Multiview Segmentation and Tracking of Dynamic Occluding
Layers

Ian Reid Keith Connor

Dept of Engineering Science
University of Oxford
Oxford, UK

Abstract

We present an algorithm for the layered segmentation of video data in multiple views. The
approach is based on computing the parameters of a layered representation of the scene in which
each layer is modelled by its motion, appearance and occupancy, where occupancy describes,
probabilistically, the layer’s spatial extent and not simply its segmentation in a particular view.
The problem is formulated as the MAP estimation of all layer parameters conditioned on those
at the previous time step; i.e. a sqeuential estimation problem that is equivalent to tracking
multiple objects in a given number views. Expectation-Maximisation is used to establish layer
occupancy and visibility (which are represented distinctly) posterior probabilities. Evidence
from areas in each view which are described poorly under the model is used to propose new
layers automatically. Since these potential new layers often occur at the fringes of images,
the algorithm is able to segment and track these in a single view until such time as a suitable
candidate match is discovered in the other views. The algorithm is shown to be very effective at
segmenting and tracking non-rigid objects and can cope with extreme occlusion.

1 Introduction

The layered representation has become a popular means of representing and describing natural
scenes in a compact way. The idea is that a video sequence may be represented by a small
number of textured regions and their associated motions [12].

Layers have mainly found use in the representation of monocular video sequences, typically
for applications concerned with video coding. In previous work [4] we described a layered
representation suitable for multiple view descriptions of dynamic scenes in which occlusions
occur. Our aim was to extract all relevant parameters from the layered model including segmen-
tation, appearance, motion and correspondence information. The resulting representation has
applications in, for example, video coding, but we were (and remain) motivated by the problem
of novel view synthesis for dynamic scenes in which knowledge of occlusion boundaries can
dramatically improve the speed and quality of novel rendered views.

In the current paper we reformulate the mathematical expression of the problem to deal
not only with the binocular case, but also with the monocular case, obtaining in the process
an algorithm that is potentially n-view (though our results to date only show a maximum of
two views). We also make the important extension to our previous work that new layers are
automatically proposed when the current generative model fails adequately to explain the current
images.

Our algorithm is based fundamentally on the observation that in order to deal with occlusion,
it is necessary to represent occupancy — i.e the spatial extent of each layer. Further, in order to
estimate occupancy, visibility must be considered — i.e the visible subset of occupancy in a



particular view. The representation of both visibility and occupancy and the consideration of
multiple views are the key features of our work, and distinguish it from the plethora of work
that has gone before, much of which models only visibility, and most of which considers only a
single viewpoint.

1.1 Related Work

The most common forms of layered model encountered in the literature are designed for the
single view case. Early approaches were mostly bottom-up. Wang and Adelson [12], robustly
compute affine motion parameters over an arbitrary grid of patches and proceed to cluster motion
and re-evaluate both the number and extent of the layers. Then approaches by [5] [1], employ a
probabilistic mixture model formulation to compute the maximum likelihood layer parameters
by simultaneously computing segmentation and motion.

A particular variant among previous approaches is whether or not occlusion is fully ac-
counted for. The persistent representation of a layer’s occupancy in spite of occlusion is key for
tracking and is exploited by Jepson et al. [7], where a strong shape model is employed. Tao
et al. [10] model a layer’s shape by a Gaussian spatial prior but this serves more as a segmen-
tation (i.e. visibility) prior rather than an occupancy prior and thus does not explicitly consider
occlusion.

Like us, Frey and Jojic [8] model occlusion through a layered generative model. Their
method is designed to determine layers in a set of images in which there is no assumed temporal
ordering. The placement of a layer in an image is modelled as a distribution over all possible lo-
cations, quantised to the resolution of the image grid. Although their approach is quite general,
there are two reasons we do not pursue a similar approach here: (i) in many applications there
are strong temporal constraints available from ordered image sequences. The use of these con-
straints produces a more efficient algorithm. (ii) Frey and Jojic demonstrated only translational
changes in layers. Although their framework is not restricted to translation, there is a practical
difficulty in computing the distribution over, say, all six affine degrees of freedom. In contrast by
making a (fairly weak) assumption of temporal continuity, we can afford to represent alignments
and their associated uncertainties analytically.

Zhou and Tao [13] describe an approach to modelling the background which may occlude
foreground layers. This work is similar to ours in formulation but does not consider multiple
views and in some respects may be regarded as a special case. In particular, their solution is via
a method of axial iteration in which some parameters are held fixed while others are optimised.
The solution method is therefore inefficient and will not reach a local optimum in the single pass
used. Here however, we derive the exact EM algorithm for the generative model and obtain a
much more efficient solution without needing to discretise the space.

Most previous approaches compute motion layers for a single view of a dynamic scene,
while other less prolific work considers structural layers. The work of [2] and [11] consider
two-views of a scene in order to extract 3D layers, where the transformations between views is
due to structure rather that dynamic object motion. In contrast, our work considers both motion
and structure.

2 Layered Model

In this section we describe the layered representation and consider a generative model; it is then
shown how this suggests a solution via the EM-algorithm.



Figure 1: The parameters that describe a layer are occupancy O} (represented by a probabilistic

map), appearance Al (represented by an intensity map), and alignment ¢,” (a transformation
relating the coordinate frame of the ith layer to the jth image).

2.1 Parameters

Assume the layered model consists of 7+ 1 depth ordered layers: the background layer and n
foreground layers. Note that the ordering of layers is determined indirectly (via disparity) by
their inter-viewpoint spatial aligment parameters. Each layer can be defined by its occupancy,
appearance and alignment parameters. The first two properties correspond to the underlying
object’s shape and colour (the intrinsic parameters), whereas the alignment parameters relate
the coordinate frame of the layer to each view (the extrinsic parameters); figure 1 illustrates the
meaning of the layer parameters. The layered model at time ¢ is denoted as L; = (L?,L,1 s L),
where

Li = (O},A],®)) (1)

are the parameters (occupancy, appearance, alignments) of the ith layer. Each layer has m align-
ments (one for each view)

Oi={9/}  jeE[l,om] )

2.2 Model

Conceptually, an image is composed of a number of independent layers which, in general, may
overlap and therefore occlude each other. The result is that the value of an image pixel is
generated by the foremost layer at that point. The composition of layers involves two variables:
which layer is the foremost and occupies a particular point (visibility), and what value does that
layer generate at that point (appearance). '

More formally, the generative model for an observed image in the jth view I/ is such that
the intensity at pixel x is generated according to the realisation of a random variable described
by the appearance model of the foremost layer at the point x. If we assume the existence of
an indicator variable that states which layer is foremost (a visibility indicator), and further, we
consider it to be a random variable we obtain a mixture model formulation. This is described by

n

P(} (x)) = Y PU (0)|V/ () = )P(V/ (x) = i) 3)
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Figure 2: A Bayesian network illustrates the problem of tracking the layered representation L,
given the observations (current images) ; and takes the form of a hidden Markov model.

in which the probability of the pixel value I,j (x) given that the ith layer is visible constitutes the
ith layer’s appearance model. Here, the observed intensity is assumed to be distributed normally
conditioned on the visibility and has mean given by the aligned appearance map:

P ()|V/ (x) = i) ~ N(AI (97 %), 07) @)

Interpret the visibility P(V/(x) = i) as the probability that the ith layer is visible in the
jth view at x. Then the visibility probability of the ith layer can be expressed in terms of the
occupancy parameters of all layers

n
P/ () =)= 097 T] [1-0/(6 ) )
k=i+1
that is, the probability that a particular layer is visible at x is given by the probability that it
occupies x and that no closer layer occupies x.

The solution to mixture model problems typically involves attempting to invert the genera-
tive model given the generated data. If we know which layer is visible at each pixel, then our
problem is partitioned into n + 1 simpler sub-problems which can be solved using ML or MAP
parameter estimation for example. The problem is that we do not know the visibilities; they are
hidden.

The EM-algorithm is a method which solves the hidden data problem by assuming an initial
estimate for the parameters. We can produce initial estimates for the parameters from those
obtained at the previous time step.

3 Estimating the Layer Parameters

The layer model is illustrated by the network shown in figure 2, where L, represents the set of all
layer parameters at time ¢ and /; represents the set of all images at time ¢. The joint probability
of all nodes in figure 2 can be factored as

P(Lo) [T PUEILE)P(LelLor) ©)
=1

which, as a function of the layer parameters at time 7 is proportional to P(l;|L;)P(L;|L;—1).
Therefore, the problem can be expressed as: find the parameters which maximise the function
F(L),

F(L)) =InP(L|L) +1InP(L|L;—) @)

3.1 EM algorithm

The Expectation-Maximisation algorithm [6] is applied in this section to solve a hidden data
problem. Starting from the original cost function F(L,), we introduce the hidden visibility



variables V and a distribution Q(V') over these variables to give

F(L,) = InP(L|L)+InP(LI|L_) (8)
= InY P(V,L|L)+InP(L|L,_;) 9)
|4

A lower bound is constructed using Jensen’s inequality and it is the optimisation of this which
is the EM algorithm.

F(Q,L;) ZQ )(InP(V,L|L) =InQ(V)) +InP(L|L;—1) (10)

It can be shown that equality between the original and lower bound holds when Q(V) = P(V|I;,L;),
i.e when the Q(V)) is the posterior visibility distribution. Therefore, by assuming initial estimates
for the parameters we can compute Q(V) (the E-step). Next, we can maximise the lower bound
F(Q,L;) given Q(V) (the M-step). In summary, using k to represent the iteration number, we
iterate the following steps until convergence:
E-step:
oW () = P(v|L,L*Y) (11)
M-step:
L% = argmaxZQ V)InP(V,L|L,) +InP(L;|L,_,) (12)

Despite appearances, solving equations 11 and 12 is much easier than solving equation 7
because, as we will show, the parameters of each layer can be solved for independently.

In the following the dependence on the current layer parameters L, is implicit. We assume
that, conditioned on the hidden visibility variables and layer parameters, pixel values are inde-
pendent. The E-step then involves computing the posterior visibility distribution over the layer
index i for each pixel x of each view j denoted by ¢*/(x) and given by

@) = PVW@=il/x) (13)
o< P (0)IV/ (x) = )P(V/ (x) =) (14)

where the prior visibility is given by equation 5.
The M-step involves maximising the function F (g, L;)

FlgL) = Y Y Y ¢/ P (x)|V/(x) =)
i=0j=1 x
+ ¢"(x)InP(V/(x)) +InP(LI|L_) (15)

The final form of the cost function becomes the following, where here, the variable x is a position
relative to the coordinate frame of the ith layer

Y Y Y (670 P (000 |Vi (0 = i)

i=0j=1 x
+ 47(0/x)In0i(x (quf o >ln1—0’( )
+ InP(®|®_,)+InP(O!|0i_|) +InP(AIAL,) (16)

It can be seen that the M-step may be performed by independently optimising each layer’s
parameters. Further, within each layer occupancy and appearance may be optimised indepen-
dently of each other. However, the alignment parameters cannot be optimised independently



of the occupancy and appearance parameters. It is therefore necessary to perform an E-step
between solving for the alignments and solving for the other parameters. This approach is a
version of Generalised EM and is also guaranteed to converge.

3.2 Computing Alignment

In order to compute the alignment parameters we consider the cost function when all other
parameters are fixed. Consider, the ith layer’s alignment with the jth view, the expression to
maximise is

— 1/ (97x))?

207 + 47970 In0;(x)

Fla.0!) = ¥ -0/ A

i—1 - ) L
+ (quj(¢/’JC))ln(1—0§(X)) +  InP(¢/|97 ) (17
k=0

In words, the optimum alignment for the ith layer with the jth image is found when (1) the
appearance map agrees with the image data wherever the ith layer is visible (first term), (2) the
occupancy map is large wherever the ith layer is visible (second term), (3) the occupancy map of
the ith layer is small wherever any farther layers are visible (third term), and (4) the alignment
agrees with the prior motion constraint (fourth term).

The solution is found by using a modified version of the probabilistic image alignment solu-
tion proposed in [3], the difference here being the addition of the extra term in the cost function
(second term) and the weighting introduced by the posterior visibility. The result is a iterated
linear solution for the alignments parameters.

3.3 Computing Occupancy

Now, taking the alignment parameters to be fixed we consider the occupancy parameters of the
ith layer and the associated cost

F@,0i) = Y ¢4/ m0i)

~.
Il
B

+ quj(q),ijx)) In(1-0i(x)) + WnP(0i[0i_)) (18)

We model the prior occupancy as a beta distribution
P(0[(0)|0]_; (x)) < 0" (1 - 0})F (19)

where, ¢ = O!_, and f = 1— . This is for two reasons: occupancy is limited to values
between zero and one, and the other terms in the cost are in the form of the logarithm of a beta
distribution.

Thus we obtain a linear solution for occupancy.

i o+a a:iqij( ijx) bzi qij( ijx) (20)
t 1 +Cl + ba ]-:1 t Y 4 t

This solution makes sense since large values of visibility or prior occupancy (numerator) tend
to increase the occupancy and large values of farther layer’s visibilities (denominator) tend to
reduce the occupancy.



3.4 Computing Appearance

The appearance is computed by optimising the cost

i 8 g A =F (7)) (A —AL (%)
F(q,Al(x) = j:ZI—qf(tx) 207 - 2621 @1

where we have assumed a constant appearance transition model and a prior on appearance given
by the normal distribution

. . , )
P(A[(0)[A1-1 (%) ~ N(A;_ (x),0%) (22)
with mean given by the previous appearance and variance 67. The variance offers a control
on how much we expect a layers appearance to vary over time (useful in the case of non-rigid
motion).
We obtain a linear solution for the appearance

LY G (90 + LA, (3)
i A
# it g9 x) + 2
i

=2
O4

Ai(x) = (23)

Thus, the appearance is updated during the M-step by a weighted blend of the prior appearance
and the current images; the blending weights change each iteration and depend on the visibilities
and alignments.

4 Algorithm and Implementation

At each time ¢ the layer parameters are propagated from those computed at the previous time
according to the mode of the prior distributions. This procedure acts much like a prediction and
serves as the starting point of the EM algorithm. The next stage is to reconsider the order of the
model, i.e does the model explain the data well and if not should there be additional layers. We
take quite a simple approach to this which involves considering how well the model explains the
data compared to a model which assumes a uniform data likelihood. More precisely, for each
pixel in each view we compute the evidence for the layered model from the following

P(L|I (x)) = gP(I,f )|V (x) = )PV (x) = )P(L,) (24)

and the evidence from an alternative and uninformative model M
P(MII{ (x)) = P(I/ (x)|M)P(M) (25)

We set the prior for the layered model as 0.99 and the prior for the alternative as 0.01. By
flagging pixels where P(L|I/ (x)) < P(M|I/(x)) we obtain a mask for each images of which
pixels are poorly explained under the current model. By looking for locally dense clusters of
unexplained pixels of a given minimum size a new layer is initialised by setting the occupancy
to 0.8 inside the region initialised and taking the current image pixel values in that region as the
appearance.

For layers that appear in two or more views the depth-ordering is easily obtained from the
disparity; a new layer that exists only in one view is given a nominal depth value that is refined
over time. Any layers which move outside the range of all views are deleted and new layers
instantiated before solving for the new parameters. Figure 3 illustrates the full algorithm.
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Figure 3: The steps shown are performed as one cycle per frame. However, the Expectation and
Maximisation steps may be iterated; we found that two or three iterations is usually sufficient
for convergence.

The algorithm begins with only one layer, the background, which has been learnt using
robust statistics on samples of each pixel. As the algorithm iterates over time new layers are
proposed, and spatial alignments in multiple views established.

In our implementation the alignment for the background is always the identity transforma-
tion (static cameras) but the framework is not restricted in this respect. To cope with pan-tilt-
zoom parameters we could change @y to be a four or five degree of freedom 2D homography.
The alignment of all foreground layers is modelled using six degree of freedom affinities. The
appearance model in our implementation is restricted to monchrome rather than full colour in-
formation.

5 Results

In this section we show results from applying the algorithm to various video data. Results are
shown for tracking in one and two views. In the figures the boundaries drawn over the images
indicate where a layer’s occupancy passes through the value 0.5 and serve to show the layer’s
computed extent.

Figure 4 shows a sequence taken from a single viewpoint in which two people are wandering
around and one passes in front of the other causing near total occlusion. Note the non-rigid
motion of the arms and legs relative to the torso. The results show this is handled well. In
addition the figure shows the progression of the occupancy and appearance maps of the two
foreground layers.

To demonstrate the algorithm in a more demanding scenario, we applied it to two-views
of a football game in which new players are entering the scene in both views as time goes by
(figure 5). Although there are more parameters to solve for in two views than in one, there is
better scope for direct layer measurement because even if part of a layer is occluded in one view
it may be visible in another. The result is that the appearance and occupancy can be estimated
even though an object is may be hidden in some views.

Our original motivation for developing motion segmentation and tracking algorithm was for
novel view synthesis. The knowledge of occluding boundaries, and the temporal propagation
of these, can lead to more efficient and better quality novel views. Given a precomputed lay-
ered segmentation and the corresponding occupancy and visibilty indicator variables, we can
easily generate new views in real-time, using visibilty as an alpha-matte, by varying the layer
alignment parameters in a manner consistent with the novel viewpoint’s epipolar geometry. The
pre-learned background is interpolated using the method of [9]. Examples for the football se-
quence are shown in figure 6.



Figure 4: Single view example: (top) segmentation showing large occlusion and non-rigid mo-
tion; (bottom) occupancy and appearance maps of the two foreground layers from the single
view tracking example. It can be seen that in spite of occlusion, occupancy and appearance
persist.

Figure 5: Two view example: the top row shows extracts from one sequence, while the bottom
row the same time-instants from a different viewpoint. Note: (i) automatic creation of new
layers from a single layer (leftmost) to multiple layers; (ii) new layers being created as players
enter one field of view (eg, yellow box, third column); (iii) correct treatment of occlusion (eg,
cyan box, second column).

Figure 6: Creating novel views: each row shows novel views that interpolate between the two
cameras. (top) frame 40 from a 100 frame sequence; (bottom) frame 70 from the same sequence.



6 Conclusion

We have presented a novel layered representation for multiple views of dynamic scenes, in
which the single view problem is a special case. A MAP solution for sequentially estimating the
parameters of the model was described with the facility of automatically initialising new layers.
The result is a procedure which can track multiple moving objects over a number of views with a
complete representation of the salient properties. In particular, the model maintains a persistent
representation of occupancy in spite of occlusions and integrates measurements from each view
according to visibility.

In principle the approach does not require a particular alignment parameterisation but in our
implementation we assume affine alignment. Thus it admits planar like objects or relatively
short baselines between views. One weakness of our current implementation is the restriction
that the background is modelled as a single “special” layer, behind all others. In many scenes,
there is in principle no reason why the background could not be modelled as as a set of planar
layers itself together with individual alignment parameters; this would then admit the posibilty
of parts of the background (eg the goal posts) occluding the foreground.
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