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Abstract

Spectral clustering is a powerful technique in data ansiysit has found
increasing support and application in many areas. Thisrtépgeared to
give an introduction to its methods, presenting the mostraomalgorithms,
discussing advantages and disadvantages of each, radinegridorsing one
of them as the best, because, arguably, there is no blaclalgmxithm,
which performs equally well for any data. We present redutis previous
studies and conclude that methods based on Ncut and muldveaynost
promising for general application.
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1 Introduction

Spectral clustering uses information obtained from themglues and eigenvec-
tors of their adjacency matrices for partitioning of graphishas many appli-
cations, such as in image segmentation (e.g. (Shi & Malilkg020and social
network analysis (e.g. (Newman, Watts, & Strogatz, 20020)e methods are
called spectral, because they make use of the spectrum aflfaeency matrix of
the data to cluster the points.

Spectral clustering algorithms have found an increasifigviing, especially
after (Shi & Malik, 2000) and (Ng, Jordan, & Weiss, 2002). Asposed to k-
means clustering, which results in convex sets, spectrataling can solve prob-
lems, such as intertwined spirals, because it does not nesiergtions on the
form of the cluster. Given a sparse similarity graph, sgéciustering can be im-
plemented ficiently even for large data sets (cf. (Verma & Meila, 2008 rther
advantages of learning about spectral clustering algostivere noted as follows
(Luxburg, 2006):

e solution of clustering problems by standard linear algebeshods

e often more #icient than traditional algorithms (e.g. k-means, singt&-i
age)

A concise introduction into the field of spectral clustericen be found in
(Luxburg, 2006), which this report relies on heavily. Thengarison of algo-
rithms herein after summarizes (Verma & Meila, 2003), a eysitic compar-
ison of spectral clustering algorithms, which demonsttédteat these comple-
ment angor compete with existing methods with convincing results osiof
the presented algorithms work in combination with clustgralgorithms, such
as k-means (the knowledge of which this report presupposés, to (MacKay,
2003) for an overview about clustering).

Due to the subtle nature of the relationship between spemarameters and
the properties of datasets this report tries to outline tiketioning of the algo-
rithms in question rather than arguing for one of them as tst. bNevertheless
comparison shows that some algorithms are more stable,desieable proper-
ties, and have superior clustering results.

2 Spectral clustering

2.1 Notation

The notation for spectral graph theory foots on graph theowy appeals to in-
tuition. Except for minor dierences in the names of matrices, variables, and
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counters, this notation seems pretty standard. This serticoduces briefly the
mathematical notations of the algorithms that will be pnesé.

A graphor undirected graph Gan be written as an ordered p&ir.= (V, E),
whereV is a set ofverticesor nodesandE is a set of pairs (unordered) of distinct
vertices, callecedgesor lines The vertices belonging to an edge are called the
ends endpointsor end vertice®f the edge. (Wikipedia, 2007b)

Theadjacency matrialsosimilarity matrix or weight matri} of a finite di-
rected or undirected gragghonn vertices is tha-n matrix where the nondiagonal
entryw; is the number of edges from vertex i to vertex j, and the diabentryw;
is either twice the number of loops at vertex i or just the nandf loops (usages
differ, depending on the mathematical needs; this report isammterned with re-
flexive connections). The adjacency matrix is symmetricuiodirected graphs.
(Wikipedia, 2006a) In the following, we assumg = wj; > 0.

Given A € V, its complementV\A will be denoted a#A. i € A shall be
shorthand for indices dfi|v; € A}. |A] will denote the number of vertices iA.
vol(A) measures the size of A by the weights of its edgesyofA) ;= > i € Ad.

The degree(or valency of a vertex is the number of edge endpoints to the
vertex. Loops are counted twice. Thegree matrix Dfor G is an x n square
matrix defined as (Wikipedia, 2007a)

g, ::{ degv) ifi=]j

0 otherwise

Intuitively, a subseA € V is connectedif pathes between any two pointsAn
need only points irA. A is calledconnected componewiith respect toA, if Ais
connected, and there are no edges between vertideandA. Subsetd\,, ..., A
represent partitioningof V, if, forall 1 < j, x>k, AN A; =0 andUJ, A =V
(usually also defined nonempty).

2.2 Clustering

Generally speaking, clustering means partitioning of glyrao that the edges
between dterent groups have low similarity (low distance) and the edgihin

a group have high weight (low distance). The first requirenf@rthe partitioning
can be stated as tmainicut criterion which has to be minimized:

k
cut(Ag,...,A) = Z cut(A, A, Where
i=1

CUt(A,A_\) = Z _Wij

i€Ax, €Ak
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Following the minicut requirement, often only a little gpof points is iso-
lated. For this reason, tweaks have been introduced:

e RadioCufA,,...,A) = 3K, %fi). (Hagen & Kahng, 1992)

e NCU(Ay,....A) = K, AR (shi & Malik, 2000) Neutfor “normal-
ized cut®).

As for the second requirement, within-cluster similaritgans optimizing

k

> S

=1 i,jeA

Within-cluster similarity is maximized i€ut(A, A_\) is small andvol(A) is big.

Therefore, Ncut implements the second criterion. Ncut ecamterpreted as
cutting through edges rarely transitions by a random waladi®Cut, by maxi-
mizing |Ai|, as within-cluster similarity is not related to the numbévertices in
A, does not implement this requirement.(Luxburg, 2006)

2.3 Similarity graphs

Given a set of pointsx, ..., X,, and their distancedy € D (not related to the
degree), there are several constructions to obtain a graplegnstruciV), which
are regularly used in spectral clustering.

Thee -neighorhood grapls the most simple possibility. All connections with
distances below a threshold are setto 1. |.e.

Zwij =1, with

<ij>

{< IJ > |dij € D,dij < 6}.

k-nearest neighbor grapHsad to a directed graph. Theshortest distances
from i are connected. In order to make the graph undirected, dirsctan be ig-
nored, e.g. constructing lenearest neighbor graph, then doing eitlAdr) AT
(usually this is calleck-nearest neighbor graph) @ AT (mutual k-nearest
neighbor graph.

A fully connected graphesults from connecting all points with positive simi-
larity with each other.
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2.4 Laplaciansand their properties

The spectral algorithms presented here foot on eigenweotdraplacians, which
are a combination of the weight and the degree matrix. For eerntwrough
and broader discussion of mathematical properties of Icagnia refer to (Mohar,
1997) and (Chung, 1997).

The (unnormalized) grapbaplacianis defined as. = D — W. For a graptG
and its admittance matrix with eigenvaluedy < 1; < ... < 1,1 these properties
are important, in the context of spectral clustering. (\Média, 2006c¢)

e L is always positive-semidefinit&i, A; > 0).

e The multiplicity of O as an eigenvalue af is the number of connected
components o6.

e 1, is called the algebraic connectivity.

e The smallest non-trivial eigenvalue bfis called the spectral gap.

Noteworthy is furthermore, that matrices with identicéitdiagonal elements
have the same unnormalized Laplacians.
Thenormalized graph Laplaciais defined in two two distinct ways:

o Lyym:= D:LDz=1-D:WD: (symmetric matrix)
o Ly =D =1-D"w. (random walk)
Some properties are

e L., andLsymare positive semi-definite and har@on-negative real-valued
eigenvalues @& 1; < ... < Ap.

e The multiplicity k of the eigenvalue 0 of both,,, andLsynequals the num-
ber of connected componers. . ., A in the graph.

Refer to (Chung, 1997) for an in-depth discussion of norpealiLaplacians.

3 Clusteringalgorithms

Spectral clustering became popular with, among others &3halik, 2000) and
(Ng etal., 2002). Itsfciency is mainly based on the fact that it does not make any
assumptions on the form of the clusters. This property cdnoes the mapping
of the original space to a eigen space. AlgorithnfEedibasically in the number
of eigenvectors they use for partioning.

Algorithms can be categorized based on the number of eigeargethey use:
(Verma & Meila, 2003)
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¢ One eigenvector —recursively uses a single eigenvectaaitipns { ecur sive).
e Many eigenvectors — Directly computesmultiway partition of the data.

e Non spectral — Grouping algorithms that can be used in conjunction with
multiway spectral algorithms. Algorithms that are not gpsEcare shortly
mentioned in the next section and some results comparimg thepectral
algorithms will be presented in the discussion.

(Verma & Meila, 2003) outlines three steps in the algorithms

e Normalization (preprocessing step): this was ignored harkalso did not
find more space in (Verma & Meila, 2003) beyond a mention.

e Spectral mapping: eigenvectors, usually based on a Lapiaeire com-
puted as a mapping of the data points.

e Grouping: clustering algorithms group the points in oraior mapped do-
main.

3.1 Non-spectral clustering algorithms

This short section is dedicated to non-spectral clusteaiggrithms. They are of-
ten used in spectral algorithms as post-processing stegéstioni 312). (Verma &
Meila, 2003) compare ffierent algorithms as post-processing steps after the spec-
tral mapping. For some broader discussion of clusteringratgns in general,
see (Shamir & Sharan, 2002).

The objective ok-meanss to minimize the total intra-cluster variance, or, the
squared error function, defined as

k
V=2 I -l

i=1 xjeS;

, Where there arkeclustersS;, i = 1,2, ..., kandy; is the centroid or mean point of
all the pointsx; € S;. Starting by partitioning the input points inkdnitial sets, it
calculates the mean point, oentroid of each set, then iterates constructing a new
partition by associating each point with the closest ceditand recalculating the
centroids for the new clusters until no changes occur. (pé#tia, 2006b) (refer
to (MacKay, 2003) for more detail)

Ward’s Algorithm(mentioned, but not explained in (Verma & Meila, 2003))
was introduced in (Ward, 19@05 a agglomerative clustering algorithm. Given

1Explanation found éiittp: //iv.slis.indiana.edu/sw/ward.html.
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data pointst sets), it reduces them to— 1 sets by considering the union of all
possiblen(n — 1)/2 pairs and selecting a union by some criterion. A quantiati
estimate of the loss associated with each stage in the grgwain be obtained
according to:

n 1(< 2
ESS= 2_ = xi)
Single linkage proceeds at each iteration to constructomggations of data
sets (initially points) that exceed similarity threshold&is algorithm finds appli-
cation in sequence alignment, e.g. biomedical data. (Sh&arBharan, 2002)
Theanchor algorithmwas given by (Verma & Meila, 2003) (simplified from
(Moore, 2000)). It produces a structure similar tdall-tree or a metric tree
An anchor is analogous to a centroid in the k-means algorithm the counter
for the iterations of the algorithnk indicates need for more iterationsin, is
the number of minimally desired points in a cluster &the number of desired
clusters. Initially a point is chosen randomly as an anciatlka= 1, k = 0.
Iterations proceed by constructing a clusBgr containing all points closer tg;
than to any other anchor (sorted by decreasing distand€)| & min, thenk + +.
Start new iteration ik — k < K.

3.2 Spectral clustering algorithms

For the algorithms we assume data poir{s .., X, and their similaritiess; =
s(%, Xj), where 1< i, j < nands € S. S is symmetric and non-negative. They
are rather similar, except for thefiiirent Laplacians they use. The change of
representation fronx to u with the help of the Laplacians enhances the cluster-
properties of the data. (Luxburg, 2006)

Algorithms introduced here ateinormalized spectral clusterin¢Shi & Ma-
lik, 2000) (SM), (Ng et al., 2002) (NJW), (Kannan, Vempala,\&tta, 2004)
(KVV), (Meila & Shi, 2000) (Multicut). Presentation follosv(Luxburg, 2006)
for the first three and (Verma & Meila, 2003) for the latter sne

Unnormalized spectral clustering proceeds as in the faigw
Inputs:k, the number of desired clusteps, andS.

¢ Following the steps in sectidn 2.3 constriét
¢ then calculate.,

e then the firsk eigenvectorsy, .. ., v of L.
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o LetV € R™ containvy, ...,V as columns angi € R, withi = 1,...,n,
correspond to theé-th row of V. Cluster the pointy; with the k-means
algorithm into cluster€,, . . ., Cy.

Output: Clusterd\,, ..., A, with A, = {j|yj € Ci}.

Note that similar to RadioCut, unnormalized spectral @tsg does not opti-
mize within-cluster similarity.(Luxburg, 2006)

3.2.1 Multiway

(Meila & Shi, 2000)proposed the Multiway algorithmMcut). It proceeds by
computingL,w, computes th& largest eigenvectors, forms the matx whose
columns arevs, ..., V, and clusters the rows of V as points in a k-dimensional
space. (cf. (Verma & Meila, 2003))

(Ng, Jordan & Weiss, 2002JNJW) works as follows:
Input: S € R™", number of desired clusteks

e Following the steps in sectidn 2.3 constru¢t
e Computelsymand itsk first eigenvectors.

e LetV e R™  containvy, ...,V as columns. Letl beV normalized to row
sums with norm 1. Ley; € R, withi = 1,...,n, correspond to theth row
of U.

e Cluster the pointy; with the k-means algorithm into clustegs, . . ., Cy.

Output: Clusterd\,, ..., A, with A, = {j|yj € Ci}.

3.2.2 Recursive

(Shi & Malik, 2000) (SM) uses generalized eigenvectors, which correspond to
the eigenvectors of matrik,,. The presentation of the algorithm is simplified
according to (Luxburg, ZOOB)A thorough discussion can be found in (Verma &
Meila, 2003).

Input: S € R™", number of desired clusteks

¢ Following the steps in sectidn 2.3 constriét

e Computel,,, and itsk first eigenvectors.

2Shi et alii provide their code for normalized cut image segtaton for download at
http://www.cis.upenn.edu/~jshi/GraphTutorial/index.html
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o LetV € R™ containvy, ...,V as columns angi € R, withi = 1,...,n,
correspond to theé-th row of V. Cluster the pointy; with the k-means
algorithm into cluster€,, . . ., Cy.

Output: Clusterd\,, ..., A, with A, = {j|yj € Ci}.

(Kannan, Vempalas Vetta, 2004)KVV) uses “Cheeger conductance” as cri-
terion for the optimal cut. Conductance is a way to measure ard it is to
transition within a set of nodes. Strangely, except for (Mer& Meila, 2003) a
google search provided no mention of “Cheeger conducteﬁnc(verma & Meila,
2003) gives the Cheeger conductance of a clustering C as:

~\ _ cut(C,C)
9(C.C) = Frwc)vo©

It also normalizes the similarity matrix to row sum one atrgvéeration of

the algorithm. Except for these twoffirences, KVV is the identical to SM.

4 Discussion

(Luxburg, 2006) shows for arbitraythat unnormalized spectral clustering cor-
responds to optimization by RadioCut and that normalizedspl clustering ac-
cording to (Shi & Malik, 2000) corresponds to optimizationicut.

(Verma & Meila, 2003) compared the algorithms that were emésd here
plus some variations (refer to (Meila, 2002) for comparismasures of cluster-
ing algorithms). Targets for clusterings known, they coregdaespecially mutual
information between partitions according to clusteringemeasures. In the next
paragraphs the results they found will be summarized.

For one datase§10Q a dataset constructed to conform to optimal conditions
for the multicut algorithms, as expected, the multiway alipons performed the
best, conductance-based algorithms underperforming.

As for the first real data set, gene expressionﬁ;latm multiway spectral al-
gorithms are the most stable of all algorithms. The bestain®ve spectral are
not too far behind and gain similar levels of errors and vwammawith increasing
noise ratio. Linkage based clustering proved very semsitinoise.

The third data set, NIST handwritten diﬂi,tsshe linkage algorithm again de-
teriorates and, as for multiway and recursive algorithmsigaificant diference
could be found. With a reduced data set that was easier ttecliveell-separated
digits, Q 2, 4, 6, 7), multiway performed close to ceiling.

3Google searcthttp://www.google.es/search?q="Cheeger+conductance"&btnG=Search
4Provided by Ka Yee Yeung hfttp://staff.washington.edu/kayee/model/.
Savailable ahttp://www.itl.nist.gov/iad/894.03/databases/defs/dbases.html.
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“Ideal” conditions for the weight matrixV for NJW and Mcut, calledlock
stochasti@are discussed in (Verma & Meila, 2003) and further discugs@deila
& Shi, 2001). Block stochastie is perfect for NJW and Mcut, where the clusters
in the spectral domain are orthogonal, also amelioratedeargsive algorithms.

For Mcut and NJW, stability can be improved by using the kogigenvec-
tors of the generalized eigen spatkx = ADX, which is theoretically equivalent
but numerically more stable. They showed equivalence rétieally and practi-
cally, of the two algorithms, in the case of perf&¢t(block stochastic) and great
similarity otherwise. (Verma & Meila, 2003)

Verma and Meila showed spectral methods are competitidenaore stable
to noise than other tested algorithms. Spectral algoritlenfiopmed generally
significantly better than the linkage algorithm even whendlusters are not well
separated (digits sets). Ncut is better than conductanceteson and multiway
mostly better than recursive. As for the non-spectral maghward and k-means
perform slightly more successful than anchor.

5 Conclusions

Spectral algorithms are a simple andi@ent method for clustering. The step
of preprocessing was ignored here. (Verma & Meila, 2003)tinaa smoothing
as a way to further improve results and explains preprocgsieps for dterent
datasets, however, explicitly leaves out preprocessingdmparison purposes in
most cases. Preprocessing is an important step and mayiteificantly elevate
clustering results.

Choosing a similarity graph can be non-trivial and may regjaktensive pre-
processing. However, once there is a similarity graph, tieblpm is linear and
spectral methods do notfer intrinsically from the problem of local optima. (cf.
(Verma & Meila, 2003), (Meila & Shi, 2001))

Also beyond the scope of this report were the automatic ohetation ofk,
the number of clusters and the selectiweighting of diferent dimension of the
weight matrix. (however see (Dy & Brodley, 2004) for the F836&pproach)

We disqualified RadioCut and unnormalized spectral algorit because they
do not optimize within-cluster similarity, and discussedantages and disadvan-
tages of several other algorithms and conclude that spedtyarithms promise
to give superior results than non-spectral methods, esibetheir properties of
being not restricted to convex regions of similarity and tbhkbustness to noise
make them attractive. As for flierences between spectral algorithms, (Verma &
Meila, 2003) established that Ncut was superior to condiigtas criterion and
the “near” equivalence of NJW and Mcut. They further showedhieir article
that multiway was mostly better than recursive.
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