
ArtNova: Touch-Enabled 3D Model Design

Mark Foskey Miguel A. Otaduy Ming C. Lin
University of North Carolina at Chapel Hill

{foskey,otaduy,lin}@cs.unc.edu
http://www.cs.unc.edu/∼geom/ArtNova

Abstract
We present a system,ArtNova, for 3D model design with
a haptic interface. ArtNova offers the novel capability of
interactively applying textures onto 3D surfaces directly by
brush strokes, with the orientation of the texture determined
by the stroke. Building upon the framework ofinTouch
[GEL00], it further provides an intuitive physically-based
force response when deforming a model. This system also
uses auser-centricviewing technique that seamlessly inte-
grates the haptic and visual presentation, by taking into ac-
count the user’s haptic manipulation in dynamically deter-
mining the new viewpoint locations. Our algorithm permits
automatic placement of the user viewpoint to navigate about
the object. ArtNova has been tested by several users and
they were able to start modeling and painting with just a
few minutes of training. Preliminary user feedback indicates
promising potential for 3D texture painting and modeling.

Keywords: Haptics, Modeling, 3D Painting, Textures

1 Introduction
Designing 3D digital models is an important part of the pro-
duction process in VR, computer game design, entertain-
ment and education. Model design involves both 3D geom-
etry and surface appearance, and each component offers its
own challenges. Designing 3D shapes is difficult when one’s
input tool has only two degrees of freedom; and painting a
surface is further complicated by the fact that the screen is
flat while the object being painted can be curved and non-
convex. With a physical model one could simply shape it in
three dimensions and then paint on its surface. We propose
to make model design easier by emulating that kind of ex-
perience as faithfully as possible, while offering users more
flexibility and power via digital media.

In physical sculpting, the sense of touch is essential.
Force display is now making it possible to add some degree
of haptic feedback to the 3D sculpting experience. As an
early attempt to provide touch-enabled modeling features,
a non-commercial plug-in to Alias|Wavefront’s Power An-
imator software package was developed at SensAble Tech-
nologies [Mas98], but force update rates were too low to
provide a realistic feel. Only recently have commercial hap-
tic sculpting systems, such asFreeFormTM [ST99], been
introduced. They allow artists and designers to express their
creativity with3D-TouchTM.

Figure 1. A turtle modeled and painted using Art-
Nova. Notice the patterns on its back and legs.

1.1 Main Results

Our goal is to develop a digital model design sytem that sup-
ports geometric modeling and texture painting with a direct
3D interface via force-feedback devices. Our system of-
fers 3D texture painting on arbitrary polygonal meshes with
the haptic stylus as an “electronic paintbrush”. Unlike most
of the existing haptic sculpting systems [MQW01, RE99,
ST99], we use subdivision surfaces as the underlying ge-
ometric representation with a physically-based force model
for deforming the models. The turtle in Figure 1 was created
and texture-painted byArtNova. Notice the shell pattern on
the back, and the mottling on the legs and face.

In this paper, we presentArtNova, an integrated system
for 3D texture painting and multiresolution modeling with
haptic interface and user-centric viewing. Our system has
the following characteristics:

• Interactive 3D Texture Painting – Given true 3D in-
teraction via a force feedback device, we can interac-
tively apply predefined textures directly onto the sur-
faces of the model without object registration prob-
lems, in addition to painting monochrome colors.

• Dynamically Adjusted Viewing – Viewpoint locations
have a direct impact on the quality of the graphical dis-
play accompanying haptic editing. In addition to the
typical 3D object grabbing capability, our system offers
automatic repositioning of the object to place a selected
point near the center of the field of view, without the
user having to switch between haptic editing and cam-
era repositioning. Also, it provides incremental view-
point navigation based on the user’s gestures to provide
proper views of the regions under haptic manipulation.



• Physically-based Force Response– A spring-based
force model is used to emulate the surface tension when
the user is pulling or pushing to edit the subdivision
meshes.

Several users have been able to useArtNovato create in-
teresting models with just a few minutes of training. In ad-
dition to painting with monochrome colors [GEL00], it has
also been used to apply textures onto a 3D model’s surface as
well. The resulting meshes can be used directly for render-
ing and simulation without any format conversion. Prelim-
inary user feedback suggests promising potentials of haptic
interfaces for 3D painting and modeling.

1.2 Related Work

Haptic Interaction: Several real-time virtual environment
systems have incorporated a haptic interface to enhance
the user’s ability to perform interaction tasks [HCT+97,
MRF+96, MS94, RKK97]. Gibson [Gib95] and Avila and
Sobierajski [AS96] have proposed algorithms for object
manipulation including haptic interaction with volumetric
objects and physically-realistic modeling of object inter-
actions. Recently, SensAble Technologies developed the
FreeFormTM modeling system to create and explore 3D
forms using volumetric representations [ST99].
Geometric Modeling: There is an abundant wealth of lit-
erature on geometric modeling, interactive model editing,
and deformation methods applied to curves and surfaces.
Geometric formulations for model editing can be classified
as pure-geometric representations such as NURBS [PT97],
free-form deformation (FFD) [SP86], or physically-based
modeling techniques such as D-NURBS [QT96]. With
a similar mathematical framework to hierarchical editing
[FB88], subdivision methods allow modeling of arbitrary
topology surfaces [SZ98], while supporting multiresolution
editing [DKT98, HDD+94, KS99, SZMS98, ZSS97]. There
are also other sculpting techniques based on volumetric
modeling methods [GH91, MQW01, RE99, PF01]. The
haptic modeling systeminTouchuses subdivision surfaces
as its underlying geometric representation [GEL00], but it
lacks a physically-based force model to generate a realistic
feedback sensation.
3D Texture Painting: By using standard graphics hardware
to map the brush from screen space to texture space, Hanra-
han et al. allowed the user to paint directly onto the model
instead of into texture space [HH90]. This approach has
been applied to scanned surfaces using 3D input devices,
such as data gloves and a Polhemus tracker [ABL95]. How-
ever, the painting style of both systems can be awkward, due
either to the difficulty in rotating an object for proper view-
ing during painting, or to the deviation in paint location in-
troduced by the registration process.

General texture mapping approaches, such as [BVIG91,
MYV93], are powerful but require user input to generate
the map. The approaches used in the Chameleon system
[IC01] are more appropriate for casual, quick painting and
not for highly detailed models. There are also commercial

3D painting systems [Hem00, COR00]. Most of them often
use awkward and non-intuitive mechanisms for mapping 2D
textures onto 3D objects, or require that a texture for the
model be provided. None offers the natural painting style
desired by artists and designers.

Johnson et al. introduced a method for painting a texture
map directly onto a trimmed NURBS model using a hap-
tic interface [JTK+99]. Its simplicity and intuitive interface
support a natural painting style. However, its parameteriza-
tion technique is limited to NURBS and does not apply to
polygonal meshes, which are more commonly encountered
in computer graphics and animation.

Our approach for haptic painting is similar to that pre-
sented in [GEL00] which can only paint colors. Our tex-
ture painting bears some resemblance to lapped textures
[PFH00]. That work determines the orientation of the tex-
ture for overlapping patches based on user-specified vector
fields, whereas ours applies texturesinteractivelyto a local
region by brush strokes, with the orientation of the texture
determined directly by the stroke.
Camera Placement:Camera control is a fundamental prob-
lem for 3D graphics applications. Several techniques on user
interfaces for camera control have been proposed, including
orbiting techniques mapping 2D motion into 3D interaction
[CMS88, PBG92, Wer94, ZF99], use of image plane con-
straints [GW92, PFC+97], and direct camera manipulation
using a 6DOF input device [WO90]. Our approach differs
from many of the existing techniques that use 2D input de-
vices to directly manipulate the viewpoint. Our main focus
in ArtNova is to achieve automatic placement of viewpoint
via implicit control based on the user’s manipulation of the
haptic device. Our camera positioning techniques are also
useful for touch-enabled exploration of predefined scenes
and massive models [OL01].

1.3 Organization

The rest of the paper is organized as follows. Section 2 gives
an overview of our system and its user interface. We present
our new texture painting algorithm in Section 3. Multireso-
lution modeling based on subdivision surfaces with a spring-
based force computation is presented in Section 4. Section 5
describes a novel feature for dynamically adjusting the view-
point, as the objects are manipulated. We briefly highlight
the implementation of our prototype system with a haptic
interface and demonstrate its features via the actual artistic
creations of several users in Section 6.

2 Overview
In this section we give an overview of the system architec-
ture and the user interface of our system.

2.1 System Architecture

The overall system consists of a haptic server and a graphical
client application, connected using VRPN [VRPN], a library
for distributed virtual reality applications. As withinTouch,
a copy of the model is retained on both the haptic server

2



and graphical client, and calculations that deform the model
are duplicated on both applications, so that the changes in
position of numerous vertices need not be passed over the
network. An overview of the system architecture is given in
Figure 2.

Haptic

Device


Graphical

Display


Collision Detection

Haptic Simulation


Contact Force

Model


Deformation

Force Model


Multiresolution

Mesh


Application UI


Viewing Tools


Multiresolution

Mesh


Deformation


Texture Painting


Painting


Geometry


Edit ops.


Geometry


Edit ops.


Force


Geometry


Kinematics


Updates
network


HAPTIC SERVER


CLIENT APPLICATION


Figure 2. System Architecture.

2.2 User Interface

ArtNovaallows the user to edit the geometry and the surface
appearance of a model by sculpting and painting with a hap-
tic interface. The user sees the model being edited, the tool
being used, and a menu that can be operated using either the
haptic tool or a mouse. Each type of model manipulation is
indicated by a different tool. For example, the user moves
the object with a mechanical claw, paints with a paintbrush,
and deforms with a suction cup.

As an alternative to the claw tool for moving the object,
the user’s viewpoint can be changed using the viewing tech-
niques described in Sec. 5. Anautomatic repositioningfea-
ture lets the user move the last touched point on the model to
the center of the viewing area using a single keystroke, and
there is a “flying mode” controlled by the haptic device.

For painting there are a continuous color picker, sliders
for brush width and falloff of paint opacity, and choice of
textures for texture painting. The width of the stroke can also
be changed by adjusting the pressure applied when painting.

A basic undo feature is provided for deformations and
painting, and there are provisions for saving models and
screen shots. A snapshot of the user interface is shown in
Figure 3.

3 Texture Painting
In addition to modeling,ArtNova allows the user to paint
textures and colors onto the model using a virtual paint-
brush. Arbitrary polygonal models can be painted, and each
stroke has a configurablefalloff, fading into the background

Figure 3. The graphical user interface. The user
is performing a deformation on a painted toroidal
base mesh.

near the boundaries of the stroke. The detailed algorithm for
painting monochrome colors was described in [GEL00]. We
briefly summarize it here before describing our novel texture
painting method.

3.1 Painting Algorithm

Each stroke of the brush is decomposed into a sequence of
stroke segments, which are represented as 3-space vectors
linking the positions of the tool tip at successive frames. The
brush radius is computed at the stroke endpoints (based on
the force exerted by the user) and linearly interpolated across
the length of the vector. This radius determines a volume of
influence in 3D. Triangles are painted starting with the one
containing the tail of the stroke segment. When one triangle
has been painted, any neighbors that also extend into the
volume of influence are then painted.

We paint each triangle by rasterizing the corresponding
triangle in texture space. As the triangle is rasterized, for
each texelpt we determine the corresponding pointpw in
world space on the surface of the model. We then calculate
D as

D =
‖pw − q‖
Rs(q)

,

whereq is the point on the stroke segment nearestpw, and
Rs(q) is the stroke radius atq. Once we haveD, we compute
the color ofpt by blending the color being painted with the
background according to a falloff function depending onD.

Because we use a straight vector to represent a portion
of a stroke that actually follows a curved surface, there can
be artifacts if the surface curvature relative to the length of
the stroke segment is appreciable. Typically, however, the
stroke segments are quite short and this problem does not
arise.

3.2 Texture-Mapped Paint

Texture-mapped paint builds upon our algorithm for paint-
ing monochrome colors. For clarity we will refer to the

3



texture map into which colors are drawn as thetarget tex-
ture map, and the predefined texture array as thesource tex-
ture map. For each texel being rasterized in the target tex-
ture map, we compute the corresponding pointpw in world
space, and its nearest neighborq on the stroke segment (see
Figure 4). We then compute two coordinatess andt that will
be used to look up colors in the source texture map. Thes
coordinate represents length along the stroke, andt repre-
sents signed distance from the stroke. We computes andt
as follows: Let the current stroke segment be represented by
a vector~v with tail pv. Then, fors, we maintain the total
length of all previous segments of a given stroke, and add
the distance‖q − pv‖. The sign oft is equal to the sign of

((pw − pv)× ~v) · ~n

where~n is the stored normal vector of the triangle containing
pw. The magnitude oft is just‖pw − q‖.

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

tp

pw

q

World Space

Target Texture Map
Source Texture Map

Figure 4. Texture painting.

Befores andt are used to look up a color, they are scaled
by a user-adjustable factor so that the texture features will
be the desired size on the model. Texture lookup is per-
formed modulo the dimensions of the texture patch, so it is
important that the texture be periodic. Note that, although
the texture will repeat along a stroke, the user can break up
the periodicity by starting new strokes and altering stroke
orientation.

At the boundary between stroke segments, the pointq on
the stroke vector nearest topw may be an endpoint. Ifq is
the tail end of the stroke segment, texture is not applied for
that point. Ifq is the front, thent is still taken as the distance
from pw to q, with sign given as above, whiles is fixed. This
has the effect of replicating pixels from the trailing stroke to
fill gaps between roughly rectangular strips. Figure 5 shows
an example of a textured cow model.

3.3 Accelerated Texture Painting

The original algorithms for color and texture painting raster-
ized the color data into the texture memory in software. We

Figure 5. Cuts of beef indicated by different tex-
tures using ArtNova.

have developed an improved algorithm that relies on mod-
ern graphics hardware to copy the texture. For each stroke
segment, we first accumulate a list of triangles that extend
into the volume of influence of the segment. Then the re-
gion of the texture parameter domain covered by those tri-
angles is rendered with a fixedz coordinate in an orthogonal
projection. If there are multiple patches in the target tex-
ture, the relevant triangles from each patch are rendered into
a different region of the frame buffer. These triangles are
textured, using coordinates generated dynamically that in-
dex into the source texture memory. The resulting image is
then copied into the target texture memory with alpha blend-
ing. To produce the appropriate falloff function, the source
texture has been prepared with the alpha values determined
by the falloff. We can paint simple colors by choosing a
monochromatic source texture.

3.4 Texture Coordinates

The above algorithms assume that texture coordinates for all
triangles in the model have been determined. If they are not
provided, we use a simple algorithm for generating texture
coordinates. Since the user is painting on the model, not the
texture map, we need not concern ourselves with contiguity
of the image in texture memory. Also, there is relatively lit-
tle concern with distortion, for the same reason. If the choice
of texture coordinates distorts the image, the distorted ver-
sion of the image will appear in the texture memory, not on
the model. The algorithm we currently use groups triangles
into pairs, which are mapped to squares in texture space.
The areas of the squares are chosen to approximately reflect
the initial areas of the triangles.

3.5 Comparison with other approaches.

One sophisticated program for painting on 3D models is
DeepPaint [Hem00], a commercial product distributed by
Right Hemisphere. Its interaction is fundamentally two di-
mensional, but the geometric model for applying a texture
to the surface can be compared as an issue on its own. Deep

4



Paint offers two modes for texture painting. In one, the tex-
ture is copied directly to the texture memory, so that distor-
tions in the parameterization are reflected in the appearance
of texturing. For instance, the scale of the texture may be
finer near the “north pole” of a sphere. In the other mode, the
texture is applied in screen space, and then remapped as it
is transferred to texture memory. This is the same approach
that Chameleon [IC01] uses to apply solid color. This ap-
proach yields results that are independent of the parameteri-
zation of the object being painted, but it creates a distinctive
“stretching” of the texture near the silhouette of the figure,
which becomes noticeable when object is rotated to a differ-
ent position. Because our approach determines temporary
texture coordinates locally in the neighborhood of a portion
of a single stroke, the overall scale of the texture is not de-
pendent on where it is placed, making the painting more pre-
dictable for the user.

4 Multiresolution Mesh Editing
Our model editor is based oninTouch’s geometric frame-
work [GEL00], which is strongly influenced by Zorin et
al. [ZSS97]. For completeness, we briefly describe the
framework here and then describe the new simplified force
model used during deformation inArtNova.

4.1 The Mesh Data Structure

We use a subdivision framework to represent our geome-
try. We store a coarse, triangularbase meshM0 and several
meshes at finer resolutionsMi (i > 0). By a single stage
of Loop subdivision, each meshMi uniquely determines a
finer meshM sub

i+1. M sub
i+1 is used as a reference mesh for the

definition ofMi+1. Every vertex in the actual meshMi+1

corresponds to a vertex ofM sub
i+1, but differs from it by adis-

placement vectorstored with the vertex. In this way we can
choose to edit at a specific resolution by moving vertices of a
given meshMi. Vertices at finer levels retain their displace-
ment vectors and are thus carried along by the motion of the
subdivided surface.

In principle we could modifyMi without changingMi−1

at all, since the vertices ofMi are different from the ver-
tices ofM sub

i (gotten by subdividingMi−1). However, we
also perform a smoothing step using a method given by
Taubin [Tau95] to modify coarser levels. In this way, for
instance, an accumulation of edits at a high resolution, all
tending to raise up one side of the model, can result in a
repositioning of the coarser level vertices to better reflect
the new overall geometry of the model.

4.2 Deformation Algorithms

To edit the model, the user simply places the tool against the
model, presses the PHANTOM button, and moves the tool.
As the surface is edited, the user can feel a resisting force
and see the surface deform. The edit resolution (the choice
of meshMi to modify directly) is presented to the user as a
“bump size.”

4.2.1 Surface Modification

Surface deformation is performed by moving a single tri-
angle of the edit meshMi. When the user begins a defor-
mation, the point of contact with the surface determines a
unique triangle at the edit resolution, and a unique reference
point on that triangle. For each frame, the successive posi-
tions of the tool tip define a motion vector~m, which is used
to move the three vertices of the selected triangle. Each ver-
tex is moved in the direction of~m, and by a distance scaled
so that vertices nearer the current point of the tool tip are
moved farthest. More precisely, the distancedi from the
reference point to each vertexvi is computed, and the move-
ment vector~mi for each vertex is given by

~mi =
(

1− di
d0 + d1 + d2

)
~m.

4.2.2 Force Model

When the user places the tool against the model, there is
a restoring force generated by the haptic rendering library,
based on collision information from H-Collide [GLGT00].
When the user begins deforming the surface, the restoring
forces are turned off, and the initial 3-space location of the
tool tip, p0, is recorded. The user is then free to move the
tool in any direction. To provide feedback, a Hooke’s law
spring force is established between the tool tip andp0, given
by

f = −k(ptip − p0),

whereptip is the location of the tool tip andk is a small
spring constant.

The spring constant is chosen so that the user can move
the tip a sizable distance in screen space before the force
becomes a substantial hindrance. When the user releases the
button, the spring force is turned off and the usual restoring
forces are turned on with the surface in its new position.

Because our force model is based on the initial position
of the tool, the force computation is decoupled from the po-
sition of the surface. This provides a smoother feel to the
user than computing the force from the instantaneous dis-
tance to the surface that is being moved, because computing
the surface deformation is much slower than the1 kHz hap-
tic response rate.

5 Dynamic Viewing Techniques
As the user performs painting or modeling tasks over the
entire model, the user will need to edit back-facing portions
of the model from time to time. Typically the user repo-
sitions the model by performing a “grab and turn” opera-
tion using the application. We have developed several novel
user-centricviewing techniques that make this task easier
and more efficient. In addition to using the force feedback
device for haptic manipulation, we also use it implicitly, and
simultaneously, as a mechanism for viewpoint placement.
These techniques allow users to express their intentions in a
natural way, with a minimum of switching between editing
and changing the view.

5



Our approach to the problem is to reposition the camera
based on the configuration (i.e. position and orientation) of
the haptic probe so that the region of interest on the model
surface is placed at the center of the view. We call our tech-
niques “user-centric” because the haptic tool indicates where
the user wants to view the object from, rather than where the
object should be.

5.1 Grabbing Operation

In the typical grabbing operation [RH92], the object is
moved preserving the transformation between the virtual
probe and the grabbing point. At the instant of grabbing, two
points are picked:A, a point in the object, andB, the cur-
rent position of the virtual probe. The transformationTBA
from the probe to the object is set constant as the virtual
probe moves. Therefore, a displacement of the probe,∆TB ,
produces a displacement of the object,∆Tg.

TBA = TA TB
−1,

∆Tg = TBA ∆TB TBA
−1.

whereTA andTB are the transformations that represent the
location and orientation of the object and the virtual probe.

5.2 Viewpoint Navigation

We introduce a new concept called “viewpoint navigation”.
This functionality is based on moving the viewpoint around
the object to be modeled or painted, based on the gestures of
the user. The position and orientation of the haptic device at
each time are used as “commands”, which set a transforma-
tion,Tn, on the position of the virtual probe and the camera,
as shown in Fig. 6.

In our system we apply the inverse transformation to the
object that is being manipulated, producing the same visual
effect. In addition, we apply this transformation incremen-
tally, whenever the viewpoint navigation is enabled.

∆Tn = K ∆TH .

where∆TH represents the variation of the position and ori-
entation of the haptic device.

Figure 6. Viewpoint navigation based on user’s
intentions.

5.3 Automatic Repositioning

Another novel functionality calledautomatic repositioning
allows the user to reorient the model quickly without inter-
rupting the work flow to change tools. When the automatic
repositioning key is pressed, the last point touched on the
model is taken to define the region of interest. A transfor-
mationTr is computed that moves the camera to a location
along the normal direction of the object at the point of inter-
est (as shown in Fig. 7). Then, we apply the inverse transfor-
mation to the object incrementally, so that the object appears
to rotate to the new position.

Figure 7. Automatic repositioning of viewpoint.

5.4 Combining all the Functionalities

The transformation that sets the location and orientation of
the object is updated every time step for better viewing to
aid the model manipulation and editing tasks, depending on
which functionality is enabled. We have:
TA,k+1 = ∆Tg TA,k, if grabbing is enabled;
TA,k+1 = ∆Tn−1 TA,k, if viewpoint navigation is enabled;
TA,k+1 = ∆Tr−1 TA,k, if automatic repositioning is en-
abled.

6 Results
We have designed and implementedArtNovaas a proof-of-
concept prototype system. In this section, we demonstrate
the system capability and discuss issues related to the user
interface design.

6.1 Prototype Demonstration

We use a dual-processor Pentium III PC as a haptic server,
a SensAble Technologies’ PHANTOM as a haptic device, a
Silicon Graphics Inc. R12000 Infinite Reality for rendering,
a large screen with a back projection system for graphical
display, and UNC’s VRPN library [VRPN] for a network-
transparent interface between application programs and our
haptic system. The system is written in C++ using the
OpenGL and GLUT libraries. However, the design frame-
work of our system is applicable to all types of haptic de-
vices and libraries, as well as graphical display and comput-
ing platforms.

Several users with little or no experience in using model-
ing or painting systems were able to create interesting mod-
els usingArtNovawith little training. Each user was given

6



Figure 8. A tree.

a selection of simple base meshes of various shapes (e.g.
spherical, toroidal, etc.) and light gray in color. A few ex-
amples of their art work are given in Figures 1, 3, 8, and 9.

The accompanying videotape illustrates a few examples
of the modeling and painting operations performed using
ArtNova. Along with some more images of the models cre-
ated by our users, the video clips are also available at:

http://www.cs.unc.edu/∼geom/ArtNova.

6.2 User Experiences

We have asked several users to evaluate our system by cre-
ating and texture-painting a few models. We briefly summa-
rize some of their comments here:

• The spring-based force model feels natural. Comparing
the experiences of performing model deformation with
and without the physically-based force model, most of
the users found the newly added force model to be an
improvement.

• The users commented that the force feedback was use-
ful in detecting and maintaining contact with the model
surfaces, when performing highly detailed painting.

• Users also felt that texture painting was easy to use, and
had little trouble getting visually pleasing results.

• Users found automatic viewpoint adjustment and repo-
sitioning to be intuitive and natural.

• The overall graphical user interface with our new 3D
tool metaphor was found to be intuitive and easy to un-
derstand.

Figure 9. A fish.

7 Summary
We have presented an integrated system for 3D texture paint-
ing and multiresolution modeling with a haptic interface and
user-centric viewing. An artist or a designer can use this sys-
tem to create and refine a three-dimensional multiresolution
polygonal mesh, and further enhance its appearance by di-
rectly painting textures onto its surface. The system allows
users to naturally create complex forms and patterns aided
not only by visual feedback but also by their sense of touch.
Based on preliminary user feedback, we believe these fea-
tures considerably improve the ease and expressiveness of
3D modeling and texture painting. We are currently plan-
ning an extensive, formal user study to carefully evaluate
and assess the contribution of various elements of this sys-
tem on enhancing users’ experiences in digital model design.

8 Acknowledgments
This research is supported in part by a fellowship of the Gov-
ernment of the Basque Country, NSF DMI-9900157, NSF
IIS-9821067, ONR N00014-01-1-0067 and Intel. We would
like to thank the following individuals for their suggestion
and assistance: Arthur Gregory, Stephen Ehmann, Michael
Rosenthal, Adrian Ilie, Sarah Hoff, Bryan Crumpler, Derek
Hartman, Scott Cooper, and Joohi Lee.

References
[ABL95] Maneesh Agrawala, Andrew C. Beers, and Marc Levoy. 3D

painting on scanned surfaces. In Pat Hanrahan and Jim
Winget, editors,1995 Symposium on Interactive 3D Graphics,
pages 145–150. ACM SIGGRAPH, April 1995.

[AS96] R. S. Avila and L. M. Sobierajski. A haptic interaction method
for volume visualization. Proceedings of Visualization’96,
pages 197–204, 1996.

[BVIG91] Chakib Bennis, Jean-Marc V́ezien, Ǵerard Igĺesias, and André
Gagalowicz. Piecewise surface flattening for non-distorted
texture mapping. In Thomas W. Sederberg, editor,Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages
237–246, July 1991.

[CMS88] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study
in interactive 3-D rotation using 2-D control devices. In John
Dill, editor, Computer Graphics (SIGGRAPH ’88 Proceed-
ings), volume 22, pages 121–129, August 1988.

7



[COR00] COREL. Painter.
http://newgraphics.corel.com/products/painter6.html, 2000.

[DKT98] T. DeRose, M. Kass, and T. Troung. Subdivision surfaces in
character animation.Proc. of ACM SIGGRAPH, 1998.

[FB88] D. Forsey and R.H. Bartels. Heirarchical B-spline refinement.
In Proc. of ACM Siggraph, pages 205–212, 1988.

[GEL00] A. Gregory, S. Ehmann, and M. C. Lin.inTouch: Interactive
multiresolution modeling and 3d painting with a haptic inter-
face.Proc. of IEEE VR Conference, 2000.

[GH91] Tinsley A. Galyean and John F. Hughes. Sculpting: An inter-
active volumetric modeling technique. In Thomas W. Seder-
berg, editor,Computer Graphics (SIGGRAPH ’91 Proceed-
ings), volume 25, pages 267–274, July 1991.

[Gib95] S. Gibson. Beyond volume rendering: Visualization, haptic
exploration, and physical modeling of element-based objects.
In Proc. Eurographics workshop on Visualization in Scientific
Computing, pages 10–24, 1995.

[GLGT00] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor. Real-time
collision detection for haptic interaction using a 3-dof force
feedback device.Computational Geometry: Theory and Ap-
plications, Special Issue on Virtual Environments, 15(1-3):pp.
69–89, February 2000.

[GW92] Michael Gleicher and Andrew Witkin. Through-the-lens cam-
era control. In Edwin E. Catmull, editor,Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 331–340,
July 1992.

[HCT+97] J. Hollerbach, E. Cohen, W. Thompson, R. Freier, D. Johnson,
A. Nahvi, D. Nelson, and T. Thompson II. Haptic interfacing
for virtual prototyping of mechanical CAD designs.CDROM
Proc. of ASME Design for Manufacturing Symposium, 1997.

[HDD+94] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin,
J. McDonald, J. Schweitzer, and W. Stuetzle. Piecewise
smooth surface reconstruction. InProceedings of ACM SIG-
GRAPH, pages 295–302, 1994.

[Hem00] Right Hemisphere. Deep paint.http://www.us.deeppaint.com/,
2000.

[HH90] Pat Hanrahan and Paul E. Haeberli. Direct WYSIWYG paint-
ing and texturing on 3D shapes. In Forest Baskett, editor,Com-
puter Graphics (SIGGRAPH ’90 Proceedings), volume 24,
pages 215–223, August 1990.

[IC01] T. Igarashi and D. Cosgrove. Adaptive unwrapping for interac-
tive texture painting.Proc. of ACM Symposium on Interactive
3D Graphics, pages 209–216, 2001.

[JTK+99] D. Johnson, T. V. Thompson II, M. Kaplan, D. Nelson, and
E. Cohen. Painting textures with a haptic interface.Proceed-
ings of IEEE Virtual Reality Conference, 1999.

[KS99] A. Khodakovsky and P. Schröder. Fine level feature editing
for subdivision surfaces.Proceedings of ACM Symposium on
Solid Modeling and Applications, 1999.

[Mas98] Thomas Massie. A tangible goal for 3D modeling.IEEE Com-
puter Graphics and Applications, May/June, 1998.

[MQW01] K. McDonnell, H. Qin, and R. Wlodarczyk. Virtual clay: A
real-time sculpting system with haptic interface.Proc. of ACM
Symposium on Interactive 3D Graphics, pages 179–190, 2001.

[MRF+96] William Mark, Scott Randolph, Mark Finch, James Van Verth,
and Russell M. Taylor II. Adding force feedback to graphics
systems: Issues and solutions. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 447–452, 1996.

[MS94] T. M. Massie and J. K. Salisbury. The phantom haptic inter-
face: A device for probing virtual objects.Proc. of ASME
Haptic Interfaces for Virtual Environment and Teleoperator
Systems, 1:295–301, 1994.

[MYV93] Jérôme Maillot, Hussein Yahia, and Anne Verroust. Interactive
texture mapping. In James T. Kajiya, editor,Computer Graph-
ics (SIGGRAPH ’93 Proceedings), volume 27, pages 27–34,
August 1993.

[OL01] M. Otaduy and M. Lin. User-centric viewpoint computation
for haptic exploration and manipulation.Proc. of IEEE Visu-
alization, 2001. To appear.

[PBG92] C. Phillips, N. Badler, and J. Granieri. Automatic viewing
control for 3D direct manipulation.Proc. of ACM Symposium
on Interactive 3D Graphics, pages 71–74, 1992.

[PF01] R. Perry and S. Friskin. Kizamu: A system for sculpting dig-
ital characters.Computer Graphics (ACM SIGGRAPH’01),
2001.

[PFC+97] J. Pierce, A. Forsberg, M. Conway, S. Hong, R. Zeleznik, and
M. Mine. Image plane interaction techniques in 3D immersive
environments. Proc. of ACM Symposium on Interactive 3D
Graphics, pages 39–44, 1997.

[PFH00] E. Praun, A. Finkelstein, and H. Hoppe. Lapped textures.
Proc. of ACM SIGGRAPH, pages 465–470, 2000.

[PT97] L. A. Piegl and W. Tiller.The NURBS Book. Springer Verlag,
1997. 2nd Edition.

[QT96] Hong Qin and Demetri Terzopoulos. D-NURBS: A physics-
Based framework for geometric design.IEEE Transactions
on Visualization and Computer Graphics, 2(1):85–96, March
1996. ISSN 1077-2626.

[RE99] A. Raviv and G. Elber. Three dimensional freeform sculpting
via zero sets of scalar trivariate functions.ACM Symposium
on Solid Modeling and Applications, 1999.

[RH92] Warren Robinett and Richard Holloway. Implementation of
flying, scaling, and grabbing in virtual worlds. In David
Zeltzer, editor,Computer Graphics (1992 Symposium on In-
teractive 3D Graphics), volume 25, pages 189–192, March
1992.

[RKK97] D.C. Ruspini, K. Kolarov, and O. Khatib. The haptic display of
complex graphical environments.Proc. of ACM SIGGRAPH,
pages 345–352, 1997.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form defor-
mation of solid geometric models. In David C. Evans and
Russell J. Athay, editors,Computer Graphics (SIGGRAPH ’86
Proceedings), volume 20, pages 151–160, August 1986.

[ST99] SensAble Technologies Inc.freeformTM modeling sys-
tem. http://www.sensable.com/freeform, 1999.

[SZ98] P. Schr̈oder and D. Zorin. Subdivision for modeling and ani-
mation.ACM SIGGRAPH Course Notes, 1998.

[SZMS98] T. Sederberg, J. Zheng, M.Sabin, and D. Sewell. Non-uniform
recursive subdivision surfaces.Computer Graphics (ACM
SIGGRAPH’98), 1998.

[Tau95] Gabriel Taubin. A signal processing approach to fair sur-
face design. In Robert Cook, editor,SIGGRAPH 95 Confer-
ence Proceedings, Annual Conference Series, pages 351–358.
ACM SIGGRAPH, Addison Wesley, August 1995. held in Los
Angeles, California, 06-11 August 1995.

[VRPN] Virtual Reality Peripheral Network.
http://www.cs.unc.edu/research/nano/manual/vrpn.

[Wer94] Josie Wernecke.The Inventor Mentor. Addison-Wesley, 1994.

[WO90] C. Ware and S. Osborne. Exploration and virtual camera con-
trol in virtual three dimensional environments.Proc. of ACM
Symposium on Interactive 3D Graphics, pages 175–183, 1990.

[ZF99] Robert Zeleznik and A. Forsberg. Unicam 2D gestural camera
controls for 3D environments.Proc. of ACM Symposium on
Interactive 3D Graphics, pages 169–173, 1999.

[ZSS97] D. Zorin, P. Schr̈oder, and W. Sweldens. Interactive mul-
tiresolution mesh editing.Computer Graphics (ACM SIG-
GRAPH’97), 1997.

8


