
CLIQUE COMPLEXES AND GRAPH POWERS

MICHA L ADAMASZEK

Abstract. We study the behaviour of clique complexes of graphs under the operation of taking

graph powers. As an example we compute the clique complexes of powers of cycles, or, in other

words, the independence complexes of circular complete graphs.

1. Introduction

There are many constructions that associate topological spaces to graphs and a lot of work has
gone into studying how they reflect the underlying graph theory. In this paper we look at clique
complexes and their interaction with powers of graphs.

All our graphs are simple, finite and undirected. If G is a graph and r is a non-negative integer
then the r-th power or r-th distance power of G, denoted Gr, is a new graph with the same vertex
set in which two vertices are adjacent if and only if their distance in G is at most r. Any graph
G gives rise to a sequence of graph inclusions

(1) G ↪→ G2 ↪→ G3 ↪→ · · ·
which eventually stabilizes (at the complete graph if G is connected).

For any graph G the clique complex Cl(G) is a simplicial complex whose vertices are the vertices
of G and the simplices are the cliques (complete subgraphs) in G. Clearly Cl is a functor from
graphs to simplicial complexes and we have inclusions

(2) Cl(G) ↪→ Cl(G2) ↪→ Cl(G3) ↪→ · · ·
which, for a connected graph G, stabilize at the full simplex. In a geometer’s language Cl(Gr) is
precisely the Vietoris-Rips complex whose faces are subsets of diameter at most r in the discrete
metric space V (G) with the shortest path distance.

Note that not every graph is of the form Gr for r ≥ 2 (in fact already the recognition of graph
squares is NP-hard, [17]), so we may ask about interesting properties of the spaces Cl(Gr) and of
the inclusions Cl(Gr) ↪→ Cl(Gr+1).

For example, if G = C7 is the 7-cycle then Cl(C2
7 ) has maximal faces of the form {i, i+ 1, i+ 2}

(mod 7). It is homeomorphic to the Möbius strip and it collapses to its subcomplex Cl(C7) ≡ S1.
If, on the other hand, G = C6, then the complex Cl(C2

6 ) is the boundary of the octahedron,
homeomorphic to S2, and the sequence (2) is, up to homotopy, S1 → S2 → ∗ → · · · .

Let us outline the structure of the paper. Section 2 contains some preliminary results, in
particular on powers of graphs with no short cycles. In Section 3 we restrict to graph squares
(r = 2) and prove topological and combinatorial conditions which guarantee that the inclusion
Cl(G) ↪→ Cl(G2) is a homotopy equivalence.

In Section 4 we discuss universality of Cl(Gr), proving that for any r every finite complex can
be realized as Cl(Gr) up to homotopy. Contrary to the case r = 1, for higher r not every space
has a realization as Cl(Gr) up to homeomorphism. Our method is based on some results of [8]
and the analysis of shortest paths in iterated barycentric subdivisions.

Section 5 provides a complete description of the clique complexes of the total graph and the
line graph of G.
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2 MICHA L ADAMASZEK

In the last part, Section 6, we calculate the homotopy types of Cl(Gr) in the first nontrivial
case, that is for the cycles G = Cn. A quick preview of those can be found in Section 7. They
turn out to be obtained from a small number of initial cases by an action of a double suspension
operator Σ2. To see this we run the theory of star clusters of [1] on the independence complexes
of the complements Crn, the circular complete graphs.

Acknowledgement. The referee’s insightful remarks were very helpful in improving the quality
of the paper.

Notation. We follow standard notation related to graphs and (combinatorial) algebraic topology.
Let us just fix a few conventions.

Graphs. We write V (G) and E(G), respectively, for the set of vertices and edges of an undirected,
simple graph G. Given a vertex v of G we define the neighbourhood NG(v) = {w : vw ∈ E(G)}
and the closed neighbourhood NG[v] = NG(v) ∪ {v}. We write distG(u, v) for the length of the
shortest path in G from u to v. A graph is called a cone if there is a vertex v adjacent to every
other vertex, i.e. NG[v] = V (G). By convention the 0-th power G0 is the graph with vertex set
V (G) and no edges.

The girth of a graph is the length of its shortest cycle or ∞ for a forest. The symbol G denotes
the complement of G and t is the disjoint union of graphs. If W ⊆ V (G) then G[W ] denotes the
subgraph of G induced by W . The symbols Kn, Cn, Pn denote, respectively, the complete graph,
cycle and path with n vertices.

Simplicial topology. If G is a graph then I(G) and Cl(G) denote, respectively, the independence
complex and the clique complex of G. They both have V (G) as vertex set and the faces are,
respectively, the independent sets or the cliques in G. Clearly I(G) = Cl(G).

If K, L are simplicial complexes with disjoint vertex sets then the join K ∗ L is the simplicial
complex whose faces are all the unions σ ∪ τ for σ ∈ K and τ ∈ L. The cone CK is the join of
K with one point (the apex) and the unreduced suspension is ΣK = S0 ∗K. The symbol t is the
disjoint union. By K(n) we denote the n-dimensional skeleton of K. Every graph can be treated
as a 1-dimensional simplicial complex.

We also have induced subcomplexes. If W is a subset of the vertices of K then K[W ] denotes
the subcomplex induced by W , i.e. the simplicial complex with vertices W whose faces are all the
faces of K contained in W . We have the isomorphisms

Cl(G tH) = Cl(G) t Cl(H) I(G tH) = I(G) ∗ I(H)
Cl(G[W ]) = Cl(G)[W ] I(G[W ]) = I(G)[W ].

We write
∨k

X for a wedge of k copies of a topological space X. The symbol ≡ means homeo-
morphism and ' stands for homotopy equivalence. We do not distinguish between a simplicial
complex and its geometric realization.

We are going to use the following elementary language of discrete Morse theory to describe
collapsing sequences (see [13, Chapter 11], [9, 10]).

Definition 1.1. An acyclic matching in a simplicial complex K is a set M ⊆ K ×K of pairs of
faces such that

• if (σ, τ) ∈M then σ is a codimension 1 face of τ ,
• every face σ belongs to at most one element of M ,
• there is no cycle

σ0, τ0, σ1, τ1, σ2, . . . , σn, τn, σ0

such that (σi, τi) ∈ M , σi+1 is a codimension 1 face of τi (where σn+1 = σ0), all σi are
distinct and n ≥ 1.

The faces of K which do not belong to any element of M are called critical.

Fact 1.2. If K is a simplicial complex with an acyclic matching whose set of critical faces is a
non-empty simplicial subcomplex L then K simplicially collapses to L.

For other standard notions of combinatorial topology see [13, 3].



CLIQUE COMPLEXES AND GRAPH POWERS 3

2. Preliminaries

Fact 2.1. For any connected graph G the map of fundamental groups

π1(Cl(G))→ π1(Cl(Gr))

induced by the inclusion G ↪→ Gr is surjective.

Proof. It suffices to prove that π1(Cl(Gr−1)) → π1(Cl(Gr)) is surjective for r ≥ 2. Consider a
based path α in Cl(Gr). By cellular approximation we can assume it lies in the 1-skeleton and is
piecewise linear. If e = uv ∈ E(Gr)\E(Gr−1) then there is a vertex w such that uw,wv ∈ E(Gr−1).
Then {u,w, v} is a face of Cl(Gr) and any segment of α going along uv can be continuously
deformed to go along uwv without moving the endpoints. Performing this operation for every
segment in E(Gr) \ E(Gr−1) we obtain a based path homotopic to α which lies in Cl(Gr−1). �

One situation when Cl(Gr) is homotopy equivalent to (in fact, collapses to) Cl(G) is when r is
not too large compared to the girth of G. Of course as soon as G is triangle-free Cl(G) ≡ G is
1-dimensional.

Proposition 2.2. Let r ≥ 1. If G is a graph of girth at least 3r + 1 then for every 2 ≤ k ≤ r the
complex Cl(Gk) collapses to Cl(Gk−1). In particular Cl(Gr) collapses to its subcomplex Cl(G) ≡ G.

Proof. Let E = E(Gk) \ E(Gk−1) be the set of “new” edges in Gk and let F ⊆ Cl(Gk) be the set
of faces which contain at least one edge of E . We have Cl(Gk−1) = Cl(Gk) \ F . If E = ∅ there is
noting to do, so assume E 6= ∅.

The nonexistence of cycles of length 3k or less in G has the following consequences. First,
every maximal clique σ in Gk corresponds to a subtree of diameter k in G. Second, every edge
in E (hence also every face in F) belongs to a unique maximal face of Cl(Gk). To see the second
statement let e = uv ∈ E and suppose x, y are two vertices such that xuv and yuv are both faces
of Cl(Gk). Denote by α the shortest path in G from u to v. By the first observation there is a
vertex x′ ∈ α such that the shortest paths from x to u and v join the path α at x′. Similarly,
there is a y′ ∈ α with the same property for y and we may assume w.l.o.g. that the order along α
is u− x′ − y′ − v. Then

distG(x, y) = distG(x, x′) + distG(x′, y′) + distG(y′, y) =

= distG(x, v) + distG(y, u)− distG(u, v) ≤ k + k − k = k

which proves the claim.
Let σ be some maximal face of Cl(Gk) and v ∈ σ any fixed vertex whose distance in G to all

vertices of G[σ] is strictly less than k (for example the centre of the tree G[σ]). We define an
acyclic matching Mσ on σ by taking all the pairs

(f, f ∪ {v})

for all faces f ∈ F such that f ⊆ σ \ {v}. Since no edge of E which lies in σ has v as its endpoint,
every face of F contained in σ is of the form f or f ∪ {v} above. It follows that Mσ matches all
faces of σ which are in F (and only those).

Let M =
⋃
σMσ be the union of those matchings over all maximal faces σ. By the previous

remarks it is well-defined, acyclic and its critical faces form the subcomplex Cl(Gk−1). This ends
the proof. �

The girth bound of 3r + 1 is optimal, because Cl(Cr3r) '
∨r−1

S2 by the results of Section 6.
One standard way of analyzing the homotopy type of Cl(G) is via the notions of folds and

dismantlability. If u, v ∈ V (G) are distinct vertices such that NG[u] ⊆ NG[v] then we say G folds
onto G \u. A graph G is dismantlable if there exists a sequence of folds from G to a single vertex.
It is a classical fact that a fold preserves the homotopy type of the clique complex and, in fact,
induces a collapsing of Cl(G) onto Cl(G \ u), so the clique complex of a dismantlable graph is
collapsible (see for example [4, Lemma 2.2]). In this context we have the following simple result.

Lemma 2.3. If G is dismantlable then so is Gr for any r ≥ 1.
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Figure 1. The 3-sun graph S3.

Proof. We use induction on |V (G)|. Let u be a vertex such that G folds onto G \ u and G \ u is
dismantlable. Let v be a vertex which satisfies NG[u] ⊆ NG[v]. First note that

(G \ u)r = Gr \ u.
Indeed, the inclusion ⊆ is obvious. For ⊇ note that any occurrence of u in a path can be replaced
with v or removed without increasing the length of the path.

The graph Gr \ u = (G \ u)r is dismantlable by induction. Moreover NGr [u] ⊆ NGr [v]. It
follows that Gr folds onto Gr \ u and the dismantlability of Gr is proved. �

Both 2.2 and 2.3 imply the following.

Corollary 2.4. For every tree T and any integer r the complex Cl(T r) is collapsible (and, in
particular, contractible).

3. Stability

In this section we only consider graph squares (r = 2). We describe more general criteria which
guarantee that the inclusion Cl(G) ↪→ Cl(G2) is a homotopy equivalence.

Note that for any vertex v of G the set NG[v] forms a clique in G2.

Theorem 3.1. Suppose G satisfies the following condition:

• Every clique in G2 is contained in a set of the form NG[v] for some vertex v.

Then the inclusion i : Cl(G) ↪→ Cl(G2) is a homotopy equivalence.

Proof. By passing to connected components we can assume G is connected. We use the following
local criterion of [16, Thm. 6] (see also [15, Cor. 1.4]):

• Suppose p : X → Y is a continuous map and Y has an open cover U = {Uα} such that if
U, V ∈ U then U ∩ V ∈ U . If for every U ∈ U the restriction p|p−1(U) : p−1(U) → U is a
weak equivalence then so is p.

Since we are working with finite simplicial complexes we can just as well replace open sets with
closed subcomplexes (by taking a small open neighbourhood of a subcomplex) and weak equiva-
lences with homotopy equivalences (by Whitehead’s theorem).

For each v ∈ V (G) let Uv = Cl(G2)[NG[v]]. Each of Uv is a simplex in Cl(G2). By assumption
we have Cl(G2) =

⋃
v∈V (G) Uv and we can take a cover U of Cl(G2) consisting of all intersections

of the sets Uv.
If U = Uv1 ∩ · · · ∩ Uvk is non-empty then it is an intersection of faces of Cl(G2), hence it is

contractible. It remains to show that i−1(U) is also contractible. Let X =
⋂k
i=1NG[vi] be the set

of vertices spanning U . Since i is a subcomplex inclusion, we have i−1(U) = Cl(G)[X]. Because
in G every vertex of X is in distance at most 1 from each of vi, the set X ∪ {v1, . . . , vk} forms a
clique in G2. Our assumption then gives a vertex v such that

X ∪ {v1, . . . , vk} ⊆ NG[v].

In particular v ∈ NG[vi] for each i = 1, . . . , k, so v ∈ X. Moreover, since X ⊆ NG[v], the vertex
v is adjacent in G to every other element of X, i.e. G[X] is a cone with apex v. It implies that
Cl(G)[X] = Cl(G[X]) is a simplicial cone with apex v, hence it is contractible. This completes
the proof. �

There is a more direct combinatorial condition which guarantees that the assumption of The-
orem 3.1 is satisfied. Recall that we say G is H-free if G does not have an induced subgraph
isomorphic to H. If H1, . . . ,Hk is a sequence of graphs then G is (H1, . . . ,Hk)-free if it does not
have any of the Hi as induced subgraphs.
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Figure 2. A graph G with Cl(G) ' ∗ and H2(Cl(G2)) 6= 0.

Consider the graph of Fig.1, usually denoted S3 and called 3-sun.

Theorem 3.2. If G is (C4, C5, C6, S3)-free then G satisfies the condition in Theorem 3.1

Proof. Suppose, on the contrary, that K = {v1, . . . , vk} is the smallest clique in G2 which is not
contained in any set NG[v]. Then k ≥ 3 and there exist w1, . . . , wk such that K \ vi ⊆ NG[wi].
The vertices w1, . . . , wk are pairwise distinct (as wi = wj would mean K ⊆ NG[wi]) and there is
no edge wivi in G for any i (same reason). It means that we have

(*)


NG[w1] ∩ {v1, v2, v3} = {v2, v3}
NG[w2] ∩ {v1, v2, v3} = {v3, v1}
NG[w3] ∩ {v1, v2, v3} = {v1, v2}
v1 6= v2 6= v3 6= v1, w1 6= w2 6= w3 6= w1

By Theorem 3 of [6] a graph is (C4, C5, C6, S3)-free if and only if it does not have a configuration
satisfying (*). 1 That ends the proof. �

Remark 3.3. For an arbitrary graph G one might at least hope that the inclusion Cl(G) ↪→
Cl(G2) stabilizes the homotopy type, for example by increasing the connectivity of the space.
This is not the case. For example, let G be the graph of Fig.2 and let V denote the set of vertices
of the outermost 6-cycle. Then Cl(G) is contractible while one can check by a direct calculation
that H2(Cl(G2)) = Z⊕Z where one of the generators is represented by the subcomplex Cl(G2)[V ],
homeomorphic to S2.
Remark 3.4. The converse of Theorem 3.2 is false as can be seen by taking any graph G which is
a cone and has one of the forbidden induced subgraphs. The converse of Theorem 3.1 is also false
and the counterexample is the 3-sun S3. Indeed, Cl(S3) ' Cl(S2

3) ' ∗ and S2
3 = K6 is complete

but S3 itself is not a cone.

4. Universality

It is a known fact that any finite simplicial complex K is homeomorphic to Cl(G) for some
graph G. One can take G to be the 1-skeleton of the barycentric subdivision of K.

Clearly clique complexes of higher graph powers cannot represent all homeomorphism types.
For instance, if Cl(G2) is a connected space of dimension two then every vertex of G must have
degree at most 2. It means G must be a path or cycle and a direct check narrows the possible
two-dimensional homeomorphism types of Cl(G2) to D2, S2, the Möbius strip and D1×S1, where
Dn is the n-dimensional disk.

It is, however, true that arbitrary graph powers realize all homotopy types.

Theorem 4.1. For every finite simplicial complex K and integer r ≥ 1 there exists a graph G
such that Cl(Gr) is homotopy equivalent to K.

In fact there is an explicit candidate for G. Given a finite complex K and s ≥ 0 let bdsK
denote its s-th iterated barycentric subdivision and let the graph Gs be its 1-skeleton:

Gs = (bdsK)(1)

1Which, using the notation of [6], is saying that the neighbourhood hypergraph of G is triangle-free.
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(from now on we will suppress the complex K from notation). Replacing, if needed, K with its
subdivision we can assume K = Cl(G0) and then for every s ≥ 0 we have bdsK = Cl(Gs). Then
we have the following result.

Theorem 4.2. For any finite simplicial complex K and 1 ≤ r < 2s−2

Cl((Gs)
r) ' K.

The proof strategy resembles that of [8]. For any vertex v of the original complex K let Bs,v
and Ss,v denote the vertex sets in Gs defined as

Bs,v = {w : distGs
(v, w) < 2s},

Ss,v = {w : distGs
(v, w) = 2s}.

The letters B and S stand for the open Ball and the Sphere of radius 2s around v in Gs. In the
geometric realization the vertices of Bs,v belong to the open star stK(v) \ lkK(v) of v in K while
the vertices of Ss,v lie in the link lkK(v). Note that Bs,v1 ∩ · · · ∩Bs,vk is nonempty if and only if
{v1, . . . , vk} is a face of K.

The main technical result we use is proved in [8, 3.7,3.8].

Proposition 4.3 ([8]). For any face {v1, . . . , vk} of K the graph

Gs[Bs,v1 ∩ · · · ∩Bs,vk ]

is dismantlable.

Now consider an integer r < 2s−2. We intend to prove that Cl(Grs) ' K using the nerve lemma
[13, 15.21]. Define subcomplexes of Cl(Grs) by

(3) Xs,v = Cl((Gs[Bs,v])
r) ⊆ Cl(Grs)

for the vertices v of K. The reader should be warned that the subcomplex Xs,v is not induced; in
particular it should not be confused with Cl(Grs[Bs,v]), which is usually bigger.

Proposition 4.4. The family of subcomplexes Xs,v is a covering of Cl(Grs). The nerve of this
covering is K.

Proof. The second statement is obvious since the vertex set of Xs,v1∩· · ·∩Xs,vk is Bs,v1∩· · ·∩Bs,vk
and this is nonempty only for a face {v1, . . . , vk} of K.

Let us prove the first statement. Suppose σ is a clique in Grs. Fix any w ∈ σ. There exists a
vertex v of K such that

distGs(v, w) ≤ 2s−1.

Fix also that v. Now any vertex w′ ∈ σ satisfies

distGs
(w′, v) ≤ distGs

(w′, w) + distGs
(w, v) ≤

≤ r + 2s−1 < 2s−2 + 2s−1 ≤ 2s − 1.

Therefore σ ⊆ Bs,v.
Now we want to show that for any two vertices w′, w′′ ∈ σ the shortest path from w′ to w′′ in

Gs lies in Gs[Bs,v]. Indeed, if z is any vertex on that path then

distGs
(z, v) ≤ distGs

(z, w′) + distGs
(w′, v) ≤

≤ r + (r + 2s−1) < 2 · 2s−2 + 2s−1 = 2s.

so z ∈ Bs,v. Since σ is a set of diameter at most r in Gs and the shortest paths between its vertices
lie in Bs,v it follows that σ is a set of diameter at most r in Gs[Bs,v]. It means that σ ∈ Xs,v. �

The point here was that the whole clique σ was located at least r steps away from Ss,v, so the
path in Gs could not take the advantage of any shortcut outside Bs,v.

Proposition 4.4 and the nerve lemma [13, 15.21] imply Theorem 4.2 as soon as we prove that the
nonempty intersections Xs,v1 ∩ · · · ∩Xs,vk are contractible. This is arranged for by the following
lemma.
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Proposition 4.5. For any vertices v1, . . . , vk of K we have

Xs,v1 ∩ · · · ∩Xs,vk = Cl((Gs[Bs,v1 ∩ · · · ∩Bs,vk ])r)

Proof. We can restrict to the case when {v1, . . . , vk} is a face of K, otherwise the intersections are
empty. By the definition of Xs,v what we need to prove is

Cl((Gs[Bs,v1 ])r) ∩ · · · ∩ Cl((Gs[Bs,vk ])r) = Cl((Gs[Bs,v1 ∩ · · · ∩Bs,vk ])r).

The inclusion ⊇ is obvious, so we need to prove ⊆. It is equivalent to the statement

D(k) : If u,w ∈ Bs,v1 ∩ · · · ∩Bs,vk are vertices such that

distGs[Bs,v1
](u,w) ≤ r, . . . , distGs[Bs,vk

](u,w) ≤ r
then

distGs[Bs,v1∩···∩Bs,vk
](u,w) ≤ r.

We prove it by induction on k. Clearly D(1) holds. Now suppose k ≥ 2. By induction there is a
path α from u to w in Gs[Bs,v1∩· · ·∩Bs,vk−1

] of length at most r. Denote by β the path in Gs[Bs,vk ]
from u to w of length at most r. If α lies completely in Bs,vk or β lies in Bs,v1 ∩ · · · ∩ Bs,vk−1

then D(k) follows. If none of those two cases holds then α passes through some point p ∈ Ss,vk
and β passes through some q ∈ Ss,v1 ∪ · · · ∪ Ss,vk−1

. Assume without loss of generality that

q ∈ Ss,v1 . Then p
α

u
β

q is a path in Gs of length at most 2r < 2 · 2s−2 < 2s which

connects p ∈ Bs,v1 ∩Ss,vk with q ∈ Ss,v1 ∩Bs,vk and this whole path lies in Bs,v1 ∪Bs,vk (because
α ⊆ Gs[Bs,v1 ] and β ⊆ Gs[Bs,vk ]). The existence of such path, however, is excluded by the next
lemma and this contradiction ends the inductive step. �

We are left with the last technical lemma whose intuitive meaning is the following. Suppose
σ, τ are two faces of the same simplex in K. Suppose we look at the s-th barycentric subdivision
of K and the paths in its 1-skeleton. Then the points of σ are very far apart from the points of τ
if one is not allowed to go through σ ∩ τ .

Using the standard notation

distG(X,Y ) = min{distG(x, y) : x ∈ X, y ∈ Y }
for X,Y ⊆ V (G) we can express this idea as follows (see Fig.3).

Lemma 4.6. For any two adjacent vertices u, v of the original complex K

distGs[Bs,u∪Bs,v ](Bs,u ∩ Ss,v, Ss,u ∩Bs,v) = 2s.

Proof. A partial labeling l of a graph G is an assignment of a real number l(v) to some of the
vertices of G. If X ⊆ V (G) we write l(X) for the set of labels assigned to the vertices in X, with
l(X) = ∅ if the value of l(v) is undefined for all v ∈ X.

We will construct partial labelings ls of Gs for s ≥ 0 with the properties:

a) The set of vertices for which ls is defined is Bs,u ∪Bs,v.
b) For every simplex σ ∈ Cl(Gs) the vertices of σ are assigned at most two different labels.
c) For every edge xy ∈ E(Gs) such that both ls(x) and ls(y) are defined we have

|ls(x)− ls(y)| ∈ {0, 1

2s
}.

d) ls(Bs,u ∩ Ss,v) = {0}, ls(Ss,u ∩Bs,v) = {1}.
The partial labeling l0 is defined by l0(u) = 0, l0(v) = 1 and undefined otherwise. Suppose ls−1

has been defined. Every vertex x ∈ V (Gs) represents a face τ ∈ Cl(Gs−1) and we set

ls(x) =

 a if ls−1(τ) = {a}
(a+ b)/2 if ls−1(τ) = {a, b}
undefined if ls−1(τ) = ∅.

This is well-defined since ls−1 satisfies b). Note that if x ∈ V (Gs−1) then ls(x) = ls−1(x).
To prove that ls satisfies a) recall that Bs−1,u ∪Bs−1,v are the vertices of Gs−1 located in the

union of the open stars of u and v in K. Therefore a vertex x of Gs receives a label from ls if and
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u

v

Lv

Lu

Figure 3. An example with s = 2. The shaded sets Lu = Ss,u ∩ Bs,v and
Lv = Bs,u∩Ss,v contain vertices of Bs,u∪Bs,v in distance 2s from, respectively, u
and v. The distance between these two sets within Bs,u∪Bs,v is also 2s, although
their distance in Gs is only 2.

only if it represents a face of Cl(Gs−1) which intersects that union of open stars. Such a vertex x
itself lies in that union, therefore in Bs,u∪Bs,v. To prove d) note that if x is a vertex of Bs,u∩Ss,v
then x lies in the link lkKv, hence it represents a face of Cl(Gs−1) contained in that link. By
induction all vertices of that face are ls−1-labeled 0 or unlabeled hence ls(x) = 0 (since x ∈ Bs,u
it cannot remain unlabeled). This and a symmetric argument for Ss,u ∩Bs,v proves d).

If τ ∈ Cl(Gs−1) is a simplex with ls−1(τ) = {a} then every vertex x ∈ Gs which subdivides a
face of τ will receive ls-label a or no label at all and therefore b), c) still hold for the simplices and
edges of Cl(Gs) contained within τ . Now suppose that ls−1(τ) = {a, b}. Note that no simplex of
Cl(Gs) subdividing τ contains vertices x, y with ls(x) = a and ls(y) = b. Indeed, if τ1 and τ2 are
the faces of τ in Cl(Gs−1) represented by x and y respectively, then τ1∩l−1

s−1(a) 6= ∅, τ1∩l−1
s−1(b) = ∅

and vice versa for τ2. But then neither τ1 ⊆ τ2 nor τ2 ⊆ τ1 hence xy is not an edge in bd(τ).
Eventually we conclude that for every simplex of Cl(Gs) subdividing τ the set of ls-labels is either
empty, or a singleton or one of {a, a+b

2 }, {b,
a+b

2 }. This, together with the induction hypothesis,
proves b) and c) in this case.

The existence of the partial labeling ls completes the proof of the lemma: every path from
Bs,u ∩ Ss,v to Ss,u ∩ Bs,v in Gs[Bs,u ∪ Bs,v] passes through ls-labeled vertices (by a)). In each
step the label changes by at most 1

2s (by c)) while the total change is 1 (by d)). It means that the
path requires at least 2s steps. Of course there exists a path (e.g. the subdivision of the edge uv)
of length exactly 2s.

�

For a convenient reference let us summarize the proof of Theorem 4.2.

Proof of Theorem 4.2. Fix 1 ≤ r < 2s−2. Consider the subcomplexes Xs,v of Cl(Grs) defined in
(3). By Proposition 4.4 they form a covering of Cl(Grs) with nerve K. By Proposition 4.5 every
nonempty intersection of the Xs,vi is of the form

Cl((Gs[Bs,v1 ∩ · · · ∩Bs,vk ])r).

Every such complex is contractible because Proposition 4.3 and Lemma 2.3 imply that the graph
(Gs[Bs,v1 ∩· · ·∩Bs,vk ])r is dismantlable. The equivalence Cl(Grs) ' K now follows from the nerve
lemma [13, 15.21]. �
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Remark 4.7. The purpose of [8] was to prove that for any complex K and any connected, non-
discrete graph T there exists a graph G with a homotopy equivalence

Cl(GT ) ' K

where (−)T denotes the exponential graph functor, the right adjoint to the categorical product
− × T of graphs (see [13, 18.18]). The idea was to use the graph Gs and its subgraphs Gs[Bs,v]
to form a covering of GTs (for s depending on the diameter of T ). Despite these similarities the
author does not see a direct way to compare (up to homotopy) the complexes Cl(Gr) of distance
graph powers with any of the complexes Cl(GT ).

5. Line graphs and edge subdivisions.

Let S(G) denote the graph obtained from G by subdividing every edge with one vertex. The
graph T (G) = S(G)2 is often called the total graph of G. Recall that the line graph L(G) of G is
the incidence graph of the edges of G.

Write V (S(G)) as V∪E where V is the set of original vertices of G and E is the set of subdividing
vertices, one for each edge. Then we have isomorphisms

T (G)[V] = G, T (G)[E ] = L(G)

and we see that the inclusions

Cl(L(G)) = Cl(T (G))[E ] ↪→ Cl(T (G)) ←↩ Cl(T (G))[V] = Cl(G)

make Cl(T (G)) a subcomplex of the join Cl(G) ∗ Cl(L(G)).
Denote by t(G) the number of triangles in G. Then we have the following result.

Theorem 5.1. For any graph G there is a homotopy equivalence

Cl(T (G)) ' Cl(G) ∨
t(G)∨

S2.

This is another way in which a given complex can be represented as a clique complex of a graph
square up to homotopy and up to a number of 2-spheres. As a byproduct of the proof method we
also obtain the next result. Recall that K(2) denotes the 2-dimensional skeleton of K.

Theorem 5.2. For any non-discrete, connected graph G

Cl(L(G)) ' Cl(G)(2).

Both theorems depend on a simple classification.

Lemma 5.3. Every maximal face in Cl(T (G)) is of one of the following forms:

a) a maximal face of dimension at least 2 in Cl(G),
b) {v, e, w} where v, w are vertices of G and e = vw,
c) {v, e1, . . . , ek} where ei are the edges incident with a vertex v of G,
d) {e1, e2, e3} where e1, e2, e3 are edges forming a triangle in G.

Proof. Let σ be a maximal face in Cl(T (G)). If σ contains at least three vertices of V then those
vertices form a clique in G and no edge is incident with all of them, so it cannot be extended
by a vertex of E . If σ contains precisely two vertices v, w of V, then e = vw is the only vertex
of E adjacent to both of them. If |σ ∩ V| = {v} then σ must be of the form c). Eventually if
σ = {e1, . . . , ek} ∈ Cl(L(G)) then not all of ei are incident with a common vertex, but every two
ei, ej have a common vertex. This easily implies k = 3. �

Proof of Theorem 5.1. Consider the subcomplex K ⊆ Cl(T (G)) consisting of all faces of Cl(T (G))
which are not of the form {e1, e2, e3} for some three edges forming a triangle in G. Consider a
matching on K defined as follows

• the faces of Cl(G) are unmatched,
• for each edge e = uv the faces {e}, {v, e}, {e, u} and {v, e, u} are unmatched,
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• for every face σ ∈ K ∩ Cl(L(G)) of dimension at least one there exists a unique vertex
v ∈ G such that σ ∪ {v} is a face of K (that vertex is the common end of the edges of σ).
In such case match σ with σ ∪ {v}.

This is clearly an acyclic matching on K in the sense of Definition 1.1. Its critical faces form the
subcomplex

K ′ = Cl(G) ∪ {{e}, {v, e}, {e, u}, {v, e, u} for e = uv ∈ E}.

This K ′ easily collapses to Cl(G), therefore also K collapses to Cl(G).
Now Cl(T (G)) arises from K by attaching the t(G) cells {e1, e2, e3} for all triangles {v1, v2, v3}

of G. The attaching map of every such cell is homotopic in K to the boundary of the face

{v1, v2, v3} of Cl(G), therefore it is null-homotopic. It follows that Cl(T (G)) ' K ∨
∨t(G)

S2 '
Cl(G) ∨

∨t(G)
S2. �

Proof of Theorem 5.2. Let K be the subcomplex of Cl(T (G)) consisting of all faces σ such that
|σ ∩ V| ≤ 1. Then K is the union of Cl(L(G)) and simplices of the form 5.3.c) for every v ∈ V.
For each v the link lkK(v) ⊆ Cl(L(G)) is contractible (because it is a simplex) hence the removal
of v from K does not change the homotopy type. It means that K ' Cl(L(G)).

Let K ′ ⊆ K be obtained from K by removing the maximal faces {e1, e2, e3} corresponding to
triangles of G. Then K ′ is collapsible to the graph S(G) by an acyclic matching argument identical
to that used in 5.1, pairing σ with σ ∪ {v} for any set σ of at least two elements of E and their
common endpoint v. Note that S(G) and G are homeomorphic as spaces.

Now K is recovered from K ′ by attaching a 2-face {e1, e2, e3} for every triangle t of G. The
attaching map is homotopic in K ′ to the inclusion of S(t) in S(G). It follows that K is homotopy
equivalent to G with a 2-cell attached along every triangle. This is precisely Cl(G)(2). It follows
that

Cl(L(G)) ' K ' K ′ ∪
t(G)∐

∆2
/
∼
' Cl(G)(2).

�

Example 5.4. The stable Kneser graph SGn,k is a graph whose vertices are the n-element subsets
of {1, . . . , k + 2n} which do not contain two consecutive (in the cyclic sense) elements. One of
the goals of [5] is to calculate the homotopy types of the independence complexes I(SG2,k). Since

the complex I(SG2,k) is exactly Cl(L(Ck+4)), Theorem 5.2 identifies it, up to homotopy, with

I(Ck+4)(2). This explains why these space are homotopically at most two-dimensional, as stated
in [5, Thm.1.4].
Remark 5.5. From the two theorems of this section we immediately recover the result of [14,
Cor. 5.4], which is that the spaces Cl(G), Cl(T (G)) and Cl(L(G)) have isomorphic fundamental
groups.

6. Clique complexes of powers of cycles

In this section we determine the homotopy types of the clique complexes of the graphs Crn,
i.e. the powers of cycles. It follows from Proposition 2.2 that for 1 ≤ r ≤ n−1

3 the complex

Cl(Crn) collapses to Cl(Cn) ' S1. On the other hand, for r ≥ bn2 c the complex Cl(Crn) = Cl(Kn)
is contractible. The intermediate values for some small pairs n, r are shown in Section 7. The
purpose of this section is to exhibit a systematic pattern in that table. It turns out to be best
expressed in terms of the independence complexes of the complements of Crn. These results may
also be interesting on their own right as one way of generalizing the calculation of Kozlov [12] of
the homotopy types of I(Cn).

For any pair of non-negative integers n, k of opposite parity and with 1 ≤ k ≤ n − 1 let Tn,k
denote the graph obtained by connecting every vertex of the regular n-gon with the k “most
opposite” vertices. The notion of “most opposite” is well defined if n and k have opposite parity.
For example, Tn,1 is the disjoint union of n

2 edges and examples of Tn,2 and Tn,3 are shown in
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Figure 4. a) T9,2 = C3
9 . b) S9,2.

Fig.4a and Fig.5a. To describe these graphs we are also going to use another parameter r =
r(n, k) = n−k−1

2 . Of course

Tn,k = Crn.

The graphs Tn,k are called circular complete graphs and form a subclass of circulant graphs. The

usual notation for Tn,k = Crn is

Kn/r+1 or Cn(r + 1, . . . , bn
2
c)

but we will keep using the notation Tn,k which is more intuitive for this application. For informa-
tion about circulant and circular complete graphs and their independent sets see e.g. [2, 7, 11, 18].

We will identify the vertices of Tn,k with Z/n. Under this identification each vertex i is connected
to the vertices in the set

(4) NTn,k
(i) = {i+ r + 1, . . . , i+ r + k} mod n.

We are also going to need another auxiliary graph Sn,k. It is the induced subgraph of Tn,k on the
vertex set

(5) V = {1, . . . , r} ∪ {−1, . . . ,−r}

equipped additionally with the edges (−i, j) for all pairs i, j ∈ {1, . . . , k − 1} such that i+ j ≤ k.
For examples of Sn,k see Fig.4b and Fig.5b.

The main results that lead to the calculation of Cl(Crn) are the following propositions. Recall
that Σ denotes the unreduced suspension.

Proposition 6.1. If n ≥ 3k − 1 then

I(Tn,k) ' ΣI(Sn,k).

Proposition 6.2. If n ≥ 3k + 3 then

I(Sn,k) ' ΣI(Tn−2(k+1),k).

Example 6.3. Consider the special case k = 2. We have Tn,2 = Cn for every odd n ≥ 3 and
Sn,2 = Cn−3 for every odd n ≥ 7. The previous two propositions thus combine to the statement

I(Cm) ' ΣI(Cm−3) for all m ≥ 6.

Moreover I(C3) ≡ S0 ∨ S0, I(C4) ' S0 and I(C5) = Cl(C5) = Cl(C5) ' S1 so it follows by
induction that for all m ≥ 1

I(C3m) ' Sm−1 ∨ Sm−1, I(C3m+1) ' Sm−1, I(C3m+2) ' Sm.

This was first established by Kozlov [12] and then reproved in a number of ways.

Corollary 6.4. If n ≥ 3k + 3 then

I(Tn,k) ' Σ2I(Tn−2(k+1),k).
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Corollary 6.5. For any 1 ≤ k ≤ n− 1, with k and n of opposite parity, we have

I(Tn,k) '
{ ∨k

S2l if n = (2l + 1)(k + 1)
S2l+1 if (2l + 1) < n

k+1 < (2l + 3)
for some l ≥ 0.

Proof. First we establish the result when k + 1 ≤ n ≤ 3k + 2. If n = k + 1 then

I(Tk+1,k) = I(Kk+1) ≡
k∨
S0.

Now suppose that k + 2 ≤ n ≤ 3k + 2. These inequalities imply that r ≥ 1, 3r + 1 ≤ n and
1 < n

k+1 < 3 so l = 0. Since n ≥ 4 by Proposition 2.2 we get

I(Tn,k) = Cl(Crn) ' S1 = S2l+1

as required. For n ≥ 3k + 3 the result follows by induction using Corollary 6.4 because every
increase of n by 2(k + 1) adds a double suspension to the homotopy type. �

These results can be transformed into statements about Cl(Crn) by a straightforward calculation.
Corollary 6.4 translates into:

Corollary 6.6. For any n
3 ≤ r <

n
2

Cl(Crn) ' Σ2Cl(C3r−n
4r−n ) = Σ2Cl(C

r−1·(n−2r)
n−2·(n−2r)).

It follows that in the (n, r)-chart of the complexes Cl(Crn) (see Section 7) the double suspension
operator Σ2 acts always along the lines of slope (2, 1). The translation of Corollary 6.5 is:

Corollary 6.7. For any n ≥ 3 and 0 ≤ r < n
2 we have

Cl(Crn) '

{ ∨n−2r−1
S2l if r = l

2l+1n

S2l+1 if l
2l+1n < r < l+1

2l+3n
for some l ≥ 0.

Remark 6.8. The relevant value of l for each pair (n, r) is given by

l = b r

n− 2r
c

It remains to prove Propositions 6.1 and 6.2. Our tool to analyze the homotopy types of I(Tn,k)
and I(Sn,k) are the star clusters introduced by J.Barmak [1]. Let us recall the main result of that
work.

Theorem 6.9 (Barmak, [1]). Suppose v is a non-isolated vertex of G which does not belong to
any triangle. Let K be the subcomplex of I(G) defined as

(6) K = st(v) ∩
⋃

w∈NG(v)

st(w)

where all stars are taken in I(G). Then there is a homotopy equivalence I(G) ' ΣK.

In the proofs of Propositions 6.1 and 6.2 we are going to choose a vertex v as in the theorem
and identify the subcomplex K with the independence complex of some graph using the following
technical lemma.

Lemma 6.10. Let v1, v2, . . . , v2d be a sequence of (not necessarily distinct) vertices of G such that
every consecutive d+ 1 vertices vi, vi+1, . . . , vi+d are pairwise distinct for i = 1, . . . , d.

Let L be the subcomplex of I(G) consisting of those faces σ which satisfy the condition

(7) {vs, vs+1, . . . , vs+d−1} ∩ σ = ∅ for some s ∈ {1, 2, . . . , d+ 1}.

Then L is isomorphic with the complex I(H), where H is a graph obtained from G by adding
the edges

(vi, vj) for all 1 ≤ i ≤ d, d+ 1 ≤ j ≤ 2d, such that j − i ≤ d.
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Figure 5. a) T14,3 = C5
14. b) S14,3. c) A graph H obtained in the proof of

Prop.6.2, isomorphic to T6,3.

Proof. Let σ be a face of I(G) which satisfies (7) for some s. Since every pair (vi, vj) with
1 ≤ i ≤ d, d+ 1 ≤ j ≤ 2d and j − i ≤ d has at least one of its elements in {vs, vs+1, . . . , vs+d−1},
the face σ cannot contain both elements vi and vj simultaneously. It means that σ determines an
independent set in H. Conversely, if σ is a face of I(H) then define s by the formula

(8) s = 1 + max{1 ≤ i ≤ d : vi ∈ σ}

(where max ∅ = 0). One easily checks that s and σ satisfy (7). �

Proof of Proposition 6.1. First note that the assumption n ≥ 3k − 1 is equivalent with r ≥ k − 1.
Consider the vertex 0 of Tn,k. Its neighbours in Tn,k are the vertices of

N(0) = {r + 1, r + 2, . . . , r + k}.

No two of those vertices are adjacent because their distances along the circle are at most k−1 ≤ r,
so 0 is not in any triangle. By Theorem 6.9 I(Tn,k) ' ΣK where K is the subcomplex of I(Tn,k)
given by

K = st(0) ∩
⋃

w∈N(0)

st(w).

Note that K is in fact a subcomplex of I(Tn,k[V ]), where V = {1, . . . , r} ∪ {−1, . . . ,−r} is the set
of vertices non-adjacent to 0 in Tn,k. The complex K consists precisely of those independent sets
σ in Tn,k[V ] for which there exists a vertex w ∈ N(0) such that σ ∪ {w} is an independent set in
Tn,k or, in other words, such that σ ∩N(w) = ∅. If w = r+ j for 1 ≤ j ≤ k then (see also Fig.6a)

N(r + j) ∩ V = {−(k − j), . . . ,−1} ∪ {1, . . . , j − 1}.

It follows that σ is a face of K if and only if it is an independent set of Tn,k[V ] such that

{−(k − j), . . . ,−1, 1, . . . , j − 1} ∩ σ = ∅ for some j ∈ {1, 2, . . . , k}.

We can now apply Lemma 6.10 with d = k − 1, G = Tn,k[V ] and (v1, . . . , v2d) = (−(k −
1), . . . ,−1, 1, . . . , k − 1), where all the vertices in the last sequence are distinct. The graph H
obtained in the lemma is Sn,k because the additional edges are precisely (−(k−1), 1), (−(k−2), 1),
(−(k− 2), 2), etc., as in the definition of Sn,k. Therefore I(Tn,k) ' ΣK = ΣI(H) = ΣI(Sn,k). �

Proof of Proposition 6.2. The assumption n ≥ 3k + 3 is equivalent with r ≥ k + 1. We apply the
same strategy as before with respect to the vertex (−1). Its neighbours in Sn,k are

N(−1) = {1, . . . , k − 1} ∪ {r}.

No two of these vertices are adjacent, so (−1) is not in any triangle. Exactly as before we obtain
that I(Sn,k) ' ΣK where K is a subcomplex of I(Sn,k[V ]) where

V = {k, . . . , r − 1} ∪ {−r, . . . ,−2}
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Figure 6. Schematics for the proofs of 6.1 and 6.2. The shaded vertices are
in NG[v] and will be removed. Additional edges will be added between vertices
marked with dashed lines.

(see Fig.6b) is the set of vertices of Sn,k non-adjacent to (−1). Note that both sets in the above
union are nonempty. The complex K consists of those faces σ of I(Sn,k[V ]) for which there exists
a w ∈ N(−1) such that σ ∩N(w) = ∅. Note that

N(r) ∩ V = {−k, . . . ,−2}
N(1) ∩ V = {−(k − 1), . . . ,−2} ∪ {−r}
N(2) ∩ V = {−(k − 2), . . . ,−2} ∪ {−r,−r + 1}

· · ·
N(k − 1) ∩ V = {−r,−r + 1, . . . ,−r + (k − 2)}.

In the sequence
S = (−k, . . . ,−2,−r, . . . ,−r + (k − 2))

of length 2(k − 1) every k consecutive vertices are pairwise distinct. Because of the cyclic be-
haviour it is enough to check this for the subsequence (−k, . . . ,−2,−r), where it boils down to
the inequality −r < −k which follows from r ≥ k + 1.

By Lemma 6.10 the complex K is therefore homotopy equivalent to I(H), where H arises from
Sn,k[V ] by adding the edges (−(k− i),−r+ j) for all 0 ≤ j ≤ i ≤ k− 2. It remains to identify this
graph H with Tn−2(k+1),k. This can be best seen geometrically (cf. Fig.5c, Fig.6b). The graph H
differs from Tn,k by the removal of 2(k+ 1) vertices {−1, 0, . . . , k− 1}∪ {r, r+ 1, . . . , r+ k} which
form two “gaps” of length k + 1 each. Note that the vertices not in S are not affected at all by
the construction, so their neighbourhoods in Tn,k and H coincide. The vertices in S are located
at most k − 1 steps from the boundaries of the gaps and for them the missing connections are
provided by the extra edges in H, so that the neighbours of each vertex of S form a contiguous
block of length k in the cyclic ordering of vertices in H inherited from Tn,k and we again have a
circular complete graph Tn−2(k+1),k. This identification completes the proof of the proposition:
I(Sn,k) ' ΣK ≡ ΣI(H) ≡ ΣI(Tn−2(k+1),k). �

7. Appendix: The table of clique complexes of cycle powers

The table presents the homotopy types of some initial clique complexes Cl(Crn). The entries
below the shaded area are all S1 by Proposition 2.2 and the entries above it are all ∗ (a contractible
space). The arrows show the action of the double suspension operator Σ2 of Corollary 6.6.
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r = 0 1 2 3 4 5 6 7 8 9 10 11

C3

∨2 S0 ∗ ∗ ∗ ∗
C4

∨3 S0 S1 ∗ ∗ ∗
C5

∨4 S0 S1 ∗ ∗ ∗
C6

∨5 S0 S1 S2 ∗ ∗ · · ·
C7

∨6 S0 S1 S1 ∗ ∗
C8

∨7 S0 S1 S1 S3 ∗
C9

∨8 S0 S1 S1 ∨2 S2 ∗
C10

∨9 S0 S1 S1 S1 S4

C11

∨10 S0 S3

C12

∨11 S0 · · ·
∨3 S2 S5

C13

∨12 S0 S3

C14

∨13 S0 S3 S6

C15

∨14 S0 ∨4 S2 ∨2 S4

C16

∨15 S0 S3 S7

C17

∨16 S0 S3 S5

C18

∨17 S0 ∨5 S2 S3 S8

C19

∨18 S0 S3 S5

C20

∨19 S0 S3 ∨3 S4 S9

C21

∨20 S0 ∨6 S2 S3 ∨2 S6

C22

∨21 S0 S3 S5 S10

C23

∨22 S0 S3 S3 S7

C24

∨23 S0 ∨7 S2 S3 S5 S11

C25

∨24 S0 S3 ∨4 S4 S7

r = 8 9 10 11 12 13 14

C26 S3 S3 S5 S12

C27

∨8 S2 S3 S5 ∨2 S8

C28 S3 S3 ∨3 S6 S13

C29 S3 S3 S5 S9

C30

∨9 S2 S3 ∨5 S4 S7 S14
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