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Abstract

By purposefully utilising sensors, for instance by a data fusion system, the state
of some system-relevant environment might be adequately assessed to support
decision-making. The ever increasing access to sensors offers great opportunities,
but also incurs grave challenges. As a result of managing multiple sensors one can,
e.g., expect to achieve a more comprehensive, resolved, certain and more frequently
updated assessment of the environment than would be possible otherwise. Chal-
lenges include data association, treatment of conflicting information and strategies
for sensor coordination.

We use the term information acquisition to denote the skill of a data fusion sys-
tem to actively acquire information. The aim of this thesis is to instructively situate
that skill in a general context, explore and classify related research, and highlight
key issues and possible future work. It is our hope that this thesis will facilitate
communication, understanding and future efforts for information acquisition.

The previously mentioned trend towards utilisation of large sets of sensors makes
us especially interested in large-scale information acquisition, i.e., acquisition using
many and possibly spatially distributed and heterogeneous sensors.

Information acquisition is a general concept that emerges in many different fields
of research. In this thesis, we survey literature from, e.g., agent theory, robotics
and sensor management. We, furthermore, suggest a taxonomy of the literature
that highlights relevant aspects of information acquisition.

We describe a function, perception management (akin to sensor management),
which realizes information acquisition in the data fusion process and pertinent
properties of its external stimuli, sensing resources, and system environment.

An example of perception management is also presented. The task is that of
managing a set of mobile sensors that jointly track some mobile targets. The game
theoretic algorithm suggested for distributing the targets among the sensors prove
to be more robust to sensor failure than a measurement accuracy optimal reference
algorithm.

Keywords: information acquisition, sensor management, resource management,
information fusion, data fusion, perception management, game theory, target track-
ing
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Sammanfattning

Genom att målmedvetet använda sensorer, exempelvis i ett datafusionssystem, kan
tillståndet av en systemrelevant omgivning uppskattas med syfte att stödja besluts-
fattande. Den ökande tillgången till sensorer innebär många fördelar, men även stora
utmaningar. Genom att använda många sensorer kan man förvänta sig att åstad-
komma en mer heltäckande, högupplöst, säker och oftare uppdaterad uppskattning
av omgivningen än vad som annars skulle vara möjlig. Utmaningarna innefattar
bland annat dataassociering, hantering av motstridig information och strategier för
att samordna sensorresurser.

Vi låter termen informationsinhämtning (information acquisition) beteckna den
färdighet hos datafusionssystemet som aktivt inhämtar information. Syftet med
denna avhandling är att beskriva och förklara den färdigheten i ett generellt sam-
manhang, att utforska och klassificera relevant litteratur, och att framhäva viktiga
egenskaper samt troliga framtida forskningsinriktningar. Det är vår förhoppning att
den här avhandlingen kommer att främja förståelsen av, kommunikation om, och
vidare arbete inom informationsinhämtning.

Med tanke på nämnda tendens att tillgängligheten till sensorer ökar gör att vi är
särskilt intresserade av storskalig (large-scale) informationsinhämtning, det vill säga
informationsinhämtning medelst många (och eventuellt utspridda och heterogena)
sensorer.

Informationsinhämtning är en generell färdighet som uppträder inom många
olika forskningsområden, och i den här avhandlingen återger vi därför resultat från
till exempel agentteori, robotik, och sensorhantering (sensor management). Vi fö-
reslår även en taxonomi av tidigare arbeten som framhäver relevanta aspekter av
informationsinhämtning.

Vi beskriver en funktion, perceptionshantering (perception management; besläk-
tad med sensorhantering), som verkställer informationsinhämtningen i datafusions-
processen och relevanta egenskaper av omgivningsens påverkan, sensorresurserna,
och systemomgivningen. Ett exempel på perceptionshantering presenteras också.
Uppgiften är att hantera en mängd rörliga sensorer som tillsammans skall följa
några rörliga mål. Den spelteoretiska algoritmen som vi presenterar för att fördela
målen mellan sensorerna visar sig vara mer robust mot bortfall av sensorer än en
jämförelsealgoritm som eftersträvar att nå bästa möjliga förväntade mätningsnog-
grannhet.

Sökord: information acquisition, sensor management, resource management, per-
ception management, information fusion, data fusion, game theory, target tracking
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Chapter 1

Summary and future directions

1.1 Summary

This thesis consists of a sequence of fairly independent chapters that all deal with
information acquisition in data fusion systems. Such a system produces refined in-
formation and hypotheses about some observed environment by combining inform-
ation from different sources. The products of a data fusion process are typically
used by some other system for decision-making.

The focus on data fusion systems poses no threat to the generality of the dis-
cussion in this thesis. The reason is that data fusion is a comprehensive process
that exploits relationships between multiple pieces of information which makes it a
natural, perhaps inherent, aspect of any processing of information. Data fusion is
further discussed in Chapter 2.

We loosely define information acquisition (IA) for data fusion systems to mean

the skill of a data fusion process that allows it to reason about and fa-
cilitate acquisition of information about a system-relevant environment.

The purpose of IA in data fusion systems is to make the data fusion process
more efficient. Its task may be to obtain or maintain an adequate description of
the environment or both.[Hag90]

Two necessary criteria that justify IA for data fusion systems are that sensing
resources are manageable and usage of those resources imposes conflicts that must
be solved.1 For instance, a conflict might arise between sensing tasks when there are
more tasks than sensors to satisfy the tasks. Another type of conflict emerges, e.g.,
when radiated energy must be managed while preserving sufficient target tracking
quality.

1This is a generalisation of the criteria suggested in [BP99a].
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2 Chapter 1. Summary and future directions

More specifically, with this thesis, we want to situate the process of acquiring
information in a general context, explore and classify previous efforts relevant to
the subject and highlight key issues and possible future work.

Most efforts related to this subject today concern small-scale systems with very
specific goals. Furthermore, the general context of such systems, including, e.g.,
related processes and the stimuli that affects it, is seldom discussed. By small-scale,
we mean systems that produce very limited information about some system-relevant
environment. A large part of this thesis, on the other hand, is devoted to exploring
and paving the way for large-scale systems. Such systems, typically, involve utilising
a large number of possibly distributed and heterogeneous sensors to provide diverse
information to fastidious decision-makers.

Our point of departure is from the command and control influenced world of
information fusion. Command and control, briefly, refers to the military concept of
managing available resources for perceiving the state of a battle field and to plan and
take appropriate actions (see, for instance, [Cre85]). Due to its historical connection
to the command and control field, the field of information fusion acknowledges a
versatile and complex problem domain and environment. Furthermore, since the
actors in the environment frequently are hostile and proactive, it is essential not
only to estimate their “visible” properties but also their intentions. Hence, given the
properties of this field, and the fact that its applications naturally encapsulates the
fields of, e.g., robotics and computer vision (where active sensing and IA also have
been studied extensively), it should be suitable as a starting point for the journey
into the realm of large-scale IA.

A well known model in information fusion is the JDL-model. It is a functional
model that describes aspects of a data fusion process. One of the aspects, process
refinement, involves IA. Process refinement is a meta-function that monitors the
data fusion process and tries to improve it. This activity has both an internal and
external aspect. The internal aspect involves, e.g., selection of fusion algorithms and
sifting through acquired data. The external aspect, concerns management of sensing
resources for acquisition of information. In this thesis, information acquisition only
refers to the external aspect.2

In Chapter 2, we use the JDL-model to create a general agent model that encap-
sulates both IA and information fusion and refinement to support agent decision-
making. Such a model of the context of IA is vital for understanding the potential
and limitations of IA.

In the explanation of the model in Chapter 2, we discuss, e.g., the observed en-
vironment, the resources used for sensing, and the stimuli that affects the decisions
of the IA. It is important to classify the observed environment according to the
properties mentioned in Chapter 2. For instance, if the environment is dynamic,

2Even though there is a conceptual difference between the internal and external aspects of
process refinement, in practise, methods for the two types might coincide. Compare, for instance,
the internal activity of selecting between various sets of collected data with the external activity
of selecting which sensing resource to activate.
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a process dealing with IA (in this thesis, we call such a process a perception man-
ager) is constrained by the time it can devote to deciding its actions. Instead if
the environment is non-episodic, the perception manager (PM) has to consider the
future consequences of its actions.

Properties of information acquired from the environment are also presented. In
Chapter 3, the discussion about environment and information properties is extended
with a model of the relationship between the environment itself and the observing
agent’s description of it. We call the agent’s description of the environment its
environment representation (ER). The structure of the ER is prescribed by the
agent’s environment model (EM). Both may vary over time.

Properties of the resources used for IA, as well as the dependencies between re-
sources, must also be taken into account by a PM. We suggest two useful property
categories: scope and value. Scope properties of a resource affect its sensing capab-
ilities and value properties the utility of using the resource. The stimuli includes,
e.g., explicit information requests from users of the system and status reports from
sensing devices (e.g., operational condition). We also discuss the advantages of
expressing the action space of IA in terms of services rather than resources.

Types of control and composition properties of sensing resources are also presen-
ted. Composition properties distinguish whether a set of sensors is homogeneous
or heterogeneous. Control architectures, both for systems and individuals, are fur-
thermore mentioned. System control architectures are typically centralised, decent-
ralised or hierarchical. Using the classification in [Ark98], we find the individual
control architecture somewhere in between reactive and deliberative.

The idea in Chapter 2 is not to prescribe what a data fusion or IA process
must include, rather to suggest their potentials, and to provide the reader with a
comprehensive context to interpret the literature of the survey in Chapter 3.

As mentioned, this thesis also tentatively suggests the concept of perception
management.[JX03] PM tries to grasp the complete domain of large-scale IA. As
a theoretic concept, it is effectively a superset of sensor management (i.e., the
management of sensors to improve their performance) and a subset of resource
management (which also involves management of resources for other purposes). In
practise, however, typical work in PM will probably act as an initiator and controller
of various sensor management processes.

Chapter 3 departs from a high-level perspective of IA for data fusion systems,
and surveys and classifies previous literature. The classification used here focuses
on general aspects of IA and types of perception activities PM performs. The
classification of activities is based on their influence on the ER.

We suggest a taxonomy of activities for perception with three type: incorpor-
ation, monitoring, and discerning. Incorporation involves integrating information
that fits the EM into the ER. In the literature, target detection methods incorpor-
ate information (e.g., [CGH96]). Monitoring concerns maintaining the parts of the
ER which have already been incorporated. In target tracking applications (e.g.,
[BP99a]), monitoring is performed. Discerning is an activity that aims at refining
information in the ER. A typical example is view planning in computer vision,
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where camera locations are calculated to find properties of detected objects (e.g.,
for object recognition).[Roy00]

We envision that perception activities of these kinds operate on different levels
of abstraction, possibly in a hierarchy to contribute to the maintenance of the ER
and success of the system that uses it. Some activities might operate on a low
level very close to the physical sensing devices with a short time horizon obtaining
signals of objects and events while others select complex sensing services to obtain
high-level information while generally enjoying longer time to consider its actions.

Comprehensive perception activities might exhibit one or two more qualities
that we denote facilitation and focus of attention. The qualities are subtle in some
applications and more explicit in others.

Facilitation refers to activities that do not directly affect the ER, but that
supports observations, e.g., relocation of mobile sensors, managing energy and other
system requirements.

Focus of attention concerns activities that handle conflicts between objectives
and decides which information tasks to prioritize. Rather than updating the ER
with correct and current information, focus of attention decides the structure of
the ER, i.e., alters the EM.

The final part of Chapter 3 deals with focus of attention, which enables large-
scale information acquisition. The literature surveyed in that part deals with, e.g.,
prioritization and task allocation.

Whereas the preceding chapters aim at explaining the domain of IA and control
of sensing resources, Chapter 4 provides a concrete example of IA. The problem
studied in Chapter 4 is that of managing a set of mobile sensors that jointly track
a set of mobile targets. The mobile sensors use a negotiation algorithm to decide
where to go and which targets to track. Sensors may make position estimates of
more than one target at a time and estimates of the same target by different sensors
are fused for better position estimate. Using the concepts and notions from Chapter
2 and 3, we can characterise the problem.

First of all, the environment we study (i.e., an approximation of the real phys-
ical world) is inaccessible (the information acquired by the sensors is imprecise),
deterministic (we assume sensing actions always yield measurements), episodic (tar-
gets are assumed to disregard the sensing actions), static (the targets are assumed
not to move far during the short time the sensors require to allocate targets), and
semi-continuous (percepts are continuous but the action space is discretized).

The stimuli that affect the target tracking system is limited to a static mission
control that requires that all known targets are tracked all the time. Although the
sensing resources used in Chapter 4 are described on an abstract level, we can still
say a few things about their properties. In terms of scope properties (Chapter 2),
we can say that the sensing resources are always available and redeployable. In
addition, we find that the set of resources is homogeneous, i.e., sensors have equal
capabilities and, hence, can therefore easily cooperate by fusing position estimates.

Although the future aim of the model in Chapter 4 is to express decentralised
system control, the model presented here is in practise centralised since perfect
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information is assumed for the negotiation algorithm. On the individual level, the
control of sensors must be considered to be more deliberative than reactive, since
the ER of all sensors must contain a representation of the other sensors and the
targets. Furthermore, the allocation of targets by all sensors, in every sampling
interval, is the compromise that results after a negotiation round.

Even though this application is small-scale in the information it acquires, the
intention for the future is to bring its principles to more large-scale applications.

The contents of Chapter 4 were previously published in a technical report,[JXC03a]
and a short version was presented at the 2003 conference on information fusion.[JXC03b]

1.2 Contribution

The main contribution of this thesis is its comprehensive conceptual model of in-
formation acquisition in data fusion systems. The level of comprehensiveness of the
information acquisition model presented here has previously seldom been addressed
in the field of data and information fusion. In Chapter 2, the concept of “percep-
tion management” is presented to encompass the process of data fusion systems
that is responsible for information acquisition. Furthermore, the context of percep-
tion management (including external stimuli, sensing resources and environment
properties) is also discussed. The main contribution of Chapter 3 is the suggested
taxonomy of perception activities, that should be useful when designing large-scale
information acquisition systems. We believe that the proposed model will facilitate
communication, understanding and future efforts for information acquisition.

Finally, Chapter 4 suggests that game theoretic concepts may be useful for
coordinating distributed sensors. A game theory based algorithm for allocating
targets to mobile sensors is introduced. In a comparison, the game theory based
algorithm proved to be more robust to sensor failure than an algorithm that aims
at selecting the allocation that yields the best measurement accuracy. We intend to
further explore the benefits of game theoretic concepts for information acquisition
in future work.

1.3 Overview

To briefly reiterate the contents of the following chapters; Chapter 2 situates in-
formation acquisition (under the name perception management) in the context of
data fusion in an agent model. The chapter discusses many aspects of this con-
text such as environment, information, stimuli, and sensing resources. Chapter 3
surveys literature for information acquisition and classifies them according to how
they affect the environment representation that is assumed to store acquired in-
formation. Finally, Chapter 4 gives an application of information acquisition in a
target tracking problem.
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1.4 Future research

Large-scale information acquisition involving the management of heterogeneous
sensing resources to support decision-making in some complex and dynamic en-
vironment is largely underdeveloped.

While some of the fairly “low-level” aspects of information acquisition (IA) have
been studied extensively (such as, e.g., target tracking), the comprehensive per-
spective of multi-sensor multi-task based IA has received little attention.

Some of the opportunities for future work which we discern are the following:

Integration of techniques Integration of available techniques for IA. For in-
stance, connecting detection to tracking. Applications have already been de-
veloped, but the potential for future efforts is still huge. On a larger scale, it
would be interesting to see more algorithms for focus of attention (e.g., task
decomposition) blend with algorithms for perception. Large-scale IA sys-
tems also have to deal with many concurrent information requests. To satisfy
these requirements, dependencies between perception activities should be ex-
plored, as well as dependencies between information requests. Additionally,
algorithms for planning and scheduling such activities should be devised.

Long-term view Most efforts possess a greedy approach to information acquis-
ition, selecting actions depending on the current situation. This is often a
sound approach, since the uncertainty of the future states of the observed
environment is generally considerable and predictions of future states are
costly (especially in real-time applications). However, long-term planning is
an inherent property of many large-scale information acquisition problems,
since the deployment time of sensors might be considerable. Predictions, us-
ing models of the environment, and simulations could be used to generate
hypotheses about the future environment state.

Pragmatic techniques Many techniques are still immature in the sense that they
do not address the worst case environment (or even realistic environments) as
characterised in Chapter 2. The observed environment is seldom static and
in many applications it is even hostile and able to respond intelligently to
the actions of the observing (data fusion) system. Methods should be refined
to deal with more (eventually all) of the challenges presented by a “difficult”
environment.

Re-planning For “massive” information acquisition (dealing with a profusion of
observations), where acquisition priorities, sensing resource availability and
environment might evolve non-deterministically while the system is consid-
ering its next actions, traditional (“off-line”) planning might produce obsol-
ete plans. Future work directed towards large-scale IA will, hence, have to
take the dynamic world into account during deliberation and execution of
plans. This issue is discussed in the field of continual planning (surveyed
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in [dDJW99]). Furthermore, for the same reasons, the permissible running
time of employed algorithms might not be known in advance. A class of
algorithms, called anytime algorithms, address this issue and might be in-
terrupted at any time and produce a solution.[Zil96] Typically, the quality
of the solution increases the longer the algorithm is allowed to run. A re-
lated concept is anytime actions,[RW91] i.e., actions whose quality increases
the longer the action is allowed to be performed. Clearly, large-scale IA will
benefit from anytime algorithms and actions.
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Chapter 2

A model of perception management
in the data fusion process

2.1 Introduction

The ability of biological beings, such as mammals, to efficiently combine data (stim-
uli such as vision, scent, touch) from various, disparate sources of information (e.g.,
eyes, nose, fingers), supported by prior knowledge (e.g., instinct and experience),
to interpret their environment is a strong incentive for the emerging data fusion re-
search. The general aim of the research in data fusion is to bring this ability into use
in autonomous or semi-autonomous artificial systems for enhanced performance.

A data fusion process is characterised by its ability to combine, possibly un-
certain, incomplete, and contradictory, data. The result is data or information of
“better quality”, in some sense. As a consequence of the fusion (or merger), the
resulting information is often abstract, generalised or summarised, and, hence, the
amount of data is reduced.

It should be stressed that an implemented data fusion process does not ex-
ist as an isolated system, rather as an integral part of some enclosing system.
The purpose of the data fusion process is then, typically, to improve the decision-
making of the enclosing system. Whereas the enclosing system supplies the inten-
tion and result, the data fusion process improves the system performance. Due to its
broad applicability, applications using data fusion have arisen in various, disparate
fields,[Hal92a] for instance, military (e.g., avionics,[MM94, Adr93] and command
and control [GR98]), remote sensing (e.g., localisation of mineral sources,[MGV+02]
and identification of weather patterns), industrial (e.g., control and monitoring of
complex machinery and assembly robots). Furthermore, due to the generic nature
of data fusion, applications have also been suggested in, for instance, financial
analysis.[Low98]

Typically, systems, which have to rely on continual, real-time percepts of a

9



10 Chapter 2. A model of perception management

partially unknown, possibly interactive and intelligent, environment, will benefit
from data fusion. The environment is said to be interactive and intelligent if it
responds intelligently to the actions of the system. In the most difficult case, a
malevolent agent1 is responsible for the response.

Currently, much research in the field of data fusion has been done, but due
to its immaturity and the different angles of approach of previous research (e.g.,
command and control, avionics, or mobile robots), there is a need for a unified
comprehensive framework, and a generic taxonomy and terminology has yet to be
developed. A step in that direction is the recent study [AAB+01] where different
types of fusion processes are classified and fusion techniques for various applications
are described.

The main focus of this chapter is put on the optional function of the data fusion
process which manages the acquisition of information from the environment to the
data fusion process. In the literature, this management of information acquisition
(IA) is frequently entitled sensor management. However, in this thesis, a wider
term, perception management (which we introduced in [JX03]), is used instead to
emphasise the general standpoint of the thesis and to promote the term perception
resource (instead of the more restricted term sensor) explained in Section 2.4.2.
Using a “fresh” term also allows us to reason more freely about the properties of
IA in data fusion processes, without the constraints imposed by a worn term such
as sensor management. For many readers, however, the distinction we make in
this thesis between perception management and sensor management is probably
insignificant.

Throughout this thesis, we will use the terms sensor, perception resource, sensing
resource and information source to denote a source of data or information. The
subtle differences between the terms, where such exist, will be made explicit later
on in the text.

The development of a perception management process is motivated by the need
for, e.g., efficient use of limited resources, automatic resource reconfiguration and
degradation in the occurrence of sensor failure, optimised resource usage, and re-
ducing the workload of manual sensor management.[NN00]

The purpose of this chapter is to situate the data fusion process and, in par-
ticular, its inherent perception management facet in an application independent
context. We believe that our model of perception management, including its prop-
erties and context in data fusion systems introduced in this chapter, will constitute
a communication aid for reasoning about IA and in the development of applications.

Section 2.2 portrays the data fusion process using the JDL-model, known from
the field of information fusion. The control aspect of the JDL-model is process re-
finement, which is briefly presented in Section 2.3. Perception management, being
a subset of the process refinement function, is further discussed in Section 2.4. The
input to perception management in terms of stimuli from its environment is identi-

1In this chapter, agent is simply defined as something that perceives and acts.[RN95] Hence,
it could be either a human or an automated process.
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fied and properties of its sensing resources are discussed. General control concepts
are also suggested for perception management. Section 2.5 suggests complementary
aspects of IA that should be studied in the future, and Section 2.6 offers a brief
summary of the chapter contents.

2.2 The data fusion process

A definition of data fusion is provided in [SD98]:

“Data fusion is a process that combines data and knowledge from differ-
ent sources with the aim of maximising the useful information content,
for improved reliability or discriminant capability, while minimising the
quantity of data ultimately retained.”

Another definition is provided by the Joint Directors of Laboratories (JDL) Data
Fusion Subpanel (DFS) which, in its latest revision of its data fusion model, [SB01]
settle with the following short definition: “Data fusion is the process of combining
data or information to estimate or predict entity states.” Due to its generality, the
definition of JDL encompasses the one of [SD98].

Here, we, unlike in the definitions above, prefer to use the complete term “data
fusion process,” instead of just “data fusion.” The reason is to separate the gen-
eral, complex, and versatile (data fusion) process from application specific, and
justifiably restricted (data fusion) methods.

One aspect of the data fusion process (DFP), which is not included in the first
definition and implicit in the second, is process refinement, the function of improving
the DFP and data acquisition. Many authors, as well as we, recognise process
refinement and data fusion to be so closely coupled that process refinement should
be considered to be a part of the DFP.

As implied in the previous section, the DFP is not a new technique in itself,
rather a framework for incorporating reasoning and learning with perceived in-
formation into systems, utilising both traditional and new areas of research. These
areas include decision theory, management of uncertainty, digital signal processing,
and computer science.[WL90a] The DFP comprises techniques for data reduction,
data association, resource management, and fusion of uncertain, incomplete, and
contradictory information.

As mentioned in Section 2.1, data fusion is successfully utilised by biological
systems, among which the human being is one. Some reasons for automating it in
artificial systems are:

Replacing manual fusion In some existent systems, fusion processes are per-
formed manually by humans. This might become infeasible if the flow of data
to the system exceeds the capabilities of the human resources. In comparison
with fusion of data performed by manual labour, (automated) data fusion
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may be less costly, more reliable and predictable (human beings make mis-
takes), and, of course, faster. Automated data fusion may also be customised
and optimised for a specific task.

Improving performance in automated systems Data fusion may be used to
improve the quality of acquired information in an automated system. Here,
improved quality may refer to, e.g., data of higher certainty, relevance, preci-
sion and resolution in relation to the system objectives. The need for quality
improvement arises from the fact that many (not clearly distinguishable) ob-
jects may be of interest, conflicting percepts (perhaps due to deception or
sensor error), incomplete information, and other ambiguities about the en-
vironment and behaviours (mentioned in [PCCB97]). Additionally, entirely
new types of information (i.e., properties that are not directly measurable by
accessible sensors) may be inferred by combinations of data from disparate
sources.

2.2.1 The context of the data fusion process

Because of the nature of the DFP as a support for other systems, it is useful to observe
it in a broader context. Figure 2.1(a) shows a coarse sketch of a generic system
which performance depends on its interactions with some environment.2 Note that
this model does not make the claim that this system should be implemented on a
single physical platform. It is general enough to be implemented in a distributed
fashion. This model is basically the common agent model with its perception-action
cycle (e.g., in [Woo99, Nil98, RN95]).

The system control is responsible for the objectives and result of the system
operation. An objective may be either external or internal. External objectives
concern the goals of the system from a user-perspective, whereas the internal ob-
jectives concern maintenance and operational goals, and system constraints. The
objectives influence the DFP and do not have to be static. On the contrary, it is
more likely that the objectives change over time with varying preferences of the
system control and new data entering the system. The system control may also
be assumed to be able to manage all controllable degrees of freedom of the system
(i.e., all controllable resources). It uses its resources mainly to act and perceive.
In this simple view, if the system uses a DFP it is contained within the system
control. Such a system, may be decomposed as shown in Figure 2.1(b). Here, the
system control itself has been decomposed into a system objective control,3 a DFP,
and possibly a knowledge base (a storage of data, representing the memory of the
system, containing data and information about the environment and its inherent
activities and the state of the system itself). An arrow, inside of the system box
in the figure, denotes influence on the object at its head by the object at its tail,

2Here we use the term “environment,” others used in the literature are “world” and “workspace”.
3The system objective control is not equivalent to the system control in Figure 2.1(a) since

some control may be performed by the DFP (by its process refinement).
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e.g., the system objective control and the DFP may both access the set of system
resources and access (either through direct access or with the help of data mining
techniques) and alter the knowledge base.4 The influence between the system ob-
jective control and the DFP highlights that the control may access the information
of the process, inhibit (e.g., to acquire resources), configure, and control it.

Environment

System
Control

Generic System

Resources

Stimuli, Actions

(a)

Data Fusion
Process

Environment

(E.g., action,
perception, and
sys. reconfig.)

Base
Knowledge

Generic System

Resources

Objectives
System

Control

(b)

Figure 2.1. (a) A coarse sketch of a generic system which result depends on its
interaction with some environment. (b) A generic system including a data fusion
process. The system control has been decomposed into a system objective control,
a DFP and possibly a knowledge base.

In the following subsections, we further discuss properties of the surrounding
environment (Section 2.2.2), the information that can be acquired from it (Section
2.2.3), and of course the DFP itself.

2.2.2 The environment

The degree of difficulty of implementation and management of a specific DFP is heav-
ily dependent on the characteristics of the relevant environment5 it is observing.

4The knowledge base may contain both static information (e.g., laws of physics, military doc-
trine, and building plan drawing) which the DFP may not alter, and dynamic information (e.g.,
environment object locations and relations) which the DFP may alter if it derives some comple-
mentary or contradictory information.

5By “relevant” environment, we mean the subset of the environment the DFP has been de-
signed to interpret. If the relevant environment is very restricted in comparison to the “complete”
environment, the characteristics of the two may vary greatly.
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For the discussion in this section, we call the agent that contains the DFP, and ob-
serves some environment, the subjective agent (SA). The name emphasises that the
properties of the environment are highly dependent on the beholding agent (i.e.,
the SA). The environment which the SA perceives and interprets might, depending
on application, be simple and accessible but is typically (environment properties
adopted from [RN95]):

Inaccessible The complete state of the relevant environment can not be determ-
ined by the SA. The relevant environment is often inherently complex and
it is not practical or even possible to design omnipotent sensors that timely
determine the exact state of the environment. A chess board, e.g., is com-
pletely accessible, whereas a poker game environment is not (at least not to
a non-cheating SA).

Nondeterministic The outcome, or value, of actions performed in the environ-
ment are not deterministic. The environment is typically nondeterministic if
the result of an action in the environment is dependent on some stochastic
variable. More frequently, from the perspective of an SA, the environment
will appear nondeterministic if it is also inaccessible.

Nonepisodic Actions performed by the SA affects the future evolution of the
environment. Chess and other multi-player games, e.g., are nonepisodic since
there exist opponents who will respond to the moves by the agent. So the
performed action in one episode (an episode consisting of a percept and action
selection of an agent) may affect the selection in future episodes. Conversely,
the process of selecting an action in a nonepisodic environment now should
consider the actions influence on future episodes.

Dynamic The configuration of the environment will change with time independent
of the SA. In a static environment, the SA could consider its choice of actions
almost indefinitely. In dynamic environments, however, a lengthy deliberation
about actions would lead to decision-making based on obsolete information.
The environment is semi-dynamic from the perspective of the SA if the state
does not change over time, but the performance of the SA does.

Continuous The features of the environment may be continuous, e.g., positions,
speed, and temperature, and also the possible actions.

2.2.3 Properties of information
A discussion about the meaning of data and information deserves a paper (or prob-
ably even book) of its own, accompanied by an extensive survey. For our study
in this chapter, such an effort is outside of our scope, and a vague notion of data
being something originating from sensors and information being processed and in-
terpreted data will suffice. However, exact properties of data and information are
discussed now and then in data fusion, and are important for the refinement and
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evaluation of information. We would, hence, like to present a small selection of
works that discuss this matter. As we will see, the usage of the terms are not
always consistent.

A classification of terms is suggested in [Ste99]. There, the term data refers
to observations and measurements from information sources, information is data,
organised and placed in a context (corresponding to Level 1 and Level 2 in the
JDL-model), and knowledge understood and explained information. Some works
emphasise that knowledge should be stored information (e.g., [MMMW01]); inform-
ation that has been accepted and that constitute a prior belief for further reasoning
and decision-making.

The authors of [AAB+01] use information as a general term with subcategories
such as observations and knowledge. According to their classification, observations
are, e.g., data from sensors, facts and evidences. More generally, observations all
refer to the current state of the environment. Knowledge, on the other hand, is
defined as information that describes general properties of the environment, such
as characteristics of a class of situations.

Observations and knowledge are, in [AAB+01], called descriptive knowledge.
Two types of normative knowledge, preferences and regulations, are also sugges-
ted. Preferences is information about individuals’ desires and regulations are rules
governing the environment, e.g., expressing what feasible events there are.

In fusion applications, sensors rarely are capable of accurately conveying (meas-
uring and reporting) the environment features they are observing. To capture this
discrepancy between the real world and measurements, some sort of representation
of information imperfection is necessary. By imperfect or defective information,
we mean information that is in some way insufficient for making efficient decision.
[AAB+01] suggests a taxonomy of such defective information, arguing that informa-
tion used for fusion is imperfect in some sense, otherwise there would be no need for
fusion. The aspects of information quality mentioned are: ambiguity, uncertainty,
imprecision, incompleteness, vagueness and inconsistency. A brief explanation of
these aspects is provided in Table 2.1

In [AABW00], information awareness denotes the “understanding of the useful-
ness of information and the possibilities to achieve better information.” In order to
deliberately achieve the state of information awareness, i.e., to get a better under-
standing of the available information and to make better decisions, three properties
are attached to information: precision, quality and utility. Precision regards the
certainty of a piece of information. A piece of measurement information could, e.g.,
have a measurement error covariance matrix as the value of its precision property.
Quality of a piece of information reflects its ability to support decision-making, i.e.,
to discriminate between possible actions or decisions. The utility of information
is its expected contribution to an action selection situation, comparing it to the
situation where the information is not available.

Concepts such as those discussed in this section are important both for the
interpretation and usage of information by a DFP.
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Table 2.1. Aspects of defective information from [AAB+01].
Aspect Meaning
Ambiguity It is unclear what the informa-

tion refers to, and it may be in-
terpreted in several ways

Uncertainty Lack of information that makes
it impossible to say whether a
statement is true or false. For
instance, the statement “Intruder
detected”, may be an uncertain
piece of information if the in-
formation source cannot be com-
pletely trusted.

Imprecision The degree of imprecision in a
piece of information is depend-
ent on the granularity of the
language it is expressed in and
the needs of the decision-maker.
E.g., the statement “distance to
target is 100m” is precise if the
required degree of granularity is
meters, but imprecise if it is cen-
timetres.

Incompleteness Information is incomplete if it
does not capture all relevant as-
pects of a phenomenon or entity.

Vagueness A piece of information containing
a vague quantifier, e.g., “young”
for age, is vague.

Inconsistency A set of pieces of information is
inconsistent if the pieces contra-
dict each other.

2.2.4 A functional data fusion model
To break down and further analyse the data fusion process, we use a functional
model6 for data fusion; the so called JDL-model, named after the Joint Direct-

6A functional model consists of definitions of functions which could comprise any DFP.[SB01]
Unlike a process model, it does not specify interactions between functions, only functional aspects
of a DFP.
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ors of Laboratories, mentioned above. Although originally developed for military
applications, the model presented here is generally applicable. Furthermore, the
model does not assume its functions to be automated, they could equally well be
maintained by human labour. Hence, the model is both general and flexible.

The revised JDL-model [SB01, Whi98] includes five fusion levels, i.e., a decom-
position of the DFP into five different functions. The levels specify logical separations
in the DFP and divide information into different levels of abstraction depending on
the kind of information they produce (where the lower levels yield more specific,
and the higher more general, information).[WL90b]

The purpose of the sketch of the JDL-model in Figure 2.2 is to provide an
overview of the functions without suggesting any particular type of implementation
or application specific details. The context of the JDL-model, the governing system
objective control and the available resources, is also depicted.

Situation

Level 2

Impact

Level 3
Assessment

JDL Data Fusion Model

Estimation and Prediction

Planning and Control

Assessment

Perception
resources

System

control

Assessment

objective

Level 1

Object

Sub−Object Data
Processing
Level 0

Level 4

Information fusionMS data fusion

Process
Refinement

Figure 2.2. The JDL data fusion process model is composed of five different func-
tions (Level 0-4).

Level 0 - Sub-Object Assessment: The purpose of Level 0 is to associate and
characterise sensed signals. To associate signals means to assign them to
the one and same entity (e.g., tracked target) of the environment. Typical
techniques used in this level belong to signal processing and feature extraction.
In this level, no semantic meaning is assigned to the assessed data.

Level 1 - Object Assessment: In this level, which is sometimes referred to as
multisensor data fusion or multisensor integration, data is combined to as-
sign dynamic features (e.g., velocity) as well as static (e.g., identity) to ob-
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jects,7 hence adding semantic labels to data.This level includes techniques for
data association and management of objects (including creation and deletion
of hypothesised objects, and state updates of the same). The study of the
grounding problem [Vog97, Har90] in the artificial intelligence community is
related to this level.

Level 2 - Situation Assessment: This level involves aggregation of Level 1 en-
tities into high-level, more abstract entities, and relations between entities.
An entity in this level might be a pattern of connected objects of Level 1
entities. Input data are assessed with respect to the environment, relation-
ship among Level 1 entities, and entity patterns in space and time.[PCCB97,
Hal92a]

Level 3 - Impact Assessment: The impact assessment, which is sometimes called
significance estimation or threat refinement, estimates and predicts the com-
bined effects of system control plans and the entities of Level 2 (possibly in-
cluding estimated or predicted plans of other environment agents) on system
objectives.

Level 4 - Process Refinement: Process refinement evaluates the performance
of the DFP during its operation and encompasses everything that refines it,
e.g., acquisition of more relevant data, selection of more suitable fusion al-
gorithms,8 optimisation of resource usage with respect to, for instance, elec-
trical power consumption. Section 2.3 deals with process refinement in more
detail. Process refinement is sometimes called process adaption to emphasise
that it is dynamic and should be able to evolve with respect both its internal
properties and the surrounding environment. The function of this level is in
some literature handled by a so called meta-manager or meta-controller.9 It is
also rewarding to compare Level 4 fusion to the concept of covert attention in
biological vision which involves, e.g., sifting through an abundance of visual
information and selecting properties to extract.

A typical logical information flow among the functional levels is depicted in
Figure 2.3, where process refinement responds to impact and situation assessment.
In the Figure, process refinement, of course capable of interacting with functions of
all levels, merges its own plans for action with the expected plans of the observed
environment.

7It could be debated whether or not “object” is the most appropriate term to use. In some ap-
plications, it might not be clear what an object is. More appropriate terms might be “component”,
“constituent”, or “element”.

8Different algorithms may be the most appropriate for different situations, depending on avail-
able data and tasks. E.g., some type of task might require detailed information from the DFP,
while some other settle for more coarse.

9The reason for these names are that it manages the other processes.[PCCB97]
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Figure 2.3. Typical logical flow between the JDL model functions (image borrowed
from [SB01]). By courtesy of Alan Steinberg.

Remarks on the JDL model

A Level 5, user refinement, has also been proposed.[BH00] While the DFP maintains
and refines all available information, a user is only interested in the subset of the
information it needs for its own decision-making. Sometimes, some information is
restricted to only users with appropriate access privileges. The purpose of Level 5
is to handle the problem of providing users of the DFP with the “right” information,
corresponding to the users need and access rights.

A few things should be mentioned about this definition of the JDL-model. First,
the term “object”, used to denote the entities of Level 0 and Level 1, is a heritage of
the military origin of the JDL-model and a bit too restrictive. E.g., the application
environment may be represented in such a way that it is not clear what an “object”
might be.

Second, although it is useful to emphasise impact assessment, [SB01] identifies
Level 3 to actually be a component of Level 2. Likewise, Level 0 is recognised as a
special case of Level 1.

Furthermore, in Figure 2.2, Level 4 is separated from the other levels. Level 4
is quite different from the other levels in the sense that it does not produce any new
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information (i.e., it does not “fuse”), and, also, whereas the functions of the other
levels have a direct effect only on the internal operations of a system, it may have
a direct effect on the systems external behaviour (through the use of perception
resources, explained in Section 2.4.2). Hence, Level 4 is more about control than
estimation. In spite of this, Level 4 was incorporated into the data fusion model
because of its intimate relationship with the other four levels.As in Figure 2.2,
Level 4 is sometimes placed on the border of the data fusion model. Its peculiar
position indicates that Level 4, in general, is dependent on outside processes (that
might interfere with its usage of perception resources).

It also bears mentioning that the probable reason for the somewhat counterin-
tuitive numbering of Level 0 is due to the fact that it was not included from the
first version of the JDL-model, so the name Level 1 was already taken. It was
introduced in 1997 with the revised JDL-model.[Whi98]

Whereas Level 0 and Level 1 concern multisensor data fusion, i.e., the combin-
ation of data from different sensors, Level 2 and Level 3 are often referred to as
information fusion.

A comparison between the JDL-model and related models, such as Dasarthy’s
functional model and OODA process, is provided in [SB01].

2.2.5 Implementation issues

Moving from the functional model in Section 2.2.4 to a working implementation
in a real environment involves a number of design considerations: including what
information sources to use (e.g., single sensor or multisensor sets), what fusion
architecture to employ (centralised/decentralised), communication protocols, etc.
In this section, we discuss the properties of single and multisensor systems.

Admittedly, the fusion of data is decoupled from the actual number of informa-
tion sources and, hence, does not require multiple sensors. The reason is that fusion
may be performed on a temporal sequence of data that was generated by a single
information source. E.g., a fusion algorithm may be applied to a sequence of im-
ages produced by a single camera sensor. However, employing a number of sensors
provides many advantages (as mentioned e.g. in [MDW94, LK92, WL90c, Lli88]):

Redundant information When multiple sensors perceive the same feature of the
environment, the redundant information can be exploited to reduce uncer-
tainty about the status of the feature and increase the reliability in the case
of sensor failure.

Complementary information Multiple sensors may perceive different features
of the environment, consequently allowing complex features (which could not
be sensed by each sensor independently) to be perceived.

More timely information Due to simultaneous measurements of multiple sensors,
information may be acquired at a higher rate.
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Extended spatial coverage Measurements can be made over a possibly large
area.

Increased robustness Some sensors may be making measurements, while some
others fail or are temporarily unable to.

Note that it is sometimes useful to consider multisensor systems as abstract
sensors (or logical sensors as in [BG97, GH89, HS84] or virtual sensors [Mui90]).
For instance, if the motivation for using multiple sensors, in some situation, is
to decrease the time interval between observations, we have constructed a simple
abstract (or logical) sensor which is more timely than its “concrete” sensor compon-
ents. Since the abstract sensor has similar properties to its components’, it might
be managed in a similar way (rather than being treated as something very different,
i.e., a complex system of sensors). This issue is further treated in the discussion
about services in Section 2.4.2.

Unsurprisingly, there are also difficulties associated with the use of multiple
sensors, as further noted in [LK92]:

Sensor registration Failure to make correct associations between signals or fea-
tures of different measurements. This problem and the similar data associ-
ation problem are incredibly important and apply also to single sensor fusion.

Conflicting information and noise Assumptions, more or less realistic, are of-
ten made to enable the use of some fusion techniques. Noise in input data
sometimes yield conflicting observations, a problem that has to be addressed
and which does not arise in single sensor fusion.

Administration multiple sensors have to be coordinated and information must be
shared between them. Such requirements has to be dealt with by the designer
of the multisensor data fusion system.

The JDL-model in Figure 2.2 should not be considered to be an architecture
for implementation, rather a classification schema for DFP functions. The depicted
model is over-expressive for many applications, and not all functions should be
implemented for every application. In fact, many systems only implement Level 0
and Level 1.

2.3 Process refinement
The process refinement (i.e., the meta-controller), the fourth level of the JDL-model
(described in Section 2.2), monitors the other parts of the data fusion and process
and tries to improve its performance. It is important to emphasise the asymmetrical
symbiosis between process refinement and the other functions of the JDL-model.
Process refinement has no purpose without the other functions, but the other func-
tions may exist in an application without support of process refinement. However,
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for efficient and flexible data fusion in complex and environments, process refine-
ment is a magnificent support.

Process refinement is decomposed into three functional parts by [PRT98], and
presented slightly modified here:

Input refinement: Controlling system resources in order to improve (i.e., pro-
duce more useful information) the DFP. This includes detecting and avoiding
unreliable (possibly faulty) sensors. In order to achieve the refinement, vari-
ous constraints may have to be considered (e.g., expected information gain, or
limited power resources). Perception management (discussed in Section 2.4),
including deployment and parameter configuration of perception resources, is
also an example of input refinement.

Process control: Modify the parameters of sub-processes (e.g., processes per-
forming multisensor data fusion) of the DFP in order to improve its perform-
ance. This modification may include fine-tuning or even changing fusion al-
gorithms, choosing or altering connections between components of the DFP
(depending on, e.g., data traffic and data capacity of network links), selection
of information, and tuning of filters.

Inter-level information flow: Controlling the information exchange between levels.10
The most obvious interaction is perhaps that of lower levels providing inform-
ation for higher fusion levels, but it would also be common for, e.g., results
of Level 2 to infer object hypotheses in Level 1.

Thus, an implementation including the process refinement function respects the
uncertainty of the DFP and is aware of its limitations in terms of perception resources
and internal process properties.

The requirements of process refinement highlights the need for system percep-
tion, not only of the state of the environment, but also, of the internal state of the
system (in order to improve the internal system performance).

Process refinement is driven and affected by:

• the results of the Level 0 through Level 3 of the DFP,

• requests from the system objective control (in Figure 2.2),11

• intended actions of the system objective control,12

10Note that we here deviate from the work in [PRT98], where this part was called “Additional or
complementary processing”. The difference is that we here expand the original idea of hypothesis
reinforcement from higher to lower levels to include all interaction between DFP levels.

11Two different kinds of requests are identified by [DALH94]: manual and automatic. A manual
request in a command and control (C2) application could, for instance, be an intelligence inquiry by
a system operator. An example of an automatic request is the, close to instantaneous, localisation
request of a targeted object upon missile launch. Put differently, the automatic requests are
deterministic in some sense since they are generated internally, the manual are not.

12Since resources are shared, the system objective control may inhibit the process refinement
by allocating resources which it could have used.
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• its own awareness about the internal system structure and resources (status,
characteristics, and limitations), and environment (e.g., topology, terrain,
etc).

The next section will describe perception management, the part of process re-
finement that deals with IA, in more detail.

2.4 Perception management

The need for management of sensors is dependent on the available resources and
sensing tasks and must be motivated. In [BP99b], two preconditions are listed: (i)
manageable resources must be agile, and (ii) resources are limited with respect to
tasks. If resources are not agile, they cannot switch between sensing tasks and are
not manageable in any beneficial way. Hence, if they are not agile, we might as
well leave them alone.13 Some sensors are already optimised for the task they were
designed for and no gain is likely to occur by trying to control them in some manor
which they were not designed for.

The second precondition, that resources are limited with respect to sensing
tasks, suggests that there should be a competition among the sensing tasks for
the available sensing resources. If these two preconditions are met, and for highly
potent systems working in difficult environments they tend to be, a perception
management function for improved IA should be considered. We add that (ii),
in a wider regard, could be extended with a need to control sensors in order to
respect some mission objective (such as avoiding detection by adversary sensors,
interference between own sensors or decrease energy consumption) and to modify
the scope of the sensors (e.g., to reposition occluded sensors). Thus, we could
replace (ii) by resources are limited with respect to tasks, objectives or scope.

Many names have been used for the management of IA. In the context of the
general data fusion model described in this work and depicted in in Figure 2.2,
most previously suggested names seem more or less delusive:

Sensor management A quite specific term that brings rather uncomplicated in-
formation sources, such as, sonar, and infrared sensors, to mind. More
complex information sources, e.g., cameras, or other high-level information
sources, e.g., news agencies and humans, are not as frequently referred to as
sensors.

Asset and Resource management Are too general in this case, since they could
encompass all kinds of resources, including money, food, power-supply, cars,
sensors, etc.

13Some management works only control by turning sensors on and off, hence, we also have to
consider this ability as an expression of agility.
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Information (re-)source management Is also too general. An information source14
may for instance be a database, and the purpose of the IA in perception man-
agement is not to manage databases (that would possibly be the job of some
other component of the process refinement; see Section 2.3), rather to manage
perception resources which directly perceive the state of the environment.

Collection management Refers to the collection of data or information, but may
be mistaken for the management of some relatively static set of data (e.g.,
maintenance of a database).

Here, the term perception management is preferred, since, in accordance with
the “input refinement” concept in Section 2.3, it is the perception of the environ-
ment (and ultimately the comprehension of the environment), also to support the
higher fusion levels, which should be improved, not directly the physical sensors as
suggested by the term sensor management.

Even though a new concept is used, the ideas of perception management are
inspired by the different kinds of management mentioned above. The general re-
lationships between resource, perception, and sensor management,15 depicted in
Figure 2.4, clarify this fact.

Resource management

Sensor management

Perception management

Figure 2.4. A coarse sketch of the relationships between some types of management.
Resource management is considered to encompass perception management, which in
turn encompasses sensor management.

In [JX03], where we presented the concept of perception management for the
first time, we explain our view on perception management. We believe, e.g., that
the term and concept of perception management effectively situates the process of
IA in an agent theoretic context (which facilitate fluent communication between
various fields of research) and naturally encompasses processes that support IA.

As a theoretical concept, perception management is effectively a superset of
sensor management and a subset of resource management (which as mentioned
also involves management of resources for other purposes). In practise, however,
typical work in PM will probably act as initiator and controller of various sensor
management processes.

14It might also be questioned whether the term “information source” really refers to a perception
resource, rather than some signal generating entity of the environment.

15In some previous works, sensor management and mission management, i.e., the mechanism
which decides which perception tasks to perform, are separated [DALH94, MM94]. Here, they are
both considered to be a part of perception management.
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The discussion about PM in the rest of this section journey beyond our previous
publication.[JX03] It elaborates on the duties of the PM, the stimuli that affect it
(Section 2.4.1), properties of the resources it must manage, and defines the concept
of perception service (Section 2.4.2 and 2.4.3). Properties belonging to the man-
agement of sets (or systems) of resources are also discussed (Section 2.4.4), as well
as control architectures (Section 2.4.5). Admittedly, most of this work should also
be applicable to sensor management, which the reader might feel more comfortable
with.

2.4.1 Function and stimuli
The purpose of this section is to give a flavour of typical work a perception manager
could be performing, and the description herein is by no means complete. In the
following chapter, we will survey previous works in this field show more details
about IA.

It is the responsibility of a comprehensive perception manager to perform one
or more of the following functions:

• optimise perception resource usage for IA with respect to, e.g., constraints on
resources and environment, cost of usage, or risk of detection;

• degrade performance gracefully in the presence of sensor failures, inaccess-
ibility of perception resources (perhaps due to preemption by the system
objective control), or when the perception resources are limited and can not
serve all information requests;

• prioritise and carry out IA tasks when perception resources are limited and
cannot support all tasks simultaneously.

Important issues a comprehensive perception manager has to deal with are, for
instance, the conflict between monitoring known entities of the environment, on the
one hand, and the need to discover new entities, on the other. Another important
issue, just as inherent as the previous, is that of utilising perception resources in
such a way that likely and critical events can always be sensed when necessary
(e.g., sending a lot of mobile sensors to a remote observation spot might be unwise
if this means that critical observations cannot be made in time in some other spot).
Additionally, a perception manager typically acts in a dynamic environment and
should continuously be prepared to re-plan and reconsider its selected actions and
priorities.

Since perception management is a part of the process refinement, it has the
same types of stimuli. The stimuli must somehow be transformed to well-specified
information acquisition tasks that the perception manager can try to satisfy.

Using the stimuli suggested in Section 2.3, we say that internal stimuli originate
from the results of the other levels of the DFP. External stimuli originate from sens-
ing resources, requests and plans from the system objective control, and external
users (see Figure 2.5):
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User Agent A user agent may, here, query the DFP for whatever information it
thinks seem interesting and useful (this might be a physical or computational
agent). Sometimes this information is already available in the DFP, but oth-
erwise the perception manager will have to consider the request (the DFP here
plays the role of a decision support system);

Mission control The mission control informs the DFP about (i) what plans the
system intends to execute in the nearest future and (ii) what the focus of
attention should be. Stimulus (i) helps perception management predict, e.g.,
what resources will be available to it in the future. Stimulus (ii) directs
the DFP towards the aspects of the environment that the DFP should use its
resources to estimate;

Resources/services There might be a need for resources or services,16 which have
in turn received a task from the perception management, to report back to
the DFP. A report, could, e.g., inform the DFP that a task no longer can be
sufficiently performed or that the status of some resource has changed.

There is actually no clear distinction between the notion of user agent and mission
control in this context, it is just a matter of roles. I.e., an agent may have the
responsibility of making plans for the system, and, conversely, a mission control
may query the DFP.

2.4.2 Perception resources and services
Naturally, the performance of perception management is dependent on the (percep-
tion) resources that is available to it. The quality of the resources will also decide
the quality of the perception management itself. In this section, we discuss the
meaning of perception resource and properties relevant for their management.

The resources of a generic system include all resources the system is said to
possess, e.g., amount of money or fuel, number of vehicles, competence of labour,
or sensors. The resources may also include systems of resources, e.g., complex
tracking systems, or buildings. The resources set the limit of the capabilities of the
system.

The resources, included in Figure 2.1(a), can be used for actions (to affect
the environment), perception (perceiving features of the environment), and system
reconfiguration (internal alterations of the system).

To the system control, all resources are accessible (even though they might
not always be deployable), but the DFP may only utilise perception resources and
resources supporting system reconfiguration. Furthermore, to the perception man-
ager, which is the main focus of this chapter, only the perception resources are
directly available (support resources such as money or fuel are only indirectly avail-
able through usage of resources).

16Here, we think of service as some sort of process (or logical sensor as described in [HS84])
that uses one or more resources to retrieve information.
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Figure 2.5. The figure shows three sources of external stimuli that affects the
perception manager. Internal stimuli comes typically from the lower data fusion
levels.

Perception resources can simply be said to include all resources which can be
useful for the perception of the surrounding environment, and, analogously, action
resources can be said to include all resources that are useful for action in the envir-
onment. Naturally, partly because some complex resources have multi-capabilities
(e.g., multi-purpose platforms), and partly because some resources (e.g., fuel and
money) are applicable to sustain different kinds of processes, some resources are
used both for perception and action. Hence, this interdependence creates a inev-
itable conflict between the DFP and system objective control when requesting the
same resources.

A manageable subset of the perception resources, that may perceive the envir-
onment and return percepts (meaningful to the DFP, e.g., a sensor) will also, a bit
sloppily, be called perception resource. In this thesis, that is what we normally
mean by a perception resource. Examples of perception resources are diverse entit-
ies, such as, tactile sensors (robotics), stock-market analyst (financial applications),
and human scouts and signal intelligence services (command and control).

For the sake of perception management, it might be useful to create a hierarchy
of perception services to control rather than individual resources. The motivation
is twofold. First, it is convenient to construct abstract high-level sensors based on
actual sensors (this idea is roughly the same as that of logical sensors in [HS84]).
Such abstract sensors, or perception services as we prefer to call them, could be
tailored to acquire specific information, information that is likely to be requested
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while using the DFP. Second, instead of moving towards more abstract sensors, we
can also see that some sensors have multiple modes. A perception service might as
well represent a mode of a physical sensor. Thus, the set of perception services may
actually represent a complete universe of sensing action alternatives of perception
management. The alternatives (from atomic ones, such as sensor modes, to very
abstract logical sensors) might be more or less decoupled from the physical devices
that implement them. This is illustrated in Figure 2.6.

However, this convenience comes at a price; while the set of possible sensing
actions becomes more straightforward to manage with this approach, increased
complexity is introduced in terms of dependencies among the services. The use of
one service may inhibit the use of another. Two services that overlap, in the sense
that they require access to the same perception resource will inhibit each other.
But, note that this problem exist already for perception resources, even though in
a smaller scale, since resources themselves might disturb each other, and in that
sense inhibit one another. Multiple mode sensors may also only be active in one
mode at a time.

Service 1 Service 2 Service n−1 Service n...

Composite
Service 1 ...

Service set

DFP

Perceptions

System resources

Perception
resources

Figure 2.6. The interface between the perception resources and the DFP is the
perception services set.

2.4.3 Resource properties

When designing a perception management system, it is useful to ascribe properties
to sensing resources to make them amenable to formal mathematical reasoning.
These properties primarily refer to perception resources, but may also apply to
most services. Here, we present two categories of properties: scope and value.
Scope properties concern the sensing characteristics of the sensing resource and
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the range of observations it is capable of obtaining. Value properties affect the
usefulness of the sensing resource.

Scope properties

The most obvious scope properties of a perception resource are those concerning
sensing characteristics including, e.g., resolution, detection performance, frequency
range, sensitivity, measurement accuracy, data output format, etc. Some of them
are described further in [Hal92a].

Other important scope properties involve the control of the resource. The fol-
lowing sections describe access type, active or passive, availability and response
time.

Access type

Access of perception resources can be performed at different levels of abstraction.
In [BP99b] two views of sensors are discussed: parameter view and mode view.
Parameter control of a resource allows direct access its complete spectrum of ex-
pressions. Modes, on the other hand, provide a conceptual view of the resource by
encapsulating the parameters and simply presenting pre-specified operations.

Although the parameter view certainly offers the most degrees of freedom, the
management of perception resources on the parameter level may be unnecessarily
complex. The mode view reflects the notion that it is often more efficient to let
the responsibility of the resource parameters be assigned to the resource itself (its
modes already optimises its performance). Clearly, it is less scalable to locate
responsibilities for a perception resource externally. Furthermore, it is also the case
that some perception resources can only be managed by modes, e.g., humans.17

Notice that the mode view also applies to whole systems of perception resources,
e.g., a target tracking system. In fact, the parameter view may be regarded as a
special case of the mode view, the lowest mode view in a hierarchy of mode views.

Active vs passive perception resources

Sensors are often classified as either active (e.g., radar) or passive (e.g., an IR
camera). Active sensors or systems of sensors need to radiate energy of their
own to perceive a target source, while passive sensors rely on the target’s own
radiation.[NN00, BP99b] There are two reasons for this distinction: first, control
of an active sensor is generally more versatile and offer the ability to “provoke” the
environment for richer IA, e.g., higher resolution due to its control over the radiated
energy, and, second, the risk of another agent detecting the energy radiated by the
active sensor.

17In the case of human being, a mode could be interpreted as an assignment.
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Notice that the second reason mentioned in the previous paragraph is quite weak
in a theoretical discussion; even non-radiating sensors may reveal themselves to ob-
servers (possibly due to poor management). It might still be useful to distinguish
between resources which actively expose themselves to the risk of being detected and
those which do not. Transferring the classification of active and passive sensors to
the general domain addressed in this chapter justifies a wider interpretation. Here,
we say that a passive perception-resource, just as the passive sensor previously men-
tioned, does not have to initiate any sequence of actions on the relevant environment
in order to perceive (as depicted in Figure 2.7(a)) and, correspondingly, an active
perception-resource18 has to affect the state of environment to make the required
perception.

The distinction between active and passive perception resources is not essential
in all applications, but it reflects that perception might leave “fingerprints” or clues
in the environment. That is essential in applications where other alien agents can
interpret the footprint and take advantage of it (e.g., in command and control
applications).

Environment

percepts

Entity

passive

resource
perception

(a)

actions
1) 2)

percepts

active
perception
resource

Entity

Environment

(b)

Figure 2.7. (a) Usage of passive perception resource (b) Usage of active perception
resource

A perception manager (i.e., a process or agent devoted to perception manage-
ment) using active perception resources should weigh the advantages of using the
resources against the risk of being detected.

18Please notice the unfortunate inconsistency with the term “active perception” used in computer
vision.
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Control space constraints

Whereas the previously mentioned properties are static, i.e., belonging to the struc-
ture of a sensor, control space constraints (CSCs) describes objectives that must
be considered while managing the resources. E.g., in some works, one wants
to minimise energy consumption [PH03] or the number of sensors transmitting
observations.[KP98] We can often express CSCs as unsuitable regions of the con-
trol space (cf to configuration space for motion planning in robotics [Lat93]).

Availability and redeployability

Perception resources are not always available to the perception management. There
are various reasons for this. Perception resources could be unavailable, permanently
or temporarily, for a specific task due to, for instance:

• characteristics of the resource (e.g., a sonar can not generate data continu-
ously, and a mobile sensor cannot relocate instantaneously)

• preemption by system objective control,

• internal disturbance (e.g., resource break-down or failure),

• external disturbance (e.g., jamming, or unsuitable weather conditions),

• destruction, or capture,

• the operations of another controllable resource (e.g., some resources inhibit
each other and can not operate at the same time; consider, for instance, the
ordinary multi-meter which can not both measure current and voltage at the
same time).

• unsatisfiable task requirements (e.g., the resource is, for some reason, incap-
able of performing its operation at the time or place which is requested by
the task)

A perception management function that is aware of the fact that resources might
become unavailable should integrate this knowledge into its operations. It could,
for instance, try to estimate, and continuously re-estimate, the risk of sensors being
destroyed, or to estimate the risk of them being preempted by studying the plans
of the system objective control.

We imagine that some resources are inexpensive and used only once, perhaps,
e.g., the sensors of future ground sensor networks. More common in applications
are those that might be reconfigured over and over again (i.e., redeployable). If
sensing resources are limited and not redeployable, the perception manager should
carefully consider the value of deployment.
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Value properties

The application of perception resources is not merely dependent on the scope of
the resources. It is also dependent on its value, i.e., the expected utility of its usage
and associated cost with respect to the IA task at hand.19 Utility quantifies the
(expected) contribution, of the usage of resources, to the performance of the enclos-
ing system. Cost, conversely, expresses the effort the system needs to undertake in
order to execute the complete sensing action.

It is important to make the perception manager aware of the notions of utility
and cost, because, certainly, the cost of using a resource that is guaranteed to
provide a reliable answer might outweigh its utility and render its usage meaningless.
Consider, e.g., the situation of contemplating using a wonderful perception resource,
a hypothetical very trustworthy diamond ore detector. You might make a fortune
if you mine the rock in question, but if the cost of using the efficient diamond ore
detector, powered by an expensive fusion reactor, exceeds your expected profit from
the mining, you might just ignore that option.

The usage of a perception resource is normally associated with one or several
costs. Costs may be concrete and directly referring to the physical properties of
the resource (e.g., measured in fuel, electricity, CPU cycles or money). It could
also be a bit more abstract, e.g., referring to the expected time its use will take. It
could also be a composite of several factors. Often, cost, just as utility, is simply
represented by a single integer, inducing a relative ordering of costs. If the resource
has to be reconfigured somehow (e.g., relocated) to be useful, there might be a
supplementary cost involved. Some properties that might affect the value of using
a resource are reliability, condition and response time.

Reliability

Perception resources may fail, either temporarily or permanently. Furthermore,
sometimes a sensor might be sending the misleading signals when it is being subject
to deception by an adversary agent. Hence, the perception manager might want to
estimate to what degree they may be trusted. A perception manager could monitor
the status of the sensors, and use unreliable sensors less frequently or not at all.

Condition

Related to reliability is the property of condition. The perception manager could
monitor the health status of its resources. A resource with low health (e.g., low
battery power) might be spared from routine work until an emergency occurs.

19This does not apply only to sensing actions, but to all kinds of actions (which the sensing
actions are a subset of).
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Response time

In dynamic environments, information is often perishable. Hence, information that
arrives late is normally less valuable than the same information acquired instant-
aneously.

2.4.4 Systems of perception resources

In the previous section, we discussed properties of a single perception resource
which are important to consider when managing it. Those properties are important
and useful when designing a perception manager. However, a DFP normally has
more than a single sensor, and properties of whole sets or systems of resources (or
services), that may not be obvious when studying an isolated resource, must also
be considered. One of these set properties is that of the composition type of the set;
whether it is homogeneous or heterogeneous. Another is if there are dependencies
between resources or services in the set.

Homogeneous vs heterogeneous resource set

A homogeneous set of perception resources contains resources or services which are
indistinguishable to the system. If perception resources produce the same kind of
information, e.g., position estimates, we might want to label the resource set as
homogeneous. However, we might also require that the control properties of the
resources are similar, e.g., that all sensors return a measurement within some time
limit. Hence, we might want to distinguish between information heterogeneous and
control heterogeneous sensors.

Distribution of IA tasks in a homogeneous set of sensors is fairly simple. Most
work in the sensor management literature today deal with this kind of sensor sets;
examples are [PW00, Nas77].

Heterogeneous sets, on the other hand, have members which are distinguishable
by the system. Hence, since characteristics may vary a lot among the members, it
is essential that the PM makes an intelligent selection as task allocation becomes
more tricky.[CFK97] This task allocation problem has mostly been dealt with in
the field of distributed artificial intelligence (see, e.g., [Wei99]).

An increase in the number of sensors in a homogeneous set may increase the
scope of congruent observations of the resource set as a whole (since the system
improves its sensing coverage), i.e., more information of the same type (e.g., position
estimates) may be acquired. An increase in a heterogeneous set may not only
increase the congruent scope, but also the incongruent scope, i.e., more types of
complementary information may be acquired. However, an increase in the number
of resources also means that the efforts to manage the resources efficiently must
increase accordingly.
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Dependencies

In sets of perception resources, resources may choose to cooperate and aid each
other through direct communication in order to improve the performance of the IA
(this type of cooperation is called cueing). A few situations where such aid is useful
are described in [WL90d]:

• When an entity escapes the sensing range of some resource, that resource may
be able to direct other resources within sensing range to approximately where
and when it will appear within their range;20

• The discovery of some information by one resource, s1, (e.g., the detection of
a target) may suggest the use of other resource, s2, to acquire more detailed
information (e.g., a position estimate). The interdependence between s1 and
s2 can be called a causal relationship;

Another type of causal dependency is presented in [DW88]. There sensors are
directly dependent on observations of other sensors to form observations of their
own.

2.4.5 Control of perception management
As explained in Section 2.2.4, process refinement is inherently more a control than
an estimation function (unlike the other levels of the JDL-model) and is a part of
the system control in Figure 2.1(a). That is true also for perception management,
being a part of process refinement. For the design of the control of the perception
management, we here suggest two types of control that should be considered: system
and individual architecture.

To understand the meaning of these architectures, we first need to separate the
control from the perception resources or services. Even though, e.g., the control of
a sensor is likely to be located close to the sensor itself, this is not required.

System architecture refers to the control and behaviour of the whole set of
perception resources or services. This could be centralised, decentralised, or hier-
archical. In a centralised system architecture, the actions of all resources are con-
templated and issued by one single process node (i.e., the logical home of some
control process). It will allow the processing node to make the resources or services
act coherently, but it scales poorly with many resources and is also vulnerable (since
it is only one node that is responsible for the sensing actions).

In a decentralised architecture, many processing nodes divide the responsibility
of control among themselves, and, thus, no single node even has complete overview
over the control. One node is, typically, in charge of a set of resources on a specific
platform. This type of architecture has better scaling properties than centralised
and is more flexible (nodes can be replaced dynamically). However, achieving co-
herence is a challenge and cooperation must be considered (a survey of cooperating
mobile robots is provided in [CFK97]).

20Interchange of entities between perception resources is called “hand-off”.
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A hierarchical architecture is a hybrid of centralised and decentralised. It has a
centralised superior control node, but no complete control. Instead responsibilities
for subtasks are delegated to inferior nodes in the hierarchy.

For individual architectures, by individual we refer to the architecture of the
individual processing node (in the case of a centralised system, there is only one).
In agent theory (and elsewhere), a number of control architectures for individual
nodes have been proposed (some mentioned in [Woo99]). [Ark98] tries to capture
the various types of individual control with a spectrum from reactive control on the
one hand and deliberative on the other.

A deliberative control keeps a detailed representation of the states of the en-
vironment and itself, and acts primarily on this representation. A control with a
reactive control, on the other hand, acts only on immediate percepts. The char-
acteristics of the extremes, pure reactive and deliberative control, are presented in
Table 2.2.

Table 2.2. Individual control architectures [Ark98]
Reactive Deliberative
Representation-free Dependent on representation
Real-time response Slow response
Low-level intelligence High-level intelligence

There is a natural dependence between the individual control architectures and
the functional levels of the JDL-model; reactive control, typically, nourishes from
the products of Level 0 and Level 1, while deliberative control take action based on
the outcomes of Level 2 and Level 3.

2.5 Future studies
As indicated previously, we do not claim that the model or domain map of IA in
data fusion systems presented in this chapter is complete. Future work in this field
could consider some of the following directions:

Learning and coevolution In environments where the DFP does not have a com-
plete model of the process it is observing, it may be useful for it to learn
from its experience with the observed process. Learning examples include
the behaviour of the observed process in response to occurring events in the
environment (machine learning is treated in, e.g., [Mit97, KLM96]).
Learning is especially important where the environment is inhabited by hos-
tile intelligent adversaries. In such cases, also the adversaries may be learning
and adapting their behaviour to their percepts. Their adaption imposes con-
straints on the decision-making for sensing actions of the DFP. Important
to learning is representation of other agents. Perceptual state in [SB01] and
recursive modelling method in [GD00] are used for that purpose.
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The process of agents learning from each other is called coevolution. It would
be interesting to study how learning and coevolution enter and affect the DFP.

Perception services Managing services instead of resources appears to have some
important advantages (presented in Section 2.4.2). However, a complete de-
scription of the relationship between resources and services, has yet to be
developed. Service properties, such as dependencies between services should
also be investigated.

Prioritisation of information acq. tasks Information acquisition tasks are spe-
cifications of desired information that the perception manager will have to deal
with. Priorities will have to be assigned to tasks to decide which tasks should
be handled first. We can envision at least two types of priorities: external
(user or system assigned) and internal (resource dependent). External prior-
ities are assigned to tasks by the user or system who needs the information.
The answers to such tasks, typically, contribute to the system objectives. This
issue is addressed with the goal-lattice methodology in [HM99]. Internal prior-
ities arise from the available resources, e.g., a task with high external priority
may get a low internal priorities because the available resources cannot satisfy
the task. The notions of external and internal priorities and ways of fusing
them require further exploration.

Information acquisition tasks Perception management responds to stimuli of
the other levels of the DFP, sensing resources and other agents, as explained
in Section 2.4.1. It should be further investigated how this stimuli should be
used to create information acquisition tasks. Relevant properties of tasks
should also be established, including perhaps dependencies between tasks
(e.g., hierarchical), cost and deadlines.

Connecting tasks to services Perception management should somehow exploit
its available resources to satisfy information acquisition tasks. It is not obvi-
ous how this is best done. Relevant to this issue is [BG97] wherein the process
of explication is described which denotes the transformation from task to util-
isation of sensing resources. It should also be explored how resources can be
used for treating several tasks simultaneously.

Data mining For the sake of the DFP, data mining techniques should be con-
sidered. In [HMS01], data mining is defined as “. . . the analysis of . . .
observational data sets to find unsuspected relationships and to summarise
the data in novel ways that are both understandable and useful to the data
owner.” We envision the DFP running data mining algorithms on acquired
and stored data to create and refine rules and models, supporting the further
work of the DFP. This issue has already been discussed thoroughly in [Ste99],
but should explicitly enter the model described in this chapter.
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Control of data fusion methods One part of Level 4 fusion, process refinement
(see Section 2.3), is controlling and, possibly, exchanging methods for fusion
of information. The properties of this activity should be investigated.

Management process models Process models of IA (i.e., sensor management)
of other works (e.g., [XS02, NN00]) should be considered, and possibly integ-
rated with this study.

2.6 Summary

In this chapter, we wanted to situate the information acquisition part of data fusion
systems and highlight its properties. The focus on data fusion systems is a minor
restriction since it coincides well with the perception process of the general agent
architecture. A comprehensive model, such as the one sketched in this chapter,
might facilitate discussions about information acquisition in data fusion systems
and describe its potential to aid development and further studies.

We started out by delineating the data fusion process (DFP). A commonly used
model to describe the functions of the DFP is the JDL-model, which is composed of
five functions. Four of them refer to the refinement of data and inference of high-
level information. The fifth is a meta-controller function, called process refinement,
that controls the DFP itself.

By further decomposing the process refinement function, we eventually arrived
at the part which deals with information acquisition. Many terms have been used in
the literature to name this function, but we prefer to call it perception management.

Perception management, situated inside the DFP, is stimulated by the results of
the other functions of the process, sensor reports, and requests from external users of
the DFP. Given the stimuli, tasks for information acquisition are created and actions
are issued by the perception management. Actions involve the usage of resources,
perception resources in particular (a term we use to denote any resource that can be
used by perception management for information acquisition). We further noted that
it might be useful to decouple the control space of perception management from
the hardware of resources and instead express that space in terms of perception
services.

The dependence of perception management on the other functions of the data
fusion process should be stressed. It is often inevitable that the degree of usefulness
of sensing actions in a system is strongly dependent on the ability of the data fusion
modules to take advantage of the acquired information. For instance, a sensing
action that acquires information (no matter how interesting) that cannot be used
efficiently in the data fusion process has little value.

For management of perception resources and services, we proposed some prop-
erties that affect the control. We divide the properties in two groups: scope and
value. Scope properties restrict the set of acquirable observations, and value prop-
erties refer to utilities and cost of using resources.
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Managing systems of resources introduces more properties to consider depending
on the composition of the set (homogeneous or heterogeneous) and dependencies
(e.g., sensor cueing).

Control architectures, both for systems and individuals, were subsequently dis-
cussed. System control architectures are typically centralised, decentralised or hier-
archical. Using the classification in [Ark98], we find the individual control archi-
tecture somewhere in between reactive and deliberative.

Finally, we mentioned some aspects that was left out of this study and that
should be addressed in the future.



Chapter 3

Towards large-scale information
acquisition in data fusion systems
A survey

3.1 Introduction

Information acquisition (IA) is a fundamental activity of efficient decision-making.
“Manual” IA, i.e., the process of acquiring information, both initiated and executed
by human beings, has been performed for thousands of years. For instance, be-
fore engaging in battle, army leaders (previously as well as now) needed informa-
tion about their opponents to select a suitable strategy. Another example is the
IA relevant for establishing a community in a particular site. It was important
to evaluate the transportation properties (e.g., landscape and rivers) and defence
properties (considering, e.g., if the site is a hill). The sensing resources used were
at first typically human labour and tame and trained animals. Later on, we learned
to construct tools to enhance our sensing capabilities (e.g., binoculars).

In the recent history of mankind, we have learned to build sophisticated devices,
i.e., sensors, to assist with the acquisition of information. Whereas the control of
human labour and animals were indirect and resources assumed to possess a lot of
autonomy, contemporary sensing devices require explicit control. With the increase
in numbers of sensors, improvement of sensor competence, and the demand for
timely information, a need for automatic management of the resources has arisen.

Important concepts and methodologies could possibly be learned from different
application fields of manual IA. For instance, it would be rewarding to study
methodologies for manual information acquisition in, e.g., command and control
and land surveying (one activity being triangulation [Sha87]). However, here we
restrict our attention to efforts for autonomous and semi-autonomous control of

39
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sensing resources. Autonomy will become an increasingly essential property of IA
in future intelligent systems. One motivation for this is that it will respect the
need for rapid and efficient processing of extensive data and information quantities;
requirements that could not be met by manual IA.

A system engaged in IA closely resembles an agent, i.e., an entity that is situated
in some environment which it perceives and acts upon (e.g., [RN95]). As such,
agents appear in many shapes either as artificial or as natural entities. A perception
process is fundamental for establishing situation awareness (i.e., an understanding
of the status of the environment) of active artificial agents. The agent is dependent
on environmental stimuli per se and is, here, active in the sense that it is capable
of actively looking for the information it needs.

Decision-making and action selection are two independent subjects that are
important for agent perception and, hence, for IA. IA does not just contrib-
ute to better decisions (see, e.g., [RN95]), selecting the right sensing actions is
itself a decision-making problem. Action selection (or, sometimes, behaviour se-
lection) is about selecting actions to pursue some, perhaps, conflicting system
goals/objectives.[Hum97] Although, the interpretation of “action” is normally an
action that explicitly makes the system pursue its objectives,1 it could as well con-
cern sensing actions to perform IA.

Resource and sensor management are topics that to a high extent are related
to IA. Sensor management, especially, considers the control of resources for sensing
and, ultimately, acquisition of information.

Furthermore, agent theory, decision theory and sensor management are firmly
intertwined with the independent research fields of computer vision and robotics.
In the latter fields, as well as the former, the need to model and realize IA is an
inherent issue.

If IA was restricted to enumerating all possible sensing actions, evaluating them
and selecting the most rewarding ones, then this would not be a problem to discuss.
However, for instance, normally

• there is not enough time to evaluate all possible sensing actions;

• there are not enough resources to perform all the sensing actions one would
want to;

• one does not always know what information to aquire.

Problems such as these have been addressed in literature in various fields of
research, including the aforementioned ones.

The primary goal of this chapter is twofold; first, to describe some different fields
that are related to IA (the important function for decision-making) and, second, to
promote large-scale IA systems. By large-scale system, we mean

a system that includes many heterogeneous and distributed sensing re-
sources and that has conflicting objectives and insufficient resources.

1In this chapter, we call such actions non-sensing actions.
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We also assume that it is used in a “challenging” environment, that is, e.g., both
inaccessible and dynamic.2

Section 3.2 explains the boundaries of this chapter. Section 3.3 discusses and
exemplifies the relevance of IA in a selected set of research fields. Section 3.4
presents two important aspects of IA, facilitation and focus of attention. Section
3.5 describes a useful model of the relationship between the actual environment
and the observers internal representation of the same. Section 3.6 briefly describes
a taxonomy of the three types of perception activities for IA which we propose.
Section 3.7 through 3.9 give examples of literature that belong to each of the three
activities. Section 3.10 surveys literature that deals with facilitation of IA and
Section 3.11 surveys literature that deals with focus of attention. Section 3.12 tries
to characterise large-scale IA. The final sections, Section 3.13 and 3.14, provides a
brief summary and conclusion, respectively.

3.2 Extent of survey

This literature survey covers efforts in various research fields, including agent the-
ory, robotics, computer vision, target tracking, decision theory, sensor and resource
management. The amount of literature in some of these fields is enormous, and we
could, hence, easily lose focus by getting into too much detail (details such as dead-
lock resolution and properties of utility function). Instead of delving into details of
general subjects, if necessary, we will simply refer to relevant literature. We have
tried to concentrate on literature that explicitly deal with acquisition of information
or support for it. Since the purpose of the study is to pave the way for automatic
large-scale IA in real-life environments, we are especially interested in distributed
multi-sensor systems operating under various constraints and uncertainty.

The processing of acquired information for situation assessment (including data
fusion) is not within the scope of this survey and is thus not explicitly discussed
(see, for instance, [HL01, Hal92b, AG92, WL90e] instead).

3.3 Related fields of research

To explore and develop techniques for automatic IA, it is useful to closely study
its context and related fields of research. In Section 3.4, we promote three types of
activities and two aspects of IA to decompose the subject into parts that can be
studied and considered more or less independently. We use this classification as a
rough outline for the rest of the chapter.

The following subsections briefly discuss how the concept of IA arises in a few
disparate research fields. The efforts in these fields are by no means mutually
exclusive. On the contrary, they are to a very high degree intertwined. This fact

2Environment and sensing resource properties are discussed in Section 2.2.2 and 2.4.4, respect-
ively.
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reflects the high interdisciplinary importance of IA and related techniques. Section
3.3.1 relates IA to agent theory, and Section 3.3.2 discusses the relevance of decision-
making. Section 3.3.3 considers the relation between IA and resource and sensor
management, Section 3.3.4 gives examples of IA in computer vision and Section
3.3.5 presents IA in robotics. Section 3.3.6 mentions a few techniques that can be
used for realizing IA rather than study it explicitly.

3.3.1 In the agent framework

To situate and motivate IA it is rewarding to consider the agent metaphor. A unique
definition of agent in computer science does not exist, but many researchers agree
that an agent is some entity, situated in some environment, capable of perceiving
its environment (using sensors) and acting in it (using various actuators).[RN95]
This comprehensive definition applies to biological systems (such as mammals) as
well as artificial ones (such as mobile robots or complex decision support systems).
Figure 3.1 shows a simple agent architecture.

Environment state

functionfunction

base
Knowledge

actions

perceptsPerception Action

Agent

stimuli
state

Figure 3.1. A simple agent model

With this agent definition, we are willing to claim that virtually every system
with an interest in IA can be embraced by the agent concept. Even decision sup-
port systems which have no explicit means of interacting with its environment are
embraced by the agent concept since the user of the system controls the agent
actuators, and hence, constitutes the lacking action part of the agent.

We here adopt a rather general view of an agent. We do not assume that an
agent is a physically delimited entity. It could be physically distributed, but at
the same time possess the typical agent properties (i.e., capable of perceiving and
acting).

The agent concept has attracted a lot of attention and generated plenty of
often interdisciplinary research, spanning, for instance, computer science as well
as psychology and ecology. Consequently, knowledge has been generated that is
useful in IA (e.g., techniques in decision-making and resource allocation). And,



3.3. Related fields of research 43

conversely, being an integral part of agent technology, advances in the theory of IA
contribute to research in agent theory.

3.3.2 Decision-making and action selection

IA is related to the issue of making optimal decisions in two ways. First, making
decisions on sensing actions, e.g., what information to acquire (i.e., what sensing
actions to take), may be formalised as decision-theoretical problem. Second, acquis-
ition of information supports decision-making by providing the decision-maker with
useful information.3 The second alternative is probably the most common since it
associates the utility of acquirable information with the expected payoff of future
non-sensing actions. Thus, it corresponds well to the ordinary decision-theoretical
formalism.

An important difference between making sensing actions and other (non-sensing)
actions is that rather than making decisions for manipulating the environment in
order to achieve objectives, the purpose of IA is (normally) to have as little effect on
the environment as possible4 while acquiring information to support goal-directed
decision-making.

In [How66], the ideas of Shannon’s information theory [Sha48] is extended to a
formalisation of the value of acquirable information, i.e., so called information value
theory. Further, in [RN95], information value theory is used to select a sensing
action (if any cost-effective sensing action is conceivable); a step which precedes
the step of deciding which non-sensing action to take. A more thorough discussion
about decision-theoretic deliberation about sensing actions is provided in [Pea88a].
The computational constraints expressed therein results in a myopic policy for
sensor control under the assumptions of the viability of a short time horizon for
sensor control and that sensor actions are approximately independent.

Decision-making under the name “action selection” has been surveyed in [Pir98,
Hum97].

3.3.3 Resource and sensor management

Resource management is the continuous process of allocating, planning, coordin-
ating and scheduling a system’s resources (e.g., financial and physical) to meet
some objectives, possibly given some constraints on the usage of the resources (this
tentative definition is similar to [PCCB97]). Resource management is discussed in,
for instance, [Ben83]. The purpose of the before-mentioned reference is business
economics, but the ideas are generally applicable. The book describes resource
management in three subprocesses: directional thinking, resource allocation and
resource administration.

3Sometimes the purpose is simply to maintain a sufficiently “correct” state description of the
environment.

4This is obviously the case since side-effects on the environment, caused by sensing actions,
may render the acquired - and thus possibly out-dated information - useless.
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Directional thinking is the subprocess of defining and revising the objectives
of the system in question. The objectives will typically change with the evolution
of the environment and the needs of the user of the system. Directional thinking
corresponds to “focus of attention” of IA discussed in Section 3.4.

Given the objectives established by directional thinking, the resource allocation
subprocess decides how much system resources to use, and where and when to
use them. It seems that there is a symbiosis between directional thinking and
resource allocation. Directional thinking directs the resource allocation, but the
allocation, in turn, should be able to direct the directional thinking by describing
what resources are missing, if any, to satisfy the objectives.

Resource administration deals with planning and control of resources. Resource
allocation and administration subprocess both encompass most of IA including the
other feature mentioned in Section 3.4, facilitation.

Since resource management is a much wider problem than that of IA, we shall
not discuss it any further. However, it is important to bear in mind that IA is a part
of resource management, and that resources necessary for IA might be preempted
(i.e., made unavailable) by resource management if those resources are needed for
system tasks of higher priority.

More directly related to IA is sensor management. Sensor management is a
natural subset of resource management5 and its goal is loosely to “manage, coordin-
ate, and integrate sensor usage to accomplish specific and often dynamic mission
objectives.”[NN00]

In [BP99a], the authors prescribe two necessary conditions for sensor manage-
ment to be applicable: (i) sensing resource agility (i.e., that the sensor actually has
some degrees of freedom to manage) and (ii) a lack of sensing resources. Further-
more, three important aspects of sensor management implementation are identified.
Those are choice of: (i) architecture (i.e., the specification of the location of the
management process, e.g., centralised or decentralised); (ii) scheduling technique
(e.g., brick-packing); (iii) decision-making technique (deciding which tasks to per-
form).

There are several instructive surveys in the field of sensor management, includ-
ing [XS02, NN00, MM94]. Furthermore, [Ben02] includes an overview of sensor
management tasks and requirements.

3.3.4 Computer vision

In the field of computer vision, IA is represented by the concepts of active perception
or active vision (when only visual sensors are involved). Active perception is roughly
defined in [Baj88] as the active use of sensors for perception (with a focus on the
modelling and control strategies for perception). It has been appreciated that some
problems in computer vision can be greatly simplified by employment of active
perception.[AWB87]

5To emphasise this relationship, it is sometimes called sensor resource management.[BP99a]
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The ambition in [Rim93] is similar to ours, but restricted to computer vision. In
a way similar to this thesis, [Rim93] incorporates the vision (sensing capabilities)
into an agent model, to emphasise the importance of the context of the sensing
system.

In [BPP99, PPGKB96], the problem of IA for fusion of information is addressed.
The term active fusion is introduced to describe a system that has a wide range
of actions available, including both external actions, such as moving a camera for
better views (so called view planning), and internal, e.g., activation of image ana-
lysis algorithms. We note the resemblance of the extension of active fusion to
information fusion with the function of process refinement explained in Chapter 2.

Furthermore, an architecture and control flow of active fusion is presented. It is
query-driven and refines a solution to a query iteratively using its active control until
it has reached a satisfactory level of confidence (or until no further improvement can
be achieved). Applications of active fusion are also implemented based on different
techniques for management of uncertainty (probability theory, Dempster-Shafer
evidential theory and possibility theory) and compared.

[TAT95] is a survey about sensor planning in computer vision. The goal of
sensor planning is stated as that of generating appropriate sensor configurations
based on a priori information (e.g., knowledge of the current task or query and
models of observed objects and available sensors). The survey identifies three dis-
tinct problem types of sensor planning for computer vision: object feature detection,
model-based object recognition and localisation, and scene reconstruction. The first
type corresponds to problems that require a vision sensor to make features of an
object (with known identity and pose), e.g., visible, in-focus or magnified, according
to the requirements of the task. In contrast to problems belonging to the first type,
in problems of the second type the identities and poses of objects are unknown
and should be estimated. For a problem of the third type “a model of the scene is
incrementally built by successively sensing the unknown world from effective sensor
configurations using the information acquired about the world to this point.” The
focus of the survey in [TAT95] is on the first type.

3.3.5 Robotics
Robotics represents the physical incarnation of agents, and, thus, naturally inherits
the need for IA. Actually, the need for perception and related challenges are accen-
tuated in robotics since its relationship with a real physical environment is inher-
ent.6 Mobile robots use sensing resources, such as cameras, sonars, laser scanners,
primarily to avoid obstacles, detect relevant objects and to map its surroundings.

Information gathering is the name used to denote information acquisition in
[Hag90]. A theory for information gathering is presented which entails four basic
principles: task-direction, uncertainty, computational and representational limita-
tions. Task-direction acknowledges that the origin of information are the tasks the

6A real physical environment normally has the most difficult environment properties described
in Section 2.2.2.
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system has to perform to fulfil its objectives. In our work, we discuss this issue
briefly in Section 2.4.1. Uncertainty in information is an inherent feature of IA.
We discuss this issue in Section 2.2.3. Computational limitations concerns the fact
that the amount of resources available for reasoning about actions may be limited.
In this thesis, we do not discuss that issue explicitly. Finally, representational lim-
itations means that it is neither feasible nor desirable to completely represent the
environment and observed information. We both support and discuss this claim in
Section 3.5 of this chapter.

An interesting distinction is made in [Hag90] between the environment state
space and the information state space. Non-sensing actions operate on the envir-
onment space and sensing actions on the information state space. This distinction
is introduced to facilitate analogous planning for both types of actions.

The method for IA presented in [Hag90] is based on Bayesian decision theory,
meaning that information is evaluated with respect to future system actions (i.e.,
non-sensing actions). The cost of sensing actions is considered to decide if any
sensing actions are feasible. A batch solution, which considers sequences of actions,
selects the sequence that maximises observation payoff. This approach appears to
be most suitable for static environments. Another approach is the sequential one,
which considers the contribution of a single sensing action.

In [MDW94], a complete data fusion process for decentralised multi-sensor sys-
tems is presented. It is applied to the common problem of mobile robot naviga-
tion. Environment features are observed in order to localise the robot platform and
sensors coordinate using a distributed negotiation algorithm.

3.3.6 Indirect fields of research

There are many techniques available that are not directly related to IA but which
are essential for efficient implementation thereof. Such techniques include schedul-
ing, planning, and various kinds of protocols for coordination of distributed sensors.
We do not discuss such entirely independent techniques explicitly in this thesis.
However, they are discussed extensively in other literature.

3.4 Salient aspects of information acquisition

We say that the system skill of IA is realized through one or, more likely, a number
of perception activities. A perception activity is, generally speaking, a process that
provides the system that needs the information with measurements and observa-
tions. A taxonomy of perception activities is presented in Section 3.6.

In the works we survey in this chapter, two salient features of perception activ-
ities emerge: facilitation and focus of attention. Facilitation concerns making ob-
servations possible and includes respecting constraints of the perception process,
e.g., to minimise energy consumption [PH03] or to make sure that sensors do not
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interfere with each other. It might also involve altering the observation scope (scope
properties of resources are suggested in Section 2.4.3).

Focus of attention involves deciding what information is relevant for overall
system objectives rather than deciding how to acquire information in the best way.

In some works, one or both of these features are very subtle. Contrarily, in
works that solely deal with facilitation or focus of attention, the type of perception
is secondary or irrelevant. Often perception activities include at least the aspect
of facilitation, whereas the focus of attention is often assumed to be more or less
fixed.

Section 3.5 provides a model of the relationship between the environment that is
observed and the representation of the environment that the system maintains. We
find this model to be useful for the further discussion about perception activities.
Section 3.6 classifies perception activities depending on the way they contribute
to the aforementioned environment representation. Literature amenable to this
classification is surveyed in Section 3.7 through 3.9. Literature representative for
the IA aspect of facilitation are discussed in Section 3.10 and focus of attention in
Section 3.11.

3.5 In the eye of the beholder

For the continuing discussion about perception activities, we need to provide a con-
text for IA. We start with two essential components: the environment (sometimes
referred to as workspace or world) and the observer (i.e., observing agent). The
environment is the source of the information that the observer requires for a suc-
cessful operation. The observer may be a complex and distributed entity, composed
of many coordinated sub-components (i.e., they are coordinated in the sense that
they are able to and interested in exchanging information). The observer is capable
of perceiving the state and take actions (in this chapter we are mainly interested
in those actions that support the IA process).

As depicted in Figure 3.2, we distinguish between the environment state as it
appears to an observer and the control processes that forces it to evolve.

The control processes that affects the evolution of the environment state ap-
pears in many shapes. Some, such as those conforming the state to be consistent
with the physical laws of nature, are disembodied and permeates the entire world,
while others originate from discriminable entities that are part of the environment.
Typically, entities that harbour such control processes are biological beings or ma-
chines. The latter kind of control processes, typically, has a pretty well defined local
effect on the world, but the environment as a whole is more likely to express some
emergent behaviour, dependent on both the interactions of the control processes
and the evolving state.

In Figure 3.2, the environment states have been given dissimilar cloud-like
shapes, to emphasise that the environment evolves over time. What the figure
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Figure 3.2. The environment evolves due to control process that interact. An
information acquisition system has the ability to sense the state of the environment
using sensors and may infer properties of the governing control processes.

fails to capture is that the evolution is continuous in general, rather than discrete
as it may appear here.

We make a clear distinction between the true environment state (i.e., the ground
truth) and the environment representation of the observer. We consider the envir-
onment state to be a complex entity that can be observed. We do not attempt
to parameterise the environment and characterise it with variables. The reason
for this is the, in general, continuous nature of the environment (e.g., a physical
environment). The information content of the environment could be quantified
in variables, but there is generally no unique way to accomplish that. In other
words, it is not the responsibility of the environment to interpret itself, it is up to
the observer. For instance, aspects of a physical environment may contribute to
different variables such as states of molecules or states of aggregates of molecules.
A specification of which composites of molecules should be assigned a higher level
interpretation of the state should not be included in the environment, it should be
up to actors and observers in the environment to make such a distinction.

The environment representation (ER), on the other hand, is typically composed
of a jumble of discrete and continuous variables and hypotheses, representing the
knowledge of the observer. The information in the ER is rarely fully reliable and is
contaminated with uncertainties, expressed in probability functions over variables
and hypotheses. The ER only contains information that is relevant to the observer
(i.e., information that it regards relevant for its selection and execution of actions),
and, in general, it only expresses a belief about a small part of the environment
state. The limited view of the environment of the observer is imposed by its current
objectives (or goals). In effect, the objectives (by affecting the focus of attention
aspect) decide the structure of the ER, the environment model (EM). Apart from
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limiting the extent of the ER, objectives also greatly affect the selection of actions
for IA.

Another salient feature of the ER is that it, in contrast to the environment state,
is a composition of information7 of varying age. Thus, whereas the environment is
innately “up-to-date”, the ER may be that just partially, or more likely, not at all.

Furthermore, in addition to the ER, the observer may also maintain information
about itself, its internal state representation (ISR). The ER and ISR jointly consti-
tute the knowledge of the observer. Some information in the ISR is quite reliable
(e.g., battery power, if the agent has no reason to disbelieve its internal sensing,8
and other less reliable (e.g., the agent’s exact location in the environment).9 In this
thesis, however, we mainly focus on the observing agent’s ER.

Finally, the ER may not only express the observer’s belief about environment
state, but also the state of the control processes that influence the evolution of the
environment state.

3.6 A taxonomy of perception activities

There are basically two types of information that an IA process would like to obtain:
properties of the environment state itself, and properties of the control processes
that affect the evolution of the environment. Often, environmental properties may
be acquired instantaneously, using suitable sensing resources. Properties of the
driving control processes, are even more difficult to estimate, and generally have to
be inferred by observing a temporal sequence of environment states.

For both types of information, we might want to (1) encompass all relevant in-
formation by incorporating missing (i.e., yet undetected information) into the ER;
(2) monitor the subset of the environment that has generated interesting informa-
tion in the past; (3) discern a more detailed or certain understanding about some
interesting part of the environment. Note that none of the literature surveyed here
addresses explicitly deals with the acquisition of information about control pro-
cesses. However, the products of the efforts surveyed may be used to infer the state
of control processes.

Our classification is model-based rather than technique-based, meaning that
we categorise acquisition activities depending on the type of information they
provide, rather than the techniques they employ. All types of IA might involve
techniques such as management of uncertainty (which motivates use of Dempster-
Shafer theory,[Sha76] Bayesian inference [Pea88b] and fuzzy set theory,[Zim91] etc)
and optimisation (which motivates use of mathematical programming techniques,
evolutionary algorithms, etc).

7A “piece” of impression of the environment state.
8The process of measuring internal state is sometimes referred to as proprioception.[RN95]
9Compare to the important issue of localisation in mobile robotics.



50 Chapter 3. Towards large-scale information acquisition

We propose the following taxonomy of activities for IA, based on the model of
the relationship between the environment and internal state explained in Section
3.5:

Incorporation The contents of the ER should change when phenomena, events
or properties, of interest of the environment are detected. It could also be
that the system loses interest in some part of the environment (perhaps due
to altered mission objectives) and decreases the extent of its ER.

Monitoring Phenomena, already incorporated into the ER, might evolve over
time and, if so, must be monitored. E.g., target tracking is a monitor activity
that seeks to update position estimates of incorporated objects.

Discerning Sometimes it is necessary to identify more details of some entity or
phenomenon in the ER perhaps to refute or confirm a hypothesis.

Note that even though aspects of IA are conceptually disparate, in applications
the distinction is not so clear. For instance, monitoring is in some sense a continual
incorporation activity that performs some administrative work to maintain tracks
using a priori information for detection. Some works are composed of both an
incorporation part and monitoring part. Furthermore, monitoring may result in the
unintentional acquisition of additional information that contributes to discernment
of the ER.10 Conversely, a discernment activity, by identifying the true type of an
object, might result in a performance improvement in a monitoring activity, if a
more precise dynamic model of the object can be selected.

For comprehensive and large-scale IA systems, hierarchical layering is a useful
architectural design to manage the normally immense complexity of such systems.
In a hierarchically layered control system, a high-level node (nodes encompassing
perception activities in our case) typically has a long planning horizon and a broad
(possibly global) responsibility, and is capable of giving coarse orders to lower level
nodes. Correspondingly, lower-level nodes have short time intervals for selecting
actions, local responsibility, and has possibly direct control of sensors. Hierarchical
layering is also useful for managing the complexity of information in the ER.

Hierarchical layering for control and environment model representation are used
in, e.g., the RCS system,[Alb99] the data fusion and resource management tree
architecture,[BS01] and the logical sensor/actuator framework.[BG97]

The following three sections will give examples on literature related to each of
the aforementioned perception activities.

3.7 Incorporation
The perception activities surveyed in this section detect and incorporate “new”
information into the consciousness of the observing agent, i.e., making the agent

10Information acquired through monitoring might, e.g., be related to some available a priori
information that infer further information about a tracked object.
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aware of the (hypothesised) existence of relevant environment phenomena. Typ-
ically, this involves detecting interesting entities and instantiating their estimated
properties in the ER. What is interesting is dictated by the observer’s objectives
and the structure of the new information is given by the EM. A phenomenon is
usually an object or an event.

The literature we study in this section mainly deals with applications for object
detection. In practise, detection is uncertain and one can rarely say for sure that
an interesting object has been detected, rather one must assign some confidence to
an alleged detection.

In [Pen98], it is assumed that a hypothesis about the approximate whereabouts
of a stationary target is available. A set of sensors is managed to improve their joint
probability of detecting the target. Fusion of detection probabilities is performed
using the so called OR-rule11

Pd(D|T = x, r1, . . . , rN ) = 1 −
N∏
k=1

(
1 − Pd(D|T = x, rk)

)
,

where Pd(D|T = x, ri) is the probability of sensor i, at position ri, detecting a
target at position x.

Since the exact position of the target is unknown, the probability of detection
is the expected detection probability over all positions using the a priori hypothesis
of the target position.

In the work of [Pen98], the individual detection probabilities, Pd(D|T = x, rk),
are modelled with approximate Gaussian distributions. If the target position hy-
pothesis, also represented by a Gaussian distribution, is peaked, then the sensors
tend to position themselves close to the peak. But if the hypothesis is more vague,
they tend to spread to get better coverage.

The process of positioning the sensors is proposed as a hill-climbing search where
the initial positions is a random sample of the a priori target position distribution
and where the sensors simultaneously try to increase the joint detection probability.
The off-line search terminates when the increase in detection probabilities is below
some threshold or after a predefined maximum number of iterations. The sensor
positions that result from the search are the initial sensor positions where the
sensors are first deployed. A target is considered to have been detected when one
sensor has reported detection a fixed number of times.

Subsequently, sensors start to send observations or report lack of observations.
A new set of sensor positions are sampled from the now updated target position
distribution and the sensors are redeployed.

The work also discusses how this approach can be used on a mobile target. How-
ever, this work does not address time delays and similar issues that are associated
with relocation of sensors and which are critical if the target is moving.

11According to the OR-rule, the fused probability of detection of a target in position x is one
minus the probability of no sensor detecting it, given that the target is actually in position that
position.
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In [McC98, HM97], the objective is to select sensors with different properties
in order to efficiently detect events. The event detection is exemplified by an ap-
plication of part assembly using a robotic manipulator. The assembly procedure
is described as a sequence of events. For a successful assembly, all events have to
be detected by the sensing processes available to the robotic system. A detected
event marks the termination of the previous assembly motion and the initiation of
the next.

Event detection is, in the example, performed by three sensing processes (or
sensing services, using the terminology of Section 2.4.2) that utilises position and
force sensors. The sensing processes have the same output type, i.e., a tuple in-
cluding the detected event type and a quantified confidence of the detection, but
the running times and confidence levels differ. A stochastic dynamic programming
approach is selected to pre-calculate the order which the sensors should be activated
for every state of the assembly. During the assembly process, the event detection
confidence of the first selected sensing process is insufficient is too low, the next
sensing process will be consulted, and so on until either a sufficient confidence level
has been reached (by successive fusion of the results of the sensing processes) or
the sensing processes have all been exhausted.

Although the example application given is that of robotic assembly, the author
[McC98] argues that the discrete event framework can be used recursively in a
hierarchy to cover control from the top-level of the factory itself down to individual
work stations. In such a hierarchical discrete event control system, a completed
assembly on the robot level could be interpreted as an event in a higher level.

Even though the event detection problem here is applied to measuring the state
of the system itself, there should be no difficulties transferring it to a context where
the discrete events refer to actions of some observed process in the environment.

The aim of [CGH96] is to find observation positions for mobile sensors, where
they both are likely to detect interesting objects and where they are unlikely to
be observed themselves. The proposed solution, which is based on decision theory,
consists of two parts: planning of trajectory and selection of camera parameters
(i.e., pan/tilt angles). Sensors cooperate by observing complementing areas, but
no fusion of acquired information is performed. A model of the whereabouts (over
time) of the interesting objects is assumed.

3.8 Monitoring

A common problem is to monitor some part of a “real” and complex environment
that evolves over time and that can only be interpreted through noisy observations.
Works that deal with this problem, i.e., that of estimating the state of the inter-
esting subset of the environment (called system state in the literature), typically
formulates the problem as an optimisation of some objective function (with respect
to various constraints on the use of the sensors, i.e., facilitation constraints) that
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corresponds to the expected quality of the monitoring by controlling sensor para-
meters accordingly. The objective function used is dependent on the type of the
monitoring technique in use.

In principle, the preferred sensing action is the one that optimises the expected
quality of the state estimation of the following observation. Quite often an optimal
solution is intractable and approximative heuristic techniques are proposed.

While focusing on the accuracies of predicted measurements, works that perform
monitoring rarely consider the value of the information they acquire. If sensing
resources are shared (being useful also for other purposes than IA), then also the
relevance of the obtained tracking accuracies for high-level goals must be considered.

In the recursive filter approach to this problem, observations are processed se-
quentially to produce an up-to-date probability density function (pdf) over possible
system states at discrete time steps. The procedure of the recursive filter is per-
formed repeatedly. Each step comprises two stages: prediction and update.[AMGC02]

In the prediction stage, a model of the evolution of the interesting part of the
environment, the so called system model, is used to predict the pdf at the time of
the next observation. The system model is a function of both the current state of
the system and a noise component, the process noise.

In the update stage, a measurement model is used together with the latest
observations to update the predicted pdf. The measurement model is a description
of how the sensor output is dependent on system state and what uncertainty is
attached to it.

The system and measurement models must be supplied somehow by the designer
of the monitoring system and reflect the monitoring system’s a priori knowledge of
the environment it is observing.

Updates can be performed using Bayes’ theorem,

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (3.1)

where the normalising denominator is

p(zk|z1:k−1) =
∫
p(zk|xk)p(xk|z1:k−1)dxk (3.2)

In the equations above, xk is the system state at the time of observation k,
and zk the observation measurement itself. In Equation 3.1, p(xk|z1:k−1) expresses
the predicted pdf from the previous time-step, p(xk−1|z1:k−1), estimated with the
system model p(xk|xk−1) by marginalising over xk−1,

p(xk|z1:k−1) =
∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1. (3.3)

This formulation of the Bayesian recursive filter is sound but unfortunately
unpractical in the general case. However, practical solutions are available under
the assumption of various simplifications or restrictions.
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The Kalman filter is a recursive filter that is the optimal solution under its
restrictions. This technique is applicable if the process and measurement noise
variables are governed by known Gaussian distributions with zero means, and both
the system and measurement models are linear in the state and noise variables.

A frequently referenced work, that has inspired many succeeding works, is
[Nas77] in which sensors are allocated to track moving targets. The solution is
reached using linear programming minimising the cost (i.e., in this case, the ex-
pected measurement errors expressed in properties of the Kalman filter) of possible
sensor-to-target allocations.

In [Ben00], the problem is to select a measurement policy for some time period
for tracking a single target using a Kalman filter. The policy dictates which of
the available sensors should be active at what time. The objective function that is
constructed is a weighted linear combination of the cost of using sensors and the
expected state prediction accuracy.

Also relying on a Kalman filter, [KP98] selects (i.e., activates) the sensors that
are expected to achieve at worst some desired maximum state covariance while
minimising the computational load on the tracking system (i.e., by selecting as few
sensors as possible). The authors call this approach to multisensor management
covariance control. Actually, three separate objective functions for the covariance
control algorithm are proposed and compared to a reference algorithm that always
uses all available resources.

To mitigate the problem of linear state evolution required by Kalman filtering,
the interacting multiple model Kalman filter (IMMKF) has been developed. Us-
ing several Kalman filters (one for each state evolution model), different kinds of
evolution can be tracked. In [SK98], e.g., one filter tracks uniform motion and an-
other turning motion. The estimation of every filters is weighted, with a probability
value which the system has assigned to the particular model, and combined into an
“expected” state estimate, X̂(k|k).

X̂(k|k) =
∑
j

µjX̂j(k|k),

where X̂(k|k) is the updated and combined state estimate at time k, X̂j(k|k) is the
updated state estimate of filter model j and µj is the probability of model j.

To evaluate various senor-to-target allocations, the system evaluates their ex-
pected discrimination gain. This is the information theoretic Kullback-Leibler (KL)
measure12 of the state estimation density making an observation compared to not
making any observation at all (just predicting). The sensor selection is finally
solved by formulating it as a linear programming problem with a constraint on the
maximum number of targets tracked during a time step.

The work in [SK98] is extended in [DN01] to be performed in a distributed man-
ner to facilitate robustness of the tracking system. Inspired by the game theoretic
concept of coalition formation, the authors make sensors form groups (the set of

12Also called cross-entropy.
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groups is a partition, denoted p, of the sensor set), where each group tracks the
same targets and fuse their measurements.

The desired result is the assignment of sensor coalitions to targets such that the
total measurement utility, v(p), of the sensors is maximised. The optimal solution
is formalised as a maximisation over the all partitions where v(p) for every p is the
solution of a linear program. The problem is intractable already for small num-
bers of sensors and targets, and a greedy heuristic, involving sequentially assigning
coalitions that are expected to measure targets beneficially, is employed to lighten
the computational burden.

This work discusses both a centralised and a distributed algorithm. The cent-
ralised is roughly described above. In the decentralised one, each sensor node
calculates a preferred local decision of which coalitions should track which target
based on local information and received estimates from the other sensors. The
local decisions of all sensors are shared among the sensors and these decisions are
combined in every sensor node to create a final, and coherent, sensor to target
assignment.

The particle filter approach is not optimal and is computationally more de-
manding than Kalman filtering, but has the important advantage that it relaxes
the linear and Gaussian distribution requirements of Kalman filtering. This ad-
vantage and the rapid increase of computational resources has recently made the
interest in particle filtering blossom.

The particle filter approximates the p(xk|z1:k) density in Equation 3.1 using a set
of particles, i.e., weighted samples of the approximated distribution. The accuracy
of the approximation can flexibly be selected by varying the number of particles.
An increase in the number of particles brings the approximation increasingly closer
to the density function p(xk|z1:k) that is approximated.

In [DVAD02], the problem of selecting one sensor from a set of sensors to observe
(i.e., measure) a target is considered. The best sensor to select is the one that gives
the best KL measure for the current time step between the expected updated density
(“expected” since the measurement obtained from a selected sensor can typically
not be known in advance) and the predicted density. This work relies on a particle
filter based tracker that provides an approximate description of the updated pdf,
p(xt−1|y1:t−1). The subsequent process of finding the sensor that is expected to
give the best KL measure involves a sequence of Monte Carlo samplings from the
particle set.

A particle filter is also used in [KKI03] to maintain the target state pdf. For the
sensor management part of the work, which involves selecting a sensing action for
the current time step, however, the objective function for sensor control is based
on the Rényi information divergence measure (also known as alpha-divergence),
denoted Dα(f1‖f0),

Dα(f1‖f0) =
1

α− 1
ln

∫
fα1 (x)f1−α

0 (x)dx
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Here f1 and f0 are two pdf:s to compare, f0 typically being the predicted density
of the target state and f1 the expected updated density (for some sensor action).

The Rényi information divergence measure is a generalisation of the KL meas-
ure, and equals the KL measure when α approaches one. The authors, using this
information measure, arrive at fairly simple objective function compared to the one
produced in [DVAD02].

Just as [KKI03], [Mah03] addresses the issue of selecting sensing actions to
track an unknown number of targets. The information theoretic objective function
developed, however, is somewhat different.

In [HKBS02], sensor management for tracking of a single target is described.
This work considers the time at which sensor should be deployed not to lose the
track, how many and where should the sensors be placed. It also considers which
already deployed sensors can be of further use if only a limited number of sensors
can be used at the same time. For this work, the activation of sensing actions is
primarily driven by the expected development of the Fisher information matrix
which prescribes optimal performance of the current sensor configurations.

For more on particle filtering see [AMGC02, Ber99]. The basics of Kalman
filtering is thoroughly explained in [BSF88].

A common problem to most of the sensor selection algorithms surveyed here is
that of time complexity as the number of possible sensor sets is 2Ns , where Ns is
the number of sensors.

3.9 Discerning

For applications that senses a real physical environment, the corresponding ER is
most likely vague and uncertain, e.g., the information of the current state being
represented by a probability function over different hypotheses. Discernment activ-
ities, such as those surveyed in this section, address the problem of making the
ER more clear, e.g., by discovering values of yet un-sensed object properties or by
improving the estimation (i.e., decreasing uncertainty) of variable values.

Classifying a known number of unknown objects within some time interval is
the problem in [Cas97]. The classes of objects are further assumed not to vary
over time. The sensors used report a classification and the estimated quality of the
classification. The classification reports are used to update the belief of the true
class of each object (using Bayes’ rule) during the time interval. At the end of the
time interval, the final classification decides the performance of the classification
system.

Sensors have multiple sensing modes (typically of different quality and cost).
Facilitation constraints are put on the sensors in that their combined usage cost
should not exceed a certain level. A decision rule is desired which for every discrete
time step prescribes what sensor modes and what objects to observe. A stochastic
dynamic programming approach is applied. The usage cost constraint is relaxed
to mitigate the resulting computational complexity. It appears that the approach
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presented in [Cas97] is most suitable when the observed scene is static and that the
observation scope of the sensors always include the objects.

[CNR02, CNR01] describes a multi-target classification problem containing a
set of targets and a set of sensors. Each target is assumed to belong to one of m
classes and each target has n measurable attributes. Every class i has a fuzzy set
membership function for every attribute k, fki (mk), which for every sensor meas-
urement, mk, states to what degree (from zero to one) a target, that was sensed,
belongs to that class. Attributes are rated off-line according to their potential to
discriminate between classes. The attribute rating is achieved using a metric called
Separation Degree that compares how well of pair of membership functions are
separated. The IA idea is to first acquire information about attributes that are
more likely to isolate the right class of the target. The expected benefit of this
approach is to swiftly identify targets correctly, which is fruitful in real-time recog-
nition problems. Sensing actions, in this case sensor selection and mode selection,
are given by the attribute selection. It also considers how contextual information,
such as environment properties, target orientation, signal to noise ratio, etc, affects
classification. If such contextual information is available, possibly from use of some
exogenous sensors, a more sensitive selection of sensor modes can be made.

In [Lee99], sensors (possibly heterogeneous) are modelled to yield as a unified
output a tuple including an estimate of an environment feature and a correspond-
ing uncertainty measure. The method for IA proposed performs a search in the
parameter space by iteratively updating the controllable parameter vector of the
system, p, until an improvement of system performance can no longer be expected.
The parameter update is the result of a combination of multiple objectives. The
update should respect parameter and system constraints (i.e., to facilitate observa-
tions), maintain or obtain an acceptable measurement performance (to the extent
this can be estimated from parameter selection), and minimise sensing costs (the
cost expressed in, e.g., time or energy of altering p).

In the field of computer vision, view planning is a typical discernment activity.
The objective is to achieve a classification of some observed object or objects by
repeatedly changing camera parameters (typically position and direction) until the
probability of correct classification is satisfactorily high. An example is given in
[KS00] where an objective function, expressed in camera parameters, is proposed.
The objective function takes both opportunities and costs of parameter selections
into account.

Another example is [BPP99] which uses the eigenspace object recognition method.
The action space contains movements of the camera. For comparison, the uncer-
tainty of the classification results has been modelled by probability theory, possib-
ility theory and Dempster-Shafer theory of evidence. In all approaches, the camera
movement ∆Ψ that reduces an entropy reduction based utility function the most
is selected. In the probabilistic view planning, the utility function looks like this:

u(∆Ψ) =
∑
oi,j

P (oi,j)∆H(∆Ψ; oi,j),
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where P (oi,j) is the probability of observing object i with orientation j, and
∆H(∆Ψ) is the expected (information theoretic) entropy reduction by selecting
movement ∆Ψ.

The usefulness of the three approaches is justified by comparing their results
to the results of an algorithm that selects random camera movements. From their
experiments the authors conclude that the probabilistic approach is the most be-
neficial in their application.

A more elaborate example of view planning along with an extensive survey of
object recognition systems is presented in the PhD thesis [Roy00]. The known
objects of the system are represented with aspect graphs. Each node in the graph
represent an aspect of the object, i.e., a set of views of the object which appear
identical with respect to a specific set of perceptible features. Edges between nodes
represent that the aspects are adjacent from the observer’s point of view. Thus,
the aspect graph might be thought of as a representation of an object expressed in
the capabilities of a particular observer.

In brief, the view planning initially extracts the features from an initial, ran-
dom, view. The acquired features indicate probabilistically the most likely type of
aspect (or class) observed. However, an aspect class is most likely shared by several
known objects and the related uncertainty is expressed in a probability function on
candidate objects. Based on the probability function, the best reconfiguration (in
this case, the best move) of the camera is calculated.

We consider works which involve selecting information heterogeneous sensors
(see Section 2.4.4), e.g., sonar, camera, etc. to acquire different types of information
to fall into the discernment category. However, we are not aware of any such works
in the literature.

3.10 Facilitation

Sensing resources may require many types of techniques to facilitate observations;
techniques that are largely independent of what the application is. In fact, some
processes are purely concerned with facilitation and do not directly affect the ER.

Admittedly, the facilitation concept is somewhat indistinct. In many circum-
stances, facilitation is inherent of perception activities. E.g., the control process of
relocating sensor platforms is an example of a well integrated facilitation aspect of
a perception activity. Another example are the requirements on sensors that of-
ten appear as equality or inequality constraints in solutions to sensor management
problems. Sometimes, however, as noted facilitation activities can be separated
from perception activities and treated independently.

Here, facilitation is considered to be techniques that explicitly support acquisi-
tion of information, even though others might also be critical for successful practical
IA (e.g., securely encrypted communication in a distributed sensor network).

We suggest a classification of two types of facilitation processes: resource con-
straint management and scope management. Resource constraint management
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deals with constraints that belong to the usage of sensing resources. For instance,
consider the resource property availability (explained in Section 2.4.3). Resources
might become unavailable due to interference with each other. We consider avoiding
interference to be an act of constraint management. More commonly treated issues
are management of energy consumption and limited transmission rate. Hence, re-
source constraint management alters the set of possible sensing actions and their
utilities, but it does not directly decide the sensing action.

Scope management concerns beneficially altering the conditions for perception.
Examples include relocation of sensor platforms,[CGH96] illuminating a scene for
image acquisition,[TAT95] dynamical formation of sensor resources (i.e., forming
abstract sensors) for fusion of target position estimates,[DN01] etc. Note that
scope management, just like resource constraint management changes the utilities
of sensing actions.

3.10.1 Resource constraint management

Sometimes, the sensor constraints rather than the type and accuracy of information
to acquire is the focus.

In research on wireless sensor networks, respecting battery energy consumption
is crucial. [PH03] addresses this facilitation issue (Section 3.4) trying to keep the
sensor network “alive” as long as possible while keeping the detection performance
of the sensor network above some threshold. At every instance of time, a subset of
the sensors in the network are active and send information. The authors express
their sensor scheduling problem as a generalised maximum flow problem and solve
it using linear programming.

An integration activity for detection through sensor placement is facilitated in
[KSRI02]. The problem to be solved is that of minimising the vulnerability of the
sensor set with respect to an adversary capable of destroying some of the sensors.
In a game theoretic manner, the adversary is assumed to be rational (i.e., acting
optimally), and the sensor placement strategy is selected that minimises the loss in
case the adversary engage in an (optimal) attack on the sensors.

[KK03] has a strong element of facilitation for a monitoring activity. The au-
thors propose an algorithm to find a policy which switches between an active (and
expensive) sensor and a passive (and cheap) sensor to minimise the joint cost of
measurement errors and usage of active sensors.

3.10.2 Scope management

The problem of planning paths for a set of UAVs (unmanned airborne vehicles) to
make observations, i.e., to actively alter the observation scope, at some pre-specified
locations is addressed in [Sol99]. The problem is similar to the well known and
NP-Complete TSP (Travelling-salesman problem), but involves path planning for
several salesmen, i.e., UAVs. To mitigate the complexity issue, this work formulates
the problem as a search using a genetic algorithm.
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[BVA03] is another work for UAV-based sensors (or, more generally, mobile)
that focuses on the coordination of the sensor platform rather than on the type of
information to acquire. Sensing actions for UAVs are two-dimensional, one com-
ponent being selecting direction of motion and the other selecting which subset of
targets to track. The solution proposed to this problem is called coevolutionary
perception based reinforcement learning. The solution consists basically of a mod-
ified Q-learning algorithm.13 This particular Q-learning is called coevolutionary
since two Q-functions learn at the same time, i.e., they coevolve during the unsu-
pervised training. The state space, considered in the learning algorithm, is here
discretised by expressing the input variables in terms of fuzzy labels. Furthermore,
the Q-functions are approximated by fuzzy rules.

In a survey of sensor planning in computer vision,[TAT95] an example of scope
management is that of illuminating a scene before acquiring an image.

3.11 Focus of attention
While the aim of the perception activities is an updated ER with correct and current
information, the purpose of focus of attention is to decide which part of the ER
(or which activities) to prioritise and to restructure the EM when necessary (i.e.,
decide what kind of information the ER can be filled with).

To see an example where focus of attention is lacking, consider a target tracking
application where a number of sensors track some targets. Frequently, it is merely
the expected accuracy of the sensor measurements that is decisive, the usefulness
of the acquired information is rarely considered. For large-scale IA, where many
information needs compete for resources it is essential to evaluate candidate sensing
actions with respect to the usefulness of their expected outcomes (see [How66] for
a discussion about this matter).

In [HM99, McI98], the idea of goal lattices is introduced to consider the use-
fulness of information. Mission goals (i.e., system objectives) and subgoals are
hierarchically ordered and are members of a lattice, i.e., a partially ordered set
P = (X,≥), where X is a set of goals (or corresponding tasks) and ≥ a partial
order relation. To fulfil the requirements of a lattice, for every pair of members
of the set exists a least upper bound and greatest lower bound. Here the relation
reflects whether a pair of members are goal and subgoal, respectively. If for any
two members of the lattice, xi and xj , xj≥xi, xi is “included” as a subgoal in xj .
Conversely, if xi≥xj , xi is “including” xj . In other words, if xj≥xi, performing task
xi contributes to the completion of task xj . In this case, xi is considered to be a
more concrete task and xj more abstract.

The goal lattice construct enforces a prioritisation of sensing actions (the most
concrete goals). In a lattice, there exists a unique top element, i.e., if that element is
member xi of the lattice, there exists no xj such that xj≥xi. If the value of the top
goal (i.e., relevance or priority if you prefer) is one, then the values of its included

13Q-learning and other types of reinforcement learning are surveyed in [KLM96].
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subgoal can be determined by apportioning the unit value of the top goal to all its
subgoals. For any goal in the lattice, its value is calculated as a the weighted sum
of its including goals (i.e., the more abstract goals that it supports).

A lattice can be visualised in a Hasse diagram as in Figure 3.3 (figure redrawn
from [McI98]). The apportioning of value from the top node down to the bottom
nodes, yields a prioritisation of sensing goals. In the figure, using sensing resources
for identification get the highest priority.
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Figure 3.3. An example of a goal-lattice from [McI98]. Towards the top of the
nodes in the Hasse diagram are abstract goal, whereas the bottom nodes represent
goals which can be treated with resources directly.

The focus of attention issue is also addressed in [LRC95]. There, the man-
agement of sensor resources are divided in two steps: prioritisation of tasks, and
assignment of sensors to tasks. The prioritisation of sensing tasks (track, search,
identify) is realized using fuzzy decision trees (crafted from expert knowledge in
surveillance systems design). Using information about the expected sensor per-
formance, sensors are subsequently assigned to the prioritised tasks.

3.12 Large-scale information acquisition
With the apparently everlasting increase in the number of available sensing re-
sources, also the demands on sensor systems will increase. Likely initial application
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fields for IA are command and control (for battle field situation assessment), pro-
duction and power plants (monitoring and fault detection), property surveillance
(intruder detection). For the future, the proliferation of intelligent and networked
mobile devices (such as mobile phones, PDAs, and “wearable” computers) and sta-
tionary counterparts (e.g., networked components of household machines) suggests
strengthened interest in large-scale IA. However, to successfully manage the re-
sources and enjoy the anticipated advantages, new advanced techniques must be
developed.

To realize large-scale IA, e.g., to develop support for a comprehensive decision-
making system, we need to be able to manage perception activities and be aware of
and refine their inherent aspects (Section 3.4). To initiate and maintain the envir-
onment representation (ER) (Section 3.5) it is likely that perception activities of all
three mentioned types (Section 3.6), i.e., incorporation, monitoring, and discerning,
must be available. Furthermore, strong requirements are also put on the perception
activities. They must be aware of the imperfection of acquired information (Section
2.2.3) and be adapt to environment properties (Section 2.2.2).

In the context of large-scale IA, sensing resources are plenty and heterogeneous,
i.e., they differ in the their control properties and type of information they yield.
However, they are at the same time unable to satisfy a multitude of relevant object-
ives (i.e., information needs and requests). Sensing resources might, furthermore,
have a number of different properties that should be acknowledged and treated. For
instance, resources might not be available all the time and the time period between
a sensing action has been selected until the time a measurement is returned could
be considerable.14

Constraints of heterogeneous resources (e.g., interference, mutually exclusive
modes) and sensing opportunities (e.g., relocating sensors) makes it important to
facilitate observations (Section 3.10). Finally, focus of attention is essential to
decide what kind of information and what activities are beneficial to the system
objectives (Section 3.11).

The author is not aware of any effort that addresses a larger subset of the
aforementioned challenges related to IA. However, there are a few recent DARPA
sponsored projects that appear to be moving in that direction. The first is [HVM+01]
which uses (potentially) many stationary sensors for target tracking. The most in-
teresting aspect of [HVM+01] for large-scale IA is perhaps its facilitation aspect.
In order to enable a large number of sensors to contribute to the target tracking
process, the environment is divided into a number of non-overlapping sectors. The
sensors are only allowed to communicate with other sensors in the sector it be-
longs to. Using this convention, communication costs are kept low, and the system
becomes scalable.

The second work is [CLOHd+01]. The objective is also in this case target-
tracking, but here sensors are mobile which inflates the observation scope. Scaling

14[XS02] makes a distinction between short-term and long-term sensor management strategies
and includes some references to works that deal with the latter.
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is handled similarly as in [HVM+01]; the environment is divided in zones (cf. sectors
in the other work). A hierarchy of agents share the responsibility of tracking in the
environment. A zone coalition leader agent decide how many sensors should pass
from one zone to another (if necessary) and a sampler coalition leader agent controls
the sensors within a specific zone and obeys orders from a superior zone coalition
leader. Orders include directing sensors to targets and occasionally sending some
to another zone.

From the point of view of large-scale IA, [CLOHd+01] and [HVM+01] make
good attempts to facilitate the use of a large number of sensors. However, in other
respects they do not contribute as much to large-scale IA. For instance, both
works are limited to the perception activity of monitoring and they only consider
homogeneous sensors.

3.13 Summary

In this chapter, we wanted to derive important aspects of information acquisition
from previous efforts. We mentioned that IA is an interdisciplinary issue that is
dealt with, directly or indirectly, in, e.g., sensor management, robotics, and agent
theory. A second objective of the chapter was to elaborate on the properties of
large-scale IA.

We have emphasised important aspects of the perception activities, i.e., the
perception management processes that realize IA. Perception activities may exhibit
the aspects of facilitation and focus of attention to varying degrees. We proposed a
taxonomy of perception activities by studying in what way they contribute to the
environment representation of the observing system.

We saw that, even though, large-scale IA seems to promise to become an im-
portant topic for the future, very little attention has been devoted to it to date.

3.14 Discussion and conclusion

With the increasing availability of perception resources such as sensors, large-scale
IA appear destined to become a necessity and its associated problems will have to be
addressed. The need is perhaps currently most urgent in the defence industry, where
decentralisation of resources is an issue being considered. The concept of network
centric warfare (NCW), which aims at utilising the information that a military
organisation collectively possesses and share it effectively within an information
exchange network, has enjoyed a lot of attention over the last decade or so.

The expected increase in intelligent small devices everywhere in society (e.g., in
wearable computers and in the intelligent home), is another indication for a growing
interest in large-scale IA.

To reiterate, we consider the following features to be characteristic of generic
large-scale IA
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• distributed resources (for the greatest sensing scope);

• heterogeneous sensing resources (to acquire different types of information);

• decentralised control (to make control manageable also for large sensor sets).

In order to realize large-scale IA, we need to be aware of and master the three
types of perception activities and the two emerging aspects. We, furthermore, need
to be able to integrate selected perception activities using, e.g., scheduling and
planning techniques, to accomplish large-scale IA. There is also an inherent need
for long-term planning, rather than the currently more popular “one-step ahead”
planning. The reason is simply that sensing actions may have long and varying
(sensor dependent) time horizons.

Finally, as mentioned, the classification of literature in this chapter, in percep-
tion activities and IA aspects, is neither final nor complete (i.e., there are no clear
boundaries between activities and aspects). Rather it serves to highlight pertinent
facets of information acquisition. Complementing taxonomies could be considered,
including centralised/decentralised control, on-line/off-line algorithms, and math-
ematical techniques (e.g., decision theory, Kalman filtering, etc). A brief survey of
the latter type is provided in [MM94].



Chapter 4

A game theoretic model for
management of mobile sensors

4.1 Introduction

Mobile sensing resources (or mobile sensors for short) provide a flexible aid to
decision support systems for decision-making in dynamic, extensive environments.
Their sensing capabilities contribute with observations to the decision support sys-
tem and their mobility allow them to adapt to changing information needs and
altered mission requirements.

Sensors are a limited resource and to achieve good performance in a system with
mobile sensors, allocation and use of sensor is a key aspect to consider. Sensor man-
agement is the process that aims at controlling sensors to improve overall system
performance.[NN00] Typical factors of concern for a practical sensor management
system are probability of target detection, track/identification accuracy, probability
of loss-of-track, probability of survival, probability of target kill, etc.[XS02]

One aspect of managing mobile sensors is coordination of their actions. Choos-
ing a centralised approach to coordinate the system promises to provide the system
with optimal coordination. However, such a system is both vulnerable (e.g., if the
centralised control node is destroyed, the whole system will fail) and slow (e.g.,
sensors have to await orders from the centralised control). These two factors are
essential for systems operating in civilian applications, and even more so in a mil-
itary application since the environment is expected to be hostile and willing to
exploit the two drawbacks (e.g., by jamming communication or targeting the cent-
ralised control). Decentralised control, on the other hand, assumes that the system
is mainly controlled by its components (e.g., mobile sensors), allowing it to “degrade
gracefully” if some of its components fails. However, achieving good performance
with decentralised control is a, by far, greater problem.

Distributed artificial intelligence (DAI) is a research field that concerns itself

65



66 Chapter 4. Management of mobile sensors

with coordinated interaction among distributed entities, known as agents.[Wei99]
Game theory, constituting a toolbox of methods for analysing interactions between
decision makers,[OR94] has attracted a lot of attention from the DAI community.
Interestingly, game theory concepts seem to apply better to automated agents than
to the real-life human decision-makers for which it was originally intended.[ZR96]
The reason is simply that the agents are normally both rational and obedient,
qualities which rarely apply to their human counterparts.

Game theory offers models for distributed allocation of resources and provides at
the same time mechanisms to handle uncertainty. An important subtopic of game
theory is negotiation. As part of negotiation there are ways to generate multi-
objective optimisation results that are at least Pareto optimal. At the same time,
these methods allow for robust handling of game/agent configurations which makes
it robust to jamming and use of sensors with limited availability.

Works in DAI seldom consider uncertainties [CFK97] such as those imposed
by the physical world (e.g., estimation errors) which are inherent to target track-
ing applications. Noteworthy recent exceptions concerning target tracking include
[DN01] and [CLOHd+01]. In [DN01], stationary sensors form coalitions (groups)
where each coalition track a certain target. The members of a coalition fuse their
measurements to improve target state estimation. In [CLOHd+01], mobile sensors
form coalitions to track targets, each sensor capable of sensing one target at a
time. Movements of sensors are decided by a hierarchy of coalition leaders, each
responsible for a certain geographical area.

The management, in our approach, is performed using negotiation models from
game theory. We utilise an algorithm for agent negotiation which we have previ-
ously developed and evaluated.[XCS03] In the previous work, sensor agents nego-
tiated about which targets to track, dividing the set of targets among themselves.
Sensors were stationary, but now we apply the same algorithm to the case with
mobile sensors and allow sensors to share targets. Our work constitutes a frame-
work for future studies of management of distributed mobile sensors in the face of
uncertainties and sensor failures.

In future work, we want to show the advantages of the game theoretic approach
when faced with uncertainties and possible sensor failures.

The next section will place this work in the context of prior work. Section
4.3 presents the primary objectives of this work, including management of mobile
sensors and sharing of targets. Section 4.4 explains the negotiation procedure and
its utility functions. Section 4.5 presents some results of using the negotiation
strategy, and Section 4.6 discusses some of the manageable parameters of the model.
Finally, Section 4.7 concludes and suggests future research.

4.2 Target allocation using sensor agent negotiation

The work that precedes the work described in this chapter considered a sensor net-
work consisting of geographically dispersed, non-mobile sensing resources.[XCS03]
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The sensing resources (sensors) were expected to cooperatively monitor some geo-
graphical area to keep track of all targets known to be within that region. A solution
to the problem would be a partition of the target set into disjoint subsets, and an
assignment of subsets to sensors so that every subset was assigned to exactly one
sensor. In other words, a valid solution required that every target be tracked by
exactly one sensor. However, sensors were allowed to track more than one target
each.

A solution algorithm based on the game theory concept of negotiation was
proposed and the utilities of negotiation offers were calculated from the information
gain (explained in Section 4.2.2) the corresponding target division was expected to
bring.

4.2.1 Agent negotiation
There are two kinds of consequences of an agent negotiation: agreement and dis-
agreement. Disagreement means that no solution acceptable for all agents can be
reached. In the other case, an agreement between the agents can be reached.

Every agent has its own preference relation over possible agreements and times
of agreements. We assume that a sensor agent i∈S, S being the set of sensor
agents, has a utility function, Ui, which represents its preference relation. The
utility function assign values to all possible outcomes of a negotiation:
{O×{0, 1, . . .,K}∪{Disagreement}}, where O is the set of possible offers and K
refers to the final step of negotiations.

As agents negotiate in order to realize cooperative behaviours among themselves
in multi-target tracking, reaching an agreement is in line with the interests of all
agents and no one can benefit from disagreement (i.e., non-coordinated behaviour1).

A formal description of the negotiation game we study is the 5-tuple
< S,O, H, P (H), (Ui) >, where

S is the set of sensor agents (called players in game theory terminology)

O is the set of negotiation offers, i.e., the possible sensor to target allocations. A
member of O, o, is an allocation function that maps sensors to subsets of the
set of targets, T , i.e., o : S→2T .

H is the set of sequences of offers and responses (called histories in game theory) in
a negotiation. A non-terminal history is a sequence, for instance (o0, R, o1, R),
which ends with a rejection, R, preceded by a series of consecutive offers (ot
is the offer a step t in the negotiation). A terminal history, on the other hand,
ends with an agreement, e.g., (o0, R, o1, R, o2, A).

P (H) is a function that determines which agent has the turn to make an offer after
a non-terminal history h.

1Clearly, non-coordinated behaviour (i.e., sensors tracking whatever target they like, disreg-
arding the allocations of the other sensors) would be unlikely to meet the system requirements,
such as ensuring that all targets are tracked.
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(Ui) are utility functions of sensor agents i∈S over outcomes, which describes how
the agents value every allocated group of targets

It is assumed that at a particular step of a negotiation, one of the agents makes
an offer and the other agents respond to it by acceptance or rejection. The order
in which the agents make their proposals is specified before the negotiation begins.
The first action in the game occurs in step zero when one agent makes the first offer
and the other agents accept or reject it. Acceptance by all other agents ends the
game with agreement while rejection by at least one other agent forces the game
to continue with another step. Subsequently, another agent proposes something in
the next step which is then accepted or rejected by the others. The game continues
in this manner until an agreement has been reached or until the final step K. If no
agreement is reached at step K, we say that the game ends with disagreement.

A negotiation strategy for an agent is essentially a function that specifies what
the agent has to do after every possible history.2 Concretely, the strategy prescribes
what offer to make when it is the turn of the agent to make an offer, and whether to
accept or reject an offer in steps when the agent is to respond to a proposal made by
another agent. A strategy profile is a collection of strategies for all involved agents.
We would like to find a strategy profile leading to an outcome that is profitable for
all participants and that no agent can benefit from using a strategy not belonging
to the profile.

A fundamental concept for analysing behaviours of rational agents is the Nash
Equilibrium.[Nas53] A strategy profile of a game of alternating offers is a Nash
Equilibrium if no agent can profit by deviation given that all other agents use the
strategies specified for them in the profile. Unfortunately, simple Nash Equilibrium
seems not sufficient in extensive games3 in the sense that it ensures the equilibrium
of its strategies only from the beginning of the negotiation, but may be unstable in
the intermediate stages.

A stronger notion for extensive games is that of subgame perfect equilibrium
(SPE) [OR94] that requires that the strategy profile included in every subgame is
a Nash Equilibrium of that subgame. This is a comprehensive concept implying
that agents are rational at any stage of the negotiation process: no one can be
better off by using another strategy regardless of what happens. It was shown in
the preceding paper that if all agents honour SPE strategies, there is an offer made
in the first step which is preferred by all parties over all possible future outcomes.

When reasoning about strategies, we start at the final step of negotiations, K.
If no agreement has been reached yet, one will certainly be reached in the final step
since disagreement (which would be the outcome of a rejection of the final offer) is
the worst outcome for all agents and will be avoided. If it is agent i’s turn to make
an offer at step K, it will choose the offer that is best for its own payoff, and the
other agents accept this offer, since disagreement is the only alternative.

2Thus, strategy is similar to the concept of policy in AI-literature
3In extensive games, agent actions are performed in sequence as opposed to strategic games,

or one-shot games, where actions are performed simultaneously.
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At all steps before K, the agent, whose turn it is to make the offer, will consider
the agreement that would be reached at the next step and proposes something that
is better or at least as good (in terms of utility) for all agents than what they can
expect to attain in future steps.

Suppose o∗(t + 1) represents the agreement that will be reached at step t + 1.
Given that the agents are rational, then for all parties at time t the super(t)-set
defines the set of acceptable solutions:

Super(t) = {o∈O | ∀i Ui(o, t) ≥ Ui(o∗(t+ 1), t+ 1)} (4.1)

If an agent selects its offer from the Super-set in Equation 4.1, then all other
(rational) agents will accept it since no offers with higher utility will be offered in
future steps.

Furthermore, it is important to notice that the Super set is non-empty for all
steps before K. This is induced from the characteristic that the utilities of offers
decrease over time. Particularly, the offer o∗(t+1) is included in Super(t) since we
have Ui(o∗(t+ 1), t) > Ui(o∗(t+ 1), t+ 1) for all agents i.

The Super set of acceptable offers is very useful to establish SPE strategies at
steps before K. The non-emptiness of this set ensures that the agent whose turn it
is to make an offer has enough choices to make its proposal acceptable to the other
agents. The strategy we use is that the agent i whose turn it is to make an offer at
step t will propose the offer o∗∈Super(t) that maximises Ui(o, t). If several candid-
ate offers maximise Ui, (this set was denoted Compet(i, t), in the preceding work)
we let agent i propose the offer that not only maximises Ui(o, t) but also the sum of
the utilities of the other agents, i.e., o∗(t) = arg maxo∈Compet(i,t)

∑
k∈S\i Uk(o, t).

Finally, the fact that Ui(o(t), t) ≥ Ui(o(t + 1), t + 1) for all agents causes the
game to end already in the first step with agreement o∗(0).

4.2.2 Sensor performance utilities

We assume that the sensors track targets using a Kalman filter and let the utility
functions of the agents, Ui, depend on the decrease in uncertainty that is estimated
in the Kalman calculations.

We will not present the entire Kalman filter method here (instead see, e.g.,
[BSF88]), just simply point out what part of the method was used in the previous
work to derive a utility measure for target tracking sensors.

In the Kalman filter method, we let xj(k) represent the system model of target
j at time k, and yij(k) the corresponding measurement model (for a sensor i). The
following familiar equations are used:

xj(k) = Fjxj(k − 1) + wj(k − 1)
yij(k) = Hijxj(k) + vij(k)

(4.2)

In Equation 4.2, wj(k) and vij(k) are system and measurement noise, respectively.
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An expression for the update of the target estimation error covariance reveals
the measure of performance [BSL93] which we use:

P−1
ij (k|k) = P−1

ij (k|k − 1) +HT
ijR

−1
ij Hij (4.3)

Here, Pij(k|k) is the updated state estimation error covariance and Pij(k|k − 1) is
the predicted covariance. The matrix HT

ijR
−1
ij Hij is derived from sensor character-

istics, where Rij is the measurement noise covariance. Note that a decrease in the
measurement noise covariance also leads to a decrease in the state covariance, i.e.,
a reduction of uncertainty about the target state. In view of this, we define the
norm of the matrix HT

ijR
−1
ij Hij as sensor information gain, g(i, j), contributed by

sensor i on target j.

g(i, j) ∆=
{ ‖HT

ijR
−1
ij Hij‖, if sensor i tracks target j

0, if not (4.4)

By means of sensor information gain, we establish the measure of performance
of a sensor estimating properties of all targets assigned to it. Suppose sensor i is
in charge of a group of targets, Di, then its contribution to the global picture is
accrued by measuring all assigned targets. Hence, the performance of sensor i, Pi,
is defined to be the sum of these information gains for state estimates of targets in
Di,

Pi(Di)
∆=

∑
j∈Di

g(i, j) =
∑
j∈Di

‖HT
ijR

−1
ij Hij‖ (4.5)

We call a value given by the expression Pi(Di) for the sensor performance of
sensor i when tracking a group of targets Di.

We note that an offer is a distribution D of targets among sensors, D =
⋃
iDi,

i.e., each sensor i gets a subset of targets Di to track. For every sensor, the acquired
set of targets corresponds to a value of sensor performance using the definition in
Equation 4.5, and we will now explain how we use the sensor performance value,
for a sensor and a set of targets, to calculate the corresponding utility value.

An agent is assumed to receive a reward not more than unity in terms of its
contributed performance. The purpose of doing so is to normalise the sensor per-
formance value for easy handling and to allow for non-zero rewards for sensors that
accept no work (i.e., do not track any targets). The reason to allow sensors to be
“lazy” is to encourage them not to reveal themselves (by use of active sensors) too
often, i.e., to be quiescent. The reward ri of sensor i, appointed target group Di,
is given by

ri(Di)
∆= α+ (1 − α)(1 − e−β·Pi(Di)), 0≤α < 1 and β > 0 (4.6)

such that Pi∈R+ is converted into a regular interval [α, 1). Here, β is a parameter
which decides how eager the sensor is to acquire more information about a target.
A high value on β means that the sensor agent is satisfied with less certain state
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estimates (cf αj in Figure 4.2). The other parameter, α, controls the agent’s will-
ingness to differentiate between the offers. For instance, α = 1 means complete
indifference, i.e., all offers have the same value (ri(Di) = 1).

As explained in Section 4.2.1, utility is expected to decrease over time in the
negotiation, and we therefore define the time-dependent utility function in this way:

Ui(D, t)
∆= (K − t+ 1)ri(Di). (4.7)

4.3 Primary objectives
In this chapter, we extend the previous work discussed in Section 4.2 considering
the following three aspects:

Mobile sensors We allow sensors to move to increase sensor performance. We
further allow the characteristics of the terrain to affect the preferred direction
of motion.

Shared targets We extend the previous work by allowing sensors to track the
same targets (previously, the targets were divided between the sensors). Through
use of multiple sensors tracking the same target, it is possible to improve the
performance on state estimates as typically found in the multi-sensor track-
ing and multi-sensor fusion literature (e.g., [BSF88]). Here, this problem is
studied in the context of target assignment and performance optimisation.
We model that the value of tracking a target, which is already being tracked
by other sensors, is less than if none tracks the target.

Performance loss when tracking many targets We model that the measure-
ment performance on each target tracked by a sensor decreases with the num-
ber of targets tracked by the same sensor. The reason is of course that the
sensor has limited time and resources for its measurements and if it has to
track more targets and divide its resources among the targets, then also the
measurement error covariance will increase for every target (and sensor gain
decrease).

In order to allow the mobility of sensors to have any effect, we further assume
that sensor platforms have the ability to move at a speed that is comparable to the
speed of the targets.

4.4 Utility and negotiation for mobile sensors
There are only small differences between the game considered in the previous work
(defined in Section 4.2.1) and the one we consider here. Sensor agents negotiate by
making offers that the other agents might accept or reject. As in the previous work,
an offer, o, is a specification of allocations, that assigns groups of targets to sensors.
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Unlike the previous work, the target groups may overlap, significantly increasing
the number of valid offers. The other difference is in the utility functions, which,
we shall see in the next section, has a two-dimensional values.

For negotiation about target allocation of mobile sensors, we consider both the
reward for each sensor as well as its directional derivative in the preferred direction
of motion. The reward, as we will see, is calculated somewhat differently than
in the previous work and does not immediately yield the negotiation utility. The
preferred direction of a sensor platform is the spatial direction in which the sensor
would like to travel. When we do not consider terrain characteristics, the preferred
direction will simply coincide with the gradient of the reward function.

In the next section, we will first present an approach to consider mobility in
the negotiation. In the subsequent sections 4.4.2-4.4.4, we will discuss how to
calculate both the reward for the novel considerations of overlapping target groups
and decreased tracking performance, and the preferred direction. We also address
the resulting multi-objective optimisation problem.

4.4.1 Negotiation
Before we start to discuss the details about reward and directional derivative, we
will, for this work, assume that every sensor agent has the required information
and is capable of calculating both objectives for all sensors.4 Hence, given a sensor
agent i∈S and an offer of allocations of sensors to targets o∈O, we can calculate
reward ri∈R and directional derivative r′i,δ∈R, i.e., a sensor and an offer yields a
reward and preferred direction, S×O→R×R. Here δ∈∆ is the preferred direction,
and ∆ the set of unit vectors.

We want to consider both factors, reward and derivative (measured as change
in reward per length unit), simultaneously to acquire a combined utility metric.
A valid but tentative approach is to assert a utility function U = U(f(r), g(d))
that analytically combines the two. However, the factors are incommensurable,
and, hence, such a function is sensitive both to the application in question and the
choice of measurement unit. E.g., we might propose U(r, d) = r + d. While this
utility function might yield satisfying results for some applications, it will certainly
not do so in general. Rather, the appropriate functions (f and g) have to be found
for every specific application or class of applications.

The problem we are facing is that of multi-objective optimisation. Whereas
elaborate approaches to this problem has been proposed (such as [FF98]), in this
work we prefer to study the results of an approach that does not suggest a pref-
erence of one factor over the other. (Hence, it might not work optimally for every
application, but is expected to work well for every application.) We order the offers
only according to dominance.

A sensor agent, i, will prefer an offer o1 to another offer o2, o1�io2, if and only if
o1 dominates o2. An offer o1 can only dominate another offer o2 if one of the reward

4In a practical application, the complete knowledge is not going to be available to all sensors,
but for an initial study it is convenient to make this assumption.
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and directional derivative values of o1 is greater than the corresponding value of
o2 and the other one at least as great as its counterpart, i.e., ri(o1) ≥ ri(o2) and
r′i,δ(o1) ≥ r′i,δ(o2) and at least one of the inequalities should be strict. If neither o1
nor o2 dominates the other, we write o1∼io2.

We elaborate further on the topic of dominance. Figure 4.1 shows twenty offers,
here depicted with circles, plotted in a graph according to the reward and derivative
in the preferred direction of a certain agent (certainly, the plot would look different
for another agent). We find that there are, in this example, five offers that are
not dominated by any other offer. We conclude that these are the “best” offers the
agent could get. We call the set (or class) of these the offers of the first order.
We iteratively classify the rest of the offers, knowing that an offer ok, which is
dominated by an offer ol of order l, will be a member of order l+1 or greater. Each
offer in Figure 4.1 belongs to one of five orders and the members of each order are
connected to each other with dashed lines for illustration.

A more formal definition of class of offers for a particular sensor is as follows.

Definition: Class of offers All pairs of offers (o1, o2), o1, o2∈O, that fulfil the
condition that o1∼o2∧¬∃om∈O [(om∼oj∧om�ok)] for j �=k and j, k∈{1, 2} are
said to belong to the same class of offers.

A class may not be empty, but may contain a single offer os iff
∀oj∃ok [oj∼os∧oj∼ok→ok�os∨ok≺os]. In order to strictly define class order, we
first define the notion of class dominance.

Definition: Class dominance A class of offers Ca is said to dominate another
class Cb, Ca�Cb, iff ∃oa∃ob [oa�ob], oa∈Ca, ob∈Cb.

We use the following recursive definition to define order of class.

Definition: Class of first order A class C of offers is said to be of the first order
iff none of its offers are dominated by another offer, ¬∃om∈O\C [om�oj ] for
all oj∈C.

Definition: Class of kth order A class of offers C is said to be of order k iff its
members are dominated only by members of classes of order k and less.

Now, we will express the utility function for sensors. Using our notion of orders,
we can assign a utility value to the offers for all agents. Furthermore, according to
the negotiation procedure described in Section 4.2.1, the utility of an offer accepted
at time t+1 is always less valuable than the same offer accepted at time t. Therefore
we need to construct a utility function that is dependent on the time step of the
negotiation:

Ui(o, t)
∆= αU (K − t) − orderi(o), integer αU > 0, (4.8)

where orderi(o) is a function that maps offers to its order for sensor agent i.
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Figure 4.1. Twenty offers plotted according to derivative of preferred direction and
reward. Offers which belong to the same class are connected with lines.

The interpretation of the utility function in Equation 4.8 is that the agents will
accept less offers the longer the negotiation continues. In fact, for every step the
negotiation continues, αU number of orders of offers will become unacceptable for
every sensor agent. Thus, offers of low order (which are desired by the agent) yield
a high utility value.

The negotiation procedure in the preceding work described in Section 4.2 is
virtually unaffected by the extensions we make in this work. The reason for this
is that all the novelties have been encapsulated in the calculations of the utility
function. However, the result of the negotiation will of course be quite different.

An agent that have several “best” offers to choose from should select one ac-
cording to some second criterion. This could for instance entail minimising the
sum of orders, i.e., if the set of best offers is O′, then the offer to select should be
the one o∗ that satisfies o∗ = argmino∈O′

∑
i orderi(o). Another suitable criterion

could be to select the offer in O′ that minimises maximum order for any sensor, i.e.,
o∗ = argmino∈O maxi orderi(o). If there are still more than one offer that fulfils
the criterion, then one offer could be selected randomly.

4.4.2 Workload effect on tracking performance

A sensor is expected to make less certain measurements for each target if it tracks
many targets than if it tracks only a few. Let us assume that sensors have some
sort of resource (e.g., time, energy, money, samplings) that they can spend utilise
to make measurements. The maximum amount of this resource available to the
sensor for a time unit is ρi,max and the amount it chooses to use to track some
target j is denoted ρij . We model that the measurement noise vij in Equation
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4.2 is dependent on the dedicated resource amount ρij . The measurement noise is
Gaussian, i.e., vij∼N(0, R), with zero mean and the measurement error covariance
matrix R which we encountered in the sensor performance formula in Equation 4.5.

Dissecting R, we notice that it is a diagonal matrix (since a prerequisite for
the Kalman filtering is that the, say k, measurement noise components of vij are
independent)

R =



σ2

1 0
. . .

0 σ2
k


 (4.9)

with the variances σ2
l , l∈{1, . . . , k}, as diagonal elements.

The standard deviation functions, σl(ρ), will take a minimum, σmin,l ≥ 0,
for ρ = ρmax and will increase towards infinity when the dedicated resource de-
creases towards ρmin, limρ→ρmin(j) σl(ρ)→∞, where ρmin(j) is the minimum re-
source amount necessary to track target j.

Hence, a varying workload on a sensor will affect the standard deviation and the
measurement error covariance matrix, which in turn will have effect on the refined
sensor gain expression which we will discuss in the next section.

Note that using this model, we allow sensors to allocate different amounts of
resources to different targets.

4.4.3 Target allocation
In the preceding work, the specific task was studied where every target was tracked
by exactly one sensor. In this work, we relax that restriction and allow sensors to
“share” targets. Thus, we are able to reduce uncertainty by fusing measurements
from different sensors and get a higher grade of sensor usage than in the disjoint
case.

Our approach here to determine the reward for every sensor, ri, is to divide the
total reward on every target,

∑
j rj(Sj) (Sj being the set of sensors tracking target

j), among the sensors in Sj proportionally to their individual contribution.
We define the reward on every target to be

rj(Sj)
∆= 1 − e−αjgj(Sj), αj > 0 (4.10)

where

gj(Sj) =
∑
k∈Sj

‖HT
kjR

−1
kj Hkj‖, (4.11)

i.e., the total information gain on target j. Here, we might want to replace gj
with some measure from information theory when a Kalman filter is not applicable.
Previously, we used sensor information gain (Equation 4.4), but now, as we allow
multi-sensor fusion, we define gj(Sj) as above and notice that whenever Sj contains
a single sensor i gj(Sj) = gj(i) = g(i, j).
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Now, the net reward for every sensor (similarly expressed as in the previous
work) is

rneti (Di)
∆= αi + (1 − αi)rmi (Di) 0 ≤ αi ≤ 1 (4.12)

where Di is the group of targets tracked by sensor i, αi reflects the willingness of a
sensor agent to compromise about offers, and the measurement reward is

rmi (Di)
∆=

∑
j∈Di

γijrj(Sj) (4.13)

and

γij
∆=
gj(i)
gj(Sj)

=
‖HT

ijR
−1
ij Hij‖∑

i∈Sj
‖HT

i R
−1
ij Hi‖

, (4.14)

i.e., the relative contribution of sensor i to the state estimate of target j.
This definition of sensor reward, rmi (Di), has the effect that the same gain

from a sensor on a target will yield different rewards depending what other sensors
track the same target. This makes sense since the target reward does not improve
linearly with the information gain (e.g., in a target tracking application, tracking
airborne targets at high speeds, to go from metre to centimetre precision in position
estimates should not yield much extra reward since the improved precision can not
be efficiently utilised).

To prove that rmi (Di) is actually a disbursement of the total reward on targets
we need to show that

∑
i r

m
i (Di) =

∑
j rj(Sj).∑

i r
m
i (Di) =

∑
i

∑
j∈Di

γijrj(Sj) =
{
Group all rj -terms in the sum

}
=∑

j rj(Sj)
∑

i∈Sj
γij =

{∑
i∈Sj

γij
∆= 1

}
=

∑
j rj(Sj)

(4.15)

�
Typical appearances of net reward functions, rneti , are shown in Figure 4.2. In

the figure, we use αi = 0.3 and plot rneti for αj ∈ {1, 10, 100}. We show the results
for a single sensor tracking a single target. The curves have similar shape for other
values on αi. For these curves, we have used the covariance matrix in Section 4.5.1.
From the curves, we can see that that an increase in the value of αj implies that
the sensor is satisfied with less certain target state estimates.

4.4.4 Preferred direction
Given the measurement reward function, rmi (Di), for each sensor, the gradient can
be calculated in this way:

grad rmi ≡ ∇rmi ≡ (∂rmi
∂xi

,
∂rmi
∂yi

)
, (4.16)

where xi and yi are the spatial coordinates of sensor i’s position.
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Figure 4.2. The three curves show a net reward function plotted with αi = 0.3 and
αj = 1, 10, and 100.

The gradient vector points in the direction in which the reward for sensor i will
increase the most.5 This model makes the subtle (and incorrect) assumption that
the targets are stationary. However, it is a fairly good approximation that should
be refined in the future; possibly by predicting and exploiting future target states.
The gradient would be the preferred direction to move for the sensor if terrain
properties were not considered.6 However, the terrain may make motion in the
direction of the gradient difficult or perhaps even impossible, and a more passable
path, although less rewarding, might be a better preferred direction.

Now assume we can construct a (possibly rough) terrain dependent function,
which discounts the reward change in various directions. Let the terrain function
be t(p, eθ), where p is a two dimensional position in the environment and eθ is a
unit vector, θ∈[0, 2π). Furthermore, let the terrain function assume values between
0 and 1, t ∈ [0, 1]. The terrain function t(p, eθ) takes high values in directions
where the sensor platform can easily move (such as in the direction of a good road)
and low values in directions where it cannot move very well (zero in the direction
of an unpassable obstacle). We assume that the value reflects the passability in the
chosen direction in the following time step.

The directional derivative r′eθ
in any direction, eθ, is simply a projection of the

gradient onto eθ, i.e., r′eθ
= eθ • ∇rm. The parameter θ is the angle between the

gradient and eθ, as shown in Figure 4.3.

5Note that we are, in this work, only considering the current target states when calculating
the gradient. Prediction of future target states to further improve the performance of the mobile
sensors is left for future work.

6Hence, in the case of airborne sensors, the gradient would suffice as a preferred direction.
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Figure 4.3. The directional derivative, r′eθ
, in the direction of the unit vector eθ

is calculated as the projection of the gradient, ∇r, on eθ .

Now, we propose that the preferred direction, δ∗, is the unit vector that corres-
ponds to the largest directional derivative discounted by t(p, eθ), i.e.,

δ∗ = arg max
eθ

{
t(p, eθ) · r′eθ

}
. (4.17)

Figure 4.4(a) shows a terrain function in a position p where terrain has no
effect on the mobility, i.e., in all directions, φ, t(p, eφ) = 1. Figure 4.4(b) shows
the resulting discounted directional derivatives (which in this case were unaffected
by the terrain function) where the gradient is depicted as the solid line with a cross
on its end point. The length of a line corresponds to the size of its derivative.
Directions with derivatives less than zero (those directions which have more than
a 90 degree angle to the gradient) are not depicted. Since directional derivatives
do not change sign due to the terrain function; they are only discounted with a
positive factor so the smallest discounted derivative possible is zero. Hence, the
directions with negative derivatives can be ignored.

Figure 4.5(a) shows the heterogeneous terrain function

t(p, eφ) =




2φ/π φ∈[0, π/2]
1 φ∈(π/2, 3π/2]
0 φ∈(3π/2, 2π)

(4.18)

Figure 4.5(b) shows the same gradient as in Figure 4.4(b), but here the direc-
tional derivatives have been discounted with the function in Equation 4.18. The
direction which has the greatest directional derivative is depicted with a solid line,
calculated with Equation 4.17, and would be the preferred direction of an agent.
This direction deviates notably from the gradient.

We have now seen how the preferred directions of a sensor platform are calcu-
lated for terrain which has no effect on the platform (in Figure 4.4(b)) and terrain
which has (Figure 4.5(b)). We now expand our field of view to study the preferred
directions in a whole area. Figure 4.6(a) shows the directional derivatives in various
positions in the plane when its preferred direction is unaffected by terrain condi-
tions. A target in position (400, 350) (the small “x”) attracts a sensor platform. We
note that the derivatives are small in the periphery and close to the target, and
large in between. This is the same characteristics we saw in the curves in Figure
4.2.
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Figure 4.4. (a) shows the terrain function t(p, eφ). In this case t = 1 for all φ, so
it is the function of the unit circle. (b) shows the size of some discounted directional
derivatives when the gradient is the solid line pointing upwards and right. In this
case, the directional derivatives are discounted with the function in (a) and are thus
unaffected.

In Figure 4.6(b), an obstacle (representing almost unpassable terrain) has been
positioned to the left in figure. The preferred directions direct the sensor platform
away from the obstacle, while trying to preserve a course towards the target. For
instance, along the upper and lower edges of the obstacle, the preferred directions
are along the edge of the obstacle rather than into the obstacle.

Even though the approach with terrain functions presented here looks nice in
this example, it is indeed short-sighted. There is a risk that sensor platforms get
stuck behind obstacles. However, this does not necessarily mean that the tracking
will fail, rather it means that the current allocation has been given a new value
which will possibly affect the outcome in the next round of negotiations (i.e., another
allocation, with a better preferred direction, might be a more appealing alternative).

4.5 Experimental results

First, we verify that the negotiation algorithm is still beneficial for stationary
sensors with respect to the new features of the problem (Section 4.3). Then we
move on to verify its suitability to the case with mobile sensors.7 In Appendix
A we select the values of some of the parameters used in the simulation, and in
Appendix B we derive an analytical expression for the gradient.

7In this chapter, merely snapshots of simulations are shown. However, full animations are
available at this URL: http://www.nada.kth.se/˜rjo/pubs/mobile/anim/.
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Figure 4.5. (a) shows the plot of the terrain function in Equation 4.18. (b) shows
some of the directional derivatives discounted with the terrain function in Equation
4.18.

4.5.1 Selected parameters and requirements
For our simulations, we assume that the standard deviation, σtot, of the measure-
ment noise covariance R, is equal for every measurement component and tracked
target. We, furthermore, assume that it increases inversely linearly with the ded-
icated relative resource amount, i.e., the standard deviation is scaled by a factor(

ρ
ρmax

)−1

, and quadratically with the Euclidean distance d between target and
sensor. If the tracking resource, discussed in Section 4.4.2, is divided evenly between
n tracked targets, the resource amount used to track each of the targets is ρ(n) =

ρmax/n, yielding the scale factor
(
ρmax/n
ρmax

)−1

= n for the standard deviation. From
this discussion, we suggest the following standard deviation expression for our ex-
periments

σtot = σmin·n·(1 + cd2). (4.19)

The first two factors are always greater than zero and d≥0. The coefficient c > 0
controls how greatly the distance from sensor to target affects the measurement
error covariance.

Equation 4.19 is plotted in Figure 4.7 for one to four targets. The values on
the x-axis denotes the distance to target and the y-axis the relative increase in
covariance, with σmin = 1 as reference. We see, e.g., that the covariance for one
target at distance 400 metres, when concurrently tracking four targets, is about ten
times the minimum covariance.

We require that the tracking system always tracks all targets (i.e., sensor to
target assignments that do not include assignments to all targets will be ignored
by all sensor agents).
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Figure 4.6. (a) The derivatives of the preferred directions in various positions.
The target, the “x” in position (400, 350), acts as the force that attracts the sensor
platform and the terrain does not affect the preferred directions of the platform. (b)
Here, an obstacle (representing very rough terrain) is situated in the left part of the
figure. The generated preferred directions tries to steer the sensor platform away
from the obstacle while preserving a course towards the target.

4.5.2 Computational issues

The time complexity of the algorithm to implement is heavily dependent on the
number of offers to consider, q, which, in turn, is dependent on the number of
sensors, s, and targets, t. In the previous work, offers contained only target dis-
tributions where targets were not shared. In that work, the number of offers were
q = O(st), i.e., it was exponential in the number of targets.

Now, since targets may be shared by sensors, the size of the offer set increases
to O(2ts) 8 and is, hence, exponential in both the number of targets and sensors.
Hence, in our work it is necessary to adopt some heuristic to lower the number of
possible offers.

By studying the problem at hand, it is often quite possible to design suitable
approximations. In this case, we assume that it is quite unlikely and unwanted
that sensor agents change their allocations much from one negotiation to the other.
In support of this assumption is the fact that target positions are dependent on
kinematic constraints, and the optimal allocation of targets is therefore expected
to change slowly over time. Exploiting the expected inertia in the change of the
optimal allocation, we construct the set of offers to negotiate about in the following
way:

8Any sensor may track any number of targets, hence, every sensor may allocate 2t targets,
yielding a total number of (2t)s = 2ts possible allocations.



82 Chapter 4. Management of mobile sensors

15

n=4

n=3

n=2

n=1

0 500400300200100
0

5

10

σmin

Comparison between increase in measurement standard dev.

A
ct

ua
l s

ta
nd

ar
d 

de
v.

/M
in

im
um

 s
ta

nd
ar

d 
de

v.

Distance (m)

Figure 4.7. The covariance function in Equation 4.19 is here plotted for one to four
concurrently tracked targets.

Given the current allocation of targets to sensors, let the set of offers to negotiate
about include all combinations for which each sensor, either

• keeps its current allocation,

• drops one target of the current allocation or picks up a new one, or

• exchanges one target for another.

Even though this heuristic reduces the size of the offer set considerably to O(t2s),
it is still exponential in the number of sensors. For future work, the size of the offer
set will have to be decreased even further, but for the experiments in this chapter
it suffices.

4.5.3 Target tracking with stationary sensors
The first thing we want to verify is that the negotiation algorithm still, with an
implementation of the conditions in Section 4.3, produces satisfying results.

We run a simulation, very much similar to the one used in the preceding work. In
the scenario (Figure 4.8), three stationary sensors, spatially separated and placed
on a line in east-west direction, track four targets for some time. The targets
approach the sensors in pairs, one pair approaching from the east and the other
from the west. Targets τ3 and τ4 travel slightly faster than τ1 and τ2.

In the previous work [XCS03], we compared our negotiation algorithm with an
optimal algorithm which optimised the sum of information gain. The results showed



4.5. Experimental results 83

0

0

τ1

s1 s2
τ3

τ4

s3

2τ

Figure 4.8. In this scenario, three stationary sensors (s1, s2 and s3) track four
targets (τ1 to τ4).

that the negotiation algorithm reached a result which was very close (99%) to the
optimal algorithm in terms of average total sensor information gain.

A second criterion to observe was concentration degree, i.e., a measure of how
well the targets are divided among the sensors. E.g., a target distribution in which
all targets are tracked by a single sensor will yield a high concentration degree.
This is an awkward situation since if the sensor that tracks all targets fails or is
destroyed all targets will be lost. Thus, a low concentration degree, representing
that targets are divided evenly among the sensors, is desired. In the previous work,
the concentration degree turned out to be about 10% better for the negotiation
algorithm compared to the optimal algorithm in a simulation.

In the current work, for every completed negotiation, we compare the result
of the negotiation algorithm (i.e., an assignment of sensors to targets) with the
result that the optimal algorithm would have yielded in the same situation. In our
experiment, we want to compare the following criteria for our negotiation algorithm
and an optimal one,

Total reward This is the value of the sum of the target rewards, i.e.,
∑

j rj . Of
course, a high value of total reward corresponds to a good overall tracking
performance and is desirable.

Redundancy This is the number of targets that are being tracked by one or more
sensors. For those targets that are being tracked by one or more sensors,
we have redundant measurements which can be fused. This is wanted for
that reason, but also because if one sensor fails or is destroyed, the other
sensor(s) will still receive measurements. If only one sensor tracks a target, if
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that sensor is lost so is the target. A high value, while preserving high total
reward, is desirable.

Lost targets This is a value of the average number of targets lost if one of the
sensors fails or is destroyed. A low value is desired.

In the following simulation, the three stationary sensors track the four targets
over five hundred rounds of negotiations. The targets are moving fast and the
sensors are re-negotiating their target assignments (i.e., starting a new round of
negotiations) in every time step (perhaps every second or so).

Figure 4.9 shows the result of the negotiation algorithm (N-tracker) and Figure
4.10 the result of the optimal algorithm (O-tracker). In each diagram, the x-axis
is time and y-axis which targets are being tracked by the sensor corresponding to
the diagram. As we can see, the results of the two algorithms appear to be very
similar.
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Figure 4.9. The diagrams show the target allocations of all three sensors for every
time step in the negotiation.

In Figure 4.11, we see three diagrams. The topmost diagram depicts the relative
reward of the N-tracker in every time step, i.e., the reward of the N-tracker
divided by the reward of the O-tracker. Of course, the N-tracker will never
receive as much reward as the O-tracker, but its rewards are certainly comparable.

The middle diagram depicts the differences in redundancy between the two
algorithms. In every time step, the redundancy of the O-tracker is subtracted
from the redundancy of the N-tracker. As shown, most of the time, the difference
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Figure 4.10. The diagrams show the optimal target allocations of all three sensors
for every time step in the negotiation.

is zero, i.e., the two algorithms have the same redundancy. However, quite often
the N-tracker has a greater redundancy and only during a few time steps the
O-tracker has a greater redundancy.

The bottommost diagram shows the average number of lost targets (if one sensor
is destroyed) plotted for both algorithms for every time step. The values of the
N-tracker is plotted with a dotted line and the values of the O-tracker is plotted
with a dashed line. We see that the results seem to coincide with the redundancy
diagram, i.e., the O-tracker outperforms the N-tracker only in a few time steps.

Our experiments with stationary sensors show that the negotiation algorithm
yields near-optimal tracking quality while improving robustness to sensor failure.

4.5.4 Target tracking with mobile sensors

Now, we introduce mobile negotiating sensors and wish to evaluate their perform-
ance. We here use the utility function in Section 4.4.1, but we will for now assume
that the terrain has no effect on the negotiation.

For evaluation, we make two types of comparisons:

• For every sensor to target assignment the negotiation algorithm produces, we
compare it to an optimal reward one (just like in the stationary case).
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Figure 4.11. In these diagrams, we compare the results of the O-tracker and
the N-tracker. The topmost diagram shows the relative reward of the N-tracker
compared to the O-tracker. The middle diagram shows the difference in redundancy
between both algorithms in every time step. The bottommost diagram plots the
average number of lost targets (if one sensor fails) for both algorithms (the dotted
line corresponds to the result of the N-tracker).
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• We design and implement a “greedy” tracker (G-tracker) which operates
independently of the negotiation based tracker (N-tracker).

We let the G-tracker reconsider the sensor to target assignment as often as the
N-tracker does. After having selected the most optimal assignment, the sensors
travel, at full speed, in the direction of the gradient. Whereas that seems reasonable,
we will see in Section 4.5.5 what effects such an approach might have in a scenario
where speed is dependent on terrain.

In our first simulation with mobile sensors, we want to know whether our reward
function makes sensors try to fixate one target or if they tend to locate themselves
where measurement performance on all targets is good. In Figure 4.12, two sensors
track four targets. In this and the following figures that depict snapshots of target
tracking with mobile sensors, the crosses are targets, the tiny circles are the mobile
sensors, and the line that extends from the centre of each sensor indicates the
current direction of motion of the sensor (it does not, however, indicate the speed
of the sensor). Additionally, in some of the figures, dotted lines are drawn from
sensors to targets. These lines clarify which sensors are tracking which targets.

The simulation starts at time t = t1, and at this time the targets are divided
between the two sensors in such a way that the upper sensor is willing to track the
two upper targets and the lower sensor is willing to track the two lower targets. The
upper targets are moving upwards and the lower targets are moving downwards.
We see that the sensors, which in this simulation have the ability to catch up with
the targets, prefer to situate themselves in between the targets.

Time = 

Time = 

Time =

Time =

Time = 

Time = 

t 2

1t

t

3

3

t

2t

1t

Figure 4.12. The Figure shows three superimposed snapshots, at times t1, t2 and
t3 (t1 < t2 < t3), of a scenario where two sensors track two targets each.

In our next experiment, we study a scenario where the G-tracker runs into
problems. In this case, sensor s1 (in Figure 4.13(a)) wants to track the targets τ1
and τ2. However, they move in opposite directions, leaving s1 with a resulting zero
gradient, i.e., s1 gets stuck while the targets move away (as seen in Figure 4.13(b)).
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Sensor s2 on the right has a similar problem since its targets are also moving in
opposite directions. After a while, however, the G-tracker assigns targets τ1 and τ3
to sensor s1 and the others to s2, allowing sensor s1 to escape from its deadlock. If
we align targets τ3 and τ4 with sensor s2 and rerun the simulation, we can actually
make both sensors get stuck forever.
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Figure 4.13. (a) In this scenario, two sensors s1 and s2 track four targets τ1 to
τ4. Targets τ1 and τ3 are moving upwards and τ2 and τ4 downwards. Initially, the
G-tracker assigns τ1 and τ2 to s1 and τ3 and τ4 to s2. (b) After some time, the
targets have moved, but due to the “greedy” allocation of targets to sensors, the
sensors are stuck between their assigned targets and have hardly moved.

The N-tracker, run on the same scenario, yields a more appealing result. To
begin with, we see that the negotiation brings about a somewhat surprising assign-
ment of targets to sensors (Figure 4.14(a)); s1 tracks τ3 and τ4, and s2 the other
two, contrary to the allocation of the G-tracker (see once again Figure 4.13(a)).
The reason is of course that the “greedy” allocation yields very low directional
derivatives which allows the N-tracker to reach other solutions.

After a short while, sensor s1 starts to follow the targets τ2 and τ4 that are
moving downwards, and the other two are followed by sensor s2 (Figure 4.14(b)).

In Figure 4.15, we compare the results of the N-tracker and G-tracker in
terms of reward. At time t = 10, the N-tracker decides that sensor s1 should
track targets τ2 and τ4 and quickly receives a total reward which is greater than
that of the G-tracker. At time t = 27, also the G-tracker decides that one sensor
should track the targets moving upwards and the other the ones going downwards.
However, as we can see from the rewards in the figure, the G-tracker is unable
to catch up with the N-tracker. Since the targets in this scenario are allowed to
travel at a higher speed than the sensors, the reward drops rapidly and at time
t = 40 and beyond, both algorithms receive very low rewards.
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Figure 4.14. (a) Initially, the negotiation algorithm assigns targets τ3 and τ4 to
sensor s1 and the rest to sensor s2. (b) After some time, the negotiation algorithm
assigns targets τ2 and τ4 to sensor s1 and the rest to sensor s2.
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Figure 4.15. This graph compares the total rewards of the G-tracker and the
N-tracker to each other. The absolute reward has been plotted in the top graph (’*’
for G-trackerand ’+’ for N-tracker. In the lower graph, the relative reward of the
N-tracker compared to the G-tracker has been plotted. For the first time steps, the
G-tracker outperforms the negotiation one. At time t = 10, the negotiation assigns
targets τ2 and τ4 to sensor s1 which results in an increase in performance compared
to the G-tracker. At time t = 27 the G-tracker comes to the same conclusion,
which explains the negative slope of the curve.
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In the final experiment of this section, we once again study the scenario in
Figure 4.8. However, this time the sensors are mobile and both distances to targets
and speed of targets have been decreased so that the sensor can take advantage of
their mobility (i.e., it is not beneficial to use mobile sensors if their maximum speed
is relatively low compared to the targets).

We run both the G-tracker and the N-tracker and compare the results in
Table 4.1. We see that the N-tracker loses in measurement accuracy (its aver-
age measurement performance was 90% of that of the G-tracker). However, the
N-tracker instead impresses by its robustness with an average of 1.39 targets being
tracked by one or more sensors and average of 0.87 (27% better than the result of
the G-tracker) of lost targets if one sensor is lost. The reason for this result is that
the sensors, through the negotiation, are forced to share targets with each other,
and, hence, yield better robustness for the target tracking system as a whole.

Table 4.1. Comparison between G-tracker and N-tracker
G-tracker N-tracker Relative

Reward 3.7372 3.3765 0.90
Redundancy 0.4510 1.3922 3.09
Lost targets 1.1830 0.8693 0.73

4.5.5 Mobile tracking with terrain considerations

Until now, we have not considered terrain effects on mobile sensors in our experi-
ments. Since it is highly unlikely that the designer of a mobile sensor system can
expect a homogeneous environment, we need to consider varying terrain and its
effects. In Section 4.4.4, we discussed how a so-called terrain function can be used
to discount the directional derivative generated by a certain assignment.

In the scenario in Figure 4.16, we have put an obstacle into the environment.
This obstacle has the property that when a mobile sensor tries to cross it, the
maximum speed of the sensor reduces drastically. Such an obstacle represents, for
instance, rough terrain or a steep hill. In this example, the speed reduces to 30%
of the maximum speed it could achieve in an ideal terrain. Close to the obstacle,
the terrain function discounts directional derivatives that lead into the obstacle.

We notice that the G-tracker, which does not consider terrain, leads the sensors
straight into the obstacle, as shown in Figure 4.17(a). As a result of this, the sensors
lose touch with the targets. In the case of the negotiation algorithm, the sensors
switch targets close to the border of the obstacle, as shown in Figure 4.17(b). One
reason for this is that offers that give directions that lead into the obstacle get small
derivatives and are suppressed.
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Figure 4.16. Initially, sensor s1 tracks target τ1 and sensor s2 target τ2. The
rectangle represents an area which slows down mobile sensors that enter it.
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Figure 4.17. (a) The G-tracker does not consider terrain and leads the sensors
into the obstacle, where they are slowed down considerably. (b) The negotiation
algorithm decides to switch targets between the sensors instead.
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4.6 Discussion

There are a number of parameters that can be altered that affect the behaviour of
the target tracking system. αj , in Equation 4.10, influences the target reward and
reflects the value the system assigns to increased accuracy in measurements. As
can be seen in Figure 4.2, by varying the value of αj , we can customise the value
of increase measurement accuracy.

Also included in Figure 4.2 is αi which is a parameter in the sensor net reward
function (Equation 4.12). By varying αi between 0 and 1, we can modify the ability
of sensor agents to differentiate between rewards of offers. For αi = 0 the ability
of the agent to differentiate between rewards is at its maximum, but for αi = 1 all
offers appear to the sensor agent to have same reward. This can be understood by
once again studying Figure 4.2 where αi is set to 0.3 and imagining the effect of
increasing the αi value.

The negotiation procedure can be adjusted in several ways, e.g., by 1) altering
the order of offers, by 2) changing the way the number of valid offers is reduced
during a negotiation, and by 3) changing the number of steps in the negotiation.

To reiterate, as we explained in Section 4.2.1, due to the facts that the agents
are benign and have complete information about the others, the agent that begins
the negotiation can calculate an offer which all other agents will accept. Hence,
when we talk about negotiation in the following discussion, we are referring to the
search procedure by which the offer, which all agents will accept, is found.

The first way to adjust the negotiation procedure involves deciding on a policy
for in which order agents should make their offers (this is the P (H) function of the
game definition in Section 4.2.1). Naturally, the agent who makes the first offer
has an advantage. There are several ways to do this, one might for instance want
the agent that received the best/worst reward in the previous round of negotiations
to start and the others to follow in increasing/decreasing order. In most of our
experiments, we used another policy which we considered to be more fair. We
let all agents have the advantage of commencing the negotiations about the same
amount of times each. In a round-robin fashion, one of the agents, say a1, started a
round of negotiations, another agent, a2, made the second offer, and a third agent,
a3, made the third offer, etc.

Quite often, the number of steps in the negotiation was larger than the number
of agents (allowing every agent to participate in the negotiation), and in those cases,
when the last agent had made its first offer, the first agent, a1, continued. In the
next round of negotiations, it was a2’s turn to commence the negotiation, followed
by agent a3, and so on.

The second way to adjust the negotiation procedure is to change how the set
of valid offers evolves during a round of negotiations. Valid offers are offers, o,
that do not violate the requirements of Equation 4.1. In the previous work, the
composition of the set of offers was heavily dependent on the utility functions of
the agents. If the utility of the offers for all agents, given by Equation 4.7, differed
only slightly, then even for many negotiation steps, the set of valid offers would still
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be considerable. If so, the agent which commences the negotiation will have a great
influence over the outcome. It might be debated whether this is a disadvantage
or not. On the one hand, the commencing agent will be very powerful, possibly
completely ignoring the wishes of the other agents, which might be undesirable. On
the other hand, that the offers have similar values to an agent could be interpreted
as indifference on the behalf of the agent. Thus, in that case, the agent simply does
not care about the outcome of the negotiation.

In this work, we experimented with another approach that systematically re-
duces the set of valid offers with each step of the negotiation, guaranteeing that the
agent that begins the negotiation will have a more restricted set of offers to choose
from. Starting from a larger set of possible offers, η = #offers

#negotiation steps number
of offers are excluded from the negotiation (i.e., becomes invalid) with every step
in the negotiation, ensuring that there are only η offers left to choose from in the
end.

To explain by which criterion offers are removed, consider Figure 4.18. The fig-
ure illustrates the common situation where offers have different utility for different
agents. Assume that an offer, o, has been proposed at some step of the negotiation.
Now, every other offer o′ has a certain distance in utility to o for every agent i,
disti(o, o′) = |Ui(o) − Ui(o′)|. Let the maximum distance of all agents for an of-
fer, o′, be dist(o, o′) = maxidisti(o, o′). Finally, to decrease the set of offers with
every step of the negotiation, the η offers with the largest dist(o, o′) are removed.
Despite the appealing property of this approach, i.e., the strict monotonic decrease
of the size of the offer set, we are not yet convinced by its positive effect on the
negotiations.

2

increasing preference/utility

dist (o , o )1 21

o
Agent 3
preference

Agent 2
preference

Agent 1
preference

o 1

o 1

o 1

o 2

o 2

Figure 4.18. Different offers have different values to different agents. For instance,
in this example, o1�1o2 but o2�3o1
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The third way to affect the negotiation is to change the number of steps of
the negotiation. In our experiments, we used quite lengthy negotiations of at least
30 steps, sometimes many more. The outcome of the negotiation, is under some
circumstances, very much dependent on the exact number of negotiation steps.
This potential problem is to some extent avoided when the systematic approach
to decreasing the set of valid offers, presented in the previous paragraph, is ap-
plied. Generally, the more negotiation steps used to reach an agreement, the more
“democratic” is the outcome of the negotiation.

Finally, we find our solution to the multiple-objective optimisation problem,
that arose in Section 4.4.1, intriguing and it encourages to further investigation.

4.7 Conclusion and future work

In this chapter, we have presented a game theoretic model for allocating targets
to mobile sensors. Sensor agents negotiate by proposing offers of allocations that
involve all sensors. Each agent can evaluate each offer to decide its individual
utility.

The utility is composed of two objectives: sensor reward and directional de-
rivative. The first objective, sensor reward, is dependent on the distance between
sensor and targets, the number of targets the sensor is concurrently tracking, and
whether other sensors track the same target. The other part, directional derivative,
is directly calculated from the allocation of the offer, or, when terrain conditions
are considered, by discounting derivatives in inconvenient directions.

We showed, in the experiments in Section 4.5, two interesting properties of our
negotiation algorithm: first, the negotiation forces sensors to share targets, im-
proving robustness to the target tracking system (e.g., the scenario in Figure 4.8).
Secondly, considering directional derivatives allow sensors to pro-actively recon-
sider target assignments, possibly improving long-term information gain (e.g., as in
Figures 4.14(b) and 4.17(b)).

Further studies should investigate under what circumstances these properties
imply advantages to the target tracking system. With the support of these early
results, we anticipate interesting discoveries in our future exploration of negotiation-
based, distributed sensor management.

Some of the most salient, concrete directions for future studies are:

• introduction of uncertainty (e.g., in target or sensor state) into the negoti-
ations,

• prediction of (near) future target and sensor states to improve tracking per-
formance,

• to explore and devise a policy to select negotiation strategy depending on the
state of the environment.
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A Simulation parameters

The Hij matrices in the Kalman measurement equation (Equation 4.2) used here
are all equal:

Hij =
[

1 0 0 0
0 0 1 0

]
.

The measurement error covariance matrices Rij are also assumed to be identical:

Rij =
[
σ2
tot 0
0 σ2

tot

]
,

We here assume that the standard deviations for measurements, σtot, for both
measurement components, e.g., x- and y- coordinates, are equal and independent.

B Gradient derivation

Recall that the components of the gradient, depicted in Equation 4.16, are the
partial derivatives of the measurement reward function in Equation 4.13. Important
to notice is that both factors of the measurement reward function, γij and rj(Sj),
are dependent on the derivation variables, xi and yi.

The partial derivatives, ∂rm
i

∂xi
and ∂rm

i

∂yi
, are similar, and, thus, we show only the

detailed calculation of ∂rm
i

∂xi
and claim that the calculation of other derivative is

almost identical.

∂
∂xi

(rmi ) = {since D(fg) = fg′ + f ′g} =
∑

j γij
∂
∂xi

(rj) + ∂
∂xi

(γij) rj (4.20)

We know rj and γij from Equation 4.14 and Equation 4.10, respectively. How-
ever, ∂

∂xi
(rj) and ∂

∂xi
(γij) have yet to be determined.

∂
∂xi

(rj) = αj
∂
∂xi

(gj(Sj)) eαjgj(Sj) =
{
since eαjgj(Sj) = 1 − rj

}
=

αj
∂
∂xi

(gj(Sj)) (1 − rj)
(4.21)

∂
∂xi

(gj(Sj)) =
{
gj(Sj) =

∑
k∈Sj

‖HT
kjR

−1
kj Hkj‖ from Equation 4.14

}
=

∂
∂xi

(∑
k∈Sj

‖HT
kjR

−1
kj Hkj‖

)
=

{
∂
∂xi

(
‖HT

kjR
−1
kj Hkj‖

)
= 0, ∀k �=i

}
= ∂

∂xi

(‖HT
ijR

−1
ij Hij‖

)
(4.22)

The matrices Hij and Rij used are described in Appendix A, but in order to
calculate the partial derivative ∂

∂xi

(‖HT
ijR

−1
ij Hij‖

)
we also have to decide which
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matrix norm to use. In this work we use the Frobenius norm, ‖·‖F , which considers
every element of the matrix.9

‖HT
ijR

−1
ij Hij‖F =

∥∥∥∥∥∥∥∥



σ−2
tot 0 0 0
0 0 0 0
0 0 σ−2

tot 0
0 0 0 0




∥∥∥∥∥∥∥∥
F

= 21/2σ−2
tot (4.23)

Thus, the partial derivative then becomes

∂
∂xi

(‖HT
i R

−1
ij Hi‖F

)
= −23/2σ−3

tot
∂
∂xi

(σtot) = {using σtot in Eq. 4.19} =

−25/2c(σminn)−2(1 + cd2)−3(xi − xj)
(4.24)

With the result achieved in Equation 4.24 the derivative in Equation 4.21 can
finally be calculated,

∂
∂xi

(rj) = αj
∂
∂xi

(gj(Sj)) (1 − rj) =
−25/2αjc(σminn)−2(1 + cd2)−3(xi − xj)(1 − rj) (4.25)

Now only ∂
∂xi

(γij) is missing to complete the calculation of Equation 4.20.

∂
∂xi

(γij) = ∂
∂xi

(
gj(i)
gj(Sj)

)
=

{
since D(fg ) = f ′g−fg′

g2

}
=

∂
∂xi

(gj(i))gj(Sj)−gj(i) ∂
∂xi

(gj(Sj))

gj(Sj)2
={

since ∂
∂xi

(gj(Sj)) ≡ ∂
∂xi

(gj(i))
}

=

∂
∂xi

(gj(i))

gj(Sj)

(
1 − gj(i)

gj(Sj)

)
=

∂
∂xi

(gj(i))

gj(Sj)
(1 − γij)

(4.26)

The partial derivative ∂
∂xi

(γij) is now completely known since γij and gj(Sj)
are known from Equation 4.14 and ∂

∂xi
(gj(i)) from Equation 4.22.

Now, the partial derivative of the measurement reward function, ∂
∂xi

(rmi ), is
completely determined by inserting Equations 4.21 and 4.26 into Equation 4.20.

The other partial derivative, ∂
∂yi

(rmi ), and is equivalent except for only the
factor (xi − xj) in Equation 4.25 which should be replaced with (yi − yj).

9The Frobenius norm of a m×n matrix A with cell elements aij is

‖A‖F
∆
=

qPm
i=1

Pn
j=1 |aij |2.
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