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Outline

* |ntroduction (60 min.)
— Big data and big data analytics (30 min.)
— Online learning and its applications (30 min.)

* Online Learning Algorithms (60 min.)
— Perceptron (10 min.)
— Online non-sparse learning (10 min.)
— Online sparse learning (20 min.)
— Online unsupervised learning (20. min.)

* Discussions + Q & A (5 min.)
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What is Big Data?

 There is not a consensus as to how to define Big Data

8 )
“A collection of data sets so large and complex that it becomes

difficult to process using on-hand database management tools
or traditional data processing applications.” - wiki
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~

ﬁ’Big data exceeds the reach of commonly used hardware
environments and software tools to capture, manage, and process it

with in a tolerable elapsed time for its user population.” - Tera- data
\_magazine article, 2011 )

“Big data refers to data sets whose size is beyond the ability of
typical database software tools to capture, store, manage and
\a nalyze.” - The McKinsey Global Institute, 2011
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What is Big Data?
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Big Data refers to datasets grow so large and complex that it is
difficult to capture, store, manage, share, analyze and visualize
kwithin current computational architecture.
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Evolution of Big Data

* Birth: 1880 US census
* Adolescence: Big Science
* Modern Era: Big Business



Birth: 1880 US census



The First Big Data Challenge

e 1880 census
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The First Big Data Solution

Hollerith Tabulating
System

Punched cards — 80
variables

Used for 1890 census

6 weeks instead of 7+
years

Iu . CI e« <f : al

| €= . l.-' l';;. ! - ...

- | Leel,

! ----- éb . \':) ):b ] )“
) e DR P R .

W e -f' AL 0

‘x.-.!.-‘.‘o’ooo-

el B L .‘ lllllll

i R i

..‘ ooooooooo

......

L B J



* S2 billion (approx. 26

e (Catalyst for “Big Science”

Manhattan Project (1946 - 1949)

billion in 2013)




Space Program (1960s)

* Beganin late 1950s

* An active area of big
data nowadays
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Adolescence: Big Science



Big Science

 The International
Geophysical Year
— An international scientific
project
— Last from Jul. 1, 1957 to Dec.
31, 1958
* A synoptic collection of
observational data on a
global scale

* Implications

— Big budgets, Big staffs, Big
machines, Big laboratories
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Summary of Big Science

Laid foundation for ambitious projects
— International Biological Program
— Long Term Ecological Research Network

Ended in 1974
Many participants viewed it as a failure

Nevertheless, it was a success
— Transform the way of processing data
— Realize original incentives

— Provide a renewed legitimacy for synoptic data
collection



Lessons from Big Science

* Spawn new big data projects
— Weather prediction
— Physics research (supercollider data analytics)
— Astronomy images (planet detection)
— Medical research (drug interaction)

* Businesses latched onto its techniques,
methodologies, and objectives



Modern Era: Big Business



Big Science vs. Big Business

* Common
— Need technologies to work with data
— Use algorithms to mine data
* Big Science
— Source: experiments and research conducted in
controlled environments
— Goals: to answer questions, or prove theories
* Big Business
— Source: transactions in nature and little control

— Goals: to discover new opportunities, measure
efficiencies, uncover relationships



Big Data is Everywhere!

e Lots of data is being
collected and warehoused

— Science experiments

[HYOMLIIN HOL2Y 43 N ]

— Web data, e-commerce

— Purchases at department/
grocery stores

— Bank/Credit Card
transactions

— Social Networks
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CERN - Large Hadron Collider
— ~10 PB/year at start

— ~1000 PB in ~10 years

— 2500 physicists collaborating

Large Synoptic Survey Telescope
(NSF, DOE, and private donors)

— ~5-10 PB/year at start in 2012

— ~100 PB by 2025

Pan-STARRS (Haleakala, Hawaii)
US Air Force

— now: 800 TB/year

— soon: 4 PB/year




2 TBs Of

Big Data from Different Sources
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Big Data in Business Sectors

US health care Europe public sector
* $300 billion value administration
per year * £250 billionvalue per
* ~0.7 percent annual year
productivity growth * ~0.5 percent annual

productivity growth

Global personal
location data

« $100 billion + revenue for
service providers

* Up to $700 billionvalue
to end users

US retail

margin possible

* 60+ % increasein net

* 0.5-1.0 percent annual
productivity growth

?,\. .‘A 2 . !

\ Bt Ui

Manufacturing

* Up to 50 percent decrease
in product development,
assembly costs

* Up to 7 percent reduction
in working capital

SOURCE: McKinsey Global Institute
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Characteristics of Big Data

* 4V: Volume, Velocity, Variety, Veracity

=310/®

- Analyze the Future

e e US predicts powerful
facebook = ||i quake this week
New sharing over 2.5 _ o s UAE body says it's a

8 billion TB in 2015, billion per day W 43 ‘ 5 3 rumour:
40 ZB in 2020 new data over S00TB || IS oy ‘ o '
)k P ' By Wam/Agencies
5.2TB per person per day Published Saturday, April 20, 2013

22



Big Data Analytics

* Definition: a process of inspecting, cleaning,
transforming, and modeling big data with the
goal of discovering useful information, suggesting
conclusions, and supporting decision making

* Connection to data mining

— Analytics include both data analysis (mining) and
communication (guide decision making)

— Analytics is not so much concerned with individual
analyses or analysis steps, but with the entire
methodology

23



Outline

* |ntroduction (60 min.)

— Online learning and its applications (30 min.)



Challenges and Aims

* Challenges: capturing, storing, searching,
sharing, analyzing and visualizing
* Big data is not just about size

— Finds insights from complex, noisy,
heterogeneous, longitudinal, and voluminous data

— It aims to answer questions that were previously
unanswered

* This tutorial focuses on online learning
techniques for Big Data



Learning Techniques Overview

* Learning paradigms

— Supervised learning T o
— Semisupervised learning
o . Sﬁgénri;is <:> I;S:g:g Iij;l Test
— Transductive learning % e Y
— Unsupervised learning = =
— Universum learning
. Unsuper nlabe es
— Transfer learning - o
«@%

<:> Source
+Target
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What is Online Learning?

* Batch/Offline learning * Online learning
— Observe a batch of training — Observe a sequence of data
data {(x;, y,)}iy (X0 Yo oo (X0 V)
— Learn a model from them — Learn a model incrementally
— Predict new samples as instances come
accurately — Make the sequence of online

predictions accurately

Make prediction

Hypotheses H Learning Prediction r r 5
q—n X2 find f € H =>{y = () «—
Training Dataset:(> s.t. v = f(x;), Vi ﬁ > T
__— By - rue response

Update a model
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Online Prediction Algorithm

 An initial prediction rule f,()
 Fort=1l, 2, ...
— We observe x, and make a prediction f_,(X,)

— We observe the true outcome Yy, and then
compute a loss I(f(x,),y,)

— The online algorithm updates the prediction
rule using the new example and construct f (x)

e fa)
) Yi




Online Prediction Algorithm

e The total error of the method is

* Goa
* Prec

simi

Zl(ft—l(xt)1 Vi)

. this error to be as small as possible

ict unknown future one step a time:
ar to generalization error

ey T
) Yi




Regret Analysis

* f.() : optimal prediction function from a class
H, e.g., the class of Iinear classifiers

f.()= argmanI(f(x) V)
with minimum error after seeing all examples
* Regret for the online learning algorithm

regret == Y [1(f,,6), 90 = 1(£.(¢), )

t=1

We want regret as small as possible



Why Low Regret?

* Regret for the online learning algorithm

reget == Y [1(1,,04) 1)~ 1(£.(x). )

* Advantages
— We do not lose much from not knowing future events

— We can perform almost as well as someone who
observes the entire sequence and picks the best
prediction strategy in hindsight

— We can also compete with changing environment



Advantages of Online Learning

Meet many applications for data arriving sequentially
while predictions are required on-the-fly

— Avoid re-training when adding new data

Applicable in adversarial and competitive environment
Strong adaptability to changing environment

High efficiency and excellent scalability

Simple to understand and easy to implement

Easy to be parallelized

Theoretical guarantees



Where to Apply Online Learning?

Social
Media

Online
Learning

| Internet
Security

33



Online Learning for Social Media

 Recommendation, sentiment/emotion analysis

rﬁ Recommended for you

Pamela Meyer: How to spot Mlaml Heat receive Flnals

a liar
by TEDtalksDirector
1,747,511 views

Trophy & LeBron is Final...

by NBA
513,011 views

2013 NBA Finals: Game 4
Micro-Movie

by NBA

455,152 views

Your Amazon.com » Recommended for You

(If you're not Haigin ¥ang, click here.)

These recommendations are based on items vou own and more,

Just For Today

Browse Recommended

Machine Learning in Action
by Peter Harrington (April 16, 2012)

Average Customer Review: Yevedeyds ¥ (L2)
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Where to Apply Online Learning?
P N

Social
Media

Online

Learning

Internet
Security
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Online Learning for Internet Security

 Electronic business sectors

— Spam email filtering %

— Fraud credit card transaction detection

— Network intrusion detection system, etc.

Intrusion detection [ | % D I
20 B — Itaﬁ"
WWW serve aé‘ﬁcﬁp
@
@) L] I[*J)zil\%ork Internal
.EE Internet Network
c 15F i
) Firewall Firewal
QO
| T—
m —
10 —
=

)
Z
v

SSSSS
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Sample Number 36



Where to Apply Online Learning?

R

Social
Media

Online
Learning

Internet
Security
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Online Learning for Financial Decision

* Financial decision
— Online portfolio selection
— Sequential investment, etc.

1400 SU 29.28 +0.48 +1.67%

80
1200

1000 — /

BO0 —— Finance
= Portfolio Selection 40
600 l///
400 ,\/ //\/—_ 20
200
_P’-/‘,/ 0
2004 2006 2008 2010 2012

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Apr302013, 1:528M UTE. Poweredby TCHARTS
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Outline

* Online Learning Algorithms (60 min.)
— Perceptron (10 min.)
— Online non-sparse learning (10 min.)
— Online sparse learning (20 min.)
— Online unsupervised learning (20. min.)




Outline

* Online Learning Algorithms (60 min.)
— Perceptron (10 min.)



Perceptron Algorithm (F. Rosenblatt 1958)

e Goal: find a linear classifier with small error

1: Initialize wg = 0
2: fort=1,2,...do
3:  Observe x; and predict sign(w] ;x;)
4 Update
o |f wf_lxtyt < 0, then w; = w;_1 + X Us
e Otherwise wy = wy_4
5: end for




Geometric View

Misclassiication!




Geometric View




e,

Geometric View




Geometric View




Perceptron Mistake Bound

 Consider W. separate the data: wix.y, >0
* Define margin
min

, SUP|

WIXi‘

W,

 The number of mistakes perceptron makes is
at most y~



Proof of Perceptron Mistake Bound
[Novikoff,1963]

Proof: Let v, be the hypothesis before the k-th
mistake. Assume that the k-th mistake occurs

on the input example (x;. ;). min wai‘
First, Second, *~ w.[ suplx,
Vier]|* = ||ve + yixil|? Vi1l = Vi + yiX; |
= ||vi|® + 2 (Vi xi) ViU = Viu-+yX;u
+ ||x;|? > Vgu AR
< ||k >+ R? V:{A—lu > kv R.
<

kR*(R = sup [[x||z2)
1

Hence, ViR > ||vial > vEi, ju>kyR
) § _..}_—2



Outline

* Online Learning Algorithms (60 min.)

— Online non-sparse learning (10 min.)



Online Non-Sparse Learning

* First order learning methods
— Online gradient descent (Zinkevich, 2003)

— Passive aggressive learning (Crammer et al., 2006)
— Others (including but not limited)

* ALMA: A New Approximate Maximal Margin Classification
Algorithm (Gentile, 2001)

« ROMMA: Relaxed Online Maximum Margin Algorithm (Li and
Long, 2002)

 MIRA: Margin Infused Relaxed Algorithm (Crammer and
Singer, 2003)

 DUOL: A Double Updating Approach for Online Learning
(Zhao et al. 2009)



Online Gradient Descent (OGD)

* Online convex optimization (Zinkevich 2003)
— Consider a convex objective function
f:5 =R
where S C R" is a bounded convex set

— Update by Online Gradient Descent (OGD) or
Stochastic Gradient Descent (SGD)

Wil — | [g(We =V f(wy))

where 7] is a learning rate



Online Gradient Descent (OGD)

 Fort=1l, 2, ...
— An unlabeled sample x, arrives
— Make a prediction based on existing weights
J, =sgn(w, x,)
— Observe the true class label y, e {-1,+1}
— Update the weights by
Wi [[g(wr =V f(wy))
where 77is a learning rate

(e Yo
| | | >
X > Yi

Update w,,

51



Passive Aggressive Online Learning

 Closed-form solutions can be derived:

Wil = We T VX

U= (FA)
_ _ U -
U R (PA-ID
1 2
Wi = argmin H“; — W; H
weR”

s.t. O(w;(xp3)) =0

INPUT: aggressiveness parameter C > 0
INITIALIZE: w; = (0,. ... 0)
For r=1.2,...

e receive instance: xX; € R”

e predict: J; = sign(w;-X;)

e receive correct label: y; € {—1,+1}

e suffer loss: ¢, = max{O o1 — yi(wy lr)}

e update:

1. set: {

U (FA)
T, = min {C. ||;|3 } (PA-I)
T, = be (PA-II)

x>+ 56

2. update: Wi =W, + T Xy




Online Non-Sparse Learning

* First order methods

— Learn a linear weight vector (first order) of model

* Pros and Cons
=5 Simple and easy to implement
<7 Efficient and scalable for high-dimensional data
= Relatively slow convergence rate



Online Non-Sparse Learning

* Second order online learning methods

— Update the weight vector w by maintaining and exploring both
first-order and second-order information

 Some representative methods, but not limited
— SOP: Second Order Perceptron (Cesa-Bianchi et al., 2005)
— CW: Confidence Weighted learning (Dredze et al., 2008)

— AROW: Adaptive Regularization of Weights (Crammer et al.,
2009)

— |ELLIP: Online Learning by Ellipsoid Method (Yang et al., 2009)
— NHERD: Gaussian Herding (Crammer & Lee 2010)

— NAROW: New variant of AROW algorithm (Orabona & Crammer
2010)

— SCW: Soft Confidence Weighted (SCW) (Hoi et al., 2012)



Online Non-Sparse Learning

* Second-Order online learning methods

— Learn the weight vector w by maintaining and

exploring both first-order and second-order
information

* Pros and Cons

o7 Faster convergence rate

Faln

= Expensive for high-dimensional data

Falin

= Relatively sensitive to noise



Outline

* Online Learning Algorithms (60 min.)

— Online sparse learning (20 min.)



Online Sparse Learning

* Motivation
— Space constraint: RAM overflow
— Test-time constraint

— How to induce Sparsity in the weights of online
learning algorithms?

* Some representative work

— Truncated gradient (Langford et al., 2009)

— FOBOS: Forward Looking Subgradients (Duchi and
Singer 2009)

— Dual averaging (Xiao, 2009)
— etc.



Truncated Gradient (Langford et al., 2009)

Objective function
W= arfzmmZL w. z;) + gl wl|1

Stochastic gradlent descent
f(w;)) = w;—mViL(w;. z;)

Simple coefficient rounding
f(w;) = To(w; —mV1L(w;, z).0)

Truncated gradient: impose sparsity by
modifying the stochastic gradient descent

PN




Truncated Gradient (Langford et al., 2009)

Simple Coefficient Rounding vs. Less aggressive truncation

0 if|v)| <6 (max (0. v,—a) if v;€0,0]
if |v; : :
Ip(v;.0) = { S Li(v;.0,0) = {min(0,v;+a) if v;e[-6,0]
v; otherwise ‘ s
‘ LV otherwise
1 To(X,0) 1 T,(X,a,6)
X -6 -« | X R

/-9 0 / o O



Truncated Gradient (Langford et al., 2009)
f(w;) = Ti(wi =V L(w;, ), g 0)

The amount of shrinkage is
measured by a gravity
parameter g; > 0

The truncation can be
performed every K online steps

When gi =0

the update rule is identical to

the standard SGD

Loss functions: L(w. z) = &(w” x, y)
— Logistic 0(p.y) = In(1 +exp(—py))
— SVM (hinge) ¢(p.y) = max(0,1— py)
— Least square o(p.y)=(p—y)?

Algorithm 1 Truncated Gradient for Least Squares
Inputs:

e threshold 6 >0

e gravity sequence g; > 0

e learning rate ) (0, 1)

e cxample oracle O

initialize weights w/ «— 0 (j=1,...,d)
for trial i=1.2,...

1. Acquire an unlabeled example x= [x', . ..., x“] from oracle O

[

. forall weights w/ (j=1,..., d)

(a) if w/ > 0 and w’/ < O then w’/ «— max{w/ — gm,0}

(b) elseif w/ < 0 and w/ > —6 then w/ — min{w’/ + gmn,0}

LS ]

e prediction: =Y, wix/
. Compute prediction: y= Y ;u/x

=S

. Acquire the label y from oracle O

h

. Update weights for all features j: w/ < w/ +2n(y— y)x/

60



Truncated Gradient (Langford et al., 2009)

* Regret bound

Iwias - I(wiss < ) h]

1-0.54n
2 |!

=

1 O‘SA

[—y
.
Pt
=

m |lwi]= 1 4
1534_ + EL(W z;) + &illw- I(wi1 < 0)][1],

e letn=1/VT

=1

_ T —? A A o
< ~—(B+|wi) (1+ )‘l’ (ZL W, z;) +g2 (w1 = | wis1] 1)) +o(VT)
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FOBOS (Duchi & Singer, 2009)

 FOrward-Backward Splitting

Minimize w ' Aw + ¢'w + A ||w||,. True solution: w* = [—10]".

Subgradient

62



FOBOS (Duchi & Singer, 2009)

e Objective function
min L(w) + R(w)

* Repeat
l.  Unconstrained (stochastic sub) gradient of loss
Il. Incorporate regularization

e Similar to

— Forward-backward splitting (Lions and Mercier 79)
— Composite gradient methods (Wright et al. 09, Nesterov 07)



FOBOS: Step |

- Objective function min L(w) + R(w)

* Unconstrained (stochastic sub) gradient of loss

W 1= W — G where [Eg; € OL(w;)

L(w)

t

Wi41/2




FOBOS: Step ||

» Objective function min L(w) + R(w)

* [ncorporate regularization

’ + r}t]?(w)}

, 1
Wy = arginin {2 ‘w — W1

w

%H'M_:‘ - .u"if+1/2||2 —+ R(-g_{_})




Forward Looking Property

 The optimum w:., satisfies
0 € wi —wy +dL(wy) + 1 0OR(wigq)

e Let g/ € OL(wy;) and g%, € OR(w,41)

L R
Wiyl — W — Gy — G q
/ \
current loss forward regularization

* Current subgradient of loss, forward
subgradient of regularization



Batch Convergence and Online Regret

* Set "t X % or %/; to obtain batch convergence

L(w;) + R(w;) — (L(w™) + R(w")) = O (\/lf)

* Online (average) regret bounds

T T
Re; Jltt é Z Lt ’U)f -+ R 'U)f Z )
t=1 t=1
: = Regret(1') = O ( ! )
Ne X —= egre =0 —
1 log T
e o< = Regret(1") = O ( UT ) (strong convexity)

67



High Dimensional Efficiency

* |[nput space is sparse but huge
* Need to perform lazy updates to w
* Proposition: The following are equivalent

w; = argmin ||w — w;_1| 2 4 1 A H'ng fort=1to T

w

T-1
. 2
wp = argmin ||w — wy||” + (Z f]f)\) |wl],

w t=1



Dual Averaging (xiao, 2010) =
A

minimize {(I)(W) S E, f(wz)+ LP(W)} W(w) = A|w||; with A >0

W

e Objective function

* Problem: truncated gradient doesn’t produce
truly sparse weight due to small learning rate

* Fix: dual averaging which keeps two state
representations:

— parameter W, and average gradient vector

o} :%.Ztl: fi(Wi)




Dual Averaging (xiao, 2010)

Algorithm 1 Regularized dual averaging (RDA) method

o -
W¢41 has entry —
: an auxiliary function A( w) that is strongly convex on dom W and also satisfies
wise closed-form y ¥ (%) aly

argmin 2(w) € Argmin‘V(w).
_ .

solution "
e anonnegative and nondecreasing sequence { B} -1.
¢ Ad Vd nta ge .S pa I'S€ initialize: set wy = argmin,, A(w) and gp = 0.

. forr=1,2,3.... do
on th e wWe Ig ht Wt 1. Givéu the function £, compute a subgradient g; €0 f;(w;).
. 2. Update the average subgradient:
* Disadvantage:
keep d hoN-Sparse

subgradient g,

- t—1_ +1
8= p g1 rgr-

3. Compute the next weight vector:

Wpy1 = argmin {{g w) + W (w) + %h{ w}} .

w

end for

0 if 53*"»"( <A
(1)

W =
t+1 I3 (A X i .
L (§ Y Sgll(g{;")) otherwise,
70



Convergence and Regret

* Average regret

_ o 1

Rp(w) T (fe(we) +V(wi)) — Sp(w)

M“ﬁ

t=1

(fe(w) + W(w))

Mha

1
St(w) £
T t=1

* Theoretical bound: similar to gradient descent

Rr ~ O1/VT)
Rr ~ O(log(T)/T), if h(-) is strongly convex

71



Comparison

* FOBOS * Dual Averaging

. 1 o J /2 B
Wpy1 = argmin { (g, w) +¥(w) + \w—w; |I§} Wiy = argnun { (Gt w) +¥(w) + Tr};r( W) }

,j
w =0t W

— Subgradient g, — Average subgradient g;
— Local Bregman divergence — Global proximal function
— Coefficient 1/a; = @(\/f) — Coefficient B/t = © (1/\/f)

* Equivalent to TG method
when ¥Y(w) = [|w][;



Comparison

Left:K = 1 for TG, p = 0 for RDA  Right

600 T T T T T 600 T
----- SGD
---TG (K= 10)
~ 500 500¢ —RDA (yp |
=
| 400 4UOMWWW
=
< 300t 300+
=
B
~ 200} 200 ]
N
% 100} . 100} ]
ﬂ 1 1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 %0 2000 4000 6000 8000 10000 12000

NNZs in w; (A = 10)

0 2000 4000 6000 8000 10000 12000
Number of samples ¢

:K=10 for TG, yp=25 for RDA

0 2000 4000 6000 8000 10000 12000 73

Number of samples ¢



Comparison

Left:K = 1 for TG, p = 0 for RDA  Right:K=10 for TG, yp=25 for RDA

I ...I.... SGD I _I ] - ...I.... SGD T ]
104 TG (K=1) ] 10H TG (K=10) 1
;--IRDiﬂ'L.(p:{]) ; ---RD;‘&L[TD::F')
| ——IPM *,,I**F*. : | —— IPM ,fl"’j' ]

1 - !’ 1 :-__:'.V

I- -:_-I:_:_;:—"!H-rr'r* | | _ 3 "_:'3'_::;_!:.:!.'.-:!::_

Error rates of wr (%)

0.1 0.1
0.01 0.1 1 10 0.01 0.1 1 10
600 — . . . 600
) )
Fey
= 400f s, {00} .
= ‘= 1 . {00
':3 "’-. | |
Z. 2007 i 5 { 200t
R I, S L ST
._____:"'!-i_._‘- _'-_____J-_.—"—-h
0 . e | 0 L e |
0.01 0.1 1 10 0.01 0.1 1 10



Variants of Online Sparse Learning
Models

* Online feature selection (OFS)
— A variant of sparse online learning

— The key difference is that OFS focuses on selecting a
fixed subset of features in online learning process

— Could be used as an alternative tool for batch feature
selection when dealing with big data

* Other existing work

— Online learning for Group Lasso (Yang et al., 2010)
and online learning for multi-task feature selection
(Yang et al. 2013) to select features in group manner
or features among similar tasks



Online Sparse Learning

* Objective

— Induce sparsity in the weights of online learning
algorithms

* Pros and Cons
<5 Simple and easy to implement
<7 Efficient and scalable for high-dimensional data

-~ N

= Relatively slow convergence rate

~

= No perfect way to attain sparsity solution yet



Outline

* Online Learning Algorithms (60 min.)

— Online unsupervised learning (20. min.)



Online Unsupervised Learning

Assumption: data generated from some underlying
parametric probabilistic density function

Goal: estimate the parameters of the density to give a suitable
compact representation

Typical work
— Online singular value decomposition (SVD) (Brand, 2003)

Others (including but not limited)

— Online principal component analysis (PCA) (Warmuth and
Kuzmin, 2006)

— Online dictionary learning for sparse coding (Mairal et al. 2009)

— Online learning for latent Dirichlet allocation (LDA) (Hoffman et
al., 2010)

— Online variational inference for the hierarchical Dirichlet process
(HDP) (Wang et al. 2011)



SVD: Definition

A[mxn] — U[mxr]z[rxr]v[z;xr]
A: input data matrix

— m X n matrix (e.g. m documents,
n terms)

U: left singular vectors

— m X r matrix (m documents, r
topics)
2: singular values

— r X r diagonal matrix (strength
of each “topic”)

— r = rank(A): rank of matrix A
V' right singular vectors
— n X r matrix (n terms, r topics)

VT

« A=UxVT =Y. 0;u;0v]
— 0;:scalar
— u;:vector
— v;:vector
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SVD: Definition

Uu X 4 1t
T8 1=
I
n
n n
O2Us V>
Ol
° A=U2VT=ZiO'iui°U;T +
— 0j: scalar
— u;: vector

— vj:vector
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SVD Properties

It is always possible to do SVD, i.e. decompose
a matrix Ainto A = UXVT, where

U, 2, V:unique

U,V: column orthonormal

—UTU =1,VTV = (I: identity matrix)

>.: diagonal

— Entries (singular values) are non-negative,
— Sorted in decreasing order (0,20,2>---20).



SVD: Example — Users-to-Movies

e A =UXVT- example: Users to Movies

5

o]0]
S 5 .
Z 2 E %
v 5 K =
533 2
-1 3 1 0
- 3 4 3 1
SciFi 4 2 4 0
m- 5 4 5 1
10 1 0 4
Romance 4|10 0 0 3
L0 1 0 5

n o “topics” or “concepts”

aka. Latent dimensions
aka. Latent factors
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SVD: Example — Users-to-Movies

e A =UZVT-example

SciFi ~

m

Romanced

© © © ut1 & w R~ The Avengers

= O = N W Star Wars

S

o oo ul &~ w ke Matrix

SciFi-concept

= Romance-concept

<

o

E \ e

01 71024 002 0.69 T

1 048 —0.02 0.43

0 ,, [0.49 —0.08 —0.52 1})'9 701 8
1| =|068 -007 -016] X 0 0 2s X
4 0.06 057 0.06

3 0.01 041 —0.20

s lo.o7 070 —0.01

—0.10 0.12 -0.10 0.98
—-0.37 083 -—-0.37 —-0.17

n

[0.59 0.54 0.59 0.05]



SVD: Example — Users-to-Movies

e A =UZVT-example

SciFi ~

m

Romanced

© © © ut1 & w R~ The Avengers

= O = N W Star Wars

S

o oo ul &~ w ke Matrix

U is “user-to-concept”
similarity matrix

1w SciFi-concept  Romance-concept

E e

07 024 002 0.69

1 048 —0.02 0.43

0| m (049 —0.08 —0.52 1%)'9 701 8

1| = (068 —0.07 —0.16| % 0 0 2s X
4 0.06 057  0.06

3 0.01 041 —0.20

sl lo.o7 070 —0.01.

—0.10 0.12 -0.10 0.98
—-0.37 083 -—-0.37 —-0.17

n

[0.59 0.54 0.59 0.05]
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SVD: Example — Users-to-Movies

e A =UZVT-example

5
o0
c £
v © 2o
Z = 2 o SciFi-concept
é g ‘E" E “strength” of the SciFi-concept
71 3 1 07 (024 002 0697
- 3 4 3 1 0.48 —-0.02 043
T4 2 4 0], [049 —0.08 —052 701 8
15 4 5 1|=[068 -007 -0.16] X ' X
m- 0 0 25
0 1 0 4 0.06 0.57 0.06
Romance- [0 0 0 3 0.01 041 -0.20
L0 1 0 5- .0.07 0.70 —0.01
n

—0.10 0.12 -0.10 0.98
—-0.37 083 -—-0.37 —-0.17

n

[0.59 0.54 0.59 0.05]
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SVD: Example — Users-to-Movies

e A =UZVT-example

SciFi ~

m

Romanced

© © © ut1 & w R~ The Avengers

§ < Eﬂ SciFi-concept
g2 |
3 1 07 71024 0.02
\4\%\%% 048 —0.02
2 4 U}1049 —0.08
4 5 1|=|0: Q7
1 0 4 0.06 0.
0 0 3 0.01 0.41
1 0 51 10.07 0.70
n

SciFi-concept

0.69 7
0.43
—0.52
—0.16

6
—0.

V is “movie-to-concept”
similarity matrix

—0.01-

—0.10 0.12 -0.10 0.98
—-0.37 083 -—-0.37 —-0.17

n

0.54 059 0.05 ]
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SVD: Interpretation

7

e “users”, “movies” and “concepts”
— U: user-to-concept similarity matrix
— V' movie-to-concept similarity matrix
— X its diagonal elements
 ‘strength’ of each concept



SVD: Interpretations #2

e SVD gives ‘best’ axis
to project on
— ‘best’ = minimal sum

of squares of
projection errors

first right
® singular vector

Movie 2 rating

* |n other words,

minimum
reconstruction error

Movie 1 rating



SVD: Interpretation

e A =UZVT-example

— U: user-to-concept matrix

Movie 2 rating

— I/ movie-to-concept matrix

T

first right
@ singular vector

‘.
T 1 3 1 O r0.24 0.02 0.69 Movie 1 rating
3 4 3 1| 048 —002 043
4 2 4 ol 049 —008 —052 115 0 0
5 4 5 1|=|068 —007 —016| X 8 7(')1 295 X
0 1 0 4| 006 057 006
0 0 0 3| o001 041 =020
0 1 0 5

0.59 0.54 0.59

L0.07 0.70 —0.0lr

—0.10 0.12 -0.10
—-0.37 0.83 —-0.37

0.05]

0.98
—0.17



oo U1 WER

e A =UZVT-example

_R O R AN AW

SO O UlbH WK

SVD: Interpretation

Movie 2 rating

variance (“spread”)
on the v, axis v,

® \

first right
e @ singular vector

0.24  0.02 0.69 7

048 —-0.02 043

0.49 -0.08 -—0.52 “ 701 8
= 10.68 —-0.07 —-0.16 0 0 25

0.06 0.57 0.06
0.01 041 -0.20

LIJ'IUJ'-PP—*CJP—XCDI

L0.07 0.70 —0.01-

Movie 1 rating

| x

—0.10 0.12 -0.10 0.98

[0.59 0.54 0.59 0.05]

—-0.37 083 -0.37 -0.17



SVD: Interpretation

e« A=UXVT-example

— UX: the coordinates of
the points in the
projection axis

Projection of users
on the “Sci-Fi” axis

oo Ul wE
_ O R A DN DS W
OO O ULA W
UIW D RO RO

2.86
5.71
5.83
8.09
0.71
0.12

10.83

Movie 2 rating

T

first right
singular vector

0.24
—0.24
—0.95
—0.83

6.78

4.88

8.33

Movie 1 rating

8.21 7
5.12
—6.19
—1.90
0.71
—2.38
—0.12-




SVD: Interpretation #2

* Q: how exactly is dimension reduction done?

0.24  0.02 0.69 7
048 —-0.02 043

049 —0.08 —0.52| [o B

0.68 —-0.07 -0.16 0 0 25

0.06 0.57 0.06
0.01 041 -0.20
L0.07 0.70 —0.01-

119 0 0
X

coocwu1d wr

_ O R A DN DS W

C OO UTLA WR

CIJ'lUJv-PI—*OI—XOI
Il

—0.10 0.12 -0.10 0.98

[0.59 0.54 0.59 0.05]
—-0.37 083 -0.37 -0.17



SVD: Interpretation #2

* Q: how exactly is dimension reduction done?
* A:Set smallest singular values to zero

0.01 041 -0.20
L0.07 0.70 —0.01-

1 3 1 071 [024 002 0.69-

3 4 3 1 048 —0.02 0.43

4 2 4 0 049 —0.08 —0.52 11950 0

5 4 5 1|= (068 —007 —0.16] X 8 7(')1 2;)@ X
0 1 0 4 0.06 057 0.06

0 0 0 3

0 1 0 5

—0.10 0.12 -0.10 0.98

[0.59 0.54 0.59 0.05]
—-0.37 083 -0.37 -0.17



SVD: Interpretation

2

* Q: how exactly is dimension reduction done?

* A:Set smallest singular values to zero

— Approximate original matrix by low-rank matrices

—0.10 0.12 -0.10

‘1 3 1 071 71024
3 4 3 1 0.48
4 2 4 0 0.49 119 -0 0
5 4 5 1|~ |0.68 x| 0 710
0 1 0 4 0.06 0 0 2%
0 0 0 3 0.01
o 1 0 51 loo7

0.98

[0.59 0.54 0.59

0.05]

—0.37 _1I83——0837—-017
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SVD: Interpretation

2

* Q: how exactly is dimension reduction done?

* A:Set smallest singular values to zero

— Approximate original matrix by low-rank matrices

1 3 1 01 (024 0.02
3 4 3 1 048 —0.02
4 2 4 0 049 —0.08 11.9 0
5 4 5 1|~ |068 —0.07 x 10 71
0 1 0 4 0.06 0.57
0 0 0 3 001 041
o 1 0 51 loo7 o070

|

—0.10 0.12 -0.10 0.98

[0.59 0.54 0.59

0. 05]



SVD: Best Low Rank Approximation

Us Vv
r n
m| A = m Aisarankr
matrix
n T
Us Vv
1 B is the best
" rank 1y
m| B ~ m approximation of
matrix A




SVD: Best Low Rank Approximation

e Theorem: LetA USVT (rank(4) = 7,0, = 0, = -+ = 7,),
and B = USVT

e S =diagonal k X k matrix where Sl =g;(i=1..k)ands; =0 (i > k)

« orequivalently, B = ¥ . 6, u; o v}, is the best rank-k approximation
to A:

* or equivalently, B = argmin ||A — B||
rank(B)<k

* Intuition (spectral decomposition)

— A =), 0;u; ov;T = 01Uq ov'f + -+ 0 U, ov,T
c 0= 20,20
— Why setting small g; to O is the right thing to do?

* Vectors u; and v; are unit length, so g; scales them.
* Therefore, zeroing small g; introduces less error.



SVD: Interpretation #2

* Q: How many g, to keep?
* A: Rule-of-a thumb

Keep 80~90% “energy” (= X.; 0;%)
1 3 1 0

3 4 3 1

4 2 4 0 . .

m(5 4 5 1| = 0,U°V, + 0,U,0V," +:-

0 1 0 4

0 0 0 3

0 1 0 5 Assume: 0,2 0,2




SVD: Complexity

e SVD for full matrix
— O(min(nm?, n*m))
e But

— faster, if we only want to compute singular values
— or if we only want first K singular vectors (thin-svd).
— or if the matrix is sparse (sparse svd).

e Stable implementations
— LAPACK, Matlab, PROPACK ...
— Available in most common languages



SVD: Conclusions so far

e SVD: A = UZVT: unique
— U: user-to-concept similarities
— V. movie-to-concept similarities
— X: strength to each concept

* Dimensionality reduction

— Keep the few largest singular values (80-90% of
(lenergy”)

— SVD: picks up linear correlations



SVD: Relationship to Eigen-

decomposition
* SVD gives us
— A=U0zy"
* Eigen-decomposition
— A= XAXT

* Ais symmetric
« U,V,X are orthonormal (UTU = 1)
* A, X are diagonal

* Equivalence
— AAT = uxvTwzvDHT = uzvTyvsTuT = UuzxTuT = XAXT
— ATA =vITUT(WUzVT) = VeTzyT = YAYT

— This shows how to use eigen-decomposition to compute SVD

— And also, 1; = o/



Online SVD (Brand, 2003)

* Challenges: storage and computation

* |dea: an incremental algorithm computes the
principal eigenvectors of a matrix without
storing the entire matrix in memory



Online SVD (Brand, 2003)

: Existing rank-r PCA

A=UzvT
: A new sample c arrives, project it onto eigenspace

m=UTe¢

: Compute the orthogonal component

p=c—Um

. if ||p|| < thr then

Incorporate the new sample by rotating U

U=UR,, V=VR,

. else &
increase a rank

U'=[U;m|R,, V' =VR,

8: end if

9: Rotation by re-diagonalizing the matrix

( diag (5)  m ) — [Ru. )

0 || 103



 Complexity

O(r?)

Store
- U,S,V

Online SVD (Brand, 2003)

error than the PCA

X 107
2 \

1.8F
1.6F
1.4
1.2}

0.8f
0.6y
0.41
0.2F

e The online SVD has more

—&— Online SVD

—— PCA




Online Unsupervised Learning

* Unsupervised learning: minimizing the
reconstruction errors

* Online: rank-one update
* Pros and Cons

a7 Simple to implement

o7 Heuristic, but intuitively work

= Lack of theoretical guarantee

~

= Relative poor performance



Outline

* Discussions + Q & A (5 min.)



Discussions and Open Issues

Size grows from terabyte
to exabyte to zettabyte

Batch data, real-time
data, streaming data

Structured, semi-
structured, unstructured

Data inconsistency,
ambiguities, deception

How to learn from Big Data to tackle the
4\V’s characteristics?
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Discussions and Open Issues

* Data issues e Platform issues
— High-dimensionality — Parallel computing
— Sparsity — Distributed computing
— Structure e User interaction
— Noise and incomplete — Interactive OL vs. Passive
data oL
— Concept drift — Crowdsourcing

— Domain adaption

— Background knowledge
incorporation



Discussions and Open Issues

* Applications
— Social network and social media
— Speech recognition and identification (e.g., Siri)
— Financial engineering
— Medical and healthcare informatics

— Science and research: human genome decoding,
particle discoveries, astronomy

— etc.



Conclusion

* Introduction of Big Data and the challenges
and opportunities

* Introduction of online learning and its possible
applications

e Survey of classical and state-of-the-art online
learning techniques for
— Non-sparse learning models
— Sparse learning models
— Unsupervised learning models




One-slide Takeaway

* Online learning is a promising tool for big data
analytics

 Many challenges exist
— Real-world scenarios: concept drifting, sparse
data, high-dimensional, uncertain/imprecision
data, etc.

— More advance online learning algorithms: faster
convergence rate, less memory cost, etc.

— Parallel implementation or running on distributing
platforms

Toolbox: http://appsrv.cse.cuhk.edu.hk/~hgyang/doku.php?id=software



http://appsrv.cse.cuhk.edu.hk/~hqyang/doku.php?id=software

Other Toolboxes

* MOA: Massive Online Analysis

— http://moa.cms.waikato.ac.nz/

* Vowpal Wabbit

— https://github.com/JohnLangford/vowpal wabbit
wiKki
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http://moa.cms.waikato.ac.nz/
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki

Q&A

* |f you have any problems, please send emails
to hgyang@cse.cuhk.edu.hk!
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