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ABSTRACT
We show that aggregate constraints (as opposed to pair-
wise constraints) that often arise when integrating multiple
sources of data, can be leveraged to enhance the quality of
deduplication. However, despite its appeal, we show that the
problem is challenging, both semantically and computation-
ally. We define a restricted search space for deduplication
that is intuitive in our context and we solve the problem
optimally for the restricted space. Our experiments on real
data show that incorporating aggregate constraints signifi-
cantly enhances the accuracy of deduplication.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Design, Algorithms, Experimentation

Keywords
Deduplication, Entity resolution, Constraint satisfaction

1. INTRODUCTION
When information from multiple sources of data is inte-

grated, it invariably leads to erroneous duplication of data
when these sources store overlapping information. For ex-
ample, both ACM [2] and DBLP [15] store information
about publications, authors and conferences. Owing to data
entry errors, varying conventions and a variety of other rea-
sons, the same data may be represented in multiple ways —
an author’s name may appear as “Jeffrey Ullman” or “J. D.
Ullman”. A similar phenomenon occurs in enterprise data
warehouses that integrate data from different departments
such as sales and billing that sometimes store overlapping
information about customers. Such duplicated information
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can cause significant problems for the users of the data. For
instance, errors in data lead to losses in revenue by possibly
failing to charge customers for services provided motivating
the need for revenue recovery applications [27] that reconcile
the billing and services databases in an enterprise by inte-
grating them to ensure that every service is billed. They can
also lead to increased direct mailing costs because several
customers may be sent multiple catalogs, or produce incor-
rect results for analytic queries leading to erroneous data
mining models. Hence, a significant amount of resources
are spent today on the task of detecting and eliminating
duplicates. This problem of detecting and eliminating mul-
tiple distinct tuples representing the same real world entity
is traditionally called the deduplication problem (alternately
called entity resolution). The problem is challenging since
the same tuple may be represented in different ways thus
rendering duplicate elimination by using “select distinct”
queries inadequate.

Prior work has approached this problem by exploiting the
textual similarity between the tuples [3, 4, 5, 11, 18, 22, 28,
29]. Textual similarity is measured using a similarity func-
tion that for every pair of tuples, returns a number between 0
and 1, a higher value indicating a better match with 1 corre-
sponding to equality. The task of deduplication is to trans-
late this pairwise information into a partition of the input
relation. While duplication in the real world is an equiva-
lence relationship, the relationship induced by the similarity
function is not necessarily an equivalence relation; for exam-
ple, it may not be transitive. This is addressed by modeling
the individual tuples as nodes, the pairwise matches as edges
in a graph, and using a graph partitioning algorithm to find
sets of tuples to be collapsed.

In this paper, we observe that there are scenarios where
additional constraints on the data are available that can be
used to evaluate the quality of deduplication. We illustrate
these constraints through the following examples.

• Consider a Parks company that manages several parks;
individuals can enroll as members in several of these
parks. An example constraint here is that the total
monthly fee for each member is calculated by adding
up the monthly fees for each park in which the member
is enrolled. This example is drawn from a scenario
described by Knowledge Partners Inc [25].

• Consider integrating information about publications
from sources ACM and DBLP. Assume that each
source contains all JACM papers published thus far.
Then, for every author entity in the resulting database,



Member Fees Fees
stored derived

John Doe 100 130
J. Doe 40 10
... ... ...

Figure 1: Scenario 1

Member Fees Fees
stored derived

John Doe 100 100
J. Doe 40 10
... ... ...

Figure 2: Scenario 2

the number of JACM papers authored as measured us-
ing ACM and DBLP must be the same.

While these aggregate constraints are expected to hold in a
clean database, errors in the data lead to violations of these
constraints. Our goal in this paper is to reduce the number
of such violations during deduplication in addition to merg-
ing textually similar tuples. Thus, if collapsing two tuples
that are textually similar leads to a violated constraint get-
ting satisfied, we take that as additional support for merging
these tuples. We illustrate this with an example below.

Example 1. Consider a Parks database as mentioned in
the example above. Each park maintains a separate reg-
istration database, while there is also a central Billing

repository containing information about all members and
the total amount they are billed. Suppose that we are in-
terested in deduplicating the member entities. For the sake
of exposition, we assume that the member name is a key. A
subset of the member names is shown in Figure 1 along with
two numeric columns. One of these numeric columns, called
Fees Stored is the total fees for the member as stored in
the Billing database, while the other, Fees Derived rep-
resents the total fee as computed by aggregating the data
across the parks. We also assume that when we collapse
two tuples during deduplication, we have to add up the to-
tal fees. The figure shows that we have two members “John
Doe” and “J. Doe”. These strings may or may not refer to
the same person. In Scenario 1 as shown in Figure 1, there
is a mismatch between the stored and derived fees, and col-
lapsing the two tuples fixes this mismatch. In Scenario 2
shown in Figure 2, there is no mismatch between the stored
and derived fees for the string “John Doe” and collapsing
the tuple with “J. Doe” creates a mismatch. We use this
information to merge the two tuples in Scenario 1, whereas
in Scenario 2, we do not. Note that a traditional deduplica-
tion algorithm bases the decision of whether to collapse the
two tuples or not independent of the constraint.

Of course, it is likely that in the presence of dirty data it
would be difficult to satisfy these constraints exactly. The
above example is used to illustrate the basic principle. The
techniques proposed in this paper also address approximate
satisfaction. 2

Our contributions in this paper are as follows. We begin
by formalizing this class of aggregate constraints and illus-
trate it through various examples (Section 3). We first show
that attempting hard satisfaction of constraints is challeng-
ing semantically and also leads to computational intractabil-
ity and thus proceed by defining a maximum satisfaction
variant of the problem (Section 4). We integrate the use of
constraints in deduplication by using the textual similarity
between tuples to restrict the search space of partitions (Sec-
tion 5). We begin with a coarse initial partition of the data
and refine it by successive splits. This defines a rich space of
alternatives. Over this space, we propose an algorithm that

finds the partition of the input maximizing constraint sat-
isfaction. We show empirically that leveraging aggregation
constraints substantially improves the accuracy of dedupli-
cation (Section 7). We also study the performance of our
algorithm and show that it scales well with data size.

2. RELATED WORK
Deduplication coupled with the closely related problem of

clustering has been extensively studied in prior work [22, 11,
3, 29, 8, 5]. As noted in Section 1, the approach by and large
has been to leverage the textual similarity between tuples to
collapse them. We view our contribution as complementary
to these techniques. Indeed, the search space used in this
paper builds upon prior formulations of deduplication such
as single-linkage [23] and the compact set framework [11] and
more broadly, the paradigm of hierarchical clustering [23].

There has been considerable prior work on clustering with
constraints [7, 14, 31, 5, 6]. A large body of this work fo-
cuses on pairwise positive and negative examples, as well as
“association” constraints [6]. Examples are exploited either
by making them hard constraints on the output or by adapt-
ing the similarity function to accommodate them. Tung et
al. [31] address the problem of clustering with aggregate con-
straints. One of their contributions is to introduce a taxon-
omy of constraints for clustering, which we build upon and
review here in the context of deduplication. This taxonomy
helps distinguish the class of constraints considered in this
paper.

• Constraints on individual tuples: These are con-
straints that express the condition that only some tu-
ples (for instance “authors that have published in SIG-
MOD”) may participate in the deduplication. Such
constraints are easily enforced by pushing these filter
conditions before deduplication is invoked.

• Deduplication parameters as constraints: Several
deduplication algorithms take parameters such as the
number of groups to be output as constraints.

• Pairwise positive and negative examples: These are
constraints that require that some pairs of tuples be
grouped together and that other pairs not be grouped
together. This is the subject of extensive prior work [7,
14].

• Groupwise constraints: These are constraints that are
required to be satisfied by each group in the output of
deduplication. This is the focus of Tung et al. [31] and
of our paper.

Tung et al. [31] study the problem of clustering in the
context of data mining. They investigate the use of group-
wise constraints for clustering, where every group of tuples
is expected to satisfy a given aggregate constraint. The pro-
totypical example they use to illustrate this is that there is



a given set of important customers and the clustering must
be such that the count of important customers in each clus-
ter must be above a given minimum. While the authors
mention other SQL aggregations, their techniques focus on
count constraints. Indeed, the authors acknowledge that for
summation and average, “even computing an initial solution
can be difficult” and defer this to future work. Moreover, the
constraints are incorporated as hard constraints. Our paper
addresses groupwise aggregation constraints in the context
of deduplication. We differ in that we allow all SQL ag-
gregates including summation. Further, we do not impose
these constraints as hard constraints; instead we formulate
a maximum satisfaction version of the problem.

We also note that there are other ways of leveraging con-
textual information for deduplication besides aggregate con-
straints. Recent work on deduplication has investigated this
approach [3, 16]. The idea is to use the cooccurrence with
other tuples in the database as an indication of similarity.
As an example, the State column in an address table may
be cleaned by using the set of cities contained in these states.

Our contributions are also related to the broad area of
constraint repair [9, 24, 12, 20]. Here, the idea is to perform
the least number of operations including tuple insertions,
deletions and value modifications [9, 24] so that the result-
ing database instance satisfies a given set of constraints. In
this whole body of work, the class of constraints considered
is the traditional class of database constraints such as keys,
functional dependencies and inclusion dependencies. The
results in our paper are applicable in the context of extend-
ing the repair approach to handle aggregate constraints. We
discuss this in more detail in Section 4.

Finally, another closely related area is mathematical pro-
gramming. As noted in [31], the primary concern is the scal-
ability of these techniques to large data sizes. However, we
do draw upon the set packing problem considered in the al-
gorithms and operations research communities [21] (for more
details, see Section 6.2).

3. PRELIMINARIES
In this section, we define the class of constraints which

is the focus of this paper and describe how we can incor-
porate them into deduplication. We begin by outlining the
input and output of deduplication, define our class of aggre-
gate constraints and discuss various ways of incorporating
constraints into deduplication.

3.1 Deduplication
The input to the deduplication problem is a relation (or

view) R(T, N1, . . . , Nk) with a text field T 1 and numeric
fields Ni. The output is a partition of the records in R
which we capture through a GroupID column that is added
as a result of deduplication. We refer to each equivalence
class in the partition as a group of tuples. Figure 3 shows a
snippet of the Members relation described in Example 1 and
two possible partitions, shown using the values in columns
GroupID1 and GroupID2 .

3.2 Constraints
We now define our class of constraints. For a tuple t ∈ R,

we write t[N ] to denote the value of t in column N . Let S =
1In general, we can use multiple text fields for deduplication.
But we assume without loss of generality that we have a
single text field.

{t1, . . . , tn} ⊆ R be a subset of tuples from R. Let Agg be
a SQL aggregation function. We write Agg(S[N ]) to denote
the value obtained by aggregating t[N ] using function Agg
over all tuples in t ∈ S. The subset S satisfies a predicate
Agg

1
(Ni)θAgg

2
(Nj) if Agg

1
(S[Ni])θAgg

2
(S[Nj ]).

Definition 1. Consider relation R(T, N1, . . . , Nk) as de-
scribed above. An aggregate constraint is a conjunction of
atomic predicates of the form Agg

1
(Ni)θAgg

2
(Nj). Here

Agg i is a standard SQL aggregation function and θ is a com-
parison operator drawn from {<,≤, =,≥, >}.
S satisfies an aggregate constraint if it satisfies each atomic
predicate. A partition of R is said to satisfy a predicate (con-
straint) if every group in the partition satisfies the predicate
(constraint). Such a partition, if it exists, is said to be a
repair of R.

We illustrate these definitions with an example.

Example 2. Consider the Members relation and the par-
titions shown in Figure 3 with the constraint sum(Fees

Stored) = sum(Fees Derived). Each group in the parti-
tion defined by column GroupID1 satisfies the constraint.
Hence, the partition defined by GroupID1 constitutes a re-
pair. On the other hand, the partition defined by GroupID2
does not satisfy the constraint since the groups correspond-
ing to GroupID2 = 2, 3 do not satisfy the constraint. 2

We now illustrate the examples in Section 1 using the
above definitions.

Example 3. Recall the revenue recovery setting referred
to in Section 1. We have a Shipping database and a
Billing database each with a Customer(name) relation and
an Orders(custname,totalprice) relation (we assume the
customer name to be a key). In the Billing database, the
Orders relation corresponds to all orders billed, whereas in
the Shipping database, it corresponds to orders shipped.
Now assume that these databases are integrated into a ware-
house that tracks all information pertaining to customers.
We obtain a single CustomersCombined relation by taking
the union of the customer relations in both databases. Sup-
pose that we wish to deduplicate the customer entities based
on the textual similarities of their names. We can then ex-
ploit the constraint that for each customer, the total amount
billed must equal the total amount shipped. This can be ex-
pressed through the following views.

--Compute the amount billed per customer

create view AmtBilled(name, value) as

(select C.name, sum(coalesce(O.totalprice,0))

from CustomersCombined C left outer join

Billing..Orders O

on C.name = O.custname

group by C.name)

--Computes the amount shipped per customer

create view AmtShipped(name, value) as

(select C.name, sum(coalesce(O.totalprice,0))

from CustomersCombined C left outer join

Shipping..Orders O

on C.name = O.custname

group by C.name)

--Join the amount shipped and billed per customer

create view CustomersAll(name,valuebilled,



Member Fees Fees GroupID1
stored derived

John Doe 100 130 1
J. Doe 40 10 1
Alice Jones 40 60 2
A. Jones 20 10 2
Jones 20 10 2

Member Fees Fees GroupID2
stored derived

John Doe 100 130 1
J. Doe 40 10 1
Alice Jones 40 60 2
A. Jones 20 10 2
Jones 20 10 3

Figure 3: Relation and two possible partitions

valueshipped)

as

(select B.name, B.value, S. value

from AmtBilled B, AmtShipped S

where B.name = S.name)

The coalesce function used above is provided by the
SQL standard and converts nulls to a specified value.
Thus, the above use of the coalesce function ensures
that if a customer value is not present in either data-
base, then the totalprice column is aggregated as 0. In
order to express the aggregate constraint, we focus on
deduplicating customers in the CustomersAll view (which
has exactly the same names as CustomersCombined).
The aggregate constraint that is expected to hold in
the output of the deduplication is sum(valuebilled) =

sum(valueshipped). This constraint may be relaxed to
something like sum(valuebilled) >= sum(valueshipped)

and sum(valueshipped) >= 0.95 * sum(valuebilled)

expressing the fact that all shipped orders must be billed,
and that most (as opposed to all) orders that are billed
must be shipped. 2

Example 4. We begin with two databases ACM and
DBLP. Each has the relations Author(name) that stores in-
formation about individual authors and AuthorPaper(name,

title, conference, year) that has information relating
authors to papers written by them along with data about
the papers. We assume that in each database, the author
name is a key. Now consider the task of integrating these
sources of publication data. We obtain the total set of au-
thors, AuthorsCombined by taking the union of the author

relations from the two databases. Consider the following
views.

--Compute the paper count from DBLP

create view DBLPCount(name, cnt) as

(select A.name, count(AP.title)

from AuthorsCombined A left outer join

DBLP..AuthorPaper AP

on A.name = AP.name

where AP.journal = ’JACM’

group by A.name)

--Compute the paper count from ACM

create view ACMCount(name, cnt) as

(select A.name, count(AP.title)

from AuthorsCombined A left outer join

ACM..AuthorPaper AP

on A.name = AP.name

where AP.journal = ’JACM’

group by A.name)

--Join the ACM and DBLP counts

create view AuthorsAll(name, acmcnt, dblpcnt) as

(select A.name, A.cnt, D.cnt

from ACMCount A, DBLPCount D

where A.name = D.name)

We note that according to the SQL standard, the aggregate
count(AP.title) yields the value 0 when an author tuple
is not present in a paper relation. Thus, the views above
count the number of papers authored by each author from
the two paper relations. In order to exploit aggregate con-
straints, we focus on the view AuthorsAll. We expect the
output of the deduplication to satisfy the aggregate con-
straint sum(dblpcnt) = sum(acmcnt) if the JACM papers
are correctly represented in both the sources. Again, we
note that our constraint language allows us to express more
relaxed constraints than exact equality as shown here. 2

4. MAXIMIZING CONSTRAINT
SATISFACTION

Recall that our goal is to use constraints in addition to
textual similarity during deduplication. The question arises
exactly how we incorporate constraints. In this section, we
first consider the hard constraint approach where given in-
put relation R(T, N1, . . . , Nk) that is being deduplicated and
an aggregate constraint, we wish to partition R such that the
output is a repair, i.e. every group satisfies the constraint.

Consider the problem of deduplicating the Members rela-
tion described in Example 1. A partition that satisfies the
constraint sum(Fees Stored) = sum(Fees Derived) exists
if and only if the total fees stored equals the total fees de-
rived, when summed over all members. In the presence of
dirty data, this condition need not necessarily hold. Thus,
the hard constraint approach can be too rigid semantically.

Further, given that we wish to cover all SQL aggregation
functions, even determining whether there exists a partition
where each group satisfies the constraint is NP-hard in the
data size. The following result follows from a straightfor-
ward reduction from the SetPartition problem [19].

Lemma 1. Consider relation R(T, N1, N2). Suppose
we wish to partition this relation using the constraint
sum(N1) = max(N2). Then checking whether a repair
exists is NP-complete (in the data size).

Thus, the hard constraint approach is limiting even compu-
tationally.

Based on this discussion, we formulate variants of the
problem that try to maximize the constraint satisfaction.
We think of these variants as special cases of the following
framework. We have a benefit function that maps any group
of tuples in input relation R to a non-negative real num-
ber. Given a partition of R, we associate a benefit with the
partition by computing the benefit of each individual group
and summing it up across all partitions. We are seeking the
partition of R that has maximum benefit.



In the first variant, which we call MaxPart, the bene-
fit of an individual group is 1 if it satisfies the constraint
and 0 otherwise. This formulation thus requires that the
number of groups that satisfy the constraint be maximized.
We illustrate this with an example.

Example 5. Consider the relation shown in Figure 3 and
the constraint sum(Fees Stored) = sum(Fees Derived).
According to the MaxPart benefit function defined above,
the benefit of the partition defined by GroupID1 is 2 since
both the individual groups satisfy the constraint, whereas
the benefit of the partition defined by GroupID2 is 1 since
only the group corresponding to GroupID2 = 1 satisfies the
constraint.

In the second variant, called MaxTup, the benefit of an
individual group is its cardinality if it satisfies the constraint
and 0 otherwise. Here, we require that the number of tuples
that are members of groups that satisfy the constraint be
maximized.

Example 6. Consider the relation shown in Figure 2. Ac-
cording to the MaxTup benefit function defined above, the
benefit of the partition defined by GroupID1 is 5 since
every tuple belongs to a group that satisfies the constraint,
whereas the benefit of the partition defined by GroupID2
is 2.

While both of these formulations seek some form of con-
straint maximization, they are not equivalent formulations.
The techniques we propose apply to both these formulations
and indeed generalize to arbitrary benefit functions.

5. INTEGRATING CONSTRAINTS WITH
TEXTUAL SIMILARITY

In this section, we discuss how we integrate maximum
constraint satisfaction with textual similarity to perform
deduplication. Our approach is to use textual similarity to
restrict the class of groups that can belong to the output
partition.

5.1 Similarity Graphs
Textual similarity is usually captured by using a simi-

larity function over the tuples of relation R. A similarity
function sim takes a pair of records and returns a number
between 0 and 1. A value of 1 indicates exact equality and
higher values indicate higher similarity. Examples of similar-
ity functions are edit distance, jaccard similarity and more
recently introduced similarity functions such as fuzzy match
similarity [10].

The similarity function induces a weighted graph on any
tuple-set where every tuple is a node and the weight of the
edge connecting two tuples is their similarity. We call this
the similarity graph. Figure 4 shows the similarity graph
for the relation illustrated in Figure 3. We only show edges
where the similarity value is above 0.1. The similarity be-
tween all pairs of nodes not connected by an edge in this
figure is 0.1. Henceforth, we refer to a group to also mean
the similarity graph induced over the group. For example,
we say that a group is connected to mean that the induced
similarity graph is connected.

We refer to the process of deleting all edges from a sim-
ilarity graph of weight less than α, 0 ≤ α ≤ 1 as threshold-
ing the graph. Since the goal is to merge tuples only when

their similarity is high, prior work on deduplication typically
thresholds the similarity graph before using it to partition
the data.

5.2 Restricting the Space of Groups
Various methods of partitioning the similarity graph such

as connected components, cliques [17], stars [4] and compact
sets [11] have been explored in prior work. Our search space
of groups is inspired by the properties used to partition the
similarity graph in these bodies of prior work.

We first show that not choosing the restricted space of
groups carefully can lead to computational intractability.
Suppose for example that we restrict the space of groups to
only include groups where the thresholded similarity graph
(for a suitably high threshold value) is connected. While this
restricts the space of possible groups substantially, the num-
ber of groups whose similarity graph is connected can still be
exponential in the data size. In the worst case, every subset
of the data is connected. Here, we are reduced to maximiz-
ing constraint satisfaction over the space of all partitions.
Since our constraint language consists of aggregation con-
straints, there is a clear relationship between our problem
and the well-known NP-complete problem SubsetSum and
we can show that:

Lemma 2. Consider a given relation R(T, N1, N2) and
the aggregate constraint sum(N1) = max (N2). Determining
whether there is a partition of R where at least one group
satisfies the constraint is NP-complete (in the data size).

Since it is NP-hard to check whether we can even return one
group that satisfies the constraint, it follows that comput-
ing an approximation of any factor for the MaxPart or
MaxTup problems is computationally intractable in the
data size (unless NP=P).

Thus, even though we are trying to restrict the space of
groups by exploiting the textual similarity between tuples,
we must do so in a way that does not lead to the intractabil-
ity described above.

5.3 Space of Valid Groups
Based on the above analysis, we restrict the space of

groups as follows. We begin with a coarse initial partition
of the tuples in R which, for the purpose of discussion we
assume to be the one consisting of all tuples collapsed into
one group. We then split the individual groups by examin-
ing the similarity graph induced over the tuples in the group
and deleting low weight edges until the graph gets discon-
nected. The new connected components define the split of
the original group. We iterate in this manner with each of
the split groups till we are left with singleton groups.

Formally, we define the space of valid groups as follows.
Given a group of tuples, its splitting threshold is the lowest
value of similarity α such that thresholding the similarity
graph (induced over the group) at α disconnects it. The
split of a group of tuples is the resulting set of connected
components. Figure 6 procedurally defines the space of valid
groups. We note that this is not a procedure we execute
to generate the valid groups (our algorithm is described in
Section 5.4). The procedure is only used to define the space
of valid groups.

Example 7. Figure 4 shows the similarity graph for the
tuples in the relation shown in Figure 3. The edges not
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Figure 4: Example Similarity Graph

 
 
 

 

“John Doe”, “J. Doe”, “Alice Jones”, “A. Jones”, “Jones” 

“John Doe”, “J. Doe” 
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“Alice Jones” “A. Jones” 
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Figure 5: Search Space of Partitions

ValidGroups

1. Initialize the set of valid groups with
the groups in a given partition

2. For each group, add the split of
the group to the set of valid groups

3. Keep doing this until we cannot
add any more new groups

Figure 6: Valid Groups

shown in the figure carry weight 0.1. Figure 5 shows the
space of valid groups. We begin with all tuples collapsed
into one group at the root. When we keep increasing the
edge weight threshold and drop all edges whose weight is
less than or equal to 0.1, the similarity graph gets discon-
nected into two components, one, C1, containing the strings
“John Doe” and “J. Doe”, and the other, C2 containing the
remaining strings. The component containing “John Doe”
and “J. Doe” further splits at threshold 0.8 to yield the
singleton groups. Component C2 first gets split at simi-
larity threshold 0.7 where the singleton containing “Jones”
gets removed from the group. Finally, at threshold 0.8, it
gets further split into the singleton groups containing “Alice
Jones” and “A. Jones”. Note that the “splitting” threshold
is determined for each group locally. Thus, even though C1
breaks at threshold 0.8, this is not the threshold applied to
C2. 2

Suppose we draw a graph where every valid group is a
node and an edge goes from one node u to another v if the
group corresponding to v is obtained by splitting u. This
graph is acyclic since the node corresponding to a group can
only point to another that corresponds to its subset. For the
case where the initial partition is a single group consisting
of all tuples, the graph is a tree where the root corresponds
to the group that collapses all tuples together (in general,
it is a forest). Figure 5 shows the tree corresponding to the
groups described in Example 7.

Define a frontier F in this tree to be a set of nodes
such that every root-leaf path contains exactly one node
in F . Figure 5 shows a frontier consisting of the groups
{“John Doe”, “J. Doe”}, {“Alice Jones”, “A. Jones”} and
{“Jones”}. Observe that any partition consisting of valid
groups is a frontier, and that conversely, every frontier con-
stitutes a partition.

We now define the goal of deduplication given a single
aggregate constraint as follows.

Among all frontiers, find the one that maximizes
benefit function MaxPart, that is, find the par-
tition where the number of groups satisfying the
aggregate constraint is maximized.

While this is defined for the MaxPart function, it is easy
to extend it to the MaxTup version.

We now argue why we adopt this specific space of valid
groups. We show that our search space generalizes two
previously proposed techniques for deduplication, namely
single-linkage [23] and the compact set framework [11]. The
single-linkage approach is based on the connected compo-
nents obtained when we threshold the similarity graph over
the whole relation. For various values of the threshold,
we obtain different partitions of the data. We refer to the
space of groups obtained in this manner singly-linked groups.
When we threshold the similarity graph, any connected com-
ponent that is also a clique is called a compact set [11] (a
compact set consists of tuples that are mutual nearest neigh-
bors).

Lemma 3. Any singly-linked group and compact set is a
valid group in our search space.

Proof. Since a compact set is also a singly-linked group,
it suffices to show this result for singly-linked groups. Fix
a singly-linked group obtained as a connected component
when we threshold the similarity graph at value α. Consider
the nodes (in the above tree of valid groups) that represent
the singletons containing the tuples in this group. Let their
least common ancestor be node u. If u represents a strict
superset of the group, then it must split at a threshold ≤ α.
But this would not split the tuples in the group, contradict-
ing the fact that u is the least common ancestor. Thus, u
represents the group exactly.

Thus, our space is a generalization of two previously pro-
posed deduplication algorithms and is defined in the spirit
of hierarchical clustering [17]. We view this as a strength of
our approach since we are seeking to find the optimal par-
tition over a space of groups that has been studied in the
literature on deduplication algorithms.

Moreover, our space includes as extreme solutions, the
case where each record is in a separate group and the single-
group partition consisting of all tuples collapsed into one and
a rich space of partitions in the middle. We can reason in
terms of coarser and finer groups and therefore be aggressive
and collapse many tuples, or conservative and collapse only
a few tuples in order to maximize the constraint satisfaction.

Finally, various ways of restricting the space of possible
groups have been explored in previously proposed deduplica-



procedure ConstraintSatisfy
begin

1. Begin with the initial partition P

2. For each group of tuples x ∈ P

3. Compute MaxFrontier(x)
4. Return the union of the above groups

end

procedure MaxFrontier(group x of tuples)
begin

1. If x is a singleton group
Return a partition containing a single group x

2. Let P ← Split(x)
3. MaxBenefit(x)← max(benefit(x),

Σy∈P MaxBenefit(y))
4. If benefit(x) was larger in the previous step
5. MaxFrontier(x) contains a single group x

6. Else
7. MaxFrontier(x) is the union of

{MaxFrontier(y) : y ∈ P}
8. Return MaxFrontier(x)

end

procedure Split(group x of tuples)
begin

1. Sort the edges of the similarity graph
in descending order of weight

2. Maintain a collection of disjoint sets
using Union-Find

Initialize the collection so that every
node is in a separate subgroup by itself

3. While (we have > 2 separate subgroups)
4. Select an edge of highest similarity

that connects two separate subgroups
5. Merge the two subgroups together
6. If (we are left with two subgroups)
7. Return these two subgroups

(this means the input graph was connected)
The similarity of the next edge that connects
these two subgroups is the splitting threshold

8. Else
9. Return each of the current subgroups

(this means the input graph was disconnected)
end

Figure 7: Deduplication Algorithm

tion algorithms [17]. Understanding how each of these var-
ious ways of restricting the space can be incorporated into
the constraint maximization problem is beyond the scope of
this paper. The technique we propose here is to be under-
stood only as a first step.

5.4 Constraint Satisfaction Algorithm
For the restricted space of valid groups we are focusing

on, we can solve the MaxPart problem optimally. Indeed,
we can solve the problem optimally for any benefit function
that is associated with the groups (as defined in Section 4).
We illustrate the algorithm for an arbitrary benefit func-
tion in Figure 7. Recall that the benefit of a partition is
the sum of the benefits of the individual groups. Our goal
is to find a partition with the maximum benefit. The al-
gorithm is recursive and computes the frontier that yields
the maximum benefit for each group x of tuples using pro-
cedure M axFrontier(x). M axFrontier(x) is computed by
checking whether it is beneficial to split the group (Lines 3
through 7). The optimal frontier is then returned. The
procedure ConstraintSatisfy calls M axFrontier(x) for each
group in the initial partition.

We now explain the procedure Split that is used to split a
group. A straightforward approach to determine the split-
ting threshold would be to discretize the range of possi-
ble threshold values and exhaustively check which threshold
leads to a split of the graph. This approach is undesirable
since it requires us to process the entire similarity graph for
each value of the threshold, which can be very expensive.
One possible improvement here is to do a binary search on
this space of thresholds. But even this is not ideal since we
are processing the entire similarity graph for multiple values
of the threshold which can be potentially expensive.

We now discuss how we can not only determine the split-
ting threshold, but also use it to split a group in time
O(E lg V ) where E is the number of edges in the similar-
ity graph and V is the number of nodes (i.e., the number
of tuples in the group). We proceed in the style of Mini-
mum Spanning Tree (MST) algorithms [13]. We maintain
disjoint subgroups (representing connected sub-components

in the similarity graph) using the Union-Find algorithm [13].
Initially, each node in the similarity graph is in a sepa-
rate subgroup. We process the edges in decreasing order
of weight (as opposed to MST algorithms where the edges
are processed in increasing order of weight) and merge two
subgroups whenever an edge connects them. Observe that if
the group is connected, eventually all subgroups must merge
together to yield the original group. We can then show that
the weight of the edge that performs the final merge is the
splitting threshold. We split the group into the two sub-
groups merged in this last step. Procedure Split in Figure 7
sketches the algorithm. Note that if the input similarity
graph is connected, the algorithm always returns a split
of two subgroups. (This can happen even when the edge
weights are identical, even though our definition of splitting
threshold requires that if an edge of a given weight is deleted,
so must all other edges of the same weight. However, this
modification only enriches the set of valid groups.)

Figure 8 shows how the algorithm proceeds for the space
of groups shown in Figure 5 (with the MaxPart benefit
function). The numbers beside each group indicate whether
or not the group satisfies the given aggregate constraint.
The partition defined by column GroupID1 in Figure 3 is
returned as the optimal partition. The frontier correspond-
ing to this partition is marked out in Figure 8.

5.5 Initial Partition
We now discuss how we pick the initial partition for our

constraint satisfaction algorithm. First, even though two
previously proposed algorithms can be expressed as parti-
tions consisting of valid groups (as noted above in this Sec-
tion), not all previously proposed deduplication algorithms
can. We therefore accommodate other previously proposed
algorithms simply by initializing the tree with their output.
We study the effect of the initial partition in Section 7.

6. DISCUSSION
We first discuss various extensions to our framework of

constraint satisfaction, and then revisit our analysis in Sec-
tion 5.2 on the choice of the search space of partitions.
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Figure 8: Illustrating ConstraintSatisfy

6.1 Extensions
We consider some extensions of our techniques here.

Class of Constraints
While the discussion in this paper is carried out for the class
of aggregate constraints introduced in Section 3, our tech-
niques are more general and in fact applicable to a blackbox
notion of groupwise constraints that takes a group as input
and returns true or false. We illustrate with some examples
below.

• Positive and Negative Example Constraints: A positive
example constraint consists of an equivalence class of
tuples denoting a positive example. A group satisfies
the constraint if it contains all the tuples in the equiv-
alence class (and possibly more), or none of them. A
negative example constraint also consists of an equiv-
alence class of tuples. A group satisfies the constraint
if it contains at most one of the tuples in the equiva-
lence class. Note that the difference from related work
in constrained clustering [7, 14] is that these examples
can be groupwise, not necessarily pairwise.

• Set-Based Constraints: When deduplicating the
Authors relation as in Example 4, we may wish to
exploit a set-based constraint that requires that for
any group, the set of JACM papers according to both
the databases be the same (or almost the same),
instead of relying on their counts. This can be easily
extended to ensure that no two co-authors are ever
collapsed into the same group.

Minimum Cost Repair
Assume that a repair of the given aggregate constraint ex-
ists (i.e, a partition where every group satisfies the given
constraint) and that among all repairs, we are interested in
finding the one that has the least “cost”. Since our algorithm
finds the optimal partition, we can carry out our discussion
in terms of a cost function that we are seeking to mini-
mize. Suppose that the cost of a group is the total cost of
transforming all tuples to the same target, say the centroid
(along the lines of the traditional k-means approach [23, 1]).
Now minimizing the cost function corresponds to finding a
minimal repair.

Generalizing the Splitting Methodology
The specific Split function we describe in Section 5 gen-
eralizes two previous techniques for deduplication, namely

single-linkage and compact sets. However, the algorithm
sketched in Figure 7 is applicable even if we choose a differ-
ent methodology of splitting a group, such as by computing
the minimum cut of the similarity graph.

6.2 Revisiting the Search Space
The approach adopted in this paper is that of restricting

the search space of valid groups and seeking a partition con-
sisting of valid groups from this space. We choose a specific
search space obtained by beginning with an initial partition
of the data and splitting the groups by raising the similarity
threshold. The question arises what is the rationale behind
this specific choice of search space. A useful point of con-
trast is an approach where we are explicitly given a small set
of groups as a part of the input and our goal is to produce
a partition consisting of these groups that maximizes the
benefit function.

Formally, we are given a relation R and a set of valid
groups. We assume that this set of valid groups includes
singletons corresponding to the tuples in R. Associated with
each group is a benefit. Our goal is to find a partition of R
consisting of valid groups that maximizes the value of the
benefit function.

We now observe that this problem is closely related to
the classic Weighted Set Packing (WSP) problem [19]. We
briefly recall this problem and then show how our problem
reduces to it. In WSP, we are given a collection of sets drawn
from a base universe each with an associated benefit and the
goal is to identify a collection of disjoint sets from the input
collection that has the maximum total benefit, obtained by
adding the individual benefits. Our problem is closely re-
lated to this since we could take every valid group as a set
in the input collection, retain the same benefit function and
ask for the optimal solution to WSP.

Note that the output of WSP is not required to be a parti-
tion of R. However, given that our input contains singleton
elements from R and given that adding singleton elements
can only improve the total benefit of the grouping, we can
assume without loss of generality that the optimal solution
returned by WSP is a partition of R. Thus, we can use
algorithms for WSP. Unfortunately, WSP is known to be
NP-hard [19]. Interestingly, Halldorsson [21] showed that

the problem is approximable within factor
√

N (where N
is the cardinality of R) through a simple greedy algorithm.
This algorithm can be adapted to our setting and is shown
in Figure 11.

procedure GreedyDedup

1. k← 0, Ck ← the set of valid groups
2. repeat
3. k ← k + 1
4. Xk ← C ∈ Ck−1 that maximizes

benefit(C)/
�
|C|

5. Remove all sets that intersect Xk

from Ck−1 to obtain Ck

6. until Ck is empty
7. return {X1, . . . , Xk}

Figure 11: Greedy Algorithm

Based on the analysis in [21], we can show the following
result.
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Figure 9: Publications
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Figure 10: Addresses

Theorem 1. Algorithm GreedyDedup yields an ap-
proximation of

√
N , where N is the cardinality of R.

The question arises whether we can do better than
GreedyDedup. We now show that it is likely to be com-
putationally hard to do significantly better for cases where
the number of valid groups is linear in the data size. Since
we are in the setting of large data sets, it is reasonable to
assume that the number of valid groups is at most linear in
the data size.

Theorem 2. Consider the special case of MaxTup where
the number of valid groups is linear in the data size. For
each ε > 0, it is NP-hard in the data size to approximate

this problem within factor N
1

4
−ε (N is the cardinality of

R).

This result points to the fact that unless the space is chosen
carefully, it can be computationally difficult to even come
close to finding the optimal partition. For the hierarchical
space we choose, it is possible to find the optimal partition.

7. EXPERIMENTS
We now report the results of our experimental study. The

goals of our study are to investigate (1) the quality of the
output produced by our constraint satisfaction algorithm,
and (2) how our algorithm performs in terms of execution
efficiency.

We first outline some of the implementation details of
our algorithm. Given the input relation R that is be-
ing deduplicated and an initial partition of R, we first
invoke a similarity join [26] operation to determine the
set of edges in the similarity graph. At this point, we
can proceed using integer ids to represent the string val-
ued attributes in R. Thus, the next phase of the imple-
mentation uses an initial partition is given through the
schema (GroupID , ElementID ,N1 ,N2 ) and an edge table
represented using the schema (Src, Tgt ,Wt). We output a
relation that is equal to the input, except that the GroupID
column is changed to reflect the new partition. We set the
benefit function to be MaxPart.

7.1 Data
We use two real data sets. One is a publication data

set obtained by running information extraction over data
from the ACM web site [2]. We focus on the author rela-
tion, specifically on the set of database authors containing

about 2000 authors. We use DBLP [15] as a second source
of information and use the constraint that the publication
counts in major conferences must match for the authors be-
tween the two data sets.

The other data set is a relation consisting of names and
addresses of organizations in Great Britain obtained from a
real warehouse. The relation has about 1.2 million records.
For this relation, we synthetically generate aggregate con-
straints that model the constraint discussed in Section 1 that
requires that the fees stored equal the fees derived.

7.2 Quality
We study the impact of constraints on the quality of

the output generated by Microsoft SQL Server 2005 which
implements a domain-independent deduplication algorithm.
We run our algorithm by initializing it with a partition re-
turned by Microsoft SQL Server 2005.

For both the publication database as well as the address
database, we use the golden truth for comparison. In the
case of the publication database, we manually examine the
data to determine the golden truth. In the case of the ad-
dress data, we use the output of a commercially available
address-specific tool [30] as the golden truth. As we vary
the similarity threshold, we obtain different partitions, both
with and without the aggregate constraint. We compare the
results of these partitions against the golden truth.

We compare quality using both traditional pairwise
precision-recall metrics and the value of the MaxPart ben-
efit function described in this paper. Since the trends
observed through both the metrics are the same, we only
report the results for the benefit function we use. While the
value of the MaxPart function can in principle be greater
than the number of groups in the golden truth (in which
ideally each group satisfies the constraint), in all our exper-
iments, we find that this is never the case. We also find that
most groups our algorithm returns satisfying the constraint
are identical to a group in the golden truth. Thus, we
report the value of the MaxPart function measured as
a percentage of the golden truth. A value of 90% for a
partition means that if the golden truth has 100 groups,
then this partition has 90 groups that satisfy the constraint.

Figures 9 and 10 shows the results of this comparison for
the publication database and the address database respec-
tively. The X-axis shows the value of the similarity threshold
(as a percentage) and the Y-axis shows the the value of the
MaxPart function measured as a percentage of the golden
truth. We observe from these plots that by using our al-



gorithm, we are able to consistently obtain a large number
of groups that satisfy the constraints. Further, by exploit-
ing constraints, we substantially improve upon the accuracy
yielded by the commercial algorithm. The number of groups
that satisfy the constraint by our approach is always in the
high 90%s for all values of the similarity, whereas this num-
ber varies significantly with the threshold for the commercial
algorithm. Even if we compare the maximum values across
all thresholds, we find that the improvement yielded by our
algorithm is substantial. We tabulate these values below.

Dataset Without Constraints With Constraints
Publication 94.49% 99.3%
Addresses 93.77% 98.75%

Table 1: Maximum constraint satisfaction

We also find that as the threshold increases, the accuracy
of the constraint satisfaction approach dips slightly. This in-
dicates that a coarser initial partition generally yields higher
accuracy since there is a greater opportunity to satisfy con-
straints.

7.3 Performance
Our next set of experiments study the execution efficiency

of our constraint satisfaction algorithm. We use various sub-
sets of the address relation for this purpose. The cost of
our algorithm is dependent on a variety of factors such as
(1) data size, (2) the number of groups in the initial par-
tition we begin with — a smaller number of groups means
that we have a coarser partition to begin with which leads to
increased execution time, and (3) the distribution of group
sizes — larger group sizes lead to slower execution. We
study how our algorithm performs as we vary each of the
other parameters above.
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Figure 12: Data Size

We generate subsets of the address data contain-
ing 100k, 500k and 1 million tuples. For each of these
subsets, we initialize our algorithm with 1000 groups. The
distribution of group sizes is chosen to be uniform. Figure 12
shows the results. For each data size, we plot the execution
time in seconds on the Y-axis against the number of initial
groups on the X-axis. We observe first that the figure
indicates reasonable execution times (order of 100 seconds)
showing the practicality of our algorithm. We also find that
when the data size increases 10-fold from 100k tuples to 1m

tuples, the execution time also increases proportionately.
This indicates that our algorithm scales well.
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Figure 13: Initial Group Size

Next, we study the performance of our algorithm (Y-axis)
as we vary the number of groups in the initial partition (X-
axis). The data size is fixed at 100k tuples. The distri-
bution of group sizes is uniform. Our expectation is that
the execution time increases as the number of initial groups
decreases. Figure 13 shows the results. We find that the ex-
ecution times even when the number of initial groups is 10
is less than 70 seconds. Interestingly, the execution times
are comparable whether we start with 100, 1000 or 10000
groups. Only when we start with 10 groups does it show a
substantial increase showing that when the group sizes grow
beyond a threshold, the execution time increases dispropor-
tionately.
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Figure 14: Data Skew

Our next experiment keeps the data size fixed at 100k
tuples, the number of groups in the initial partition fixed
at 1000 and varies the skew in the distribution of group
sizes. We do this by generating the group sizes using a
zipfian distribution. We vary the skew of the data so that
the distribution of group sizes in the initial partition varies
from z = 0 (uniform) to z = 2 (z is the zipfian parameter).
Figure 14 shows the results with the value of the zipfian
parameter on the X-axis plotted against the execution time
(again in seconds) on the Y-axis. As noted earlier, the ex-
ecution time grows more than linearly with the group size.



Hence, for the same number of groups, a higher skew re-
sults in slower performance. However, even for z = 2, our
algorithm terminates in less than 23 seconds.

Data size Record Matching Constraint Satisfaction
(# Tuples) (sec) (sec)

100k 12 23.74
500k 160.9 128.35
1m 262.2 216.74

Table 2: Comparison with Record Matching

Comparison with Similarity Join
Recall that our implementation first performs a similarity
join and then invokes the algorithm described in this paper.
Our final experiment compares the execution times taken
by the two phases. Table 2 shows the execution time of
our algorithm when the number of initial groups is 1000
compared against the execution time for similarity join. We
run the similarity join algorithm with threshold 0.9. Note
that the execution time of our algorithm is comparable to
that of similarity join for all data sizes.

8. CONCLUSION
This paper addressed the problem of incorporating group-

wise aggregate constraints into the problem of deduplication.
We formulated a maximum constraint satisfaction problem
and leveraged textual similarity to restrict the search space
of partitions. We proposed an algorithm that optimally
solves the constraint maximization problem over this search
space. Our framework is extensible so that it was applicable
not only for the aggregate constraints we focused on, but for
a larger class of groupwise constraints. Our experiments over
real data showed that leveraging constraints when available
substantially improves the accuracy of deduplication. We
note that there could be other ways of restricting the space
of partitions based on previously proposed deduplication al-
gorithms. Investigating how constraints can be incorporated
with each of these techniques is a topic for future work. The
technique we propose here is to be understood as only a first
step in leveraging aggregate constraints for deduplication.
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