compute-ahead optimizations are still absent from linear algebra
packages such as ScaLAPACK [12] and PLAPACK [34].

Recently, there has been a flurry of interest in reviving the idea
of compute-ahead [1, 25, 31]. Several efforts view the problem as a
collection of operations and dependencies that together form a di-
rected acyclic graph (DAG). One of the first to exploit this idea was
the Cilk runtime system, which parallelizes divide-and-conquer al-
gorithms rather effectively [26]. Workqueuing [35], when allowed
to be nested, achieves a similar effect as Cilk and has been pro-
posed as an extension to OpenMP in form of the taskq pragma
already supported by Intel compilers. The importance of handling
more complex dependencies is recognized in the findings reported
by the CellSs project [4], and we briefly discuss this related work
in Section 7. Other efforts to apply these techniques to dense ma-
trix computations on the Cell processor [23] are also being pur-
sued [24].

A number of insights gained from the FLAME project allow us
to propose, in our opinion, elegant solutions to parallelizing dense
linear algebra operations within multithreaded environments. We
begin by introducing a notation, illustrated in Figure 1, for express-
ing linear algebra algorithms. This notation closely resembles the
diagrams that one would draw to illustrate how the algorithm pro-
gresses through the matrices operands [19]. Furthermore, the nota-
tion enabled a systematic and subsequently mechanical methodol-
ogy for generating families of loop-based algorithms given an oper-
ation’s recursive mathematical definition [5, 6]. Algorithms are im-
plemented using the FLAME/C API [8], which mirrors the notation
used to express the algorithms, thereby abstracting away most im-
plementation details such as array indexing. We realized that since
the API encapsulates matrix data into typed objects, hypermatrices
matrices (matrices of matrices) could easily be represented by al-
lowing elements in a matrix to refer to submatrices rather than only
scalar values [11, 13, 14, 21, 29]. This extension to the FLAME/C
API known as FLASH [27] greatly reduced the effort required to
code algorithms when matrices were stored by blocks, even with
multiple levels of hierarchy [22, 33], instead of traditional row-
major and column-major orderings.1 Storing matrices by blocks led

1 For a survey of more traditional approaches to expressing and coding
recursive algorithms when matrices are stored by blocks, see [16].

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Design of Scalable Dense Linear Algebra Libraries for
Multithreaded Architectures: the LU Factorization

Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́
Departamento de Ingenierı́a y Ciencia de Computadores

Universidad Jaume I
12.071–Castellón, Spain

{gquintan,quintana}@icc.uji.es
Ernie Chan, Robert A. van de Geijn, Field G. Van Zee

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{echan,field,rvdg}@cs.utexas.edu

Abstract

The scalable parallel implementation, targeting SMP
and/or multicore architectures, of dense linear algebra li-
braries is analyzed. Using the LU factorization as a case
study, it is shown that an algorithm-by-blocks exposes a
higher degree of parallelism than traditional implementa-
tions based on multithreaded BLAS. The implementation of
this algorithm using the SuperMatrix runtime system is dis-
cussed and the scalability of the solution is demonstrated
on two different platforms with 16 processors.

1 Introduction

With the emergence of parallel computing architectures
with many processing elements (e.g., SMP systems with
many processors, multicore chips with many cores, and
CPUs featuring hardware accelerators such as the Cell pro-
cessor [1, 17]), it is now widely recognized that commonly
used dense linear algebra libraries like LAPACK will need
to be reimplemented, possibly from scratch. In this paper,
we explore algorithmic modifications to the LU factoriza-
tion with pivoting that support an algorithm-by-blocks. It
is shown that this algorithm-by-blocks exhibits a high de-
gree of parallelism that can be exploited by multithreaded
architectures. This adds to a body of work that provides
insights into how linear algebra algorithms in general can
be rewritten to better utilize the compute power of systems
with many processing cores [4, 5, 6, 7, 8, 21, 23].

The challenge we confront in this paper is that of devel-

oping a high performance LU factorization algorithm with
pivoting while keeping the implementation simple. The
contributions of this paper include:

• A demonstration that dense linear algebra operations
can attain high performance even when coded at a high
level of abstraction and even when targeting complex
environments such as manythreaded architectures.

• A study that compares and contrasts traditional
blocked algorithms for the LU factorization, which ex-
tract parallelism within the Basic Linear Algebra Sub-
programs (BLAS) [9, 10, 18], to the pure algorithm-
by-blocks first proposed in [15]. This algorithm is sim-
ilar to the algorithm-by-blocks for the QR factorization
proposed in [13], for which multithreaded parallel im-
plementations are given in [5, 21].

• Further examples of how (a) the FLASH extension of
FLAME/C supports storage by blocks for these types
of algorithms and (b) the SuperMatrix runtime system
supports, via programmer-friendly abstractions, out-
of-order computation on blocks.

• An analysis which reveals that the extra work associ-
ated with the algorithm-by-blocks represents a lower
order cost term, in contrast to a claim in [5], and per-
formance that rivals that of an algorithm-by-blocks for
the QR factorization.

The remainder of the paper is structured as follows: Sec-
tions 2 and 3, respectively, review the LAPACK algorithm
for the LU factorization with partial pivoting and introduce
our algorithm-by-blocks for the LU factorization with incre-
mental pivoting. Section 4 provides an overview of various

Transforming Linear Algebra Libraries: From Abstraction to Parallelism

Ernie Chan, Robert van de Geijn, and Field G. Van Zee
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
{echan,rvdg,field}@cs.utexas.edu

Jim Nagle
LabVIEW Math and Signal Processing

National Instruments
Austin, TX 78759

jim.nagle@ni.com

Abstract—We have built a body of evidence which shows
that, given a mathematical specification of a dense linear alge-
bra operation to be implemented, it is possible to mechanically
derive families of algorithms and subsequently to mechanically
translate these algorithms into high-performing code. In this
paper, we add to this evidence by showing that the algorithms
can be statically analyzed and translated into directed acyclic
graphs (DAGs) of coarse-grained operations that are to be
performed. DAGs naturally express parallelism, which we
illustrate by representing the DAGs with the G graphical
programming language used by LabVIEW. The LabVIEW
compiler and runtime execution system then exploit parallelism
from the resulting code. Respectable speedup on a sixteen core
architecture is reported.

I. INTRODUCTION

The advent of multi-core and many-core architectures has
brought the concern that these new architectures have to
be programmed. How are we going to evolve our existing
code base to these emerging environments? Programmers
are considered to be ill-equipped to meet this challenge.

We believe that, for the domain of dense linear algebra,
part of the answer is to take the programmer out of the
picture. Instead, we are focusing on making the entire
process mechanical by starting with a specification of the
operation to be implemented and then mapping algorithms
to a specific architecture. Over the last decade, we have
systematically built a body of work that together provide
evidence that this goal is achievable [3], [4], [15], [16], [32].

The current paper brings the following new contributions
to the forefront:
• It shows that, from a high-level specification, a directed

acyclic graph (DAG) of coarse-grained operations on
coarse-grained data can be statically generated.

• It demonstrates that the methodology can target non-
traditional languages such as LabVIEW’s graphical
programming language [20], yet this methodology can
also be applied to imperative languages such as C.

• The approach works whether the matrix is originally
stored as a “flat” matrix (e.g., in column-major format)
or by blocks to improve locality.

• It illustrates how the LabVIEW compiler and runtime
execution system exploit parallelism from a DAG.

• It reports speedup when a DAG is executed on a sixteen
core architecture.

Together these contributions move us ever closer to making
the entire process of programming high-quality linear alge-
bra libraries entirely mechanical for a broad range of target
architectures and languages.

The rest of the paper is organized as follows. We build
the paper around a motivating example, inversion of a
triangular matrix, in Section II. This operation allows us
to discuss the essential information necessary to describe
the algorithm at a language-independent level of abstraction
in Section III. In Section IV we describe the process that
analyzes the algorithm and statically generates a DAG. Sec-
tion V provides performance results, and we discuss related
work in Section VI. In Section VII, we give concluding
remarks on how our work fits into the bigger picture of
generating libraries entirely mechanically and then point out
the tantalizing possibility that the methodology might also
be able to eliminate the software stack altogether, generating
hardware instead.

II. INVERSION OF A TRIANGULAR MATRIX

We use inversion of a triangular matrix (TRINV) R :=
U−1 where U is upper triangular as a motivating example
in this paper.1 It is a dense linear algebra operation that
is highly representative of the most commonly used level-
3 Basic Linear Algebra Subprograms (BLAS) [11] and
operations supported by, for example, LAPACK [2] and
libFLAME [31].2

It is well understood that in order to attain high perfor-
mance, matrix algorithms of this kind must be cast in terms
of blocked computations so that the bulk of the computation
resides in matrix-matrix multiplication [14]. In Figure 1,
we present a blocked algorithm for computing TRINV using
the Formal Linear Algebra Method Environment (FLAME)
notation for expressing linear algebra algorithms [16]. The
thick and thin partition lines have semantic meaning and
capture how algorithms move through the matrices, exposing
submatrices on which computation occurs. Here, the algo-
rithm overwrites the upper triangular part of the original
matrix A.

In many of the operations, it is implicitly assumed that a
matrix is upper triangular and/or only the upper triangular

1Similarly, we can compute R := L−1 where L is lower triangular.
2We have also applied this methodology to the Cholesky factorization.

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

Managing the Complexity of Lookahead for
LU Factorization with Pivoting

Ernie Chan and Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
{echan,rvdg}@cs.utexas.edu

Andrew Chapman
Microsoft Corporation

One Microsoft Way
Redmond, Washington 98052

andrew.chapman@microsoft.com

ABSTRACT
We describe parallel implementations of LU factorization with piv-
oting for multicore architectures. Implementations that differ in
two different dimensions are discussed: (1) using classical partial
pivoting versus recently proposed incremental pivoting and (2) ex-
tracting parallelism only within the Basic Linear Algebra Subpro-
grams versus building and scheduling a directed acyclic graph of
tasks. Performance comparisons are given on two different sys-
tems.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming

General Terms
Algorithms, Performance

Keywords
LU factorization with partial pivoting, algorithm-by-blocks, directed
acyclic graph, lookahead

1. INTRODUCTION
LU factorization with partial pivoting is simultaneously perhaps

the most important operation for solving linear systems and often
the most difficult one to parallelize due to the pivoting step. In
this paper, we compare different strategies for exploiting shared-
memory parallelism when implementing this operation. A simple
approach is to link to multithreaded Basic Linear Algebra Subpro-
grams (BLAS) [11] libraries. A strategy that requires nontrivial
changes to libraries like Linear Algebra PACKage (LAPACK) [2]
is to add lookahead to classical LU factorization with partial piv-
oting. A recently proposed algorithm-by-blocks with incremental
pivoting [5, 26] changes the pivoting strategy to increase opportu-
nities for parallelism, at some expense to the numerical stability
of the algorithm. To manage the resulting complexity, we intro-
duced the SuperMatrix runtime system [8] as a general solution
for parallelizing LU factorization with pivoting, which maps an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

algorithm-by-blocks to a directed acyclic graph (DAG) and sched-
ules the tasks from the DAG in parallel. This approach solves the
programmability issue that faces us with the introduction of mul-
ticore architectures by separating the generation of a DAG to be
executed from the scheduling of tasks.

The contributions of the present paper include:

• An implementation of classical LU factorization with partial
pivoting within a framework that separates programmability
issues from the runtime scheduling of a DAG of tasks.

• A comparison of different pivoting strategies for LU factor-
ization.

Together these contributions provide further evidence that the Su-
perMatrix runtime system solves the problem of programmability
while providing impressive performance.

In our previous SPAA paper [7], we first introduced this con-
cept of using out-of-order scheduling to parallelize matrix compu-
tation using the Cholesky factorization as a motivating example, an
operation which directly maps to an algorithm-by-blocks. On the
other hand, LU factorization with partial pivoting does not easily
map well to an algorithm-by-blocks. Our solution addresses pro-
grammability since we can use the same methodology to parallelize
this more complex operation without adding any extra complexity
to the code that implements LU factorization with partial pivoting.

The rest of the paper is organized as follows. In Section 2, we
present LU factorization with partial pivoting and several tradi-
tional methods for parallelizing the operation. We describe the Su-
perMatrix runtime system in Section 3. In Section 4, we describe
LU factorization with incremental pivoting and its counterpart for
QR factorization. Section 5 provides performance results, and we
conclude the paper in Section 6.

2. LU FACTORIZATION WITH PARTIAL
PIVOTING

We present the right-looking unblocked and blocked algorithms
for computing the LU factorization with partial pivoting using stan-
dard Formal Linear Algebra Method Environment (FLAME) nota-
tion [16] in Figure 1. The thick and thin lines have semantic mean-
ing and capture how the algorithms move through the matrix where
the symbolic partitions reference different submatrices on which
computation occurs within each iteration of the loop.

We first describe the updates performed within the loop of the

unblocked algorithm. The SWAP routine takes the vector
„
α11

a21

«
,

finds the index of the element with the largest magnitude in that
vector, which is stored in π1, and exchanges that element with α11.
Next, the pivot is applied (PIV) where the rest of the π1-th row is

