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Abstract
Spectral clustering is a powerful technique in data analysis that has found

increasing support and application in many areas. This report is geared to
give an introduction to its methods, presenting the most common algorithms,
discussing advantages and disadvantages of each, rather than endorsing one
of them as the best, because, arguably, there is no black-boxalgorithm,
which performs equally well for any data. We present resultsfrom previous
studies and conclude that methods based on Ncut and multiwayare most
promising for general application.
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1 Introduction

Spectral clustering uses information obtained from the eigenvalues and eigenvec-
tors of their adjacency matrices for partitioning of graphs. It has many appli-
cations, such as in image segmentation (e.g. (Shi & Malik, 2000)) and social
network analysis (e.g. (Newman, Watts, & Strogatz, 2002)).The methods are
called spectral, because they make use of the spectrum of theadjacency matrix of
the data to cluster the points.

Spectral clustering algorithms have found an increasing following, especially
after (Shi & Malik, 2000) and (Ng, Jordan, & Weiss, 2002). As opposed to k-
means clustering, which results in convex sets, spectral clustering can solve prob-
lems, such as intertwined spirals, because it does not make assumptions on the
form of the cluster. Given a sparse similarity graph, spectral clustering can be im-
plemented efficiently even for large data sets (cf. (Verma & Meila, 2003)).Further
advantages of learning about spectral clustering algorithms were noted as follows
(Luxburg, 2006):

• solution of clustering problems by standard linear algebramethods

• often more efficient than traditional algorithms (e.g. k-means, single link-
age)

A concise introduction into the field of spectral clusteringcan be found in
(Luxburg, 2006), which this report relies on heavily. The comparison of algo-
rithms herein after summarizes (Verma & Meila, 2003), a systematic compar-
ison of spectral clustering algorithms, which demonstrated that these comple-
ment and/or compete with existing methods with convincing results. Most of
the presented algorithms work in combination with clustering algorithms, such
as k-means (the knowledge of which this report presupposes,refer to (MacKay,
2003) for an overview about clustering).

Due to the subtle nature of the relationship between spectral parameters and
the properties of datasets this report tries to outline the functioning of the algo-
rithms in question rather than arguing for one of them as the best. Nevertheless
comparison shows that some algorithms are more stable, havedesirable proper-
ties, and have superior clustering results.

2 Spectral clustering

2.1 Notation

The notation for spectral graph theory foots on graph theoryand appeals to in-
tuition. Except for minor differences in the names of matrices, variables, and
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counters, this notation seems pretty standard. This section introduces briefly the
mathematical notations of the algorithms that will be presented.

A graphor undirected graph Gcan be written as an ordered pairG := (V,E),
whereV is a set ofverticesor nodes, andE is a set of pairs (unordered) of distinct
vertices, callededgesor lines. The vertices belonging to an edge are called the
ends, endpoints, or end verticesof the edge. (Wikipedia, 2007b)

Theadjacency matrix(alsosimilarity matrixor weight matrix) of a finite di-
rected or undirected graphG onn vertices is then·n matrix where the nondiagonal
entrywi j is the number of edges from vertex i to vertex j, and the diagonal entrywii

is either twice the number of loops at vertex i or just the number of loops (usages
differ, depending on the mathematical needs; this report is not concerned with re-
flexive connections). The adjacency matrix is symmetric forundirected graphs.
(Wikipedia, 2006a) In the following, we assumewi j = wji ≥ 0.

Given A ∈ V, its complement,V\A will be denoted asĀ. i ∈ A shall be
shorthand for indices of{i|vi ∈ A}. |A| will denote the number of vertices inA.
vol(A) measures the size of A by the weights of its edges, i.e.vol(A) :=

∑

i ∈ Adi.
The degree(or valency) of a vertex is the number of edge endpoints to the

vertex. Loops are counted twice. Thedegree matrix Dfor G is a n × n square
matrix defined as (Wikipedia, 2007a)

di, j :=

{

deg(vi) if i = j
0 otherwise

Intuitively, a subsetA ∈ V is connected, if pathes between any two points inA
need only points inA. A is calledconnected componentwith respect toĀ, if A is
connected, and there are no edges between vertices inA andĀ. SubsetsA1, . . . ,Ak

represent apartitioningof V, if, for all 1 ≤ j, x ≥ k, Ai
⋂

A j = ∅ and
⋃k

i=1 Ai = V
(usually also defined nonempty).

2.2 Clustering

Generally speaking, clustering means partitioning of a graph, so that the edges
between different groups have low similarity (low distance) and the edges within
a group have high weight (low distance). The first requirement for the partitioning
can be stated as theminicut criterion, which has to be minimized:

cut(A1, . . . ,Ak) =
k
∑

i=1

cut(Ak, Āk), where

cut(A, Ā) =
∑

i∈Ak, j∈Āk

wi j
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Following the minicut requirement, often only a little group of points is iso-
lated. For this reason, tweaks have been introduced:

• RadioCut(A1, . . . ,Ak) =
∑k

i=1
cut(Ai ,Āi)
|Ai |

. (Hagen & Kahng, 1992)

• Ncut(A1, . . . ,Ak) =
∑k

i=1
cut(Ai ,Āi)

vol(Ai )
. (Shi & Malik, 2000) (Ncut for “normal-

ized cut“).

As for the second requirement, within-cluster similarity means optimizing

k
∑

l=1

∑

i, j∈Al

wi j

Within-cluster similarity is maximized ifcut(A, Ā) is small andvol(A) is big.
Therefore, Ncut implements the second criterion. Ncut can be interpreted as

cutting through edges rarely transitions by a random walk. RadioCut, by maxi-
mizing |Ai |, as within-cluster similarity is not related to the number of vertices in
A, does not implement this requirement.(Luxburg, 2006)

2.3 Similarity graphs

Given a set of points,x1, . . . , xn, and their distancesd jk ∈ D (not related to the
degree), there are several constructions to obtain a graph (i.e. constructW), which
are regularly used in spectral clustering.

Theǫ -neighorhood graphis the most simple possibility. All connections with
distances below a threshold are set to 1. I.e.

∑

<i j>

wi j = 1, with

{

< i j > |di j ∈ D, di j < ǫ
}

.

k-nearest neighbor graphslead to a directed graph. Thek-shortest distances
from i are connected. In order to make the graph undirected, directions can be ig-
nored, e.g. constructing ak-nearest neighbor graph, then doing eitherA

⋃

AT

(usually this is calledk-nearest neighbor graph) orA
⋂

AT (mutual k-nearest
neighbor graph).

A fully connected graphresults from connecting all points with positive simi-
larity with each other.
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2.4 Laplacians and their properties

The spectral algorithms presented here foot on eigenvectors of Laplacians, which
are a combination of the weight and the degree matrix. For a more thorough
and broader discussion of mathematical properties of Laplacians refer to (Mohar,
1997) and (Chung, 1997).

The (unnormalized) graphLaplacianis defined asL = D −W. For a graphG
and its admittance matrixL with eigenvaluesλ0 ≤ λ1 ≤ . . . ≤ λn−1 these properties
are important, in the context of spectral clustering. (Wikipedia, 2006c)

• L is always positive-semidefinite (∀i, λi ≥ 0).

• The multiplicity of 0 as an eigenvalue ofL is the number of connected
components ofG.

• λ1 is called the algebraic connectivity.

• The smallest non-trivial eigenvalue ofL is called the spectral gap.

Noteworthy is furthermore, that matrices with identical off-diagonal elements
have the same unnormalized Laplacians.

Thenormalized graph Laplacianis defined in two two distinct ways:

• Lsym := D−
1
2 LD−

1
2 = 1− D−

1
2 WD−

1
2 (symmetric matrix)

• Lrw := D−1L = I − D−1W. (random walk)

Some properties are

• Lrw andLsym are positive semi-definite and haven non-negative real-valued
eigenvalues 0= λ1 ≤ . . . ≤ λn.

• The multiplicityk of the eigenvalue 0 of bothLrw andLsym equals the num-
ber of connected componentsA, . . . ,Ak in the graph.

Refer to (Chung, 1997) for an in-depth discussion of normalized Laplacians.

3 Clustering algorithms

Spectral clustering became popular with, among others, (Shi & Malik, 2000) and
(Ng et al., 2002). Its efficiency is mainly based on the fact that it does not make any
assumptions on the form of the clusters. This property comesfrom the mapping
of the original space to a eigen space. Algorithms differ basically in the number
of eigenvectors they use for partioning.

Algorithms can be categorized based on the number of eigenvectors they use:
(Verma & Meila, 2003)



3 CLUSTERING ALGORITHMS 6

• One eigenvector – recursively uses a single eigenvector on partitions (recursive).

• Many eigenvectors – Directly computes amultiway partition of the data.

• Non spectral – Grouping algorithms that can be used in conjunction with
multiway spectral algorithms. Algorithms that are not spectral are shortly
mentioned in the next section and some results comparing them to spectral
algorithms will be presented in the discussion.

(Verma & Meila, 2003) outlines three steps in the algorithms.

• Normalization (preprocessing step): this was ignored hereand also did not
find more space in (Verma & Meila, 2003) beyond a mention.

• Spectral mapping: eigenvectors, usually based on a Laplacian, are com-
puted as a mapping of the data points.

• Grouping: clustering algorithms group the points in original or mapped do-
main.

3.1 Non-spectral clustering algorithms

This short section is dedicated to non-spectral clusteringalgorithms. They are of-
ten used in spectral algorithms as post-processing step (see section 3.2). (Verma &
Meila, 2003) compare different algorithms as post-processing steps after the spec-
tral mapping. For some broader discussion of clustering algorithms in general,
see (Shamir & Sharan, 2002).

The objective ofk-meansis to minimize the total intra-cluster variance, or, the
squared error function, defined as

V =
k
∑

i=1

∑

xj∈Si

|xj − µi |
2

, where there arek clustersSi, i = 1, 2, . . . , k andµi is the centroid or mean point of
all the pointsxj ∈ Si. Starting by partitioning the input points intok initial sets, it
calculates the mean point, orcentroid, of each set, then iterates constructing a new
partition by associating each point with the closest centroid and recalculating the
centroids for the new clusters until no changes occur. (Wikipedia, 2006b) (refer
to (MacKay, 2003) for more detail)

Ward’s Algorithm(mentioned, but not explained in (Verma & Meila, 2003))
was introduced in (Ward, 1963)1 is a agglomerative clustering algorithm. Givenn

1Explanation found athttp://iv.slis.indiana.edu/sw/ward.html.

http://iv.slis.indiana.edu/sw/ward.html
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data points (n sets), it reduces them ton − 1 sets by considering the union of all
possiblen(n− 1)/2 pairs and selecting a union by some criterion. A quantitative
estimate of the loss associated with each stage in the grouping can be obtained
according to:

ES S=
n
∑

i=1

x2
i −

1
n















n
∑

i=1

xi















2

Single linkage proceeds at each iteration to construct agglomerations of data
sets (initially points) that exceed similarity thresholds. This algorithm finds appli-
cation in sequence alignment, e.g. biomedical data. (Shamir & Sharan, 2002)

Theanchor algorithmwas given by (Verma & Meila, 2003) (simplified from
(Moore, 2000)). It produces a structure similar to aball-tree or a metric tree.
An anchor is analogous to a centroid in the k-means algorithm. k is the counter
for the iterations of the algorithm,̄k indicates need for more iterations,minn is
the number of minimally desired points in a cluster andK the number of desired
clusters. Initially a point is chosen randomly as an anchor and k = 1, k̄ = 0.
Iterations proceed by constructing a clusterCk, containing all points closer toxk

than to any other anchor (sorted by decreasing distance), if|Ck| < minn thenk̄++.
Start new iteration ifk− k̄ < K.

3.2 Spectral clustering algorithms

For the algorithms we assume data pointsx1, . . . , xn and their similaritiessi j =

s(xi , xj), where 1≤ i, j ≤ n ands ∈ S. S is symmetric and non-negative. They
are rather similar, except for the different Laplacians they use. The change of
representation fromx to u with the help of the Laplacians enhances the cluster-
properties of the data. (Luxburg, 2006)

Algorithms introduced here areunnormalized spectral clustering, (Shi & Ma-
lik, 2000) (SM), (Ng et al., 2002) (NJW), (Kannan, Vempala, &Vetta, 2004)
(KVV), (Meila & Shi, 2000) (Multicut). Presentation follows (Luxburg, 2006)
for the first three and (Verma & Meila, 2003) for the latter ones.

Unnormalized spectral clustering proceeds as in the following:
Inputs:k, the number of desired clusters,X, andS.

• Following the steps in section 2.3 constructW,

• then calculateL,

• then the firstk eigenvectorsv1, . . . , vk of L.
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• Let V ∈ Rnxk containv1, . . . , vk as columns andyi ∈ R, with i = 1, . . . , n,
correspond to thei-th row of V. Cluster the pointsyi with the k-means
algorithm into clustersC1, . . . ,Ck.

Output: ClustersA1, . . . ,Ak, with Ai =
{

j|yj ∈ Ci

}

.

Note that similar to RadioCut, unnormalized spectral clustering does not opti-
mize within-cluster similarity.(Luxburg, 2006)

3.2.1 Multiway

(Meila & Shi, 2000)proposed the Multiway algorithm (Mcut). It proceeds by
computingLrw, computes thek largest eigenvectors, forms the matrixV, whose
columns arev1, . . . , vk, and clusters the rows of V as points in a k-dimensional
space. (cf. (Verma & Meila, 2003))

(Ng, Jordan,&Weiss, 2002)(NJW) works as follows:
Input: S ∈ Rnxn, number of desired clustersk.

• Following the steps in section 2.3 constructW,

• ComputeLsym and itsk first eigenvectors.

• Let V ∈ Rnxk containv1, . . . , vk as columns. LetU beV normalized to row
sums with norm 1. Letyi ∈ R, with i = 1, . . . , n, correspond to thei-th row
of U.

• Cluster the pointsyi with the k-means algorithm into clustersC1, . . . ,Ck.

Output: ClustersA1, . . . ,Ak, with Ai =
{

j|yj ∈ Ci

}

.

3.2.2 Recursive

(Shi& Malik, 2000) (SM) uses generalized eigenvectors, which correspond to
the eigenvectors of matrixLrw. The presentation of the algorithm is simplified
according to (Luxburg, 2006)2. A thorough discussion can be found in (Verma &
Meila, 2003).

Input: S ∈ Rnxn, number of desired clustersk.

• Following the steps in section 2.3 constructW,

• ComputeLrw and itsk first eigenvectors.

2Shi et alii provide their code for normalized cut image segmentation for download at
http://www.cis.upenn.edu/∼jshi/GraphTutorial/index.html

http://www.cis.upenn.edu/~jshi/GraphTutorial/index.html
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• Let V ∈ Rnxk containv1, . . . , vk as columns andyi ∈ R, with i = 1, . . . , n,
correspond to thei-th row of V. Cluster the pointsyi with the k-means
algorithm into clustersC1, . . . ,Ck.

Output: ClustersA1, . . . ,Ak, with Ai =
{

j|yj ∈ Ci

}

.

(Kannan, Vempala,& Vetta, 2004)(KVV) uses “Cheeger conductance“ as cri-
terion for the optimal cut. Conductance is a way to measure how hard it is to
transition within a set of nodes. Strangely, except for (Verma & Meila, 2003) a
google search provided no mention of “Cheeger conductance“3. (Verma & Meila,
2003) gives the Cheeger conductance of a clustering C as:
θ(C, C̄) = cut(C,C̄)

minvol(C),vol(C̄)

It also normalizes the similarity matrix to row sum one at every iteration of
the algorithm. Except for these two differences, KVV is the identical to SM.

4 Discussion

(Luxburg, 2006) shows for arbitraryk that unnormalized spectral clustering cor-
responds to optimization by RadioCut and that normalized spectral clustering ac-
cording to (Shi & Malik, 2000) corresponds to optimization by Ncut.

(Verma & Meila, 2003) compared the algorithms that were presented here
plus some variations (refer to (Meila, 2002) for comparisonmeasures of cluster-
ing algorithms). Targets for clusterings known, they compared especially mutual
information between partitions according to clustering error measures. In the next
paragraphs the results they found will be summarized.

For one dataset,S100, a dataset constructed to conform to optimal conditions
for the multicut algorithms, as expected, the multiway algorithms performed the
best, conductance-based algorithms underperforming.

As for the first real data set, gene expression data4, the multiway spectral al-
gorithms are the most stable of all algorithms. The best of recursive spectral are
not too far behind and gain similar levels of errors and variation with increasing
noise ratio. Linkage based clustering proved very sensitive to noise.

The third data set, NIST handwritten digits5, the linkage algorithm again de-
teriorates and, as for multiway and recursive algorithms nosignificant difference
could be found. With a reduced data set that was easier to cluster (well-separated
digits, 0, 2, 4, 6, 7), multiway performed close to ceiling.

3Google search:http://www.google.es/search?q="Cheeger+conductance"&btnG=Search
4Provided by Ka Yee Yeung athttp://staff.washington.edu/kayee/model/.
5available athttp://www.itl.nist.gov/iad/894.03/databases/defs/dbases.html.

http://www.google.es/search?q="Cheeger+conductance"&btnG=Search
http://staff.washington.edu/kayee/model/
http://www.itl.nist.gov/iad/894.03/databases/defs/dbases.html


5 CONCLUSIONS 10

“Ideal“ conditions for the weight matrixW for NJW and Mcut, calledblock
stochasticare discussed in (Verma & Meila, 2003) and further discussedin (Meila
& Shi, 2001). Block stochasticP is perfect for NJW and Mcut, where the clusters
in the spectral domain are orthogonal, also ameliorated arerecursive algorithms.

For Mcut and NJW, stability can be improved by using the topk eigenvec-
tors of the generalized eigen spaceWx = λDx, which is theoretically equivalent
but numerically more stable. They showed equivalence, theoretically and practi-
cally, of the two algorithms, in the case of perfectW (block stochastic) and great
similarity otherwise. (Verma & Meila, 2003)

Verma and Meilá showed spectral methods are competitive and more stable
to noise than other tested algorithms. Spectral algorithm performed generally
significantly better than the linkage algorithm even when the clusters are not well
separated (digits sets). Ncut is better than conductance ascriterion and multiway
mostly better than recursive. As for the non-spectral methods, ward and k-means
perform slightly more successful than anchor.

5 Conclusions

Spectral algorithms are a simple and efficient method for clustering. The step
of preprocessing was ignored here. (Verma & Meila, 2003) mentions smoothing
as a way to further improve results and explains preprocessing steps for different
datasets, however, explicitly leaves out preprocessing for comparison purposes in
most cases. Preprocessing is an important step and may help significantly elevate
clustering results.

Choosing a similarity graph can be non-trivial and may require extensive pre-
processing. However, once there is a similarity graph, the problem is linear and
spectral methods do not suffer intrinsically from the problem of local optima. (cf.
(Verma & Meila, 2003), (Meila & Shi, 2001))

Also beyond the scope of this report were the automatic determination ofk,
the number of clusters and the selection/weighting of different dimension of the
weight matrix. (however see (Dy & Brodley, 2004) for the FSSEM approach)

We disqualified RadioCut and unnormalized spectral algorithms because they
do not optimize within-cluster similarity, and discussed advantages and disadvan-
tages of several other algorithms and conclude that spectral algorithms promise
to give superior results than non-spectral methods, especially their properties of
being not restricted to convex regions of similarity and therobustness to noise
make them attractive. As for differences between spectral algorithms, (Verma &
Meila, 2003) established that Ncut was superior to conductivity as criterion and
the “near“ equivalence of NJW and Mcut. They further showed in their article
that multiway was mostly better than recursive.
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