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Abstract. Network layer Internet topology consists of a set of routers
connected to each other through subnets. Recently, there has been a sig-
nificant interest in studying topological characteristics of subnets in ad-
dition to routers in the Internet. However, given the size of the Internet,
constructing complete subnet level topology maps is neither practical nor
economical. A viable solution, then, is to sample subnets in the target do-
main and estimate their global characteristics. In this study, we propose
a sampling framework for subnets; derive proper estimators for various
subnet characteristics including total number of subnets, subnet prefix
length distribution, mean subnet degree, and IP address utilization; and
analyze the theoretical and empirical aspects of these estimators.
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1 Introduction

Understanding the structure of the Internet helps us build representative net-
work models, craft efficient algorithms at the application layer, and optimize the
networking infrastructure in terms of reliability, robustness, and performence [5,
12, 4].

At the network layer, Internet topology consists of a set of routers connected
via point-to-point or multi-access links or subnets. Most of the existing efforts on
capturing a network layer map of the Internet focus on router level maps [18, 13,
15]. These maps are then studied to understand various topological character-
istics of the Internet including the total number of routers, degree distribution
of routers, average router degree, degree assortativity, and betweenness as these
features are considered important in characterizing the Internet topology.

Router level maps typically do not consider the nature of the subnets (i.e.,
point-to-point or multi-access) connecting routers and simply use point-to-point
links to represent the connections. On the other hand, subnets are also important
building blocks of the Internet topology. An alternative graph representation of
the Internet at the network layer may depict subnets as the main entities repre-
sented as vertices and consider routers as links connecting those subnets/vertices
to each other (see Figure 1). Studying features of subnet level maps would im-
prove our understanding of the Internet topology. Among many practical uses of
subnet level Internet maps are estimating the IP address space utilization in the
Internet and developing more representative synthetic graphs of the Internet at
the network layer.

Despite the benefits of understanding topological properties and evolution of
the Internet, drawing complete topology maps turns out to be expensive in terms
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Fig. 1: A network (left) represented as a router (center) and subnet (right) graph.

of time, bandwidth, and computational resources [14, 7]. Therefore, a viable al-
ternative for studying Internet topology is to employ statistical sampling and
estimate the parameters of the entire population by analyzing a small unbiased
sample of the population. This would naturally require to discover individual
subnets and define proper estimators to estimate subnet characteristics. In this
paper we present a scheme to achieve this for studying subnet level topological
characteristics of the Internet.

In general Internet topology sampling suffer from several practical limitations
due to the operational characteristics of the Internet [3, 10]. As an example, in
our context we want to sample subnets randomly which requires a list of subnets
to be available a priori. Unfortunately, this information is considered confidential
by ISPs and therefore, is not available to us, researchers. On the other hand,
through active probing we can identify the list of alive IP addresses utilized in
these networks. Thus instead of randomly sampling subnets, we can randomly
sample IP addresses. In statistical sampling this phenomenon is referred as the
discrepancy between selection units (IP addresses) and observation units (sub-
nets) [16]. The problem induced by this discrepancy is that different subnets
may utilize different number of IP addresses. As a result random sampling of
IP addresses may not indicate random sampling of subnets. In other words, the
subnets hosting more IP addresses are more likely to be sampled compared to the
ones accommodating less IP addresses. Finally, unresponsive units, i.e., subnets
located behind firewalls, or located within rate limiting ISPs, might introduce
estimation error depending on whether they are random or not.

Following the above discussion our sampling frame in this study is IP ad-
dresses rather than subnets. Therefore, we developed proper estimators for vari-
ous subnet features using IP addresses of an ISP network as our sampling frame.
Specifically, we developed estimators for total number of subnets, subnet mask
distribution, mean subnet degree, and IP address space utilization. Our theoret-
ical and empirical evaluations conducted by collecting population characteristics
and samples from six geographically disperse Internet service providers demon-
strate that our estimators are fairly accurate and stable with small variances.
Note that, the scope of this paper is limited to (i) developing an approach for
sampling subnets in the Internet; (ii) defining proper estimators for various sub-
net characteristics; and (iii) demonstrating that these estimators work well in
estimating population parameters.

The rest of the paper is organized as follows. In Section 2, we discuss the
challenges of subnet level Internet topology sampling and develop a step-by-
step sampling framework for estimating various features of subnets. Section 3
demonstrates our evaluations on how well the estimators of various subnet fea-
tures capture the population parameters. In Section 4 we introduce the related
work and finally, in Section 5, we articulate future works and conclude the paper.



2 Subnet Sampling

In this section we first introduce exploreNET, a subnet inference tool that we
used in our sampling process. Then, we discuss the challenges of subnet level
topology sampling in the Internet and present how we handle these challenges in
our sampling framework. Finally, we define a set of subnet characteristics that
we are interested in and explain how we can achieve either unbiased or slightly
biased estimators with small variance for these characteristics.

2.1 Subnet Inference with ExploreNET

A subnet is a logically visible sub-section of Internet Protocol network (RFC
950) where the connected hosts can directly communicate with each other. At
the network layer, a subnet is independent from its implementation below layer-3
which could be an Ethernet network or an ATM or MPLS based virtual network.
For practical purposes we define a subnet S as a set of interfaces (or IP addresses)
accommodated by S in addition to a subnet mask (or common IP address prefix
length) referring to the IP address range of S.

ExploreNET is a network layer subnet inference tool [19]. Given a target
IP address t as input, exploreNET uses active probing to discover the subnet
S that contains t along with all other alive IP addresses on S. Furthermore,
exploreNET labels S with its observed subnet mask which corresponds to the
minimum of the subnet masks encompassing all observed IP addresses of S. To
discover the boundaries of a subnet, exploreNET employs a set of heuristics based
on hop distance of the subnet being explored, common IP address assignment
practices, and routing. Our empirical results show that the proposed subnet
inference mechanism achieves 94.9% and 97.3% accuracy rates on Internet2 and
GEANT, respectively [17]. Moreover, its success rate is 93% against a ground
truth dataset collected by mrinfo in the global public Internet [19]. On the other
hand, the probing cost of the tool changes between 2|S| and 7|S|+ 7 depending
on the configuration of subnet S and its neighboring subnets, where |S| denotes
the size of S. Considering that exploreNET is based on a set of heuristics its
accuracy rate is subject to change in different network domains and achieving
100% accuracy in every domain is difficult. Since the scope of this paper is limited
to statistical subnet sampling, we direct the readers who are interested in the
details of subnet discovery to our previous studies [17, 19].

A sampling process has two types of errors, namely, sampling error and
nonsampling error [11]. Sampling errors occur because of chance whereas non-
sampling errors can be attributed to many sources including inability to obtain
information, errors made in processing data, and respondents providing incorrect
information. It is impossible to avoid sampling error, hence, the goal would be
to minimize the sampling error by defining unbiased estimators with small vari-
ance. On the other hand, nonsampling errors could be eliminated by amending
data collection and processing phases. In this context, nonsampling error refers
to the error introduced by exploreNET the subnet inference tool that we used in
this study and sampling error refers to the error that occurs in our estimations.

Note that our aim in this study is to define good estimators that minimize
the sampling error in estimating various subnet features rather than improving
subnet inference to eliminate nonsampling error. On the other hand, the sam-
pling approach and estimators proposed in this study do not necessarily depend
on exploreNET. Any other future subnet inference tool that collects the subnet
accommodating a given IP address should work with our sampling framework.



1
S 2

S

3
S

4
S

Fig. 2: Subnets hosting more IP addresses are more likely to be sampled com-
pared to the ones with less IP addresses.

2.2 Challenges in Subnet Sampling

In this sub-section, we briefly explain the challenges in subnet level Internet
topology sampling including the discrepancy between selection and observation
units, non-uniform unit sampling, and unresponsive units in sampling.

One challenging issue with sampling is the discrepancy between the selection
units and the observation units. Observation units are the main objects that we
want to sample and derive their statistical properties, whereas, selection units are
the objects in the sampling frame that we can draw from with some probability
distribution (preferably uniform). In most cases, selection units and observation
units are the same, in some other cases (including Internet topology sampling)
however, observation units are not directly available for sampling. To illustrate,
we do not have the entire list of the routers or subnets of an ISP to sample from.
The only information available to us is the IP address range of ISPs. As a result,
the only sampling frame available to us is the list of alive IP addresses.

A consequence of using IP addresses as sampling frame is non-uniform sam-
pling of subnets. In other words we can uniformly sample from the IP address
range of an ISP and give the selected IP addresses to exploreNET as input but the
collected subnets would not be sampled uniformly. Remember that exploreNET
discovers a subnet as long as one of the IP addresses of the subnet is given
as input. As a result subnets with larger degree, i.e., large number of alive IP
addresses, appear more frequently in the sampling frame and observed more fre-
quently compared to the ones having smaller degrees. Put another way, a subnet
is drawn with a probability proportional to its degree. Note that we use the term
degree to denote the number of interfaces of a subnet rather than the number of
neighboring subnets of a subnet. Figure 2 shows an example target domain such
that large circles depict the subnets and small circles filled in gray denote the IP
addresses hosted by the subnets. Considering subnets being sampled through IP
addresses, S3, in Figure 2, is twice as likely to be observed as compared to S1

because the size of S1 is half of the size of S3. As a result, off-the-shelf statistical
estimators fail to estimate the characteristics of the subnets due to the unequal
drawn probabilities of subnets.

Finally, unresponsive units [16] in sampling is another challenge. Most of the
tools for collecting topology data in the Internet is based on active probing.
However, autonomous systems, especially the ones at the Internet edge, are not
completely open to active probing because of security and operational concerns.
Some portions of their network are completely behind firewalls or they apply
rate limiting in the sense that a router remains silent to probe packets if it is
busy or drops probe packets if it suspected a security threat. The interior parts
(core) of an ISP network provides a reliable, robust, and efficient communica-
tion infrastructure to the other networks. Hence, in this paper we study ISP
core networks rather than the edge networks. ISP core networks are more com-



patible with active probing compared to the edge networks. We also introduce
artificial delays and multiple probing in our experiments to minimize the rate
limiting factor. Assuming that the unresponsive units in the core network are
unmethodical our results are not skewed by them.

2.3 Estimating Subnet Characteristics

In this sub-section we present a generic framework based on Hansen-Hurwitz
(HH) Estimator [16] for estimating various subnet features. In the next sub-
section, we derive proper estimators from the generic framework presented here
for estimating subnet characteristics of a network including number of subnets,
prefix length distribution, mean subnet size and IP address utilization.

HH-estimator is an unbiased estimator of population total whenever the se-
lection units are drawn with different probabilities and the sampling is done
with replacement. Let {y1, y2,. . . , yj ,. . . , yn} be a sample of n independent ob-
servations from a population of size N . Let pi be the selection probability of the

ith unit in the population such that
∑N
i=1 pi = 1. HH-estimator estimates the

population total τy =
∑N
i=1 yi and it is defined as follows:

τ̂y =
1

n

n∑
j=1

yj
pj

(1)

In Equation (1) dividing observation yj by its selection probability pj gives
higher weight to the units that are less likely to be selected. An unbiased esti-
mator of population mean is µ̂y = τ̂y/N .

In the context of subnet sampling, we define yi to be the response variable
measured on the ith subnet, Si, of an ISP. Response variables are any char-
acteristic of subnets that we are interested in such as degree, subnet mask, or
utilization. Response variables could take discrete values like degree or categori-
cal values like subnet masks. In the former case they are represented as discrete
random variables and in the latter case they are represented as indicator random
variables. Additionally, the selection probability of a subnet is proportional to
its degree, pj ∝ dj , where pj and dj are the drawn probability and the degree of
subnet Sj , respectively. Then, the drawn probability, pj , of Sj can be defined in
terms of subnet degree as follows:

pj =
dj∑N
i=1 di

(2)

where dj is the degree of the jth subnet in the sample, di is the degree of the ith

subnet in the population, and N is the number of subnets in the population. In
Equation (2), we neither know the degree, di, of each subnet in the population
nor the number of subnets, N , in the population in advance. To address this
issue, we decided to build a set of alive IP addresses, Fa = {a1, a2, . . . , ak}, of
the target ISP that we want to estimate its subnet characteristics and utilize the
equality between the size of Fa, i.e. |Fa|, and the sum of degrees of the observable
subnets in the target ISP:

|Fa| =
N∑
i=1

di (3)



Fa can be obtained as a dataset from LANDER project [7] at USC or be formed
in linear probing overhead by pinging each IP address of the target ISP.

Note that, we also use Fa as our sampling frame from which we randomly
select n IP addresses with replacement, give each IP address to exploreNET as
input and obtain the sample set of n subnets.

Rearranging the general estimator given in Equation (1) in the context of
subnet sampling results in:

τ̂y =
|Fa|
n

n∑
j=1

yj
dj

(4)

Equation (4) does not have any unknown term; sampling frame, Fa, is formed
prior to sampling process and response variable, yj , and degree, dj , are obtained
by our subnet inference tool exploreNET.

As response variables of subnets, y, are independent from each other, sam-
pling distribution of the point estimator τ̂y is approximately normal by Central
Limit Theorem [8], i.e., τ̂y ∼ Normal(τy, σ2

τ̂y
) where

σ2
τ̂y

=
1

n|Fa|

N∑
i=1

di

(
|Fa|

yi
di
− τy

)2

(5)

Then we can define a confidence interval (CI) with confidence level (1 −
α)100% as τ̂y ± zα2

√
σ2
τ̂y

such that zα
2

is the upper α/2 point of the standard

normal distribution. Since τy is the parameter that we want to estimate and
N is usually unknown, an unbiased estimator of the variance of the sampling
distribution of τ̂y, i.e., σ2

τ̂y
is defined as follows:

s2τ̂y =
1

n− 1

 |Fa|2
n

n∑
j=1

(
yj
dj

)2

− τ̂2y

 (6)

Here, we can replace σ2
τ̂y

with s2τ̂y in confidence interval construction.

2.4 Important Subnet Characteristics

Although we have derived a general formula for estimating population total over
any subnet response variable y in Section 2.3, using Equation (4) requires further
arrangements and insights for different subnet features that we want to estimate.
In this part we define a set of most relevant subnet characteristics including
subnet population size, total subnets with a certain subnet mask, average subnet
degree, and IP address utilization percentage and show how to deduce their
proper point estimators. Note that this set is not complete and one may suggest
new subnet characteristics in the future.

Subnet Population Size (N) Subnet Population Size, N , refers to the number
of distinct subnets in a particular ISP. Since τ̂y corresponds to the population
total over the response variable y, setting yj = 1 in Equation (4) gives us an

unbiased estimator, N̂ , of total number of subnets, N , in the population.

N̂ =
|Fa|
n

n∑
j=1

1

dj
(7)



Total Subnets with Prefix Length /p (τp) Observable prefix length (subnet
mask) of a subnet refers to the the length of the initial block of bits common
to all IP addresses in the subnet. A subnet having prefix length p is said to
be a /p subnet. In order to estimate the total number of subnets of /p let the
the response variable measured on subnet Sj , i.e., yj be an indicator random
variable such that

yj =

{
1 if Sj is a /p subnet
0 otherwise (8)

Then we can estimate the total number of subnets having /p prefix, τp, in
an ISP as follows:

τ̂p =
|Fa|
n

n∑
j=1

yj
dj

(9)

Note that, the variance of the estimator τp increases as the prefix gets larger
(subnet degree gets smaller). The implication of this raise is wider confidence
intervals for larger prefix lengths.

In case we want to estimate the prefix length distribution of the subnets we
can resort to the fact that rp = τp/N where rp is the ratio of subnets having
prefix length /p. If N is known then r̂p = τ̂p/N would be an unbiased estimator of

rp. On the other hand, if N is unknown r̂p = τ̂p/N̂ would be a biased estimator
of rp. Nevertheless our experimental results show that the bias in the latter
case is small. One should note that, a slightly biased estimator having a small
variance of a population parameter is usually preferable compared to an unbiased
estimator having a large variance.

Mean Subnet Degree (µd) Degree of subnet Sj , dj , corresponds to the num-
ber IP addresses accommodated by Sj . To calculate the average degree through-
out an entire ISP we need to compute the total of all degrees divided by the
total number of subnets. An estimator of mean degree, µd, is defined as follows:

µ̂d =
|Fa|
N̂

(10)

Note that, although N̂ is an unbiased estimator of N , µ̂d is not an unbiased

estimator of µd because E[µ̂d] 6= |Fa|/E[N̂ ]. However, our experimental results
show that the bias and variance of µ̂d is extremely small and we get very accurate
and stable estimations of µd.

IP Address Space Utilization (U) ExploreNET annotates the subnets with
their observed prefix lengths while discovering their in-use IP addresses. Prefix
length, p, of subnet Sj indicates the observable IP address capacity, cj , of Sj
while its degree dj indicates the number of IP addresses that have been utilized.
Capacity of subnet Sj is defined as

cj =

{
2 if Sj is a /31 subnet

232−p − 2 if Sj is a /p subnet
such that p ≤ 30

(11)

ISP utilization U is defined as the total number of alive IP addresses divided
by the total capacity. Again total number of alive IP addresses corresponds to



our sampling frame size, |Fa|. On the other hand, we estimate total capacity τc
as follows:

τ̂c =
∑
∀p

cpτ̂p (12)

where cp is the capacity of a subnet having prefix length /p and τ̂p is the estima-
tion of the total number of subnets having prefix length /p. Since E[τ̂c] = τc, τ̂c
is an unbiased estimator of total capacity τc. Then we can define ISP utilization
as

Û =
|Fa|
τ̂c

(13)

Again, Û is not an unbiased estimator of U but our experimental results
demonstrate that it is a very good estimator with small bias and variance.

3 Evaluations

In this section, we evaluate sampling errors introduced by our estimators. For
this, we need a sampling frame consisting of alive IP addresses clustered in a
number of subnets in a network. Such a network could be generated synthet-
ically; could be collected from the Internet using subnet inference techniques;
or could be a genuine network available on its web page or obtained from its
network operator. Synthetic networks may not be interesting and genuine topolo-
gies are available for a few small sized research networks including Internet2 and
GEANT which are not large enough for sampling [2]. Therefore, in our evalua-
tions we decided to work with collected topologies. To the best of our knowledge
there is no subnet level topology data available for a large sized network. Hence,
we use exploreNET to conduct a census of subnets over six geographically dis-
persed medium sized ISPs [19] including PCCW Global (ISP-1), nLayer (ISP-2),
France Telecom (ISP-3), Telecom Italia Sparkle (ISP-4), Interroute (ISP-5), and
MZIMA (ISP-6). The collected population topology via census might posses non-
sampling error introduced by the employed subnet inference tool, i.e., collected
topology might slightly differ from the underlying genuine topology. In our sam-
pling we use the same subnet inference tool to conduct our survey of subnets,
thus, nonsampling error in the census propagates to the survey. Considering that
nonsampling error in census and survey cancel each out while calculating sam-
pling error of point estimates, our evaluations in this section are not affected by
nonsampling error. On the other hand, using our methodology for a survey in
the Internet will produce results that would contain both sampling and nonsam-
pling errors. The magnitude of those nonsampling errors would depend on the
accuracy of the subnet inference tool used in sampling (see Section 2.1).

First, we identified the IP address space for each ISP. Then, using an AS re-
lationship dataset provided by CAIDA[1], we removed the ranges of IP addresses
that are assigned to their customer domains. This pre-processing step enables
us to focus on the core of ISP networks excluding the topology information of
their customer domains which are managed and operated by others. Next, we
utilized active probing to identify alive IP addresses which form our sampling
frame, Fa. Table 1 shows the sampling frame sizes, |Fa|, of our target ISPs.

When we collected the entire subnet population for six ISPs having 162, 866
IP addresses in total, exploreNET successfully determined a subnet for 155, 309



Table 1: Sampling Frame Sizes, |Fa|, for target ISPs
ISP-1 ISP-2 ISP-3 ISP-4 ISP-5 ISP-6 Σ

45,018 54,636 17,170 8,380 21,209 16,453 162,866

of them. On the other hand, it failed to explore a proper subnet for 7, 557 of
these IP addresses and returned them as /32 subnets. In fact, none of the IP
addresses within /29 proximity of any of these 7, 557 IP addresses has responded
to the probes sent out by exploreNET.

We then randomly selected 10% of the IP addresses from the sampling frame
of each ISP and estimated population parameters including population size, N ,
prefix length distribution, τp, mean subnet degree, µd, and IP address space
utilization, U .

Note that, correcting the affect of singular IP addresses for which exploreNET
failed to return a subnet requires special care in our estimation process. For ex-
ample, including /32 samples into the estimation causes underestimated mean
subnet degree, µ̂d. On the other hand, excluding them causes underestimated

population size, N̂ . Specifically, we include /32 subnets in population size esti-

mation, N̂ , because each one represents a subnet and we exclude them from other
estimators because we assume that these /32 subnets distributed randomly, i.e.,
they could be any size subnet in the underlying topology and their omission
does not skew the results in any way. The exclusion of /32 subnets is not sim-
ply ignoring them in the estimation process but estimating the number of such
subnets and subtracting it from the estimated total number of subnets.

Remember that, the scope of this paper is confined to deriving proper esti-
mators for subnet properties in the Internet and validating them, hence, in the
rest of this section, we present the estimations, compare them with population
parameters, and interpret the discrepancy between them. We plan to conduct
another study based on sampled data to analyze and interpret the motifs and
patterns of subnet characteristics in the Internet as a future work.

Finally, the tools used to collect evaluation dataset and the dataset itself are
publicly available on our project web site at http://itom.utdallas.edu.

3.1 Subnet Population Size (N)

Remember that population size refers to total number of subnets appearing
in an ISP. Table 2 shows the population size, N , and the corresponding point

estimate, N̂ , for six ISPs. Third column of the table shows sampling error (SE ),

N̂ −N . The values in the table includes /32 singular IP addresses because these
IP addresses belong to some subnet that exploreNET could not discover.

Table 2: Population subnet sizes and estimations for all ISPs
N N̂ SE E

ISP-1 4171 4167.53 3.47 247.99
ISP-2 1688 1625.14 62.86 156.38
ISP-3 8809 8791.65 17.35 94.36
ISP-4 3172 3272.01 100.01 116.55
ISP-5 7687 7904.60 217.6 265.44
ISP-6 3119 3180.68 61.68 181.02

Note that the point estimates, N̂ , and sampling error, SE, would change for
each sample taken from the population. On the other hand, fourth column of

the table, E, shows the maximum error of the point estimate for N̂ with 90%
confidence level. E is calculated as z0.05sN̂ where sN̂ is the estimated standard

deviation of the sampling distribution of N̂ and z0.05 is the z-score of the 0.05
right tail probability of standard normal distribution and it demonstrates the



fact that 90% of the time the error of the point estimate, N̂ , would be less than
E. The high deviation of E for some ISPs is because of the variability of the
factor |Fa|/dj in Equation (6) where yj = 1. In other words, HH estimator will
have low variance as there is less variability among the values of yj/pj with the
extreme case yj/pj values are exactly proportional in Equation (1) [16].

3.2 Total Subnets with Prefix Length /p (τp)

Prefix length (subnet mask) observed by exploreNET is the longest prefix length
encompassing all alive IP addresses of a given subnet. Consequently, observed
prefix length distribution is a natural way of grouping subnet degrees into bins
where the range of the bins grow from larger prefix lengths to the smaller. In this
part, we evaluate how well the sample prefix length distribution conforms to the
population prefix length distribution for six ISPs. Table 3 presents total number
of subnets having /p prefix length, τp, its estimated value, τ̂p, the prefix length
probability mass function (p.m.f.), r, and its estimation, r̂, for PCCW Global
(ISP-1). In the estimation process we omitted IP addresses that exploreNET
failed to return a subnet, i.e., /32 subnets. Assuming that these /32 subnets are
randomly distributed over the entire population, their exclusion does not affect
the accuracy of the estimated prefix length p.m.f, r̂.

In our data collection process, we encountered a small number of very large
subnets such as the ones having /20, /21, or /22 prefix lengths with at least one
thousand IP addresses. A close examination of randomly selected IP addresses
from these subnet ranges via DNS name resolution queries revealed the fact
that almost all of these large subnets belong to Akamai Technologies, an online
content distribution service provider with a global presence in the Internet. An
interesting detail in this case is that according to DNS records, those IP addresses
belonged to Akamai Technologies while the IP-to-AS mapping dataset that we
used mapped those IP addresses to their hosting ASes. Given that the main focus
of this work is on building statistical estimations, we leave the close analysis of
this type of interesting cases to our future study where we plan to study the
data to understand their implications.

Table 3: PCCW Global (ISP-1) prefix length distribution and its estimation
τp τ̂p rp r̂p

/20 3 2.94708 0.001266 0.001245
/21 3 2.83139 0.001266 0.001196
/22 7 7.3299 0.002954 0.003096
/23 3 2.62722 0.001266 0.001110
/24 24 24.8725 0.010127 0.010507
/25 25 24.9367 0.010549 0.010534
/26 123 130.435 0.051899 0.055101
/27 152 145.53 0.064135 0.061478
/28 262 284.222 0.110549 0.120066
/29 440 426.242 0.185654 0.180061
/30 899 930.165 0.379325 0.392938
/31 429 385.068 0.181013 0.162668

Although Table 3 demonstrates that the estimated values are close to the
population parameters, we need to apply goodness-of-fit test [8] to validate
whether the estimated prefix length p.m.f. conforms to the population prefix
length p.m.f.. The test statistic for goodness-of-fit test is χ2 and it is defined as:

χ2 =
∑
p

(τ̂p − Ep)2

Ep
, ∀p (14)



where p is prefix length, τ̂p is estimated number of subnets having prefix length

/p, and Ep = rp
∑31
p=0 τ̂p is the expected number of subnets having prefix length

/p under the population distribution. Null hypothesis, H0, is the assertion that
the estimated and population prefix length distributions are the same, i.e., H0 :
{∀p, r̂p = rp}. Whereas, alternative hypothesis, H1, is the opposite of H0, i.e.,
H1 : {∃p, r̂p 6= rp}.

Computing the χ2 statistic for PCCW Global results in X2 = 8.6591 with
degrees of freedom (df) 9 and its related p-value is 0.4693. Since p-value is
greater than the significance level α = 0.01 we conclude that there is not enough
evidence to reject the null hypothesis, i.e., estimated prefix length distribution
conforms to the population prefix length distribution.

Table 4: X2 scores and p-values for all ISPs
df X2 p-value

ISP-1 9 8.659119 0.469317
ISP-2 8 11.53715 0.17308
ISP-3 4 5.513502 0.238545
ISP-4 6 2.1376 0.906618
ISP-5 8 2.02614 0.9802
ISP-6 7 4.97965 0.662447

Instead of tabulating population and estimated prefix length distributions
for other five ISPs we present goodness-of-fit test results in Table 4. Since the
p-values of all ISPs in Table 4 are greater than the significance level α = 0.01, we
again conclude that there is not enough evidence to reject the null hypothesis as-
serting that the estimated prefix length distribution conforms to the population
prefix length distribution for all ISPs. As a result, prefix length ratio estimator,
r̂p, estimates the population prefix length ratio rp well in all of our case studies.

3.3 Mean Subnet Degree (µd)

Remember that mean subnet degree estimator µ̂d is a biased estimator of the
population mean subnet degree µd. Even tough the first two columns of Table 5
show that the estimated value µ̂d is pretty close to the population value µd, we
need to make sure that the maximum error of the point estimator, µ̂d, is not
much and we can get good estimates of the mean subnet degree most of the time.
Since variance of the sampling distribution of µ̂d has no closed form solution we
resorted to Monte Carlo simulation in order to determine a confidence interval
for µd.

Table 5: Mean subnet degree figures for all ISPs
µd µ̂d Min Max E NE

ISP-1 18.235 18.257 15.956 20.975 1.128 1.685
ISP-2 44.904 46.112 36.025 57.12 4.536 1.716
ISP-3 2.063 2.066 2.034 2.095 0.013 1.7
ISP-4 2.849 2.797 2.647 3.079 0.098 1.672
ISP-5 3.997 4.049 3.696 4.39 0.144 1.691
ISP-6 6.742 6.224 5.846 7.986 0.437 1.74

We took 10000 independent samples from the population database and esti-
mated mean subnet degree of the sample. Figure 3 shows the histograms demon-
strating the approximate sampling distribution of µ̂d. The third, Min, and fourth,
Max, columns of Table 5 present the minimum and the maximum of µ̂d point
estimations obtained over 10000 samples of the same size (10%), respectively.
Although the minimum and maximum estimates fall a little bit off the popula-
tion mean subnet degree, the bell shape of the distributions suggest that they
are outliers. To have a better idea we constructed a confidence interval with
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Fig. 3: Mean subnet degree (µ̂d) sampling distribution for all ISPs obtained via
10000 instances of Monte Carlo simulation

confidence level 90% and computed maximum error of the point estimate. Col-
umn five, E shows the maximum error that could be obtained 90% of the time
while estimating the mean subnet degree. Since each ISP has a different mean
subnet degree and variance we normalized the maximum error of estimate for
µ̂d, E, by dividing it with the estimated standard deviation of µ̂d as shown in
the sixth column, NE. The NE values suggest that for an ISP, 90% of the time
the mean subnet degree estimation conveys a maximum error of approximately
1.7 of standard deviation.

Note that, the ISPs having large mean subnet degree are those ones that
home very large network layer subnets belonging to Akamai Technologies.

3.4 IP Address Space Utilization (U)

Similar to mean subnet degree, IP address space utilization estimator, Û , is a
biased estimator of population IP address space utilization, U . The first and sec-

ond columns of Table 6 presents that the estimated utilization, Û , is not far from
the population utilization U . However, this is a single instance of sampling and
to have a better idea on whether our slightly biased estimator works well most
of the time we employed Monte Carlo simulation. Again we repeated sampling
for 10000 times from our population database and estimated the value of U for
each sample.

Table 6: Utilization figures for all ISPs
U Û Min Max E NE

ISP-1 0.752 0.748 0.734 0.774 0.008 1.645
ISP-2 0.942 0.944 0.933 0.951 0.004 1.654
ISP-3 0.955 0.953 0.929 0.977 0.01 1.691
ISP-4 0.767 0.775 0.722 0.811 0.019 1.653
ISP-5 0.737 0.747 0.709 0.766 0.012 1.656
ISP-6 0.894 0.89 0.865 0.919 0.012 1.67

Figure 4 shows the sampling distribution of Û obtained over 10000 samples
of the same size (10%) for six ISPs. Third and fourth columns of Table 6 present



the minimum and maximum utilization estimates obtained by Monte Carlo sim-
ulation. However, the bell shape of the distributions in Figure 4 suggests that
the minimum and maximum values are not likely to occur frequently. To have
an idea on the error of the estimator we constructed a confidence interval with
90% confidence level. Column six, E, demonstrates the maximum error of Û at
confidence level 90%. To put in other words, it says that 90% of the time the

maximum error of sample utilization, Û , is E. Again we normalized the max-

imum error of estimate for Û , E, by dividing it to the standard deviation of

the sampling distribution of Û . The last column in Table 6, NE, states that the
maximum error of estimate for utilization is about 1.67 of standard deviation
for all ISPs.
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Fig. 4: Utilization (Û) sampling distribution for all ISPs obtained via 10000 in-
stances of Monte Carlo simulation

4 Related Work

Most of the studies in the Internet topology measurement field is based on col-
lecting raw topology data from multiple vantage points by path sampling via
traceroute or traceNET. Then inferring routers and subnets using the raw
data [9, 15, 13]. Early studies in the area used path sampling based topologies to
derive various conclusions about the topological characteristics of the Internet [5,
6]. Later on researchers argued about the validity of those claims by pointing
out the limitations of path sampling bias due to source dependency and routing
dynamics [10, 3].

TraceNET [17] infers subnets on an end-to-end path. Although traceNET
substantially improves existing Internet topology maps by discovering subnet
structures, it performs path sampling and hence suffers from above mentioned
problems. ExploreNET [19] used in this paper allows us to discover individual
subnets rather than subnets on an end-to-end path. In this study, we devised



a sampling framework for studying network layer subnet characteristics in the
Internet and introduced a set of unbiased and biased with small variance esti-
mators for a set of subnet features. To the best of our knowledge, this is the first
study investigating statistical sampling in the domain of subnet inference.

5 Conclusions and Future Work

Given its large scale, drawing a complete subnet level topology of the Internet
is neither practical nor economical. Consequently, sampling becomes a viable
solution to derive the properties of subnets in the Internet. In this paper, we
have proposed a framework for sampling subnets in the Internet along with
either unbiased or slightly biased estimators with small variance for various
subnet characteristics including total number of subnets, subnet prefix length
distribution, mean subnet degree, and subnet IP address range utilization. Our
theoretical and empirical evaluations on the estimators show that their maximum
error at 90% confidence level is small and they work well in estimating population
parameters.

We plan to conduct another study which is based on sampled data to analyze
and interpret the motifs and patterns of subnet characteristics in the Internet
as a future work.
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