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Outline 

• Introduction (60 min.) 
– Big data and big data analytics (30 min.) 

– Online learning and its applications (30 min.) 

• Online Learning Algorithms (60 min.) 
– Perceptron (10 min.) 

– Online non-sparse learning (10 min.)  

– Online sparse learning (20 min.) 

– Online unsupervised learning (20. min.) 

• Discussions + Q & A (5 min.) 
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What is Big Data? 

• There is not a consensus as to how to define Big Data 
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“A collection of data sets so large and complex that it becomes 
difficult to process using on-hand database management tools 
or traditional data processing applications.”  - wikii 

 

“Big data exceeds the reach of commonly used hardware 
environments and software tools to capture, manage, and process it 
with in a tolerable elapsed time for its user population.” - Tera- data 
magazine article, 2011 

 

“Big data refers to data sets whose size is beyond the ability of 
typical database software tools to capture, store, manage and 
analyze.”  - The McKinsey Global Institute, 2011i 

 



What is Big Data? 

5 

File/Object Size, Content Volume 

A
ct

iv
it

y:
 IO

P
S 

Big Data refers to datasets grow so large and complex that it is 
difficult to capture, store, manage, share, analyze and visualize 
within current computational  architecture. 



Evolution of Big Data 

• Birth: 1880 US census 

• Adolescence: Big Science 

• Modern Era: Big Business 
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Birth: 1880 US census 
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The First Big Data Challenge 

• 1880 census 

• 50 million people 

• Age, gender (sex), 
occupation, education 
level, no. of insane 
people in household 
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The First Big Data Solution 

• Hollerith Tabulating 
System 

• Punched cards – 80 
variables 

• Used for 1890 census 

• 6 weeks instead of 7+ 
years 
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Manhattan Project (1946 - 1949) 

• $2 billion (approx. 26 
billion in 2013) 

  

• Catalyst for “Big Science”  
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Space Program (1960s) 

• Began in late 1950s 

 

• An active area of big 
data nowadays 
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Adolescence: Big Science 
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Big Science 

• The International 
Geophysical Year 
– An international scientific 

project 

– Last from Jul. 1, 1957 to Dec.  
31, 1958 

• A synoptic collection of 
observational data on a 
global scale  

• Implications 
– Big budgets, Big staffs, Big 

machines, Big laboratories 
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Summary of Big Science 

• Laid foundation for ambitious projects 
– International Biological Program 

– Long Term Ecological Research Network 

• Ended in 1974 

• Many participants viewed it as a failure 

• Nevertheless, it was a success 
– Transform the way of processing data 

– Realize original incentives 

– Provide a renewed legitimacy for synoptic data 
collection 
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Lessons from Big Science 

• Spawn new big data projects 

– Weather prediction  

– Physics research (supercollider data analytics) 

– Astronomy images (planet detection) 

– Medical research (drug interaction) 

– … 

• Businesses latched onto its techniques, 
methodologies, and objectives 
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Modern Era: Big Business 
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Big Science vs. Big Business 

• Common 
– Need technologies to work with data 
– Use algorithms to mine data 

• Big Science 
– Source: experiments and research conducted in 

controlled environments 
– Goals: to answer questions, or prove theories 

• Big Business 
– Source: transactions in nature and little control 
– Goals: to discover new opportunities, measure 

efficiencies, uncover relationships 
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Big Data is Everywhere! 

• Lots of data is being 
collected and warehoused  

– Science experiments 

– Web data, e-commerce 

– Purchases at department/ 
grocery stores 

– Bank/Credit Card  
transactions 

– Social Networks 
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Big Data in Science 

• CERN - Large Hadron Collider 
– ~10 PB/year at start 
– ~1000 PB in ~10 years 
– 2500 physicists collaborating 

• Large Synoptic Survey Telescope 
(NSF, DOE, and private donors) 
– ~5-10 PB/year at start in 2012 
– ~100 PB by 2025 

• Pan-STARRS (Haleakala, Hawaii) 
US Air Force 
– now:  800 TB/year    
– soon: 4 PB/year 
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Big Data from Different Sources 
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2+ 

billion 
people 

on the 

Web by 

end 2011  

30 billion RFID 

tags today 

 (1.3B in 2005) 

4.6 

billion 
camera 

phones 

world 

wide 

100s of 

millions 

of GPS 

enabled 
devices 

sold 

annually 

76 million smart 

meters in 2009… 

 200M by 2014  



Big Data in Business Sectors 
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Characteristics of Big Data 

• 4V: Volume, Velocity, Variety, Veracity 
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Volume Volume Volume 

Variety Veracity 

Volume 

Velocity Volume 

Text 

Videos 

Images 

Audios 
8 billion TB in 2015, 
40 ZB in 2020 
5.2TB per person 

New sharing over 2.5 
billion per day 
new data over 500TB 
per day 

US predicts powerful 
quake this week 

UAE body says it's a 
rumour; 
 

By Wam/Agencies 
Published Saturday, April 20, 2013 



Big Data Analytics 
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• Definition: a process of inspecting, cleaning, 
transforming, and modeling big data with the 
goal of discovering useful information, suggesting 
conclusions, and supporting decision making 

• Connection to data mining 
– Analytics include both data analysis (mining) and 

communication (guide decision making) 

– Analytics is not so much concerned with individual 
analyses or analysis steps, but with the entire 
methodology 

 



Outline 

• Introduction (60 min.) 
– Big data and big data analytics (30 min.) 

– Online learning and its applications (30 min.) 

• Online Learning Algorithms (60 min.) 
– Perceptron (10 min.) 

– Online non-sparse learning (10 min.)  

– Online sparse learning (20 min.) 

– Online unsupervised learning (20. min.) 

• Discussions + Q & A (5 min.) 
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Challenges and Aims 

• Challenges: capturing, storing, searching, 
sharing, analyzing and visualizing 

• Big data is not just about size 
– Finds insights from complex, noisy, 

heterogeneous, longitudinal, and voluminous data 

– It aims to answer questions that were previously 
unanswered 

• This tutorial focuses on online learning 
techniques for Big Data 
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Learning Techniques Overview 

• Learning paradigms 

– Supervised learning 

– Semisupervised learning 

– Transductive learning 

– Unsupervised learning 

– Universum learning 

– Transfer learning 
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What is Online Learning? 

• Batch/Offline learning 
– Observe a batch of training 

data 

– Learn a model from them 

– Predict new samples 
accurately 

• Online learning 
– Observe a sequence of data 

 

– Learn a model incrementally 
as instances come 

– Make the sequence of online 
predictions accurately 

27 

Update a model 
True response 

user 

Make prediction 

  N

iii y
1

,


x    tt yy ,,,, 11 xx 



Online Prediction Algorithm 

• An initial prediction rule 

• For t=1, 2, … 

– We observe     and make a prediction 

– We observe the true outcome yt and then 
compute a loss 

– The online algorithm updates the prediction 
rule using the new example and construct   
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Online Prediction Algorithm 

• The total error of the method is 

 

 

• Goal: this error to be as small as possible 

• Predict unknown future one step a time: 
similar to generalization error 
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Regret Analysis 

•       : optimal prediction function from a class 
H, e.g., the class of linear classifiers 

 

   with minimum error after seeing all examples 

• Regret for the online learning algorithm 
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Why Low Regret?  

• Regret for the online learning algorithm 

 

 

• Advantages 

– We do not lose much from not knowing future events 

– We can perform almost as well as someone who 
observes the entire sequence and picks the best 
prediction strategy in hindsight 

– We can also compete with changing environment 
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Advantages of Online Learning 

• Meet many applications for data arriving sequentially 
while predictions are required on-the-fly 
– Avoid re-training when adding new data 

• Applicable in adversarial and competitive  environment 

• Strong adaptability to changing environment 

• High efficiency and excellent scalability 

• Simple to understand and easy to implement 

• Easy to be parallelized 

• Theoretical guarantees 

32 



Where to Apply Online Learning? 

Online 
Learning 

Social 
Media 

Internet 
Security 

Finance 
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Online Learning for Social Media 

• Recommendation, sentiment/emotion analysis  
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Where to Apply Online Learning? 

Online 
Learning 

Social 
Media 

Internet 
Security 

Finance 

35 



Online Learning for Internet Security 

• Electronic business sectors 

– Spam email filtering 

– Fraud credit card transaction detection 

– Network intrusion detection system, etc. 
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Where to Apply Online Learning? 

Online 
Learning 

Social 
Media 

Internet 
Security 

Finance 
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Online Learning for Financial Decision 

• Financial decision  

– Online portfolio selection 

– Sequential investment, etc.  
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Perceptron Algorithm (F. Rosenblatt 1958) 

• Goal: find a linear classifier with small error 
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Geometric View 
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Geometric View 

w0 

w1=w0+x1y1 

(x1, y1(=1)) 



44 

Geometric View 

w1 

(x2, y2(=-1)) 

(x1, y1(=1)) 

Misclassification! 
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Geometric View 

(x1, y1) 

w1 
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Perceptron Mistake Bound 

• Consider w* separate the data: 

• Define margin 

 

 

• The number of mistakes perceptron makes is 
at most  
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Proof of Perceptron Mistake Bound 
[Novikoff,1963] 

Proof: Let     be the hypothesis before the k-th 
mistake.  Assume that the k-th mistake occurs 
on the input example          . 
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Online Non-Sparse Learning 

• First order learning methods 
– Online gradient descent (Zinkevich, 2003) 

– Passive aggressive learning (Crammer et al., 2006) 

– Others (including but not limited) 
• ALMA: A New Approximate Maximal Margin Classification 

Algorithm (Gentile, 2001) 

• ROMMA: Relaxed Online Maximum Margin Algorithm (Li and 
Long, 2002) 

• MIRA: Margin Infused Relaxed Algorithm (Crammer and 
Singer, 2003) 

• DUOL: A Double Updating Approach for Online Learning 
(Zhao et al. 2009) 
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Online Gradient Descent (OGD) 

• Online convex optimization (Zinkevich 2003) 

– Consider a convex objective function 

 

    where               is a bounded convex set 

– Update by Online Gradient Descent (OGD) or 
Stochastic Gradient Descent (SGD)  

 

   where    is a learning rate 
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Online Gradient Descent (OGD) 

• For t=1, 2, … 

– An unlabeled sample     arrives  

– Make a prediction based on existing weights 

  

– Observe the true class label  

– Update the weights by 

 

    where  is a learning rate 

 

51 

)sgn(ˆ
t

T

tty xw

tx

 1,1 ty

Update wt+1 
yt 

user 
tx

x

tŷ



Passive Aggressive Online Learning 

• Closed-form solutions can be derived: 
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Online Non-Sparse Learning 

• First order methods 

– Learn a linear weight vector (first order) of model 

• Pros and Cons  

     Simple and easy to implement 

     Efficient and scalable for high-dimensional data 

     Relatively slow convergence rate 
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Online Non-Sparse Learning 

• Second order online learning methods 
– Update the weight vector w by maintaining and exploring both 

first-order and second-order information 

• Some representative methods, but not limited 
– SOP: Second Order Perceptron (Cesa-Bianchi et al., 2005) 
– CW: Confidence Weighted learning (Dredze et al., 2008) 
– AROW: Adaptive Regularization of Weights (Crammer et al., 

2009) 
– IELLIP: Online Learning by Ellipsoid Method (Yang et al., 2009)   
– NHERD: Gaussian Herding (Crammer & Lee 2010)  
– NAROW: New variant of AROW algorithm (Orabona & Crammer 

2010) 
– SCW: Soft Confidence Weighted (SCW) (Hoi et al., 2012) 
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Online Non-Sparse Learning 

• Second-Order online learning methods 

– Learn the weight vector w by maintaining and 
exploring both first-order and second-order 
information 

• Pros and Cons 

     Faster convergence rate 

     Expensive for high-dimensional data 

     Relatively sensitive to noise 
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Online Sparse Learning 

• Motivation 
– Space constraint: RAM overflow 
– Test-time constraint 
– How to induce Sparsity in the weights of online 

learning algorithms? 

• Some representative work 
– Truncated gradient (Langford et al., 2009) 
– FOBOS: Forward Looking Subgradients (Duchi and 

Singer 2009) 
– Dual averaging (Xiao, 2009) 
– etc. 
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• Objective function 

 

• Stochastic gradient descent 

 

• Simple coefficient rounding 

Truncated Gradient (Langford et al., 2009) 
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Truncated gradient: impose sparsity by 
modifying the stochastic gradient descent 



Simple Coefficient Rounding vs. Less aggressive truncation 

 

 

Truncated Gradient (Langford et al., 2009) 
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Truncated Gradient (Langford et al., 2009) 

 
• The amount of shrinkage is 

measured by a gravity 
parameter 

• The truncation can be 
performed every K online steps 

• When  
     the update rule is identical to      
     the standard SGD   
• Loss functions: 

– Logistic 
– SVM (hinge) 
– Least square 
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• Regret bound 

 

 

 

• Let   

Truncated Gradient (Langford et al., 2009) 
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FOBOS (Duchi & Singer, 2009)  

• FOrward-Backward Splitting 
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FOBOS (Duchi & Singer, 2009)  

• Objective function 

 

• Repeat 

I. Unconstrained (stochastic sub) gradient of loss 

II. Incorporate regularization 

• Similar to 
– Forward-backward splitting (Lions and Mercier 79) 

– Composite gradient methods (Wright et al. 09, Nesterov 07) 
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FOBOS: Step I 

• Objective function 

• Unconstrained (stochastic sub) gradient of loss 
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FOBOS: Step II 

• Objective function 

• Incorporate regularization 
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Forward Looking Property 

• The optimum         satisfies 

 

• Let                      and 

 

 

• Current subgradient of loss, forward  
subgradient of regularization  
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current loss forward regularization 



Batch Convergence and Online Regret 

• Set                 or       to obtain batch convergence 

 

 

• Online (average) regret bounds 
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High Dimensional Efficiency 

• Input space is sparse but huge 

• Need to perform lazy updates to  

• Proposition: The following are equivalent 
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Dual Averaging (Xiao, 2010) 

• Objective function  

 

• Problem: truncated gradient doesn’t produce 
truly sparse weight due to small learning rate 

• Fix: dual averaging which keeps two state 
representations: 

– parameter       and average gradient vector 
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Dual Averaging (Xiao, 2010) 

• 𝑤𝑡+1 has entry-
wise closed-form 
solution 

• Advantage: sparse 
on the weight 𝑤𝑡 

• Disadvantage: 
keep a non-sparse 
subgradient 𝑔 𝑡   
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• Average regret 

 

 

 

• Theoretical bound: similar to gradient descent 

  

Convergence and Regret  
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Comparison 

• FOBOS 

 

 

– Subgradient 𝑔𝑡 

– Local Bregman divergence 

– Coefficient 1 𝛼𝑡 =  𝑡  

• Equivalent to TG method 
when  𝑤 = ‖𝑤‖1 

 

• Dual Averaging 

 

 

– Average subgradient 𝑔 𝑡 

– Global proximal function 

– Coefficient 𝛽𝑡 𝑡 =  1 𝑡  
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Comparison 
Left:𝐾 = 1 for TG, 𝜌 = 0 for RDA 

 

Right:𝐾=10 for TG, 𝛾𝜌=25 for RDA 
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Comparison 

Left:𝐾 = 1 for TG, 𝜌 = 0 for RDA Right:𝐾=10 for TG, 𝛾𝜌=25 for RDA 
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Variants of Online Sparse Learning 
Models 

• Online feature selection (OFS) 
– A variant of sparse online learning 
– The key difference is that OFS focuses on selecting a 

fixed subset of features in online learning process 
– Could be used as an alternative tool for batch feature 

selection when dealing with big data 

• Other existing work 
– Online learning for Group Lasso (Yang et al., 2010)  

and online learning for multi-task feature selection 
(Yang et al. 2013) to select features in group manner 
or features among similar tasks 
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Online Sparse Learning 

• Objective 

– Induce sparsity in the weights of online learning 
algorithms 

•  Pros and Cons 

     Simple and easy to implement 

     Efficient and scalable for high-dimensional data 

     Relatively slow convergence rate 

     No perfect way to attain sparsity solution yet  
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Online Unsupervised Learning 

• Assumption: data generated from some underlying 
parametric probabilistic density function 

• Goal: estimate the parameters of the density to give a suitable 
compact representation 

• Typical work  
– Online singular value decomposition (SVD) (Brand, 2003) 

• Others (including but not limited) 
– Online principal component analysis (PCA) (Warmuth and 

Kuzmin, 2006) 
– Online dictionary learning for sparse coding (Mairal et al. 2009) 
– Online learning for latent Dirichlet allocation (LDA) (Hoffman et 

al., 2010) 
– Online variational inference for the hierarchical Dirichlet process 

(HDP) (Wang et al. 2011) 
– ... 
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• 𝐴[𝑚×𝑛] = 𝑈[𝑚×𝑟]Σ[𝑟×𝑟]𝑉[𝑛×𝑟]
𝑇  

• 𝐴: input data matrix 
– 𝑚 × 𝑛 matrix (e.g. 𝑚 documents, 

𝑛 terms) 

• 𝑈: left singular vectors 
– 𝑚 × 𝑟 matrix (𝑚 documents, 𝑟 

topics)  

• Σ: singular values 
– 𝑟 × 𝑟 diagonal matrix (strength 

of each “topic”) 
– 𝑟 =  𝑟𝑎𝑛𝑘(𝐴): rank of matrix 𝐴 

• 𝑉: right singular vectors 
– 𝑛 × 𝑟 matrix (𝑛 terms, 𝑟 topics) 

SVD: Definition 
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• 𝐴 = 𝑈Σ𝑉𝑇 =  𝜎𝑖𝑢𝑖 ∘ 𝑣𝑖
𝑇

𝑖  
– 𝜎𝑖: scalar 
– 𝑢𝑖: vector 
– 𝑣𝑖: vector 

 
 

A 𝑚 

𝑛  

= 𝑚 

𝑈 Σ 𝑉𝑇 

𝑛  



SVD: Definition 

 

 

 

 

 

 

 

 

 

 

 

 

80 

A 𝑚 

𝑛  

= 𝑚 

𝜎1𝑢1𝑣1 

𝑛  

 
 
 
 
 
 
 
 
 
 

• 𝐴 = 𝑈Σ𝑉𝑇 =  𝜎𝑖𝑢𝑖 ∘ 𝑣𝑖
𝑇

𝑖  
– 𝜎𝑖: scalar 
– 𝑢𝑖: vector 
– 𝑣𝑖: vector 

 
 

A 𝑚 

𝑛  

= 𝑚 

𝑈 Σ 𝑉𝑇 

𝑛  

+ 

𝜎2𝑢2𝑣2 



SVD Properties 

• It is always possible to do SVD, i.e. decompose 
a matrix 𝐴 into 𝐴 = 𝑈𝑉𝑇, where 

• 𝑈, , 𝑉: unique  

• 𝑈,𝑉: column orthonormal 

– 𝑈𝑇𝑈 = 𝐼, 𝑉𝑇𝑉 = 𝐼 (𝐼: identity matrix) 

• : diagonal 

– Entries (singular values) are non-negative, 

– Sorted in decreasing order (𝜎1≥𝜎2≥⋯≥0). 
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SVD: Example – Users-to-Movies  

• 𝐴 = 𝑈Σ𝑉𝑇- example: Users to Movies 

𝑚 

𝑛  

= 𝑚 

𝑈 Σ 𝑉𝑇 

𝑛  
1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

SciFi 

Romance 

“topics” or “concepts” 
aka. Latent dimensions 
aka.  Latent factors  
 82 
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SVD: Example – Users-to-Movies  

• 𝐴 = 𝑈Σ𝑉𝑇- example 

𝑚 

𝑛  

= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

SciFi 

Romance 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17

 

𝑚 

𝑛  
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SVD: Example – Users-to-Movies  

• 𝐴 = 𝑈Σ𝑉𝑇- example 

𝑚 

𝑛  

= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

SciFi 

Romance 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17

 

𝑚 

𝑛  
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U is “user-to-concept” 
similarity matrix 



SVD: Example – Users-to-Movies  

• 𝐴 = 𝑈Σ𝑉𝑇- example 

𝑚 

𝑛  

= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

SciFi 

Romance 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17

 

𝑚 

𝑛  

85 

Th
e 

A
ve

n
ge

rs
   

St
ar

 W
ar

s 
 

Tw
ili

gh
t 

M
at

ri
x SciFi-concept 

X X 

“strength” of the SciFi-concept 



SVD: Example – Users-to-Movies  

• 𝐴 = 𝑈Σ𝑉𝑇- example 

𝑚 

𝑛  

= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

SciFi 

Romance 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17
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SVD: Interpretation #1 

• “users”, “movies” and “concepts” 

– 𝑈: user-to-concept similarity matrix 

– 𝑉: movie-to-concept similarity matrix 

– Σ: its diagonal elements 

• ‘strength’ of each concept 
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SVD: Interpretations #2 

• SVD gives ‘best’ axis 
to project on  

– ‘best’ = minimal sum 
of squares of 
projection errors 

• In other words, 

minimum 
reconstruction error 
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SVD: Interpretation #2 

• 𝐴 = 𝑈Σ𝑉𝑇- example 

– 𝑈: user-to-concept matrix 

– 𝑉: movie-to-concept matrix 

= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17
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SVD: Interpretation #2 

• 𝐴 = 𝑈Σ𝑉𝑇- example 

 

= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17
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SVD: Interpretation #2 

• 𝐴 = 𝑈Σ𝑉𝑇- example 

– 𝑈: the coordinates of 
the points in the 
projection axis 
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1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

2.86 0.24 8.21
5.71 −0.24 5.12
5.83 −0.95 −6.19
8.09 −0.83 −1.90
0.71 6. 78 0.71
0.12 4.88 −2.38
0. 83 8.33 −0. 12

 

Projection of users 
on the “Sci-Fi” axis 



SVD: Interpretation #2 

• Q: how exactly is dimension reduction done?  
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= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17

 

X X 



SVD: Interpretation #2 

• Q: how exactly is dimension reduction done? 

• A: Set smallest singular values to zero 
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= 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17

 

X X 



SVD: Interpretation #2 

• Q: how exactly is dimension reduction done? 

• A: Set smallest singular values to zero 

– Approximate original matrix by low-rank matrices 
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≈ 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

0.24 0.02 0.69
0.48 −0.02 0.43
0.49 −0.08 −0.52
0.68 −0.07 −0.16
0.06 0.57 0.06
0.01 0.41 −0.20
0. 07 0.70 −0.01

 

11.9 0 0
0 7.1 0
0 0 2.5

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
−0. 37 0.83 −0.37 −0.17

 

X X 



SVD: Interpretation #2 

• Q: how exactly is dimension reduction done? 

• A: Set smallest singular values to zero 

– Approximate original matrix by low-rank matrices 
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≈ 

1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 

0.24 0.02             
0.48 −0.02
0.49 −0.08
0.68 −0.07
0.06 0.57
0.01 0.41
0. 07 0.70

 

11.9 0
0 7.1

    

 

0.59 0.54 0.59 0. 05
−0.10 0.12 −0.10 0.98
                             

 

X X 



SVD: Best Low Rank Approximation 

A 𝑚 

𝑛  

= 𝑚 

𝑈 Σ V 

𝑛  

B 𝑚 

𝑛  

≈ 𝑚 

𝑈 Σ V 

𝑛  

𝐴 is a rank 𝑟 
matrix 

𝑟 

𝑟 

𝑟1 𝑟2 

𝐵 is the best 
rank 𝑟1 
approximation of 
matrix 𝐴 
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SVD: Best Low Rank Approximation 

• Theorem: Let 𝐴 = 𝑈Σ𝑉𝑇 (rank 𝐴 = 𝑟, 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟), 
and 𝐵 = 𝑈𝑆𝑉𝑇 

• 𝑆 = diagonal 𝑘 × 𝑘 matrix where 𝑠𝑖 = 𝜎𝑖  (𝑖 = 1…𝑘) and 𝑠𝑖 = 0 (𝑖 > 𝑘) 

• or equivalently, 𝐵 =  𝜎𝑖
𝑘
𝑖=1 𝑢𝑖 ∘ 𝑣𝑖

𝑇 , is the best rank-𝑘 approximation 
to 𝐴: 

• or equivalently,  𝐵 = argmin
𝑟𝑎𝑛𝑘 𝐵 ≤𝑘

𝐴 − 𝐵 𝐹  

• Intuition (spectral decomposition) 

– 𝐴 =  𝜎𝑖𝑢𝑖 ∘ 𝑣𝑖
𝑇 = 𝜎1𝑢1 ∘ 𝑣1

𝑇 +⋯+ 𝜎𝑟𝑢𝑟 ∘ 𝑣𝑟
𝑇

𝑖  

• 𝜎1 ≥ ⋯ ≥ 𝜎𝑟 ≥ 0 

– Why setting small 𝜎𝑖  to 0 is the right thing to do? 
• Vectors 𝑢𝑖 and 𝑣𝑖  are unit length, so 𝜎𝑖  scales them. 
• Therefore, zeroing small 𝜎𝑖  introduces less error. 
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SVD: Interpretation #2 

• Q: How many 𝜎𝑖 to keep? 

• A: Rule-of-a thumb 

       Keep 80~90% “energy” (=  𝜎𝑖
2

𝑖 ) 
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1 3 1 0
3 4 3 1
4 2 4 0
5 4 5 1
0 1 0 4
0 0 0 3
0 1 0 5

 𝑚 

𝑛  

= 𝜎1𝑢1∘𝑣1
𝑇+ 𝜎2𝑢2∘𝑣2

𝑇 +⋯ 

Assume: 𝜎1≥ 𝜎2≥⋯ 



SVD: Complexity 

• SVD for full matrix 

– 𝑂(min(𝑛𝑚2, 𝑛2𝑚)) 

• But 
– faster, if we only want to compute singular values 

– or if we only want first k singular vectors (thin-svd). 

– or if the matrix is sparse (sparse svd). 

• Stable implementations 
– LAPACK, Matlab, PROPACK … 

– Available in most common languages 
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SVD: Conclusions so far 

• SVD: 𝐴 = 𝑈Σ𝑉𝑇: unique 

– 𝑈: user-to-concept similarities 

– 𝑉: movie-to-concept similarities 

– Σ: strength to each concept 

• Dimensionality reduction 

– Keep the few largest singular values (80-90% of 
“energy”) 

– SVD: picks up linear correlations 
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SVD: Relationship to Eigen-
decomposition 

• SVD gives us  

– 𝐴 = 𝑈Σ𝑉𝑇  

• Eigen-decomposition 

– 𝐴 = 𝑋ΛXT 
• 𝐴 is symmetric 
• 𝑈, 𝑉, 𝑋 are orthonormal (𝑈𝑇𝑈 = 𝐼)  
• Λ, Σ are diagonal  

• Equivalence 

– 𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇 𝑈Σ𝑉𝑇 𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈ΣΣ𝑇𝑈𝑇 = 𝑋Λ𝑋𝑇  

– 𝐴𝑇𝐴 = 𝑉Σ𝑇𝑈𝑇 𝑈Σ𝑉𝑇 = 𝑉Σ𝑇Σ𝑉𝑇 = 𝑌Λ𝑌𝑇  
– This shows how to use eigen-decomposition to compute SVD 

– And also, 𝜆𝑖 = 𝜎𝑖
2 
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Online SVD (Brand, 2003) 

• Challenges: storage and computation 

• Idea: an incremental algorithm computes the 
principal eigenvectors of a matrix without 
storing the entire matrix in memory 
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Online SVD (Brand, 2003) 
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Online SVD (Brand, 2003) 

• Complexity 

 

 

• Store  

– 𝑈, 𝑆, 𝑉  

 

 

 

 

• The online SVD has more 
error than the PCA 
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Online Unsupervised Learning  

• Unsupervised learning: minimizing the 
reconstruction errors  

• Online: rank-one update 

• Pros and Cons  

          Simple to implement 

          Heuristic, but intuitively work 

           Lack of theoretical guarantee 

          Relative poor performance 
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Outline 

• Introduction (60 min.) 
– Big data and big data analytics (30 min.) 

– Online learning and its applications (30 min.) 

• Online Learning Algorithms (60 min.) 
– Perceptron (10 min.) 

– Online non-sparse learning (10 min.)  

– Online sparse learning (20 min.) 

– Online unsupervised learning (20. min.) 

• Discussions + Q & A (5 min.) 
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Volume Volume Volume 

Discussions and Open Issues 

107 

Variety 

Structured, semi-
structured, unstructured  

Veracity 

Volume 

Data inconsistency, 
ambiguities, deception 

Velocity 

Batch data, real-time 
data, streaming data  

Volume 

Size grows from terabyte 
to exabyte to zettabyte 

How to learn from Big Data to tackle the 
4V’s characteristics?  



Discussions and Open Issues 

• Data issues 

– High-dimensionality 

– Sparsity 

– Structure 

– Noise and incomplete 
data 

– Concept drift 

– Domain adaption 

– Background knowledge 
incorporation 

• Platform issues 

– Parallel computing 

– Distributed computing 

• User interaction 

– Interactive OL vs. Passive 
OL 

– Crowdsourcing  

 

108 



Discussions and Open Issues 

• Applications 

– Social network and social media 

– Speech recognition and identification (e.g., Siri) 

– Financial engineering 

– Medical and healthcare informatics 

– Science and research: human genome decoding, 
particle discoveries, astronomy   

– etc. 
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Conclusion 

• Introduction of Big Data and the challenges 
and opportunities 

• Introduction of online learning and its possible 
applications 

• Survey of classical and state-of-the-art online 
learning techniques for 
– Non-sparse learning models 

– Sparse learning models 

– Unsupervised learning models 
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One-slide Takeaway  

• Online learning is a promising tool for big data 
analytics 

• Many challenges exist 
– Real-world scenarios: concept drifting, sparse 

data, high-dimensional, uncertain/imprecision 
data, etc. 

– More advance online learning algorithms: faster 
convergence rate, less memory cost, etc. 

– Parallel implementation or running on distributing 
platforms   
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Toolbox: http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=software 

http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=software


Other Toolboxes 

• MOA: Massive Online Analysis 

– http://moa.cms.waikato.ac.nz/ 

• Vowpal Wabbit 

– https://github.com/JohnLangford/vowpal_wabbit
/wiki 
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http://moa.cms.waikato.ac.nz/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki


Q & A 

• If you have any problems, please send emails 
to hqyang@cse.cuhk.edu.hk! 
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