THE INTERLISP VIRTUAL MACHINE
SPECIFICATION |

by J Strother Moore Il *
CSL 76-5 September 1876. Revised March 1979.

The Interlisp Virtual Machine is the environment in which the interlisp System is
implemented. It includes such abstract objects as "Literal Atoms”, "List Cells", "Integers",
etc., the basic LISP functions for maniputating them, the underlying program control and
variable binding mechanisms, the input/ output facilities, and interrupt processing facilities,
In order to implement the Interlisp System (as described in The Interlisp Reference Manual
by W. Teitelman, et. al.) on some physical machine, it is only necessary to implement the
Interlisp Virtua! Machine, since Virtual Machine compatible source code for the rest of the
Interlisp System can be obtained from pubiicly available files. This document specifies the
behavior of the Interlisp Virtual Machine from the implementor’s point of view. That is, itis
an attempt to make explicit those things which must be implemented to allow the interlisp
System to run on some machine. ' '

KEY WORDS AND PHRASES

programming language semantics, LISP, dynamic storage allocation, interpreters, spaghetti
stacks, abstract data types, function objects, FUNARGs, applicative programming
languages, control structures, interactive systems, DWIM, programmer's assistant,
automatic error correction, eval, error handling, interrupt characters, breaks, coroutines,
hashing, property lists, list structures ' ' :

CR CATEGORIES

4.22,5.24,3.69, 4.10,4.12, 4.2, 4.21, 4.41, 6.21, 6.22

Formerly at the Computer Science Laboratory, Xerox Palo Alo Research Center, Palo Alto, Ca. 94304,
currently at the Computer Science Laboratory, SRI International, Menlo Park, Ca. 94025,

This work was supported by the Advanced Research Projects Agencyr of the Department of Defense and was
monitored by the Office of Naval Research under contract N0D0014-75-C-0626.

- ACKNOWLEDGEMENTS

In January of 1975, Warren Teitelman (of Xerox Palo Alto Research Center) asked me to
write a document which would enable peopie outside the original Bolt, Beranek and Newman
and Xerox PARC communities to implement the Interlisp System on machines other than the
PDP-10. Since most of the system is written in Interlisp itself, we decided the document
should identify that subset of the Interlisp language which, if implemented on some machine,
would enable the rest of the existing Interlisp source code to run. : :

During the next two years Warren and |, along with Peter Deutsch and Larry Masinter (both
of Xerox PARC) and Alice Hartley and Daryle Lewis (both of BBN} spent countless hours in
discussions about how Interlisp worked and why. Sometimes it was as simple as Daryle
spending several hours explaining the READ function to me. Sometimes it was as difficult as
several weeks’ worth of messages between BBN and PARC trying to find out what anybody
knew about some particular feature and how many system functions would fail to work if that
feature were not faithfully implemented. In the end this document emerged.

— ' I'am sure 1 have made omissions, left ambiguities and introduced downright bugs in it (and |

welcome cards and letters noting these inadequacies). It is certainly not a mathematical
exercise and probably will not appeal to my friends in the program verification or formal
specification community. But if so much as one (or maybe two) new Interlisp
implementations result from the availability of this document the project will have been
worthwhile to ali of us. :
Needless to say, I'd like to thank Warren Teitelman, Peter Deutsch, Larry Masinter, Alice
Hartley, and Daryle Lewis for their total commitment to this project. Without their dedication
and participation, any effort to define the Interlisp Virtual Machine would have been both
meaningless and hopeless. . :

.+ Of course, one must always thank the person who is actually responsible for producing the
T only version of the manuscript anyone but the author can read. i this case that person is
Carol Van Jepmond, and if you want to betier appreciate the magnitude of the task she

. undertook, consider the fact that no words were underlined in what | gave to her.

7 Page
1. INTRODUCTION e 1
2. PRIMITIVEQONCEPTS » R
3. CONVENTIONS FOR VM FUNGTION SPECIFIGATIONS . .+« + © v v e oo o 4
4. CONVENTIONS AND DEFINITIONS USED IN THIS_ DOCUMENT 5
5. LOGICALOPERATORS e e 8
_s.DATATYPE's e O 9
7. LISTCELLS e e 10
8 LITERALATOMS . . .ttt et e e e e oM
9. INTEGERS R B 18
10. FLOATINGPOINTNUMBERS SRR 20
11. ADDITIONAL ARITHMETIC FUNCTIONS. P e e 22
12 STRINGS ..ttt et et e e e e e ... 25 |
13. ARRAYS S I ... 29
14 HASHARRAYS . . ittt ittt e e 31
15. USER DEFINED DATATYPES . o\t vt te vt e e e 33
16. FUNCTIONS AND FUNCTION OBUECTS. . « v v v v v v veee e 35
17. STACKPOINTERS e 41
18. EVALUATION [P [
19. RESTRICTIONS ON THE IMPLEMENTATION OF VMFUNCTIONS 60
20. THECOMPI/LER' i, 63
21, FILESANDFILENAMES . . . v v ottt it e et e e e e e e e e 66
22, READTABLES ...ttt ittt e e e - 73
23 TERMINALS. . o\t ot vttt e e e T 79
24 TERMINALTABLES000.. R 81
25 INTERRUPTS e e e I 87

TABLE OF CONTENTS

8. OUTPUT e vt et s e e e e e 93

.27,71NPUT_.......,.‘...A..‘.'.._._......;.; e S 100
28'.‘_ STdéAGE ALLOGATION. . . .o\ vv . PR I 110
- 29 MISCELLANEOUS VMFUNCTIONS e 112
BEFERE_NCES'....;..._........" Ce e e .. 115

i

1. INTRODUCTION

interlisp is an interactive LISP system. It. consists of a'large and sophrstlcated collection of
user support facilities (such as DWIM and the: Programmer s Assrstant [TEI]) buili on top of a
fairly conventional LISP Ianguage

We call this underlymg conventional language "Virtual Machine" (or simply VM) LISP. The
user support facilities are written entirely in VM LISP, and are in the public domain. - Thus, if
VM LISP.is. |mPIemented on some maching, the rest of Interllsp ¢an be- obtamed from publlcly,
avarlable files’,. : y , , g

Aithough the Interhsp System is extenswely documented at the user Ievel in the Interlrsp
Reference Manual [2},.it:is not possible- to implement the system from.that documentation.
The purpose of this document is to specify VM LISP as fully as possible from the
implementor’s point of view.. Consequently, this document emphasises clarity and -
conciseness over intuitive appeal. It is expected that a prospective implementor will have
access {o the Interlisp Reference Manual for explanations of the justification or implications
of certain specifications. Furthermore, since its purpose is mainly a practical one (l e, totell
an :mptementor what must, be done) the. document is not altogether formal. : :

Because lnterhsp evolved under the rather sophrstrcated BEN 'I‘ENEX2 trme sharlng system
it assumes the presence of capabilities (such as user-defined interrupt characters) which
may not be found in the implementor’s environment. If an. implementor is forced by such
circumstances to forego the implementation of certain’ Interlisp features, the user- support
facilities may not perform as described in the Reference Manual The implementor assumes
responsibility for the documentatron of such deficiencies. .

A great deal of care has been taken in the preparatnon of this document to determrne the
assumptions made in the high-level facrllt:es about features in the underlying VM. Because
of the size and complexity of the system we cannot guarantee that we have identified them
all, and therefore do not assure the prospective implementor that the rest of Interlisp will run
perfectly upon loading it into the just implemented VM. However, thls document goes a long
way toward that admlrable (and probably mpossrble) goal o

2. PRIMITIVE CONCEPTS

Below we introduce several concepts and terms used throughout this document. We do not
attempt formal definitions of these concepts because we feel they are sufficiently clear.

For information write Dr. W. Teitelman, Computer Scnence Laboratory. Xerox Palo Alto Research
Center, 3333 Coyote Hilt Road, Palo Alto, Ca 94304

The Interlisp implementation on the DEC PDP-10, called Intertisp-10, was developed under the
management of researchers at Xerox Palo Alto Research Center-and Bolt, Beranek and Newman.
Comprehensive user documentation is provided in the Interlisp Reference Manual 2],

object Anything which can be given to an = *'%
Interlisp program as data or returned by
an Interlisp program as a result of a
computation. Egquivalently, an object is
anything that c¢an be ‘the value of an
Interlisp variable. Examples: NIL, 143, (F
XY).

Interlisp programs can dynamically create’ "new" objects using "creation :functions”
supplied by the Virtual- Machine. These functions return objects that did not exist in the
user's Virtual Machine immediately before the creation function was invoked. That is, they
return objects that no other VM function could have returned prior to the invocation of the
creation function. Most implementations accomplish the lmplled illusion of infinite space by
secretly reclaiming the space occupied by an object once no VM LISP functlon can detect

- the absence of the object.

The deta:ls are presented in Section 28.

We will-have occasion to talk about concepts which are not objects in the Vlrtua! Machine
but which have relevance to an implementation of the Virtual Machine. Such meta-objects
include devices and buffers as well as mathematlcal entities such as sets, character
sequences, and n- tuptes '

meta-object o ‘Any thing or concept, other than an

Interlisp object, which can be dlscussed
in English.
form . Any object used as the argument to the

function EVAL (cf. Section = 16).°
Examples: NIL, 143, (F X Y) if they are
gwen ‘to EVAL.

Note that the determination of whether something is a form is made on the grounds Br how it
is used rather than how it is constructed or how it is wntten down. However, typically, forms
are just List Structures or Atoms.

Value of a form -The object returned by EVAL when given
the form. Examples: The value of NIL is
NIL. The value of (ADD1 142) is 143.
The value of (CONS (QUOTE F) (QUOTE
XY))is (FXY).

Note that not all torms have values: some cause errors or otherwise alter the flow of control

so that EVAL does not return to the point of invocation (e.q., the goto statement).
The next concept is probably the single most important concept used in this document.

field A "place", usually associated with an
object or meta-object, that can be used
to "hold" another object or meta-object.
Example: A List Cell is an object with two
~ fields, named the CAR and CDR fields,
each of which can hotd an object.

 Therésare tivo:operations: on figlds: "accessing” and-"replacing”: if x-is-an objett with a.
fi.‘el.’él;:;fmhic ontains y; then it must be: possible ‘to compute'y given x.#This:is called
- "accessing™ the field. Furthermore, it must be possible to modify that field of x-so that it is:
madé to-centain another object instead of y. This operatlon will be called elther "replacmg"
(the contents of) the field or “settlng" the fieid. : : S ~ —

ln general only the :mplementor has full access:and: replacement nghts ona fleld In some'-
mstances the user |s gwen ilmltEd rights. to helds :

Note that f:elds are not objects A variable may have-as its value the contents ot a’ g:ven fleld
however a variable cannot have as its value the field itself. We will aiways be specific about
whether the contents of a field is an object or meta-agbject; and what, if any, restrictions are
placed on the contents. Unless otherwise stated any field said to contain an object can
contaln any object whatsoever _ ,

_ The:-flnal pnmmve- concepts are concerned with'-com'mu‘nic'ation be’tWeen the VM- and ”the"
"outside world". - The most abstract and important of- these concepts is that of the
"character"”. : ' _

character ‘A graphic. mark in:the alphabet available
: : to. the machine’s input/ouput facilities.
Examples usually include such
~characters as ’A’, ’'a’,;and ’(, as- well as' -
“"non-printing” - characters” such ‘as °
space, tab and form-feed. - .

A character is a meta-object because it exists outside the machine. We' assume the
implementor has designated a set of characters to be used in input/output transactions with
the VM. This set will be called the "standard VM character set”. For ‘each character in thus’
set there is a unique Interlisp object either in-the set-of Literal Atoms or the set of lntegers"
which is identified with that character. These particular objects are called Characters (note
capitalization).

A certain subset of the characters are known as "control characters" These characters are
usually "non-printing” (in the sense that outputting such a character causes no mark to be
made) and usually perform control or formatting functions on certain physical devices.
Since these characters are non-printing, we associate with each control character a printing
character, called the "tequivalent” (pronounced "uparrow equivalent"). -Sometimes the
control character will be printed by pnntmg the character ‘r’ followed by the 1equwalent of
the control character.

It-is assumed there is a character (and hence, a Character) called the "carriage return”
character,” which causes output devices to position-their print mechanisms so that
subsequent characters will be printed starting at the left-hand margin and immediately below
the last line. In some systems, more than one character must actually be sent to certain
devices to achieve this effect (e.g., one character to return the print mechanism to the left
margin and another to advance the line). Reading-and writing more than one character per
carriage return character is permitted. In fact, the precise characters transferred-may be:
device dependent. However, the implementor is expected to maintain the illusion of the
single carriage return character by translating to and from the appopnate sequences when
fetching and depositing characters (cf. Section 21).

We assume that thereis a one to one mapping from the standard VM characters onto a

subset of the integers. The Interlisp Small Integers (cf. Section 9) in the range of the:above
mapping are.called "character codes". The number of bits required to represent the largest
character code is called "standard VM bytesize”. - - : - RS

If the ASCIl mapping is used, the integers are those from 0 to 127. The control characters
are those with character codes from 0 to 31 and the character codes of their tequivalents
are obtained by adding 64. Thus, the character "control-A" has character code 1, its
tequivalent is the character’ * and has code 65. "control-A" is sometimes printed as "tA".
If a mapping other than ASCII is used, the implementor is expected to define these character
sets in accordance with their properties.above. : : - S

éharactet,seqUence a meta-object consisting of a succession
, of characters. .

Theith char_acte.r in a character sequence cannot be changed without producing a different
character sequence. (In Section 12 we will introduce a meta-object, calied a string, which
allows its characters to be replaced without the production of a new meta-object.)

file " a meta-object which is used as a
character source or sink for input/output
operations.

Physically, files may be represented as s‘equencés of character codes stored on a disc or
other external storage device, or sequences of character codes coming from or going to any
available input or output device. . - o : :

Technically, files are meta-objects and not objects, because Interlisp programs cannot
directly manipulate them. However, Interlisp assurhes that each file is uniquely identified by
a "fite name" which is representable as an Interlisp Literal Atom. The Virtual Machine
provides for input/output on named files, using Literal Atoms to indicate the source or
destination file. Lo T

5. CONVENTIONS FOR VM FUNCTION SPECIFICATIONS

This Sect'ion‘ and the next explain the conventions used in this document when specifying
the VM LISP functions. These conventions should not be confused with the Interlisp
facilities which allow the user to define new Interlisp functions. : S

The precise nature of a VM LISP function is fully specified in Section 16. However some
background information is necessary to understand the form and meaning of the function
specifications. ' . _ . S

In this document we use the word "function” in an extended mathematical sense 10 refer 1o

the abstract association or mapping between some n-tuple of "arguments” and a value or

effect. A function is named by an Interlisp object called a Literal Atom (cf. Section 8) which
contains a function object (cf. Section 16) in its function definition field. The function object
is essentially a program, which tells EVAL how to compute the value and/or effect of the
function named by the Literal Atom. T - :

In this document, when we specify some function we will first write down the function name

(a:Literal: Atapm). - Followmg that will be a fist of the:function’s parameter names. Each name
will be-in: lower:case and. separated from the others by ’;’. The entire list will be enclosed in
'’ and 'T. If the function takes an indefinite number of arguments we will use an ellipsis
("...") in the parameter list. (Such a function is called a "nospread” function; othenmse, the

: :functlon is a "spread” functlon See Sectlon 16 for the detalls)

!:*"
The parameters are merely placeholders T he particular names used in thls document are
rnot |mportant . . _ =

Followmg the parameter list we will write down English text Whlch SpEleleS, in terms of the
- parameter names given, the actions performed by the function when it is applied to some
argument objects. As is made clear in the next Section, the parameter names are
understood.to represent the objects supplied as:‘arguments. The text defining the behavior
of'the function, called the "body" of the specification, will be indented to distinguish it from
surrounding explanatory material. There are numerous examples of such specmcatlons in
the following pages g :

Sometnmes (cf. AND in Section 8) we will write "(NOEVAL)'_' after the parameterlist in a

‘function specification. We say that the corresponding function ‘object is: "noeval-type”.

Otherwise, it is said to be "eval-type". Informally, whether a function object is eval-type or

noeval-type determines whether EVAL will bind the parameter names to-the values of the

forms in the argument positions, or the forms themselves (See the spec:flcatlon of EVAL in
Section 18.) . . . _ .

From the implementor's viewpoint it is |mportant to understand that each functlon
specification in this document does two thmgs »

-+ {1) « It specifies the nature of a tunctlon object

(2) it spec:fles that the functlon object shall mltlally be found in the functton
definition field of a certaln theral Atom (the function name)

4. CONVENTIONS AND DEFINITIONS USED IN THIS DOCUMENT

We will use certain conventions and definitions when specifying functions. Usually they will
be introduced before they are used the first time. Below we present those most commonly
used.

Convention: Lower-case character sequences will be used as meta-variables to denote both
Interlisp objects and meta-objects. We will have occasion to refer both to the meta-variable
itself and to the value (object or meta-object} it denotes. For example, we may wish to say
"Let the meta-variable x denote the sum -of the values currently denoted: by the meta-
variables x and y." To distinguish a meta-variable from its value we will use an underline.
When a meta-variable is underlined the construction is understood to dencte the value of the
meta-variable. When not underlined the construction denotes the meta-variable itself. Thus,
the above example can be abbreviated to "Let x be x+y." Note that if x denotes y (the meta-
variable itself, not its denotation), then while "let x be 1" affects the denotatlon of X, "Iet X be
1 " affects the denotation of y. : :

-Note: The reader should not confuse meta—variables with the nctlon of variables provided by

Interlisp. Meta-variables are strictly a notational device for-communicating with the reader.
Variables (as implemented in Interiisp) are Interlisp objects, namely Literal Atoms; which are
used as forms. This document carefully distinguishes the two.concepts: e

Convention: I X4, Xo, ... xksden_o.te objects and f denotes-a VM function name, then
whenever the specification of some computation uses the construct =fx, ;52;...&] it is
understood to imply that at that point in the: computation the computation specified- as
defining the n-ary function f should be executed with the successive n parameter names of f
denoting the corresponding first n elements of the sequence x4 Xoyeee XieNIL,NILNIL, ..., and
the construct is to denote the object (if any) "returned” {see the nexi convention) by that
computation. e S C

Convention: Successive sentences in the function specification body specify successive
computational processes that are to be carried out sequentially when the function is applied
to some arguments. We use clauses beginning with the words "if", . "elseif", and "else”
_(separated by ";") to specify the conditional structure of the function. When the scope ofa
"then-clause" is ambiguous the entire clause is further indented. The phrase "return x"
means that if a computation reaches that point of the specification then all subsequent
statements in the specification are to be ignored (as specifying the computation along a
different path through the function) and X is to be considered the value of the function

application. : : : __— ' S ' :

Corivenﬁon: "When we refer to objects in a boolean context (in constructions using the
English words "if", "or", "and", and "not") the object NIL is identified with falsity and all
‘other objects are identified with truth. S e S SR

Convention: Whenever the body for some function specification does not specify an action
for some possible argument combinations, the implementor-is free perform: any action
desired. It is assumed this freedom will be used to merely avoid certain type checks (e.g.,
assume the argument to CAR is a List Cell-and accept:the consequences on other types of .
objects). Should the implementor’s default action for:any VM function be meaningful to the
user (e.g., CAR of an atom always returning NIL) the implementor is expected to document
the fact that such behavior is not standard. Furthermore, the implementor is expected to
document those default actions which may result in harm to the user’s Virtual Machine (e.g.,
a replacement function which, when improperly used, will destroy meaningful data or
confuse the garbage collector). '

Convention: When we refer to an object in the set of Interlisp Integers we will capitalize the .
word "integer". We will leave it in lower case when referring to the mathematical entity. .

Convention: We will write down integers and real numbers in standard mathematical
notation in base-10. When referred to ‘as objects they shall denote the corresponding
Interlisp Integer or Floating Point Number (cf. Section 10). In this document, all Floating
Point Numbers will be written with at least one digit to the right of the decimal point to
distinguish them from integers followed by periods. (That is, the real 10.0 will be written (in
this document) with the redundant 0, to distinguish it from the integer 10.) o

 Convention: We will occasionally use meta-variables which denote Interlisp integers and
Floating Point Numbers in constructions involving standard mathematical notation. In this
context the meta-variables are understood to be abbreviations for the mathematical entities
represented by their values. (That is, if x denotes an Interlisp Integer -- an- object which
merely behaves somewhat like a certain mathematical entity -- then in the construction x+1,
x. is treated as though it denotes the mathematical entity the Integer represents.) This

“f:conventron allows the use of standard mathematical notatlon lnvolwng objects even though
'-. efnotat]on is formally deflned on meta—objects -

-Convennon When we refer toa character sequence enclosed in quotatlon marks as though
it were an object, it denotes an_ interlisp String (cf. Section 12) with the character sequence
- asits pname,

Convention: We will often use the narne of a field to refer to- the"contents of the fleld if such
use is unambiguous. For example, we erI refer to the CAR of a List Cell, when we mean the
contents of the CAR field of the List Celi.

Convention: Whenever we say some computation should be done for each x in a specified
sequence (e.g., "for i from 1 to n do .." or "for each x do ..") we mean that the
computations should be performed in the same order as the x' s occur in the sequence. That
,ls the computation for the first x should precede that for the second etc. :

.We _now present the commonly used deflnrtr_ons. The purpose of a definition isto introduce a
suggestive phrase that has a precise format meaning. Usually the defined phrase involves
one or more meta-variables. Whenever an instance of a defined phrase is used the meaning
is that obtained by reading the definition with the meta-variables of the definition denoting
the objects or meta-objects indicated by the instance of the phrase used.

We will occasionally use an English variant of a defined phrase and expect the reader to
recognize that we are still speaking formally. For example, later we define the phrase "the
representation of x as an Integer”. We may use the phrase "return the representation as an
Integer of x" or "represent x as an Integer ar.d return'it” or even "represent and return as an
Integer x.” It is hoped that all three of these will obviously be understood by the reader to
mean: "Let temp be the representation of x as an Integer.- Return temp.” The reason we
~ use such variants is that they occasionaly allow us to reduce the number of meta-variables
the reader must contend with (as above) and they allow a more natiral style of specification.

Deﬁnmon "f[x .x]", where f denotes a non-VM function, means "APPLY*[f;x;...x,]"-
Since APPLY* I1sa VM function this definition is meaningful. The reason we cannot appeal
to the convention on VM function application {above) to make sense out of f[_ —k] is that
since fis not a VM function it does not have a specification in this document and the above
convention on the meaning of VM function application was based on the body of the
specification of the function. It also happens that while VM calls to other VM functions (as
almost all calls in this document are) can be implemented by any technique desired, calls to
user functions must use a well-defined stack structure defined in Sections 16-20. This
definition makes this clear because APPLY* in fact manipulates the stack. Finally, for sanity,
it should be pointed out that the effect and value of f[x4;...x,] is in fact the same (except for
the effect on the user's stack) as "APPLY*[f;x;...x]" whether fisavM functlon or not.

-Definition: "cause error n with culprit x" means "ERRORX[LISTn;x]]. Perform any
unspecified (but presumably meaningful) computatron" ERRORX is not in the VM but is
defined as part of the user-support facilities of Interlisp. It is the main entry into the error
handling routines. Nominally ERRORX never returns to the computation which called it {i.e.,
to the compuation which "caused the error") but (using the stack manipulating functions
discussed in Sections 17 and 18) returns to some higher process. However, the user can
_redefine ERRORX and therefore it may be altered so as to return control to the point of
invocation. Implementations should therefore allow for this (by, for example, following the
call to ERRORX by the equivalent of RETTO[T] (cf. Section 18)).

Definition: "pname of x" means "the character sequende that wQuid be _printed to. a file
other than the terminal by PRIN1[x], when the radix field contains 10, the line length field
contains a negative integer and the top-level value field of the literal atom with name

PLVLFILEFLG contains NIL (cf. Section 26). If PRIN1[x] would cause error n with culprit z,

then cause error n with culpritz.”

Definition: "PRIN2-pname of x with respectto y" means »the character sequence that would
be printed to a file other than the terminal by PRIN2[x;NIL;y] when the radix field contains 10,
the line length field contains a negative integer and the top-level value field of the literal atom
with name PLVLFILEFLG contains NIL. If PRIN2[x;NIL;y] would cause error n with culprit 2,

then cause error n with culprit z"
Definition: "the Literal Atom x" means "the Literal Atom whose pname is x."

‘Convention: When we refer to a sequence of all capital"éharacters as though it were an
object, we mean the Literal Atom with that pname. Examples: NIL, T, LISTP. When such a
sequence is underiined, it denotes the binding or value (in the EVALY sense -- sé€ Section
18) of the Literal Atom. Thus, RANDSTATE means the Literal Atom with pnamé
"RANDSTATE", while RANDSTATE means EVALV[RANDSTATE] -- the current value of that
Literal Atom. ' o ' ' :

Definition: "the Character {note capitalization) corresponding to (the character) x", -rn'éans
"the Literal Atom or Integer whose pname consists only of the single character x.”

Convention:- When we refer to a character as a Character we mean the Literal Atom Or
integer with the character as its pname. For example, we will refer to the ith Character in a
character sequence. : :

Definition: . A "Number" is either an Integer or a Floating Point Number.

Definition: An "Atom™ is either a Literal Atom or a Number. /

5. LOGICAL OPERATORS

EQ[x;y] If x and y are the sameé object, return T3
else, return NIL.

The following function tests the equality of Numbers, and Stack Pointers _(cf. Sections 9, 10,
and 17). o ' .

EQPLx:y] 1f x = y, return T;
elseif STACKP[x] and STACKPLY]:
If x and y contain the same frame exteansion, return T;
else, return NIL;
elseif NUMBERP[x] and NUMBERPLY]:
If FIXP[x] and FIXP[¥]:
If x and ¥ represent the same integer, return T:
else, return NIL;
else (x or y-is & Floating Point Number):
If not FLOATP[x], let x be FLOAT[x]. '
If not FLOATP[y], let y be FLOATLy].
If x and ¥ represent the same real, return T;
else, return NIL.

else, return NIL.

Note: In a sense, EQP tests the equality of meta-objects contained in boxes (cf. Section 9).
‘The implementor is free to extend EQP to test such equality on other classes of objects
which use such representation (e.g., Strmgs) However, the next functlon, EQUAL,
responsible for the more general abstract equalnty of two objects, -

EQUALLx;y] If x = y or EQP[x;y] or STREQUAL[x ¥1, return T
etseif LISTP[x] and LISTP[y]:
return AND[EQUAL[CAR[xT; CAR[1]] EQUAL[CDR{x7]: CDR[xJ]] -
else return NIL. o

AND[xi:xz;...xk]L(:OEV?Lg .
et val be
For each x; (until some X
Let val be EVAL[x4].
If val = NIL,
(we say x; "evaluated to NIL") return NIL.
Rgturn val.

j "evaluates to NIL") do:

OR[XqiXp: . .%,] (NOEVAL)
_ For each x; (until soms x
Let val be EVAL[x;].
- If va'l /= NIL, . _
(we say Xj “eva]uated to non-= NIL") return val.
Return NIL. ’

; "evaluates to non-NIL") do:

NOTEx] IT x=NIL, return T;
else, return NIL,

NULL[x] Return NOT[x]

6. DATATYPES

Every object in the VM is a-member of a unique class. All of the objects in a given class have
certain common propertles which define the class.

Associated with each class is a unique Literal Atom, called the "data type" of the class.
Given any object it is possible to obtain the data type of the object’s class.

The VM provides 11 primitive classes, plus facilities permitting the definition of new classes.
-Below we list the data types of the primitive VM classes. - We will discuss the defining
properties of each of these classes in the followmg Sections. Section 15 deals wnth the
introduction of new classes. .

Deﬂnmon: A "data type" is a Literal Atom associated with a class of objects. No two classes
may have the same data type. The initially existing classes and their data types are given
below:

Class Data Type
~ List Cells - LISTP

Literal Atoms , LITATOM

Small integers ‘ SMALLP

L.arge Integers FIXP

P ' Floating Point Numbers FLOATP

~ Strings. - B STRINGP . .

. P Arrays - , . . .ARBAYP
Hash Arrays. - . HARRAYP : oo T
Stack Pointers , STACKP . T
Read Tables READTABLEP :
Terminal Tables ' TERMTABLEP

The implementor may add additional prlmltlve classes provided they are assigned unlque
data types. .

TYPENAME[x] Return the data type of the object x.

7. LIST GELLS

Definition: A “List Cell" (or “List Structure") is an object with two fields called the CAR field
and.the CDR field, each containing arbitrary objects The List Cells constitute a distinct
class of objects with class name LISTP. ‘ '

The VM requires the existence of a field, called the *CONS count” field, which contains an
integer. The initial contents of the CONS count field is 0 The functions which reference the
CONS count field are CONS and CONSCOLUNT.

LISTP[x] IT x is a List Cel), return x:
etse, return NIL.

CONS[x;y] Increment the contents of the CONS count field by one
: and store the result in the CONS count field. |
Create and return a new List Cell
with x in the CAR fTield and y in the CDR field.

CAR[x] - If LISTP[x],
‘ return the contents of the CAR field of x:
elseif LITATOM[x]: '
If x is NIL, return NIL;
else, return any value desired (but cause no error).

CDR[x] If LISTP[x].
return the contents of the CDR field of X;
~ elseif LITATOM[x]:
IT x is NIL, return NIL;
eise, return any value desired (but cause no error).

RPLACA[cel1;val]
: If cell=NIL:
If val=NIL, return NIL;
else, cause error 7 with culprit val;
elseif LISTPIcell]:
Set the CAR field of cell to val,
Return cell;
eise, cause error 4 with culprit cell.

RPLACP[cel1;val]
If cell=NIL:

10

I va1 NIE, raturn NIL;
e1se. cause error 7 with- cu‘lpmt va1
elseif LISTP[cel1]: C .
Set the CDR field of cell to v _g_
Return. cell;
else; cause error 4 with culpmt cell,

LIST[XI:XZ;...Xk} . o
: Return CONS[x4:CONS[xy:...CONS[x,:NIL]...]]

CONSCOUNT[n] If n is NIL, represent and return as an Integer
(cf. Section 9) the integer contained in the CONS count
field;
else,
If not FIXP[_] let n be FIX[n]
Replace the contents of the CONS count field w1th
the intsger represented by n and raturn n.

o

: "Defmmon The "CDR chain from (some arbrtrary object denoted by} x" is the ordered
‘sequence of objects defined as follows: If X is not a List Cell, the COR chain from x is the_
empty sequence. If x is a List Cell, the CDR ‘chain from X is the sequence obtained by adding
X to the front of the CDR chain from the CDR of X.

Note that CDR chains will be infinite if some List Cell occurs twice in the chdin.: If a

computation is specified-in terms of operations on the end of a CDR chain (e.g., involving the

last List.Cell m the CDR chain), the computatlon is consndered to be unspeCifled for infinite
chams. _

D‘eﬁnition:' A "proper list (of a sequence of n obiects) " isthe Literal Atom NIL if nis zero, and
otherwise is a List Cell with the first object in the CAR field and a proper list of the remaining
n-1 objects in the CDR field. The "length" of such a proper list is n. The "ith element” of a
proper list of n objects, 1 =<i=<n, is the contents of the CAR fleld if i is. 1, and otherwise is
the i-1st element of the proper list in the CDR field. A "new" proper Ilst is one for whlch new
List Cells are in the CDR chain.

Note that these are definitions_of terms we will use in.this document. They do not define
Interlisp functions but merely allow us to refer to "proper lists” with precision: Also note that
a proper list, x, always has a finite CDR chain. Furthermore, the CDR of the last List-Cell in
the CDR chain is always the Literal Atom NIL

Convention: When we display a List Structure in this documént we will use the notation

produced by the function PRIN2, Thus (1. 2) represents some List Cell with 1 in the CAR
and 2in the CDR,and (123) represents a proper list of the three !ntegers shown.

8. LITERAL ATOMS

Definition: A “theral Atom is an object with the following propertles

(1) There is a field containing a (meta—object) character sequence called
the "name" of the Literal Atom, such that no two distinct Literal Atoms

11

have the same name and no Literal Atom has a namea_definedby {integer>
or <floating point number> {cf. Sections 9 and.10). (Itis permitted to limit
the number of characters in the name of a therai Atom The limit is
unspecmed D) , :

(2) There is a field, called.the “top- level value” fleld whrch may contain
any object.

{(3) Thereisa fleld called the " property list" fleld whlch may contam any -
" abject. .

(4) There is a field, called the "function definition" field, which may
contaln any object ‘

The Literal Atoms consitute a distinct class of objects with class name LITATOM.

Informally, the name of a Literal Atom is the character sequence used to identify the object
on input and output. The top-level value field contains the object to be interpreted as the
top-level value of the Literal Atom when it is used as a variable in a form. The property list
field usually contains a proper list and is used to associate additional information with the
Litéral Atom. When the Literal Atom is used as a function name {by being applied to some
argiments), the contents of the functlon defmmOn field is used as a program which should
be run to compute the results.

The user has no access or replacement rights on the name field of a Literal Atom. &Howev'er,
the user can obtain the nth Character in the name of any Literal Atom (cf. NTHCHAR below)

Imtlally, the Literal Atom NIL shall exist and have NIL in tts top-level vaiue, property list, and
function definition fields. In addition, the Literal Atom T shall exist and have T in its top-level
value field. Of course, the names of all VM functions are also initially existing Literal Atoms
with function objects (whlch behave accordmg to the VM specrflcatrons) in. therr funotlon
defmrtlon heids '

LITATOM[x] If x is'a Literal Atom. return T;
' : else, return NIL,

ATOM[x] If LITATOM[x] or FIXP[x] or FLOATP[x]. return T;
: else return NIL

MKATOM[x] Let charseq be' the pnams of x. ,

If charseg conforms to the syntax of an Integar-
represent and return as an Integer the 1nteger
denoted by charseq (cf. Section 9);

elseif charseq conforms to the syntax

of 'a Floeating Poirt Number:
represent and return as a Floating Po1nt Number
the real denoted by charseq (cf. Section 10); :

elseif charseq is the name of a Literal Atom, litatom,

already created: C
return litatom;

elseif there are moreé characters in charseq than

Interlisp-10 Irmits it to 99.

12

. the 1mp1ementat1on allows “in-.a L1taraT Atom name' e
_ calse error 11 w1th culprit-NIL; R
else:

Crgate a new L1tera1 Atom 11tatom whose name
- 1s charseq. -

Set the top- Ieva1 vaiue f191d of 11tatom

to the Literal Atom NOBIND. :

Set the property list field and the funct1on definition
field of litatom to -NIL..

Return litatom.-

ﬁACK[x] ' If x is a proper 11st of objects, (x3 x2 ceh o XE)s
return MKATOM[CONCAT[_l,xZ... xk]]
PACKC[x] If x is a proper Tist of obJects. {xg xp ... xK):
- .. return MKATOM[CONCAT[CHARACTER[_ 3
CHARACTER[_Z} .
-CHARACTER[EK]]] -
GETTOPVAL[1itatom]

If LITATOM[11tatom] return the contents of the
top-level value field of litatom:
etse, cause error 14 w1th culprit 11tatom;j

SETTOPVAL[11tatom val]
If 1itatom is MIL and- va1 is not NIL,
cause error 6 with culpr1t val;
elseif LITATOM[Titatom]:
Set the top-ilevel value field of 11tatom to val.
Return val;
else, cause error 14 with cu]prit 11tatom

.é ' Note that SETTOPVAL ma1nta1ns the top 1ev91 va1ue of NIL at NIL.

GETPROPLIST[11tatom] .
If litatom s NIL, returm NIL; -+ =
elseif LITATOM[11tatom] return the contents
of the property 1lisi field of litatomy
else, cause error .14 with culprit litatom.

SETPROPLIST[1itatom:; propl1st]
I Yitatom is NIL: _ -
If proplist is NIL, return NIL;
else, cause error 7 with cu!pr1t proplist.
" elseif LITATOM[1litatom]:
Set the property list f1e1d of litatom to proplist.

Return proplist:
glse, cause error 14 with «culprit litatom.

Note that SETPROPLIST maintains the property Tist.-of NIL at NIL.

GETD[1itatom] If LITATOM[1itatom], return the contents of
- the function definition field of litatiom:
else, return NIL.

PUTD{]atatom defn]
SR 1 i LITATOM[11tatom]
‘Replace the contents of the function
definition field of 11tatom w1th defan,
Return defn;
- else, cause error 14 w1th culprit T1tatom

13

The following three functions take Read. Tables as arguments ‘These are objects that affect
the way objects are printed. Read Tables are described in. Sectton 22

NCHARS[x; flg rdtb1]: o e T L
If fig, represent and return as an Integer the
number of characters in the PRINZ pname of X
with respect to rdtbl:

~v: . . -else, represent and r return as an Integer
' the number of characters -in the
pname of X.

NTHCHAR[x n;fig; rdtb1]
- If not FIXP[n) 1et n be FIX{_]
If n<o, et n be NCHARS[x jlg rdtb}]+n+1

If n<o or n= 0 ‘or n>MCHARS[x g rdtb1] return NIL;
elseif flg: :

return the nth Character

in the PRINZ-pname of x with respect to rdtbil;
else: .
return the nth Character in the pname of x.

UNPACK[x;f1g; rdtb1] :
f fla:

Create and return a new proper list

containing the successive Characters o

in the PRINZ pname of x with respect to rdtb1

else:
Create and return a new proper Tist of tha successive
Characters in the pname of X. :
1

CHCON[x;f1g;rdtbl]
{(Same spacif1cat1on as for UNPACK excapt
use "character codes” for "Characters”.} -

DUNPACK[x;scratchlst;flg;rdtb1]
If not LISTP[scratchlst], cause error 17 w1th
culprit . CONS["DUNPACK SCRATCHLIST ‘not a 1ist";scratchlst];
elseif scratchist .is a :proper Tist: -,
If flg, let charseq” be the -PRINZ-pname of X
with respect to rdtbil;
elss, let charseq bhe tha pname -of. x.-
Let n be the length of ¢ harseg.
If the length of scratchlst is greater
than or equal to nt . ’
Let sublst be the terminal sublist of scratchlst
-containing .n-elements, :
Using RPLACA deposit the successive Charactars in
. charseq into’the CAR fields of successive List Cells
' in the CDR chain of sub]st start1ng with the f1rst
Return sublst:
else:
Return UNPACK[x:flg:rdthl].
(Note:: The CARs of successive L1st Cells in
scratchlst may be replaced with Characters from
charseq before taking this exit.)
alse cause error 17 with culprit
CONS["DUNPACK: unusual CDR in SCRATCHLIS ".scratchlst]
(Note: The CARs of successive List Cells in
scratchlst may be replaced with Characters from
harseg before tak1ng this exit.) :

14

. Nete a:notes in DUNPACK aIIowmg the CARs of scratchlist to be repiaced before exmng

] prcper Ilst check to be made as the. function is running.

BCHCON[x scratchIst fig;: rtth]

. (Same specification as for DUNPACK except use
CHCON for UNPACK and "DCHCON" for "DUNPACK" and
use “character codes" for "Characters”.)

CHCON[x] If the pname of x is the empty sequence, return NIL:
o else, return character code of the first character
in the ‘pname of x.

cflﬁRAcTsR['n'j ©If not FIXP[n], Tet n be FIX[n].
B If n is a character code,
return the Character with character cods .

MAPATOMS[fn] For every Literal Atom, x, currently
SR represented in the \hrtuaI Machine do:
fn[x]. :
Return NIL: . : >

9. INTEGERS

Definition: The "Integers" (note capitalization) are objects that as far as possible obey the
laws of arithmetic for integers (the mathematical entities). - The Integers do not necessarily
constitute a distinct class of objects. Some integers must be so-called "Small" Integers (see

below) with class name SMALLF. Unless ali Integers are Small integers, there must exist
another class, with class name FIXP, contamlng the remalmng Integers

When characters are being read in (cf. Sectlon 27) certain sequences dencte Integers,
namely those deflned by <integer> below:. _ _

<oct digit : = 0]1]2|3|4|s6|7
- <digit> :: = <oct digit>{8|9
<oct seq> :: = <oct digidQ|<oct drgtt)(oct seq>
<oct integer> :: = <oct seq>] + {oct seq>|-<oct seq>
<dec seq> :: = <digit|Kdigit><dec seq>
<dec integer> :: = <dec seq>| + <dec seq>|- <dec seq>
‘<integer> :: = <oct integer>|Kdec integer>

A character sequence defined by doct integer> denotes an Integer ob;ect which represents

the pos:tlve or negative integér whose base-8 expansion is the sequence of octal digits
given. A character sequence defined by <dec integer> denotes an Integer object which
represents the positive or negative integer whose base-10 expansion is the sequence of
decimal digits given. in both cases, if no sign {+ or -) is present, + is assumed.

The set of Integers is distinct from the subset of Floating Point Numbers (cf Sectlon 10)
which have fractional part equal to zero. '

The machine upon which the VM is impiemented will have some internali representat:on of

integers. . This bit pattern is a meta-object, called an '_'unboxed valug”. It is usually not

15

possible for the implementor to distigiiish an‘arbitrary unboxed value from-an address, and in-
particular, the address of some object. Therefore, Integers must usually be represented in -
some way other than by their unboxed values. There are two standard ways of representing
Integers in the VM. R R

The first method exploits the knowledge that certain addresses, (e.g., those known to
reference the machine instruction codes for the VM itself) cannot possibly point to objects.
Any bit pattern which is such an address and is used as an object can then be treated as
though it represented some Integer. ' ' n

This representation has two desirable properties, noted in the definition below. Of course,
only a relatively few Integers can be so represented, so it is desirable to represent the
commonly used Integers in this fashion. Since the Integers occuring most frequently in user
programs are clustered around 0, we call Integers represented in this fashion "Small
Integers”.

It is not usually the case that the bit pattern representing a Small-Integer is also the unboxed

value of the integer. Thus, the unboxed value of a Small Integer is obtained by applying
some transformation to the bit pattern representing the Integer.. This is.called "unboxing™
the Integer. The inverse transformation is applied to unboxed values to obtain a Small
Integer. For example, if addresses less 2001 are to be considered Small integers, andifitis
desired to represent the integers -1000 to 1000 as Small integers, then the unboxed value of
a Small Integer would be obtained by subtracting 1000 from the address of the Small-integer:”

Definition: A "Small" Integer is an Integer represented in such a way that two Small Integers .
represent the same integer if and only if the bit patterns representing the two Small Integers
are identical.” That is, no two distinct Small Integer objects represent the same meta-ghject.
‘Consequently, Small Integers require little storage and boxing and unboxing them are
efficientoperations. ~~ - = AR o - S

The VM requires that the character codes be Srnall Integers.

The second method of representing Integers is more general but consumes more space.
Namely, the Integer is represented by the address of one or more storage locations known to
contain the unboxed value of the Integer. The location is called a "box" and an integer
represented in such a way is called a "boxed" or "Large" Integer. ‘Unboxing and boxing for
boxed Integers is done by accessing and replacing the contents of the box. oy
Definition: A "Large" Integer is an Integer other than a Small Integer. The usual
representation of a Large Integer is as a pointer to a storage location known to contain the
unboxed value of the Integer. Two distinct Large Integers may represent the same integer.

In order to allow the user to discover how many boxes have been constructed, the VM
requires the existence of a field, called the "Large Integer box count” field, which contains
an integer. The initial contents of this field is 0. This field is updated during the process of
constructing an Integer (see the definition.below), and by the function BOXCOUNT. .

‘The above discuslsio'r'\ of boxes abpliés equally well to the im-plement'ation‘of F!Oatingul-;’o'iht
Numbers (see the next Section). In that case of course, an unboxed value is to be
interpreted as the machine’s representation of a Floating Point Number. _ R

The Virtual Machine must allow for the possibility of arithmetic overflow or underflow. We
assume the existence.of a field, called the "arithmetic overflow flag™ field, which coptains

16

either T, NIL, or {the Integer} 0. The initial contents:of this field is 8. The contents can be
changed with the function OVERFLOW (below) and determines the behavior of the VM in
both Integer and Floating' Point overflow and underflow. The definition below, which
- gpecifies the process of constructing the Integer representatlon of an integer formally
¢ifies the -use of this field for Integer arlthmetlc (and a s:mliar defmmon :n Sectlon 10'
“does so for Floating Point arlthmetlc) ' :

Definition: The "representation of (the integer) x as an Integer", is the value of the meta-
variable result (if any) after the following computation; 7
"If x is too targe to be represented as an Integer'
If the arithmetic overflow flag: f1e1d conta1ns T,
cause error 5 with culprit 1; .
elseif the arithmetic overflow Tlag f1er conta1ns NIL
let result be the representation of the 1argast poss1b1e Integer;
else, let result be some unspecified Integer. ‘
elseif x is too small {large negative) to be represented as an Integer:
If the arithmetic overflow flag field contains T,
cause error 5 with culprit -1;
elseif the arithmetic overflow field contains NIL
_let result be the representation of the smei]est (iarge

negative) possible Integer; . ST o ;L;Q

: else, let resu]t be some unspec1f1ed Integer'
“elseif x can be represented as a Small Integer,
let result be the Small Integer representing X;:
else ’
Increment the contents of the Large Integer box count’ f1e1d by 1
and store the result in the Large Integer box count field.
Let result be a newly created boxed Integer representing x."

Note that if an overflow or underfow occurs, whlle the arlthmettc overflow flag field is O, the

Integer result of the .above process is unspecufled; The.most natural behavior is that whlch)

would result if the overflow had not been detected; The Integer, result represents whatever
bit-pattern the hardware produced during the anthmetlc operatlon

Definition: The '_'ﬂoor of x", where x is a number, is the Jargest. lnteger less than or equal to
x. The "ceiling of x" is the smallest mteger greater than or. equal to x.

Thus, the ﬂoor of 2.7 is 2 and the ceiling is.3. The floor of 2 7 is-3 and. the ceiling is -2.

Definition: The "integer part of x", where xis a number is the floor of x,if x is non- negatlve,
and is the ceiling of x, if x is negatwe _

OVERFLOW[f1g] Let o?df1g be the contents of the ar1thmet1c overflow
flag field. s
If not fl1g = T and not jlg NIL
“let flg be the Integer 0. '
Set the arithmetic overflag f1ag field to jlg

Return o 1df1g
FIXPEx] If x is an Integer, return x;
etse, return NIL.

SMALLPLx] If x is a Small Integer, return x,{
etse, return NIL. :

TEQP[4:]] If FIXP[1] and FIXP[]]:
If i and j represent the same integer, return T;

17

L
o
s

else, :Pﬂtu.F".N‘IL:i"=" ER

'Note IEQP is on!y speclhed for lnteger arguments ThIS is s0 that the check can be made
reasonably efficiently, That.is, the two arguments can;; be unboxed. and compared without
regard for the consequences if they are in fact not Integers (prowded the unboxing does not
destroy the state of the VM)

SETN[nvar:va1formj (NOEVAL)

If LITATOM[pvar]: :

Let n be EVAL[nvar].

Let val be EVAL[valform]..

If not NUMBERP[EQ_] cause error 10 with culprit ¥ _uj__

elseif n is neither a boxed Integer

nor a boxed F1oat1ng Point Number,

. _return SET[nvar;vall:

"else, store the unboxsd value of val

in the box associated with p, and return n;
else, cause error 14 with CU1prjt_nvar.

MNaote that if the bok itself affects the determination of what number its contents represents,

then SETN[nvar;vaiform] will not necessarily make nvar represent the same number as

valform. For example if i is a boxed Integer and z is a Floating Point Number, then SETNi;z]

merely deposits the unboxed value’of z into the box assomated with i. When | is used, the

contents of that box will be interpreted as an integer. That integer will usually not be the
" number represented by z z.

BOXCOUNT[type:n]
: If n=NIL: ‘ C - ' '
N If type=NIL, represent and return as an Integer the
" integer in the Large’ Integar box count field;

“else, represant and return as an Integer the
" integer in the F1oat1ng Po1nt Number box count field.
else, let n ba FIX[n]! :

" IF type=NIL, replace: the contents of the Large Integer
box count field with the ‘integer represented by n:
else, replace the contents of the Floating Point Number
‘box count field with the integer represented by n. '

Return n.

FIX[n] . If FIXP[an], return n;

- elseif FLOATP[n]:" : :
Represent and return as an Integer
the integer part of n; -

eise, FIX[ERRORX[LIST{10;n]]1.

IGREATERP[i:j] 1If not FIXP[i]. let i be FIX[i].
If not FIXP[jl}. Yet j be FIX[j].
If i > j, return T;
else, return NIL.

ILESSP[i;3] If not FIXP[i], let i be FIX[i].
If not FIXP[j], let j be.FIX[ji].
If i < i, return T;
else, return NIL.

IPLUS[I’!I;HZ: ‘e .-l'l-k]

18

R s

For each n, if not FIXP[_1] let ny be FIx[ni]
If k is zero. return the Small Integer G;:
else, represent.and return as.an- Integer .
the integer n1+n2+ +nk. C =

IdIFFERENCE[i;J] _ . ‘

' . ' If not FIXP[i]. TBt i be FIX[1}

If not FIXP[j]. Vet j be FIX[il..
Represent and return as an Integar
the integer i-j.. . ,

IMINUSEn] -~ . If not FIXP[n], let n be sz[n] ,
. Represent and return as an’ Integer the
integer -n. ,

ITIMES[nging;:...n] - -
D For each ny, if not FIXP[n;], 1let ny be FIx[nij.
If k is zero, return the Small Integer 1;
- else, represent and return as‘dn Integer
* the integer ni*np*. “k

IQUOTIENT[4:j] - If not FIXP[1]. 1et i be FIX[*]
_ If not FIXP[i], et j.be FIX[J]
if j=0, cause error 5 with culprit j.
Represent and return as.an Integer the 1nteger
part of i/j. o : . ‘

IREMAINDER[i:j] IT not FIXP[i]. tet i be FIX[i].
o R ~If not FIXP[j}: let j be FIX[i].-
If j=0, cause error.5 with cu1pr1t -
Return IDIFFERENCE[_ ITIMES[IQUOTIENT[_ 1] 1]]

Defmrtron The "N- blt bmary expansnon of (Integer) n"is the ordinary binary representation
of the integer (represented by) n, in either 1 or 2's complement notation (implementor's
_choice) and employing N bits, Wlth the high- order blts {and sngn) ta the left.

~ in the fol!owmg, N must be at [east Iarge enough to allow an N bit blnary expansion of every
Integer. . , S

,LOGAND[nl;nZ;...n]
- ' For each n1, if not FIXP[_1], Tet: n " be FIX[n,]
If k is zero, return an Integer whose ‘
N- bit binary expansion contains ail 1's;
~ else, return an Integer whose N-bit7binary
expansion has a 1 in bit position i (1=<j=<N),
_if and only if the N-bit binary expansion of each
nij-has a 1.14n bit position j.

LOGOR[nq;np:. .. ng] S

: For each n;, if not FIXP[H1]. iet n.I be FIX[ni]
If k is zero, return an Integer whose .

N- bt binary expansion contains-all.0's;
else, return an Integer whose N-bit binary expansion
has a 1 in bit position j (1=<j=<N}, if and only
if the N-bit b1nary expans1on of. someg. n1 has a
1 1n bit pos1t1on i : o
LOGXOREmqsng;.% .0] o

C For each n1, 1f not FIXPL_1] Tet ny be FIX[n1]
If k is zero, return an Integer whose N-bit
banary expansion contains all 0's;

19

else, return an Integer ‘whose N-bit binary
expansion has a 1'in bit position j (1=¢j=<N}),

if and only if an.odd number of' the ny hava i's 1in
bit p051t1on i : o

LLSHLn; factor]} If not FIXP[n], let n be FIX{n].
: If not FIXP[factor], et factor be FIX[factor]

Return an Integer whose
N-bit binary expansion is obta1ned from that of n
by shifting it factor bit positions to the left
(and filling with 0’ s) if factor>0, and shifting
if factor bit pos1t1ons to the right (and filling
with 0' 5) 1f factor<0.

MNote: “LLSH" stands for "1ogica1 teft shift".

LRSH[n:factor] Return LLsHtg;IMtNustfactor}].

LSH[n;factor] If not FIXP{n], let n be FIX[n]
If not FIXP[factor], 1let factor be FIXIfacto 1.
If the floor of n*2tfactor can be represented
as an Ipteger, represent and return as an
Integer the floor of n*2tfactor;
else, return an unspecified Integer.

Note: In Interlisp-10 LSH is implemented as an arithmetic shift instruction. If the high-order
bits are lost on the shift, the result is just the integer representing the remaining bits.

RSH[n;factor] Return +SH[n;IMINUS[factor]].

GCD[%:j] = . If not FIXP[i], et i be FIX[i].

o ' “If mot FIXP[i], "let j be FIX[j].-
Represent ‘and return as an Integer the
greatest. common divisor of .1 and j.

10. FLOATING POINT NUMBERS

Definition: "Floating Point Numbers" 'aré'obiects that as far as possible obéy the laws of real
arithmetic. The Floating Point Numbers constitute a dlstmct class of objects with class name
FLOATP. :

During input (cf. Section 27), Floating Point Numbers are denoted by character sequences
defined by <ﬂoat|ng po;nt number> given below in terms of the Integer syntax:

{dec real> ::= <{dec integer>. (dec seq>|<dec integer>.|.<{dec seq>
<floating point number> ::= <dec reald>|<dec integer>E{dec 1nteger>|
T ‘ {dec rea1>E<dec integer>:

A character sequence defined by <dec real> denotes a Floating Point Number ob;ect which
represents the real number whose decimal expansion is the sequence of characters given,
followed by an infinite sequence of 0's. In the absence of a sign (+ or -), + is assumed. A
sequence defined by <{dec integer>E<dec integer> denotes a Floating Point Number object
WhICh represents the real obtained by multiplying the first denoted mteger by 10 raised to the

20

power denoted by the second (e.g. 125E3 denotes a Floating'Point’ Number representing the
“real 125000.0.) A seguence defined by <dec real>E<dec integer> is interpreted analogously
(e g., 125.4E3 denotes a Floatmg Point Number representmg the real 125400.0).

‘Although a gwen Floating Pomt Number represents exactly one real, it is not the case that
any real can be represented It is recognized that Floating Point Numbers |nherent!y have a
finite magmtude and precision. Neither the maximum magnitude nor the minimum precision
is specified since these quantities are largely determined by the host machme s archltecture

Defmrr:on We say "(the Floating Point Number) x represents (the real) Y to maximum
_ precision” when the real deviation between y and the real denoted by x is as small as
possible given the host machine’s internal representation of Floating Point Numbers.

The VM requires the existénce of a field, called the "Floatmg Pmnt Number box count"” field,
which contains an integer. The initial contents of the field is 0. The field is updated by the
process which constructs Floating Point Numbers and by the function BOXCOUNT

Defmmon The "representation of (the real) x as a Floating Pomt Number" is the value of the
meta-variable result (if any) after the following computation:

"If x is too large to be represented as a
Filoating Point Number: .
If the arithmetic overflow flag f1e1d contains T,
cause error 5 with culprit 1.0;
elseif the arithmetic overflow flag field conta1ns NIL,
Tet result be the representation of the 1argest poss1bie
Floating Point Number;
else, et result be some unspecwfied F1oat1ng Point Number.
e1se1f X is too close to 0 to be represented
as a F1oat1ng Point Number, let result be the representat1on as a
Floating Point Number of the real 0.0;
‘elseif x is too small (large negative). to be
represented as a Floating Point Number:
If the arithmetic overtlow flag field conta1ns T,
cause error 5 with culprit -1.0;
elseif the arithmetic overfilow flag field contains NIL,
tet result be the representation of the smallest
(large negative) possible Floating Point Number;
else, let resuit be some unspecified Floating Po1nt Number.
alsaif x is to be represented as a boxed .
F1oat1ng Point Number (implementor's cho1ce) .
Increment the contents of the Floating Point Number box count
field by 1 and store the result in the Floating Point Number box
count field.
Let result be a newly created boxed F1oat1ng Point Number
representing x to maximum precision;
else, let result be the unboxed F1oat1ng Point Number represent1ng x to
maximum precisioa.

FLOATP{x] If x is a Floating Point Number, return x;
else, return NIL.

FLOAT[n} If FLOATP[n], return n;
‘ .elseif FIXP[n]:

Represent and return as a Floating Point
Number the real obtained by
appending a decimal point followed by
an infinite sequence of 0's to ths r1ght
of the decimal expansion of n.

else, FLOAT[ERRORX[LIST[10 g]}]

21

1L§ FGREATERP[x y] If not FLOATP[x]., let x be FLOAT[x].
- . If not FLOATP[y], let y be FLOAT[y].
i ' If x > ¥, return T; else, return NIL,

FLESSP[x:¥T If not FLOATP{x], 18t x be FLOAT[x]..
. o © -If. not FLOATP[y], let y be FLOAT[y].
If x-< y, return T; else return NIL.

FPLUS[ﬂl;ﬂzi. nk]
e For each -ny, if not FLOATP[_i]
let n; be FLOAT[n;].
.If. k is zero, represent and return as a Float1ng Point
Number the real 0.0;
e¢lse, represent and return as a Floating Point
Number the real njy+np+...+n.

FDIFFERENCE[x:y] '
. - If not FLOATP[x], let x be FLOAT[x].
C If not FLOATP[y], let y be FLOAT[y].
Represent and return as a Floating’ Point
Number the real x-y.

Shii FMINUS[n] If not FLOATPEn], let n be FLOAT[n].
ﬁ Represent and return as a Floating Point
b : Number the real -n.

FTIMES[H1:HZ:...H]
For each ny, if not FLOATP[n4],
let n; be FLOAT{_1}
If k is zero. represent and return as a
F]oating Point Number the real 1.0;)
else, represent and return as a Floating Point
Number the real my*n,*...*ny.

 FQUOTIENT[i:j] If not FLOATP[i], let i be FLOAT[4].
If not FLOATP[j]. Tet j be FLOAT[1].
If j=0.0, cause error 5 with culprit i.
Represent and return as a Floating Point
Number the real i/j.

FREMAINDER[x:y] If not FLOATP[x], let x be FLOAT[x].
If not FLOATP[y]. let y be FLOAT[y].
If y = 0.0, cause error 5 with culprit y.
Represent and return as a Floating Point Number
the real representing the difference between x and
the unboxed vatue of (x/y)*y.

Note FREMAINDER is non-zero only due to the finite precision of the host maching’s
floating point arithmetic.

11. ADDITIONAL ARITHMETIC FUNCTIONS

The following VM functions could be defined in terms of those in the last two Sections.
However, it is useful to consider them primitive.

NUMBERP[x] If FIXP{x] or FLOATP[x], return T;
etse return NIL.

22

MINUSP[x] - .

GREATERP[x;y]

LESSP[x:¥y]

PLUS[xq:x9:.

If FLOATP[x]. return FMINUSP[x];
else return IMINUSP[x]. .

If FLOATP[x] or FLOATP[y], return FGREATERP[x;y];
else return IGREATERP[x:y]. :

(Same specification as for GREATERP except use
FLESSP. ipstead of FGREATERP and ILESSP instead of
IGREATERP.) |

e X]

If FLOATP[x;], for any 1s<i=<k:
FPLUS££1;£2;°"£k]:
else IPLUS[X4;X9:...Xc].

DIFFERENCE[x;y] _ .
(Same as GREATERP except use FDIFFERENCE for
FGREATERPF and IDIFFERENCE for IGREATERP.)
MINUS[x] If FLOATP[x]., return FMINUS[x];

TIMES[X1;X2;..

QUOTIENT[x:y]

alse return IMINUS[x].

-Xp] _
%Same specification as for PLUS except use
FTIMES for FPLUS and ITIMES for IPLUS.)

(Same specification as for GREATERP except
use FQUOTIENT for FGREATERP' and IQUOTIENT
for IGREATERP.) o

REMAINDER[x;y] - (Same specification as for GREATERP except

EXPT[x;y]

SQRT[x]

Lpd[;]

ANTILOG[x]

use FREMAINDER for FGREATERP and IREMAINDER for
IGREATERP.)

If not NUMBERP[x], cause error 10 with culprit x:
elseif not NUMBERP[y], cause srror 10 with culprit y.

If FIXP[x] and FIXP[y] and y>=0:
Represent and return as an Integer Xty
~ elseif x<0 and not EQP[y;FIX[y]]:
Cause error 17 with culprit
CONS["ITlegal exponentiation:"LIST[;EXPT;:x:y]];
else, represent and return as a Floating Point
Number the real xty.

.If not NUMBERP[x], cause error 10 with culprit x;
elseif x<0, cause error 17 with culprit -
CONS["SQRT of negative value”:x].

Represent and return as a Floating Point Number
the square root of x (note that x may be

a Floating Point Number or an Integer).

If not NUMBERP[x], cause error 10 with culprit x;
elseif x<0, cause error 17 with culprit ' '
‘CONS["LOG of negative value";x].

Represent and return as a Floating Point_Ndmber
the natural Jogarithm of x (note that x may be
.a Floating Point Number or an Integer).

If not NUMBERP[x], cause error 10 with culprit X.

23

Represent and return as'a Floating ‘Pofnt Number the *. "
real whose natural logarithm is x {fnote that x may be
a F1oat1ng Po1nt Mumber or an. Integar)

SIN[x: rad1ansflg] '
:If not NUMBERP[x]. cause error 10 w1th culpr1t X.

“Represent and return as a Floating Point
Number the sine of x (measured in radians
if radianflg, otherwise in degrees)

(Note that.x may be a Floating Point Number
or an Integer)

COS[x radxansf]g]

{Same specification as for SIN except use
"cosine” instead of "sine",)

TAN[x;radiansflg]

{(Same specification for as SIN except usa
"tangent” 1nstead of "sine".}

ARCSIN[x:radiansflg]
IT not NUMBERP[x], cause error 10 with culprit x;
elseif x < -1 or x > 1, cause error 17 with
culprit COMS[“ARCSIN arg not +in range” 5]

Represent and return-as a Floating Point.Number
the angle (measured in radians. if radianflg.

and otherwise measured in degrees) between -90 and
+90 degrees whose sine is x {(note that x may be a
-Floating ‘Point Number or an Integer). ’

ARCCOS[x; rad1anflg} :

, {Same spec1f1cat1on as for ARCSIN except use
"cosine" for "sine", "ARCCOS" for "ARCSIN"
"0" for "-90" and "180" for "+90".) :

ARCTAN[x rad1anf1g]
If not NUMBERP[_]. cause error 10 with culprit x.

Represent and return as a Floating Point*Number

the argle (measured in radians if radianflg

and otherwise measured in degrees) between 0 and

180 degrees whose’tangent is x (noie that x may be a .
Floating Point Number or an Integer).

The following function, RAND, is used to generate pseudo-random numbers. It is assumed
that in order to so operate, RAND must save some state information from one call to the next.
The VM assumes- this state information (called. a "RAND state") is contained in an
implementor defined object (called a."RAND State" - note capitalization) and is stored in the
value field of the Literal Atom RANDSTATE. The VM also assumes that a RAND State can be
destructively modified so as to represent any given RAND state. (Thus, a RAND State might
be a boxed Integer ¢apable of representing many integers. In Interlisp-10 it is a List Celt
containing two boxed Integers.) This allows RAND to save its new {next) state in the object
representing its current state, thereby avoiding the creation of a new object. Fmally, itis

24

assumed that such a state entirely determines the next number generated by RAND (for a
aiven’ palr of arguments) (That is, if a copy of the current RAND State Is saved and then
RAND is uséd to generate some sequence of "random" numbers, the same sequence can
be generated in the future by restormg the saved State (with RANDSET) and executing the

14

RAND[1ower upper].

- -same sequence of calls to RAND.)

lLet stateobJ be RANDSTATE
If stateobj is not a RAND State:
Let stateobj be RANDSET[T].

 If FIXP[lower] and FIXP[upper]:

Using the RAND state in stateocbj as
the currsnt state, generate a psuedo-random 1nteger
i, lowers<{i=<upper, and a hew state, s.
Destruct1vely modify stateobj so that it represents s.
Represent and return as an Integer the integer i,

elsa: . -
Let lower be FLOATP[lower] : .
Let upper be FLOATP[upper].

" Using the RAND state in stateobj as the current

' state, generate a psuedo-random real,
X, lower={x=<upper, and a new state, 5. '
Destructively modify stateobj so that it represents s.
Represent and return as a Floating Po1nt Number:
the real x.

RANDSET{state] If state T:

12. STRINGS

Let newstate be a new RAND state created from any -
{pseudo-~) random source available (e.g., a run-time
clock}. :
Let newstateobJ be & new RAND State’ (note upper case)
representing newstate (i.e., newstateobj is a new object
as well as being a representation of a new state).
SETQ[RANDSTATE newstateobi].

elseif state-is an obJect that represents a

valid RAND state: :
Let newstate be the RAND state represanted
by state. :
Let newstateobj be a new RAND State (note upper case)
representing newstate (i.e., newstateob1 is a new object
representing the old state represented by state).
SETQ[RANDSTATE; newstateob]]

elseif state /= NIL:
Cause error 17 with culprit
CONS["arg not prev1ous value of RANDSET“'state]

Return a new RAND State (note upper case)
representing the state represented by RANDSTATE
(i.e., return a new object whigh

represents the current RAND statse).

Strings are objects which represent character sequences. However, the String handling
" functions expose a certain amount of the internal represention. of Strings. 1t is possible to
form two distinct Strings which share the same internal structure. This can be detected by

25

replacing the characters in either String and observing side-effects on the other, Therefore,
St'ri_ngs; have a richer and more complicated structure than mere character sequences. ...

We must first introduce the concept of a "string” (note lower case). Intuitively, a string is like
a character sequence in that it specifies some succession of characters. However, unlike a
character sequence, the ith character in a string can be changed without producing a new
string. This can be formalized as follows: =~ = . =~ . -~ . .

Definition: A “string (of length n)" is a meta-object having n fields, each identified with an
integer, 1=<i=<n (provided n>0), and each containing a Character. At any instant a string
"represents” the character sequence with the same succession of Characters.

Definition: A "String" is an object with the following properties: . -

(1) There is a field; called the "source" field, which may contain either a
character sequence or a string.

(2) There is a field, called the “position" field, which contains a positive
integer, with the restriction that the integer cannot be greater than the
number of characters in the source.

-(3') The"ré,.‘.is a field, Called the "charcohnt“., which contains a non-negative
Integer, with the restriction that the position plus charcount of a String
cannot exceed the number of characters in the source of the String.

Strings constitute a distinc':t-clasls]of_ objects with class name STRINGP.

At any instant, a given String, x, with position, i, and charcount, n, represents the character
sequence consisting of the n characters in the source of x, starting at the ith. This is the

pname of the String.

The reason the source field may contain either a character sequence or a string is that it is -
convenient to produce Strings directly from the contents of the name fields of Literal Atoms
without converting those character sequences into character strings (cf. MKSTRING). Of
course, since it is impossible to change the characters in a character sequence, the source
.of such a String must be replaced by a string the first time a character is to be changed (cf.
RPLSTRING). . RS : -'

Definition: An "empty String" is one with charcount 0. The source and position fields of an
empty String are irrelevant.

Definition: "Create a new String representing {character sequence) x" means "Create a
new String, with source set to a new string representing x, position set to 1, and charcount
set to the length of x." Whenever the source, position, or charcount of a new String is not as
specified above, we will be explicit. ' ' :

NCHARS (cf. Section 8) returns the number of characters in the pname of a String.
NTHCHAR (ct. Section 8) returns the ith Character in the pname of a String.

STRINGP[x] If x is a String, return x; else return NIL.
STREQUALLx;y] If STRINGP[x] and STRINGP[y]:

SIf the character seqglence represented by x is
the same as that represented by y, return x;

26

CONCAT[X4:Xpi . ..

else,. return NIL,

TRING[x fig; rdtb]]

If flg:
Create and return a new String represent1ng the
PRINZ-pname of x with respect to rdibl.

elseif STRINGP[x], return x;

elseif LITATOM[x], create and return a new

‘String with source set to the name of x, = .

position set to 1, and charcouni set to the number

of characters in the name of x;

else:

Create and return a new Str1ng representTng the
pname of x.

]
I? h 1is zero, create and return a new empty String;
else:
Create and return a new String rapresent1ng the
- character sequence obtained.-by concatenating the
pnames of xl through x, (in that order)

RPLSTRING{str n;newchars]

If not, STRINGPist], let str be MKSTRINGIst 1.
If n is NIL, let n be 1;
elseif not FIXP[n], %et n be FIX[H}.u

If n<0, Tet n-be NCHARS[str]+n+1.
If n<0 or n=0 or n>NCHARS[str], .
,cause error 27 with cqurit newchars.

If newchars is a L1tera! Atom or a String

and. n+NCHARS[newchars]-1 > NCHARS[strl,
‘cause -error 27 w1th cqur1t newchars-

alse: ' '
IT the source of str is a character saquence
(rather than a str1ng), replace the source of
str with a string represeﬂting the source of str
Let strsource be the source of. str.
Let i be the position of sir. '
Let 1 be the charcount of str.
Replace the contents of the s successive Character Tields
of strsource, starting with the i+n-1st, with the
successive Characters from the :pname of newchars (From
left-most through right-most),“and if this process requires
the replacement of a field beyond the i+l-1st one,
cause error 27 with cu]pr1t newchars.
Return str.

SUBSTRING[str;n;m]

‘If not STRINGP[str] and not LITATOM[str]
let str be MKSTRING[str].

If p is NIL, let n be 1; .

elseif not FIXP[n] let n be FIx{n]

If m is NIL, let m be NCHARS[str];

elseif not FIXP[m], let m be FIX{m]

If n<0, let n be NCHARS[str]+n+1,
If m<}, let m be NCHARS[strJ+n+1.

'If n<0 or n=0 or n>m, return NIL.

-rf STRINGP[st]:
“Let i be the contents of the pos1t1on field of
Create and return a new String with source

27

set to the source of str, position to i+n-1,
and charcount to m-n+i1; ‘
else: . .
Create and return a new String with source
set to the name of str, position to n, and charcount

to m=n+1, _
GNC[str] If not STR'INGP[st'rj Tet str be MKSTRING[st].
.If str 1s an empty string,
return NIL; .
glse:

lLet y be the first Character in the pname of s

Let i be the contents of the position field of _t_.
Set the position field of sir to i+1.

Let n be the charcount of str.

Set the charcount field of str to n-1,

Return y.
GLC[str] : If not- STRINGP[str] let str be MKSTRING[st 1.
If str is an empty string,
return NIL;
elsa:

Let-y be the last Character in the _pname of str.
Let n be the charcount of str.

Set the charcount field of st str to n-1.

Return y. '

The next function searches one string for the first occurrence of another. However, wild
card characters are allowed. Thus, we will define the notion of two character sequences
being equal with respect to some wild card character:

Definition: (character sequences) seq-, and seq» {each of 'ength n) are equal with respect
to the wild card skrp where skip is an arbitrary ogject means “For each i from 1 to n, either
the ith Character in seq+ is skip or is the ith Character in _0_2 "

STRPOS[pat;str;start; sk1b anchor ta11]
If start=NIL, let start be 1;
elseif NUMBERP[start] and start<0:
Let start be NCHARS[§L_]+start 1.

If not. FIXP[start] let start be FIX[start]
.: Let patlen be.the length of the pname of pat.

‘Let strlen be the.length of the pname of str

If anchor, let max be start;

e]se Tet max- be strien-pat patien+l.

g’ If there is an tinteger, i, start=<{i=<max,

such that the pname of pat and the patlen long

substring .of the pname of str starting at i are

equal with respect to the wild card s skip:
Let i be the smallest value denvted by such an i,
If tail, represent and return as an Integer i+patten+i;
else, represent and return as an Integer i

else, return NIL.

The following two functions are used to search strings for the first occurrence of any one of
.a set of characters. In order to make this efficient, the VM allows the user to call a function
(MAKEBITTABLE) which preprocesses a proper list of characters codes and produces an
object which represents the corresponding set of characters in an efficient way. We call this

28

rr presentatren of a'set.of characters a "bittable™. The rmplementor is free to represent
bittables in any way desired®. The VM allows for the possibility that the object representing a
- pittable can be modified (by replacmg the contents of fields wrthrn rt) SO that the set |t

_ re esents: rschanged

MAKEBITTABLE[lst cemp11mentf1g o]db1ttab1e]
If 1st is not a proper list,

Let charset be an unspecified set of characters;
else: .
Let charset be the set of precisely those characters. c.'
such that either (1) the character code of ¢ is in
(the proper 1ist) 1st, or (2) ¢ is the first. character
in the- pname of some non-FIXP e1ement of 1st.

If comp11mentf1g, let charset be the compliment
~of charset with respect to the set of all characters.

If oldbittahle is an object representing a bittable
and can be modified to represent charset:
Modify oldbittable so that 1t represents charset.
‘Return oldbittable;
else, create and return a new h1ttab1e represent1ng
charset

STRPOSL[bittable: str start; comp11mentflg]
If start=NIL, let start be 1;
elseif NUMBERP[star] and start(G
Let start be NCHARS[QL_]+start 1.

If not FIXP[star 7. let start be FIX[start]
If bittable is not a bittable,
Tet b1ttable be MAKEBITTABLEIbtttab1]

Let charset be the set represented by bittable.
If complimentflg, let charset be the compliment
of charset with respect to the set of alil characters.

If there is an integer, i, start=<i=<NCHARS[str],
such that the ith character in the pname of str
‘is in charset:

Let i be the smallest value . denoted by such an 1.
. Represent afid return as an Integer the integer 1;
eise, return NIL.

13. ARRAYS

- Definition: "Arrays" are objects that contain a fixed number of fields, each identified by a
positive Integer "subscript”". An Array containing n fields is said to have size n. There are
two kinds of Arrays which differ according to the class of objects which may be contained in
thelr fields. The fields in a "Pointer” Array may contain any objects whatsoever. The fields

In Interlisp-10 they are arrays.

29

in-an "integer" Array may only: contam Integers Arrays constntute a dlstlnct class of objects
with class name: ARRAYP LSS SR . :

tis assumed that the mpiementaﬂon w:l! take advantage of the restrlctlon on the centents of
integer Arrays to avoid unnecessary boxing and unboxing of Integers. The implementor is
free to provide arrays of other types and to generahze the functlons ARRAY ARRAYTYP
ELT, and SETA to handle them.

ARRAYP[x].,_ JAf x is an Arcay, return x
. else return NIL. =

. ARRAY[n typ 1n1tva1] L :
If not FIXP[n] et n be FIX[n].
If n<0,. cause error 27 with cu]prit n.

If typ = FIXP:

<If initval is NIL, let initval be 0y

‘e1seif not FIXP[1n1tva1] let initval be FIX[initval].

Create and return a new Integer Array of size n,

each field of which initially conta1ns (unboxed) 1n1tva1
~elseif typ = NIL or typ = POINTER:

Create and return a new Pointer Array of sizen,

each field of which initially contains initval.

ARRAYSIZE[array]
If ARRAYP[arra!] ‘
return an Integer represent1ng the the s1ze of array
else, cause errar 28 with cu1pr1t arrax.

ARRAYTYP[array] If ARRAYP[array]: ' ' .
- If array is an "Integer Array, return FIXP'
elseif array is a Pointer Array, return ‘POINTER;
eise. cause error 28 with cuipr1t arrax.

ELT[array;nl - If not ARRAYP[array], cause error 23 w1th culpr1t array.
' 1f not FIXP[n], let n be FIX[n].
If 1=<n and n=<ARRAYSIZE[array]:
If array is an Integer Array,
‘represent and return as an Integer the integer
represented by the contents of the nth field of array:
-elseif array is a Pointer Array,
“return the contents of the nth field of array;

SETA[array n;vai]
If not ARRAYP[array]. cause error 28 with cuiprit arrax
If not FIXPIn], let n be FIX[n].
If n<1 or n>ARRAYSIZE[array],
cause error 17 with culprit CONS["Out of bounds SETA".n]

If-g rrax is an Integer Array,
‘Let val be FIX[val]. '
Replace the contenis of the nth field of a rray ‘with-
the resutts of unboxing val’ (as an Integer) ‘and return val; .
elseif array is a Pointer Array, -
Replace the contents of the nth field of
array with val and return val.

Hash Arrays are ob;ects that provide an efficient way: of assoclatmg arbitrary objects To
deﬁne a Hash Array we must first introduce the notion of a "hash-link".

Definition: A "hash-link" is a meta-object having two fields: The contents of the first field is
_called the "hash-item” of the hashi-link. The contents of the second field is called the "hash-
value” of the hash-link. The hash-link represents the assomatlon of the hash-item wnth the

hash-value..

. ‘Definition: . A "Hash Array" of "size" n is an object having n fields, each of which may
contain a hash-link. Hash Arrays constitute a distinct class “of objects with ciass name
' HARHAYP : .

'Roughly speaking, it is possible to fetch and replace the hash- value assocnated with some
hash-item in a given Hash Array. In addition, subject to certam constralnts it is possible to
-add a new hash link to a Hash Array, and to remove an old one.

The process of finding the hash- link (if any) ina gwen Hash Array for some hash-item is-
called "hash linking” from the hash-item. It is assumed that hash coding is used to make
this efficient. The hash coding algorithm used is not specified. Itis assumed that the hash
coding algorithm implemented will come reasonably close to usmg all n possible fields
before declaring the Hash Array "full“

Inmally, the value field of the theral Atom SYSHASHARRAY shall contain a List Cell whose
CAR is a Hash Array and whose CDR is the Floating Point Number 1.5. This Hash Array is
used as the user's default Hash Array (i.e., supplied when the Hash Array parameter of the
functions below are NiL), and the number indicates the factor by which it is expanded when
full®. The initial size of the Hash Array ig.not specmed This Hash Array may not be.used to
implement any VM fac:hty, it is available only for the user.

The followmg definitionis one of several in thlS document that mvolve meta-varlables which
are understood to take as values the names of other meta-variables and change the
denotatton of the those (other) meta- vanables : .

Definition: To "get Hash Array harray”, where the meta-vanable harray denotes a meta-
‘variable which currently denotes an arbitrary object, means

"Let obj be the object denoted by (the meta- var1ab1e) harray
(note underlining).
If obj is NIL, let harray (note underlining) be SYSHASHARRAY
if LISTP{obj] and HARRAYP[CAR[objll:

let harray {note underlining) be CAR[obi]:
elseif not HARRAYP[obi]:
- cause error 17 with culprit CONS[“Arg not hash array"-__i]

— mm mm wm mm e mm e ma ae e mm e e e e AR s mm e e me A we e e e W e

This expansion is not done in the VM but in ERRORX when error 26 is caused.

_InInterlisp-10itis 512,

31

The reader should understand that if the meta-variable x denotes some non-Hash Array
object when the phrase "Get Hash: Array x" is used in a specification, then either an error |s
caused or else the denotation of x is changed (in partlcular to some Hash Array).

HARRAYP{x] - . If x is a Hash Array, return Xi
glse, return NIL.

HARRAY[:size]. If not FIXP[size]. let size be FIX[size].
S Create and return.a new Hash Array
of size size containing no hash-links.

HARRAYSIZE[harray]
Get Hash Array harray. .) ‘
Represent and return as an Integer the size of harray.

PUTHASH[1tem val;harray]
Let origharray be harray.
Get Hash Array harraya

If val is NIL,
If i item is the hash 1tem of any hash- 11nk 1n harrax.
remove that hash Tink from h arrax
Return NIL;
elseif 1tem is the hash-item of any hash- 11nk in harrax.
Set the hash- va1ue of that hash- 11nk to val,
Return val:
elseif harrax is full,
cause error 26 w1th cu]prit origharra!
else: -
Add a new hash- 11nk to. arra!, with jtem as the
hash-item and va1 as the hash-valua.
Return va1

GETHASH[item;harray]
Get Hash Array harray. '
If item is the hash-item of any hash-1link in arrax.
return the hash-value: of that hash- 11nk
else, return NIL, -

CLRHASH[harray] Let origharray be harray.
Get Hash Array harray.
Remove all hash-Tinks from h array
Return o r1gharra1

MAPHASH[fn harray]
Get Hash Array harray.
For every hash-link, x, in harray, compute fa{val;item],
where item is the hash-item of x and val is the hash-value,
Return NIL.

REHASH[oldharray;newharray]
Get Hash Array oldharray.
CLRHASH[newharray].
For every hash-1ink, x, in oldharray, perform
APPLY*[PUTHASH;item;val:newharray], where item is the
hash-item of x and va1 is the hash-value,
(The reason APPLY* is used above is only to insure
that a frame extension (cf. Sections 17 and 18) is built for
the call to PUTHASH. Thus, if newarray is filled and
ERRORX is called by PUTHASH, ERRORX can find the call to
PUTHASH, generate a suitably expanded Hash Array,
initialize it., add the new hash link from item to val which
previcusly could not be added, and then-use the stack

32

functton RETFROM to extt from PUTHASH and cont1nue the
REHASH.)

Return ewharray

15. USER DEFINED DATATYPES

The VM allows the user to defme new ctasses of ob;ects Assoclated with each such class is
anew data type. "

i general an.object in such a class contains a fixed number of fields (determmed accordmg
to the definition of the class) each of which. may be restricted to contain only certain other
kinds of objects or meta-objects. Facilities are provided for declaring the number and type
_ of the fields for a given class, creating objects of a given class, accessing and replacing the
contents of the fields of such an object, and interrogating such objects.

' In order to define a new class of objects, the user must supply a new ‘data type name and
specmcatlons for each of the’ flelds inthe objects of the new. class.

Definition: A "field specification” is either one of the Literal -Atoms POINTER, FIXP, or
-FLOATP, or else is:a proper list of the form- (BIT ;), where 1 is an Integer less than the word
length of the host machlne ;

Definition: A field "satisfies a (field specification) spec" if the followmg relationship holds
between spec and the possible contents of the fleld :

spec . . _Contents of fleld

POINTER - - - .~ Any object

FIXP : - Any representable mteger (note fower case)
FLOATP o - Any representable real (note lower case)

{BIT j) - . Any representable non-negative integer (note

Iower case) whose value is less than 21j.

Defmmon We say that an object "fields satrsfyrng spec1, specz, - specn" if each of the n
fields of the object satisfies a distinct spec;. In this case, we say that the field satisfying spec; .
is the jth field (however, nothing is |mpI|ed about the actual order of the fields in the
representation of the object).

_ Fie[d specifications are used to communicate to the function DECLAREDATATYPE {below)
the number of and restrictions on the fields in a new class. DECLAREDATATYPE is free to
arrange the storage allocation for the fields in any way desired by the implementor.
DECLAREDATATYPE then returns a proper list of objects, called "field descriptors”, which
encode the information regarding the position and type of each field. The user can pass

such a field descriptor to the functions FETCHFIELD and REPLACEFIELD (below) to access
and replace the contents of a given field in an object of the new class. A field descriptor can
be any object the implementor wishes to use to carry this information from
DECLAREDATATYPE to FETGHFiELD and REPLACEFIELD

Definition: A "field descriptor” for the jth field in some object is any object the |mpiementor
wishes 10 use wh:ch communicates (from the functlon DECLAREDATATYPE to the functions

FETCHFIELD and REPLACEFIELD) sufficient information to allow the contents of the jth field
to be accessed and replaced. (Typically, a field descriptor for the jth field must specify the -
field's type, size, and relative location within the actual representation.):

Convention: If descr is a field descriptor for some field of some object then we may refer to
the field as the "descr field” of the object.

DECLAREDATATYPE[type spectst] \
If not LITATOM[type].-
cause error 17 with cuipr1t COMS["I]]ega] data type“ type]
elseif type is the data type of an existing class.
_unspecified;
eiseif speclsti= NIL, cause error 17 w1th cutprit
CONS["I1legal field specification T1ist"NIL].

Assume speclst is a non-empty proper Tist of length n and’ 1et_
specy, 1=<{i=<{n, be the elaments of speclst.

If any spe 1 <i=<m; is not a recognized

field spec1%1cat1on cause error 17 with culprit
CONS["I1legal. field specfication";speci].

_Create a new class of objects with data type type
- such that any obJect of this class sha?1 have n f1elds

satisfying spec,, spe 2.'... spec,.

_Create and return a new proper list, containing n

ocbjects, such that the-<ith element of the proper list

is a field descriptor for the dth f1e1d in.objects of data:.
type yg

FETCHFIELD[descriobj]
If descr is a field: descr1ptor for some data
type. type, and the type of obj is type:
tet spec be the field specification of the descr
field of obj.
Let val be the contents of the descr field of obj. :
If spec is POINTER, return val;
elseif spec is FIXP or of the form (SIGNEDBIT j)
or (BIT j), s
-represent and return as an Integer the integer val;
elseif spec is FLOATP, _
represent and return as a Fleating Pointer Number the
real val. ’ - o

REPLACEFIELD[descr DbJ va]]
If descr is a f1er descr1ptor for some data type.
type. and the type of obj is type
Let spec be the Tield spec1f1cat1on for
“the descr field of ebj.
If spec is ‘POINTER:
Let X'be,ggl:
elseif spec is FIXP:
~ Let val be FIX[vall. '
Let x be the integer represented by val.
elseif spec is FLOATP:
Let val be FLOAT[val].
Let x be the real represented by val.
elseif spec is of the form (SIGNEDBIT j):
let val be FIX[vall.
I'f the absolute value of val is less than 2tj,
Tet x be -the integer represented by val:
else, truncate val so that its absolute v va1ue
is less than 2t (see below), and let x be the

_integer represented by the resuit;

e1se1f spec is.of the form (BIT e
Let val be FIX[gg_] :
1If val is a non- negat1ve 1nteger Iess than 21j.

let x be val;

elga, truncate val 'so that it is 1&ss than 211
(see” below) ‘and let: x be the 1nteger represented
by the. resu1t . . .

Rep1ace the contents of the descr f1e1d of bji with X.
Return val.

e Wedo not define the process of "truncatmg" an Integer, other than requnre that it be
2l perat:on on Integers that produces an Integer of smaller absolute value. Truncation
cou d’ be defmed to merely produce the low- order diglts of the number

N REATE[type oldobj]
= If type is not the name of 2 previously declared
user data type, cause error 17 with culprit
CONS{"Il1egal data typa“ xg 1.

Let newobj be a new obgect of data type
type, the fields of which have unspecified
initial conients.

If TYPENAME[oldobj] is type, replace the contents of
successive fields in pewobj with the objects or
_meta-objects in the corresponding fields of oldobj.

Return newobi.

: GETFIELDSPECS[type]
B If not LITATCM[type], let type be . TYPENAME[ypel.

If type is the name of a user data type.
‘create and return a proper 1ist of field spec1f1cat1ons
equivalent to the specifications 1ist used by
DECLAREDATATYPE to create type type;

else, return NIL.

:GETDESCRIPTBRS[typa]

: If not LITATOM[type]. let type be TYPENAME[type].

If type is the name of a user data iype,.
create and return a proper list of the field descriptors
for the n Tields of objects of type type,
ordered from 1 to n;.

else, return NIL.

USERDATATYPES[] Create and return a proper Tist of all of the data types
thus far created by DECLAREDATATYPE

16. FUNCTIONS AND FUNCTION OBJECTS

In the introductory Sections of this document we introduced several conventions that were
central to understandmg this document. These conventions concerned the form of function

specifications, the notion of meta-variables; the rules governing the use and denotation of
meta-variables, and the meaning of the notation “f[x1, X] “Theése'definitions are all at the
meta-level in the sense that they tell the reader what. the spemflcatlons mean.

But the |ssues involved are central to any programmmg Ianguage Each of the four meta-
concepts above have realization in the VM itself: -the representation of Interlisp programs
(function objects), the representation .of Interlisp variables as objects, the processes for
accessing and binding Interlisp variables, and the process for runmng a function object on
given arguments and obtaining the tesult, - '

We now begin the dlscussaon of these i issues. ThIS Section describes the representation of
Interlisp programs; Section 17 specifies the structures used for binding Interlisp vanables to
their values and for keeplng track of subroutine (in fact, coroutlne) calls; Section 18 specmes.
the processes for binding and accessing Interlisp variables and evaluating Interllsp function
objects; Sections 19 and 20 present additional restrictions, refmements and. extensions.
relating to the implementation of the above facilities. s

Intuitively, a function objec_t is a prog_ram whlch can be "run" ‘on some arguments to
comptite some result. A function is just a Literal Atom which has a function object in its
function definition field. When a function is applied to a proper list of arguments it is actually
the associated function object which ‘is evaluated. Therefore this Section deals primarily
with function objects.

The function objects do not form é disjoint 'class' of objects.” For e'xamp_le, some proper lists
are function objects. We will. discuss the representations of function objects later in this
Section.

Every function object must specify how the result of an application is to be computed in
terms of the arguments supplied. This specification is done by the "body" of the function
object. Of course, with each application the arguments supplied will generally be different.:
Thus, the computation is specmed in terms of Literal Atom “parameter ‘names"” which are
treated (during the interpretation ‘of the function object by EVAL) as variables representing
the actual arguments to be used.

Recall that when we formally specify a VM function we give a list of meta-variables used as
parameter names for the VM function specification. The Literal Atom parameter names in a
function object are just the realization of these meta-variables. However, nothing is implied
about the particular parameter names the implementor should choose when coding the VM
functlons

When the function object is applied to some proper list of argument forms, the actual value
to be used in place of each parameter name is determined. This raises the following
question: Are the parameter names to stand for the values of the argument forms or the
forms themselves? In Interlisp this is determined by a property of the function.object. being
evaluated. The VM allows for two types of function objects: Those of "eval" type are to-have
their arguments evaluated before the function is activated. Those of "noeval” type are to be
activated on the argument forms themselves,

Recall that some of the VM function sp_eCifications include the phrase "(NOEVAL)" after the
parameter list {cf. AND in Section 5). Formaily this' means that the function- ebject
corresponding to the specnflcatlon is to have noeval type. All other VM functions are to be of
eval type.

. Iiv-additidh. to-the eval/noeval distinction, Interlisp provides another property of function

-objectstA-given function object may either take a fixed or variable number of-arguments. A
function object which takes a fixed number of arguments is called a- "spread" type function
. object because at application time the arguments are spread across (associated one-to-one
with) the parameter names of the function object (with extra arguments ignored and extra
paraméter names being associated with NIL). If a function object takes a variable number of
arguments, then at application time the entire k-tuple of arguments supplied is associated
with one parameter name. Such function objects are said to be of "nospread” type.

Those VM function specifications which involve the use of an elipsis ("..."} in the param'eter
list of the specification {cf. AND in Section 5) are to be implemented as nospread function

‘objects. All other VM functions are to be spread function objects.

The parameter hames of a function object must be distinct Literal Atoms other than NIL and
f'lf;"aﬁd they must be available to the implementor at application time so that they may be used
. to'set up an association between the names and the values to be used during a particular
computation. For spread type function objects, the implementor must be able to obtain an n-
tuple of parameter names. This is called the function object’s "parameter n-tupte”. For
nospread type function objects, the implementor must be able to obtain a single parameter
name, simply called the function object’s "parameter”. S

The next two Sections present the details of the parameter/value association mechanisms
and processes. :

The body of a function object specifies a computation in terms of the values of the
parametérs. The body may be written either in some language which is directly executable
by the processor which is running the Virtual Machine, or it may be written as an Interlisp
form which must be interpreted by the Virtual Machine. A function object is called "directly
executable” if its body is of the first type.

Most of the functions specified in this document will be implemented as directly executable
function objects which have been hand-coded by the implementor. When. executed, this
code should perform the computations specified in the corresponding VM function
specification. ‘ _ ‘ '

The only kinds of function objects the user himself can create are those that are interpreted.
~ However, most Interlisp systems provide a compiler which will convert an interpreted
function object into a directly executable one. The VM does not require the existence of a

“compiler. However, it does recognize that a compiler may exist’. ‘
Finally, some function objects specify a variable binding environment in which the body is to
be evaluated. Such function objects are called FUNARGs. FUNARGs have all the properties
of other function objects in addition to specifying a Stack Pointer (cf. Section 17) ‘which

specifies additional variable bindings to: be used during evaluation of the body of the
FUNARG. o :

Definition: A "function object" is an object with the following properties:

(1) Thereis a flag specifying whéther fnobj is of eval or noeval type.

The VM puts certain constrainis on the compiler if one exists. See Section 20.

37

(2) :Elther a parameter n-tuple or a parameter is available to the implementor,
' :_dependlng on whether the function is a spread or nospread function. .
. object. , _ , o

(3) There. :s a body, obtainable by the |mplementor, whlch deflnes some
computatlon either wath directly executable code or w:th a form to be
mterpreted . : :

{4 For FUNARG fu'nction objects, there is a Stack Pointer Which specrifies‘
- additional variable bindings. -

“The function objects do not constitute a distinct class of objet:ts__. They inay be r_eprésen_ted
in a variety of ways (as dichssed below) and may exploit the presence of other data t:.fpe.s'.’3

Deﬂnmon A "SUBR "is a directly executable function object written by the lmplementor An
"EXPR" is either an interpreted function object or a FUNARG A "CEXPR" is a directly
executable functlon object generated by the compiler. _

We now consider how function objects are represented.
SUBRs may be represented as any objects the implementor desires, provided:

(1) The implementor can recognize such objects as hand- coded function
objects.

(2) The ob_ject can be determined to be of eval or noeval type (as appropriate).

(3) The parameter n-tuple or parameter (as appropriate) can be obtained from
" the object (by the |mplementor)

, (4) The body of the functlon object can be obtained and directly executed.
Addmonal constramts on the mpiementatlon of SUBRS are listed in Section 19,

EXPR functlon ob;ects other than FUNARGs are represented by proper lists whose first
elements are either the Literal Atoms LAMBDA or NLAMBDA. Any List Cell whose CAR is
LAMBDA is considered to be a non-FUNARG EXPR function object of eval type. Any List
Cell whose CAR is NLAMBDA is considered to be a non-FUNARG EXPR function 6bject of
noeval type. If fnobj is a non-FUNARG EXPR function object as above, then fnobj may be
assumed to be a proper list of length at least 2. The second element of fnobj determines
"~ whether fnobj is a spread or nosprea ction object. If the second element of fnobj is NIL
or a List Cell, fnobj is a spread f ion object and its second element may be assumed to be
a proper list of Literal Atom parameter names: the parameter n-tuple of fnobj is just the n-
tuple consisting of the successive elements of the second element of fnobj. If the second
element of fnobj is not NIL or a List Cell, then fnobj is a nospread function object and its
second element may be assumed to be a Literal Atom to be used as the parameter of fnob'|9.

— = = s e e e we mw mm we BE ma e e e e m mm mm m i = em e e wm mm

For example, in Interlisp-10 Arrays are used to hold directly executable code.

However, if the Literal Atom is T, the implementor may choose to cause an error when the function
objecx is applied. :

The body of an. EXPR 'functio_n objectis just the proper list of elements after the second. This
proper list is tréated as a proper list of forms to be evaluated as specified in the next Section.

CEXPR- fdhéﬁon oﬁiécts may be representéd as any objects the implementor desires,
provided that the restrictions noted in Section 20 are met.

Finally, FUNARG function objects are represented by proper lists. Any List Cell whose CAR
" is the Literal Atom FUNARG is considered to be a FUNARG function object and may be
" assumed to be a proper list of length 3. The eval/noeval type, spread/nospread type,
parametér n-tuple/parameter and the bedy of the FUNARG expression are (recursively)
those of the second element of the proper list. The third element of the proper list is
assumed to be a Stack Pointer. The details of the use of this Stack Pointer are presented in
the next Section. ' .

We can summarize the above discussion in three definitions.

Definition: "x is a function object" if either (1) x is a SUBR or CEXPR (which we assume the
implementor can determine) or (2) if LISTP[x] and either CAR[x] = LAMBDA or CAR[x] =

. NLAMBDA (in which case x is a non-FUNARG EXPR) or (3) if LISTP[x] and CARI[x] =
FUNARG (in which case x is a FUNARG EXPR).

Definition: "x is of eval type" if x is a function object and one of the following three
statements is-true: (1) x is a SUBR or CEXPR of eval type (which we assume the implementor
can-determing) or (2) if x is a non-FUNARG EXPR and CAR[x] = LAMBDA or (3)ifxis a
FUNARG EXPR and CAR[CDRIx]] is of eval type. "x is of noeval type" if x is a function
object and not of eval type. - : .

Definition: "x is a spread function object” if x is a function object and one of the following
three statements is true: (1) x is a SUBR or CEXPR spread function object {which we
assume the implementor can determine} or (2) if x is a non-FUNARG EXPR and CAR[CDRI[x]}
is either NIL or a List Cell or (3) if x is a FUNARG EXPR and CAR[CDR[x]] is a spread
function object. "x is a nospread function object" if x is a function object and not a spread
function object. : '

ARGTYPE[fnobj] If LITATdM[fnobj], let fnobj be GETD[{fnobjl.

If fnobj is not a function object:
- Return NIL; o
. 8lseif fnobj is of eval/spread type:

Return 0; -

elseif fnpbj is of noeval/spread type:
Return 1; . _ ' :

elseif fnobj is of eval/nospread type:
Return 2; _

elseif fnobj is of noeval/nospread type:
Return 3. ’

FNTYP[fnobj] If LITATOM[fnobj]., let fnobj be GETD[fnobi].

If fnobj is not a function object:
return NIL; :
elseif fnobj is a SUBR:
If fnobj is of eval/spread type, return SUBR;
elseif fnobj is of noeval/spread type,.return FSUBR; -
elseif fnobj is of eval/nospread type, return SUBR*;
else (fnobj is of noeval/nospread type), return FSUBR*;
elseif fnobj is a non-FUNARG EXPR:’

SUBRP{fnobj]

EXPRP[fnobj]

._If fnobj is of eva1/spread type, return EXPR;

‘“ ‘e1se1f fnobj is of noeval/spread type, return FEXPR; \:'

elseif fnobj ‘s of ‘éval/nospread type, return EXPR*; S
else (fnobj is of noeval/nospread type) return FEXPR*;
‘elseif fnobj-is a FUNARG. EXPR': : . S SIS
Return FUNARG; G
else (fnobj is a CEXPR):
If Tnobj is of eval/spread type. return CEXPR; .
‘elseif fnobj is of noeval/spread type, return CFEXPR
elseif fnobj is. of eval/nospread type, return CEXPR*; :
.else (fnobj .is of noevai/nospread type), return CFEXPR?;

If LITATOM[fnobi], let fnobj be GETD[fnobiJ.

If fnobj is a SUBR, return T:
else, return NIL. :

If LITATOM[fnobjl, Tet fnobj be GETD[fnobj].

If fnobj is a List Cell that does not represent

“a SUBR or a CEXPR,

return T;
else, return NIL.

Note: EXPRP actually recognizes more than mere!y the EXPRs, since it will return Ton Ilsts
that do not have LAMBDA or NLAMBDA in their CARs {(as long as such a list does not
represent a SUBR or CEXPR.) Since FNTYP actually recognizes only those EXPR function -

T.

CCODEP[fnobj]

ARGLIST[fnobj]

NARGS[frobj]

objects described in the text above, it is possible for FNTYP[fn] to be NIL while EXPRP[fn] is

If LITATOM[fﬁobj]. let fnobj be GETD[fnobi].

If- fnob] is a CEXPR, return T;
else, return NIL.

If LITATOM[fnobi}.
Let fnobj be OR[GETD[fnobj];GETP[f nobj EXPR]].

If fnobj is not a function object:

If LISTP{fnobj] and CAR[fnobj] is a member of
GETTOPVAL[LAMBDASPLST], return CAR[CDR[fnobi]l]:
else cause error 17 with culprit
CONS["Args not available:";fnobjl;

elseif fnobj is a FUNARG function object:
Return ARGLIST[CAR[CDR[fnobj]]]:
glseif fnobj is a nospread function obJect
Return the parameter of fnobj:
etseif fnobi is a spread function object:
If fnobj is a (non-FUNARG) EXPR:
Return CAR[CDR[fnob]]]

else (fnobj is a SUBR or CEXPR};

Create and return a new proper list of tha
successive parameter names in the parameter
n-tuple of fnobj.

If LITATOM[fnobj], let fnobj be GETD[fnobj].

If faobj is not a function obhject,
return NIL; N

elseif fpobj is a SUBR or CEXPR: _ o
If fnobj is of nospread type, return 1; h

else, return the Integer representing'the3number
of parameters in the parameter n-tuple of fnobj:
elseif fnobj is a FUNARG function object: -

"Return NARGS{CAR[CDR[fnobji]]l; B

~else (fnobj is a non-FUNARG EXPR):
‘If fnobj is of nospréad type, return 1;

s ‘else, return the Integer -reprsenting the length of

the (assumed) -proper 1ist CAR[CDR[fnobj]]. '

17. STACK POINTERS

The Interlisp VM provides a control and access environment structure modeled on the one
described by Bobrow and Wegbreit in [1]. The structure is described here, as in[1],asa
collection of linked "frames". Although frames are meta-objects, the VM provides a hew
~ ¢lass of objects, Stack Pointers, as a means of referencing them. S

1t should be emphasized that the Interlisp structure is not an exact implementation of the
Bobrow-Wegbreit model, but a minor variation of it.. The most important difference is that the
available frame descriptors are somewhat more restricted and behave different!y thanin[1].

We present the following (very brief) overview of the Interlisp stack structure to set the stage
for the specifications below and to introduce the terminology to be used.

Function objects and PROG forms share an important property: They are the only objects -
whose evaluation requires the allocation of storage to hold the values of named local
variables. The data structure represented by this allocated storage is called an "access
environment" because it is through this structure that the values of variables are accessed.
We cali function objects and PROG forms »uniform access modules" since their evaluation
is responsible for constructing the access environment.

We use the word "activation” to refer to a spegcific instance of the process of evaluating such
a module. ‘An activation of some module requires information in addition to the bindings of
named locals. Therefore, associated with each activation of a uniform access module is a-
meta-object called a "frame extension” which in some sense "contains” all of the access
and control information necessary for that activation. ' :

This information. includes a pointer to a meta-object which binds variable names to values.
Such a meta-object is called a "basic frame” and the field in the frame extension which
contains it is calied-the "blink? or "hasic frame link" of the frafme extension. Ancther field in
the frame extension, the "alink” or "access link", contains another frame extension which
recursively specifies the bindings of all non-local variables. A third field in the frame
extension, the "clink” or "control link", points to the frame exiension associated with the
activation to which control is to return when the current activation is terminated. Also
included in a frame extension is a field which specifies the process associated with the frame

(i.e.; the computation which is being run irn the frame) and which coniains storage allocated

4

for unnamed intermediate results and internal control'®,

It is convenient to separate the local binding information (contained in a basic frame) from
the more global access and control information (contained in a frame extension). One
reason is that basic frames are of fixed size depending upon the number of locals to the
module, while the storage allocated to frame - extensions depends upon how many
temporaries are needed during the computation.. Another reason is that it is useful to allow
two processes to communicate by sharing variables in a common basic frame.

. Every activation of a uniform access module is associated with a basic frame and frame
extension. Because a frame extension specifies the basic frame with which it is used, it is
sufficient to speak merely of the frame extension associated with any activation.

Convention: When speaking informally we will sometimes use the word "frame" to mean
"frame extension". ' ‘ o

We can now formally specify the properties of the meta-objects we have introduced above.

Definition: A "binding" is a meta-object containing two fields. The first field is called the
"argname" field and contains an object, usually a Literal Atom used as a named local-
variabie. The second is called the "argval” field and contains an object, usually interpreted
as the value of the corresponding variable, '

Defihfﬁon.- A "basic frame of size n (n> = 0)" is a meta-object with the following p_roperties:

(1) There are n bindings, each identified by :an‘ 'in'teger between 1 and n
{provided n>0).

(2) There is a field, called the "frame name” field, which may contain an
arbitrary object.

Definition: A "copy of a basic frame" means "a new basic frame of the same size as that of
bframe, and containing the same sequence of argnames and argvals and the same frame
name.” ' :

Definition: “(Literal Atom) var is bound to val in (basic frame) bframe" if there is a binding in
bframe with argname var and the last such binding (i.e., the one identified with the largest
integer) has argval val. val is said to be the "value" of var in birame. (It is possible for var to
be the argname of two or more bindings in bframe. The last such binding is the only one
considered. This is because the search for bindings is usually implemented to start at the
back of the basic frame and move up the stack toward the front of the basic frame.)

Definition: A "frame extension" is a meta-object with the following prdperﬁes:

(1) There is afield, called the "blink" field, containing a basic frame.. |

In this field we include the "continuation point” for the module when its activation has been
suspended for any reason. The continuation point merely indicates where in the module execution’is to
resume when the activation is continued. Usually the continuation point is just the instruction counter forthe

- code running the process associated with the activation. The Bobrow-Wegbreit paper makes explicitmention
of the continuation point field. We include it in the “temporaries” simply because its content is entirely
determined by the implementor.

42

. “There is a field, called the "alink" field, contalnmg 4 frame extensmn or
NIL.

There is a field, called the "clmk“ fleld contalmng a-frame extensnon or

. (8)
o NIL

| 2 (4)- There isa ﬁeld called the "temporanes“ field, contammg an unspemﬁed o
~ ... 'meta-object which specifies all other mformatlon specuflc to the activation
associated wath the frame extensnon :

; =;-A NlL alink indicates that the top-level values of all non- locals are to be used. A NIL clmk
' "mdlcates that there is no higher process and control cannot return from the frame.

, _Defmmon There is a distinguished frame extensxon called the "top-level frame extension”
_,whlch is associated with the top-level process. The process is specified as follows:
“"Repeatly execute (without termination} EVALQTI[]." The alink and cllnk of the top-level
frame extension are NIL. All other fields are unspecmed

. There can be frame extensions other than the top-leve! one with NIL alink and/or clink. l
_particular, one cannot necessarily reach the top-level frame extension by simply ascending
through the alinks or clinks of successive frames from some starting frame. However, we
- assume the implementor can always obtam the (onglnal) top level frame extension.’

l 'Defrmrlon The frame {or process or modulg) from which (or for whlch) the cpu is currently
executing instructions is called the “actlve" frame (or process ormoduie}.

'The VM requires the-existence of a field, called the "active frame extens:on" f:eld which
: always contains the:active frame. This field is available only to. the implementor. - Except
during interrupt processing, the physical machine upon which the Virtual Machine is realized
is always executing the instructions for the process associated with the frame in this field.
Initially, the active frame extension field contains the top-level frame extension. The function
calling and return mechanisms (specified in the next Section) are responsible for
‘maintaining the contents of the active frame extensmn field.

Definition: The symbol "*actframe*" is an abbreviation for the phrase "the contents of the

active frame extension field". Thus, "Let x be *actframe*" is an abbreviation for “Let x be

the contents of the active frame extension field.” Similary, "Set *actframe* to x" is an .
abbreviation for "Set the contents of the actwe frame extension field to x." (The sllght pun

operating here is quite useful.)

If the active process must invoke a "lower" module then control passes to the lower modute
(i.e., a new frame extension is built to hold the activation information associated with the
lower module and that frame is stored in the active frame extension field) and the previously
active process (or frame) is said to be "suspended" awaiting the result of the invoked
computation. When a suspended process (or frame) is "reactivated” (with some specified
result) then the computation in that module continues where it left off, using the result as the
value of the lower module. The point from which processing is to continue is ‘called the
- "continuation point”.

We assume that all control information for the process is maintained in the frame extension.
Thus, we no not usually make explicit statements in -our specifications regarding sa\nng
continuation points before changing the actwe frame.

Occassionally we will refer to a"copy" of the mef-a-obje.ct in the temporaries field of.a frame
extension. ' T

Definition: A "copy, tempcap, of the contents, -temp, ‘of the temporaries field of a frame
extension, frame" is a meta-object containing the same information as temp but which wili
not be directly affected by continuing the computation in frame. That is, if after obtaining
tempcop we allow the computation in frame to continue (which will cause the information in
temp to be changed as the computation proceeds) we could get the same behavior (subject
to certain obvious but hard to state conditions on the extent to which the computation side-
effects the rest of the VM) by replacing the (now modified) temporaries field of frame by
tempcop and resuming the computation in frame again. -

When a specification constructs a new frame extension without specifying the contents of
the temporaries field, the same specification will (almost immediately) make the newly
constructed frame the active frame. We mean to imply that the temporaries field of the frame
should be so initialized so that the process associated with the frame is that specified after
the frame becomes the active frame, : : ' SRR

The following concept is analogous to CDR chains from List Cells. . It will allow us to talk
‘about the sequence of frame extensions in a chain starting with a given frame extension.

Definition: The "alink chain from frame", where frame is a frame extension or NIL, is that
ordered sequence of frame extensions defined recursively as follows: The "alink chain from
NIL" is the empty sequence. The "alink chain from frame extension frame” is that sequence
obtained by adding frame to the front of the chain of alinks from the alink of frame. ‘We
assert the analogous definition of the "clink chain from frame". The "length" of such a
chain is just the number of frame extensions in it. Note that if the chain of alinks (or clinks)
from frame has non-zero length, then the first element of the chain'is always frame.

The manipulation functions specified below insure that no infinite alink/clink chains can be
created (i.e., .no circular pointer structures through the alink/clink fields can. be
constructed). o S S : :

Definition: "var is bound on the access chain from frame"” means "some frame extension on
the access chain from frame has a basic frame binding var." The "vaiue of var on the
access chain from frame"” means "the first value of var found by inspecting the successive
basic frames on the access chain from frame, starting at frame." . o

Definition: "(frame extension) x is immediat'ely below (fréme extension) y" if y is the alink or
clink of x. The relation "below" (applied to frame extensions) is just the transitive closure of

"immediately below". We extend this notion to the processes or activations associated with
frame extensions as well, :

We allow the user to reference a frame extension with a new class of objects:

Definition: A “Stack Pointer is an object having one field which contains a frame extension
or a special mark, calied the "released mark” (see below). '

Frames are usually implemented by allocating storage on a stack of finite length. The stack .
space occupied by the representation of a frame extension cannot be reclaimed as long as it
is possible for control to reach it. In particular, it cannot be reclaimed if the user has a Stack
- Pointer which references the frame extension. Therefore, we allow the user to explicitly
sever the link between a Stack Pointer and the frame extension it contains. This is done by

AT AT

oo

d _osmng a specual meta-object called the "refeased mark", in the Stack Pointer.- The
function RELSTK does this. Of course, whether the storage associated with the frame
extension can then be reclaimed stlll depends upon whether it is p0851ble for control to
reach the-frame extension. ,

Definition: The "released mark" is a special meta-object which is distinct from any frame
extension and which can be deposited in the field of a Stack Pointer. Its presence insucha

 field indicates that the Stack Pointer no longer references a frame extension.

Section 18 will formally describe the functions which are respon51b!e for actlvattng modules
and interpreting the contents of frames as environments. We now proceed with the
spec:flcat:on of the functions which manipulate Stack Pointers as data-objects. :

Because it is inconvenient {(and causes the allocation of additional storage) to obtain a Stack
Pointer to reference a particular frame extension, we allow a variety of objects to describe
certain frame extensions. In general, T and NIL describe the top-level and current frame

~ extensions (respectively). Other Literal Atoms describe the lowest frame extension with that

Literal Atom as its frame name, and Integers describe the frame extension a given distance
down the alink or clink chain (depending on the algebraic sign). We formalize this beiow in
another definition which takes as a parameter a meta-variable name and assigns. that meta-
variable a new value.

Definition: The phrase "get frame extensnon x", where x denotes a meta-variable which
denctes an cbiect means: ‘

"Let obj be the object denoted by x.

Let actstkptr.be a Stack Pointer containing *actframe*.

(Below we will call VM functions to interrogate the

stack and, since we cannot call such a function on *actframe*
directly (since frame extensions are meta-objects) we must assume tha
existence of the redundant stack pointer actstkpter.)

-If STACKP[objj:
If RELSTKPLobj], cause error 30 with culprit __1
else, let obj be the frame extension contained in obj;
elseif obj = T, let x be the top-ievel frame extension;
elseif obj = NIL, et x be *actframe*
elseif LITATOM[obi]:
If STKPOS[obj;-1;actstkptir], let x be the frame axten51on
contained in STKPOS[obj;-1i:;actstkptr]:
else, cause error 19 with culprit obj:
elseif obj is a Number:
If STKNTH[obj:actstkptr], let x be the frame extension
contained in STKNTH[obj;actstkptir]:
else, cause error. 19 with culprit obj;
else, cause error 19 with culprit obj."

Note that if we say "Get frame extension frame" where frame is some object such as a Stack
Pointer, NIL, T, a function name or an Integer, then thereafter frame denotes a (meta-object)
frame extension (or else an error was caused). The frame extensions described by objects
other than T and Stack Pointers are defined relative to the frame extension which is running
the stack function which uses the "get frame extension” notation (i.e., the frame extension
which is *actframe*). This is at variance with:the Bobrow-Wegbreit model which computes
these frame extensions relative to the frame which called the stack function. This means

that the frame descriptors here behave somewhat dtfferently than in the Bobrow-Wegbreit
model.

In order to avoid creating Stack Pointers most stack functions can be made to 'r_'eu»sjg an
existing Stack Pointer when one-is given. We introduce the following definition to make this:
convenient. - e T B ST _ e
Definition: To "return a Stac'k Pointer containing frame {using stkptr)",-where franie.is'a -
frame extension and stkptr is an arbitrary object, means: : :
“If STACKP[stkpir]: e
~ ‘Set the contents of stkptr to frame.

Return stkptr; _
else, create and return a new Stack Pointer containing frame."

Note that after replacing the contents of stkptr with frame, the storage associated ,w:ﬁ_h the
previous contents of stkptr may be subject to reclamation. '

STACKP[x] - - EIf“g is a Stack Pointer, -return x;
S e else, return NIL. '

STKPOS[name;n;frame:stkptr] :
o ' _ Get-frame extension frame.
RELSTK[stkptr].
If-n is-NIL, let n be -1; .
elseif not FIXP[n], Tet n be FIX[n].
If n=0, Tet n be 1.
If p<0, let chain be the clink chain from frame;
elseif n>0, let chain be the alink chain from. frame.
If there are at least In} elements of chain ' :
containing basic frames with frame name pame:
Let newframe be the inlth suck element.
If newframe is *actframe®,
cause error 19 with culprit NIL..
Return a Stack Peinter containing newframe (using stkptr);
eise, return NIL, ' S ' ' E

STKNTH[n;frame;stkptr] : .
Get frame extension frams.
RELSTK[stkptr].
If o is NIL, Tet n be ~1;
elseif not FIXP[n], let n be FIX[n].
If n=0, let n be 1, o .
IT n<0, Tet chain be the ciink c¢hain from frame:
élseif n>0, let chain be the alink chain from frame.
If n=0:
If frame is *actframe*, .
cause error 19 with culppit NIL:
else, return a Stack Pointer containing Frame
(using stkptr); '
elseif the length of chain doss not exceed |nj,
return NIL; : ’
else, return a Stack Pointer tontaining the |n|+1st
glement of chain (using stkptr). : :

MKFRAME[frame:a]ink;c11nk;flg;stkptr]

o Get frame extension frame.
RELSTK[stkptr]. : _ _ .
IT alink s NIL, let alink be the alink of frame;
else, get frame extension alink.”)
If ctink is NIL, let clink be the clink of frame;
else,”'get frame extension clink. v

Let bframe be the basic frame of-fbama.'
If fig:

Let bframe be a copy of the basic frdme bframe.

Create a new frame extension, newframe, such that:
The blink field of newframe contains bframe.
The alink field of newframe contains alink.
The ¢link field of newframe contains clink.
The temporaries field of newframe contains a copy of the
meta-object in the temporaries field of frame.

Return a Stack Pointer containing newframe (using stkpir).

SETALINK[frame;newframe;fig] , ,
Let frame' be frame
Let newframe' be newframe.
Get frame extension frame.
Get Trame extension newframsa.
~ If the alink chain from newframe
" ‘contains frame, return NIL.
Set the alink fTield of frame to newframe.
If fig, RELSTK[newframe 1.
Return frame'

SETCLINK[frame newframe f1g]
{Same specification as for SETALINK except
use "clink" for each occurrence of "alink".)

STKNARGS[frame] Get frame extension frame.
Represent and return as an Integer the size
of the basic frame of frama.

STKARGNAME[n frame]

. Get frame extens1on frame.

Let bframe be the basic frame of frame.

If LITATOM[n] .
If there is a binding in bframe with argname n,

return n; _ S

else, cause error. 19 with culprit n;

else:
If not FIXP{n]. let n be FIX[n].
If n>0 and there are at least p bindings in bframe,
_ return the argname of the nth binding in bframe;
else, cause error 19 with culprit n.

STKARG[n frame] Get frame extension frame.
Let bframe be the basic frame of frame.
If LITATOM[_] :
If there is a binding in bframe with argname n,
return the argval of the last such binding;
else, cause error 19 with culprit n:
else:
If not FIXP[n], Yet n be FIX[n].
If n>0 and there are at least n b1nd1ngs in bframe,
return the argval of the nth “binding in bframa-
else, cause error 19 with culprit n.

SETSTKARGNAME[n; frame;nams]
‘Get frame extens1on frame.
Let bframe be the basic frame of frams.
CIf LITATOM[n]
If there is a binding in bframe with argname n n:
Set the argname field of the last such b1nd1ng to name.
Return name;
else, cause error 19 with culprit n;
else: '

47

. If not FIXP[n}, let-n be FIX[n]. - .- -)
If n>0 and there are at least n hindings in bframe:
. Set.the argname field . of the nth binding
in bframe to nams. S S
. .Return name: I ' :
else, cause -error 19 with culprit:n,

SETSTKARG[n;frame;val] ‘
: ' Get frame extension frame.
- Let:-bframe be the basic frame of frame.-
If LITATOM[n] . B
~ If there is a binding in bframe with argname n: = :
Set the argval field of the last such binding to val,
Returr val; U et
~ _else, cause error 19 with culprit n:
else: S - ' R
If not FIXP[n], Tet n be FIX[n].- :
If n>0 and there are at least n bindings in bframe:
Set the ‘argval field of the nth binding in bframe to val.
Return val; T R
else, cause error 19 with culprit n.

STKNAME[frame] Get frame extension frame. ‘ - ' S
Retura the contents of the frame name field
of the basic frame of Fframe.” '
RELSTKP[stkptr] If STACKP[stkptr] and stkptr contains the released mark, =
return stkptr; D
else, return NIL.

RELSTKEstkptr] If STACKP[stkptr], ‘ _
Set the contents of stkptr to the released mark.
‘Return stkptr. . - o L

CLEARSTK[f1g] - If fig: R ' '
_ Create and -return a new proper list of

all existing Stack Pointers that do not
contain the released mark;

else: S

For every existing Stack Pointer, 'x, that does
not contain 2 released mark, : .

set the contents of x to the released mark.

Return NIL. : :

Definition: A “copy of the alink chain of startframe to endframe”, whiere startframe and
endframe are frame extensions and endframe is in the alink chain of startframe, means:

"If startframe=endframe: -

A new frame extension with: :
Blink set to a copy of the basic frame of startframe.
Alink. set to the aTink of startframs. '

Clink set to the clink of startframe.

Temporaries set to a copy of the temporaries of staftframe.
else: : '

A new frame extension with:
Blink set to a copy of the basic frame of startframe.
Alink set to a copy of the alink chain of the alink.
of startframe to endframe. ' L
Clink set to the clink of startframe. ' .
Temporaries set to a copy of the temporartes of startframe.”

COPYSTK[startframe;endframe]
' ’ Get frame extension startframe.

48,

_Get frame extension endframe.

If endframe is not in the alink -chain from startframe:
Cause error 19 with culprit NIL.

Let newframe be a copy of the alink chain from

startframe to endframe. o .

Create and return & new Stack Pointer containing newframe.

FRAMESCAN[var;frame]
' _ Get frame extension frame. .
If the basic frame of frame contains a hinding
with argname var: :
Let 1 be the integer associated with the
last such binding in the basic frame of frams.
Represent and return as an Integer the integer i;
else, return NIL,- .

STKSCAN[var;frame;oldptr]
Get frame extension frame.
RELSTK[oldptrl. - .
If there is a frame extension on the alink chain
from frame which has a binding with argnams var:
Let x be the first such frame extension.
Return a stack pointer containing x (using oldptr):
else, return NIL.

STKNTHNAME[n; frame] ‘
S : Let actstkptr be a Stack Pointer containing *actframa*.
Return STKNAME[STKNTH[g:frama;actstkgtr]]. '

Note: This function is so frequently used that it is best implemented so as to avoid the
unnecessary construction of a new Stack Pointer by STKNTH. ‘

18. EVALUATION

This Section specifies the Interlisp interpreter and how the process of interpretation
interacts with the access and control stack described in the previous Section.

The VM allows the user to discover certain information about the internal state of several VM
functions. These functions are EVAL, APPLY, COND, PROG, PROGN and PROG1. This
state information is maintained in several fields associated with particular activations of the
functions. We call these fields the "blip fields".

Definition: A "blip field" is a field used to store information regarding the internal state of the
VM functions EVAL, APPLY, COND, PROG, PROGN and PROG1. These functions are calted
the "blip-using functions”.. There are four types of blip fields. Each type of blip field is
named by a Literal Atom and may contain any object. The name of each type of blip field and
its usual contents is given below: '

blip field name - usual contents

FN any function or function object

ARGVAL . any object

FORM any form

TAIL any proper list of forms (or clauses -- see COND)

There may be at most one *FN*, *FORM*, and *TAIL* blip-field-for any activation of a blip-
using function. There are generally avariable number of *ABGVAL" fields.

Not every activation of a blip-using function will necessarily"have'a_l"bl_lip field associated with
it. The specifications of the blip-using functions explicitly deal -with the allocation and

manipulation of blip fields. The functions BLIPSCAN, BLIPVAL, and SETBLIPVAL (defined in
Section 19) allow the user to access and replace the contents of these fields. PR

Basically, these fields just represent those temporaries necessary to actually implement the
blip-using functions. For example, when EVAL is computing the values of the arguments to
be supplied to some function, it uses the *FN* field to hold the function which will
(ultimately) be evaluated, the *ARGVAL* fields to hold the argument values already
computed, the *FORM* field to hold the argument form currently being considered, and the
TAIL field to hold the proper list of argument forms not yet considered. As we will discuss
in the next Section, it is possible to implement the blip-using functions in such a way that
these fields are literally local variables bound in a basic frame. L

To make it convenient to refer to the contents of thé,e_‘;é fields we make the following
convention. ' S ' :

Definition: The symbol "*fn*", used in the context of -some activation of a blip-using
function, is an abbreviation for "the contents of the *FN* field associated with this
activation". We make the analogous conventions for *form* and *tail*. (We will not need
such a convention for the *ARGVAL* fields.) :

We now begin the formal account of how a form is evaluated. This account essentially
depends on two fundamental JIssues: .the way local variables are bound and the way
functions-are called and return results. These concepts are formalized belqw._

We first specify how the variables in a module are bound to their values for a particutar
activation of the module. This is done by constructing a basic frame from the module’s
name, the associated function object, and a proper list of forms supplying the arguments.
This procedure is also responsible for associating and maintaining the blip fields for
activations of EVAL and APPLY. . SR '

Definition: To construct a "new basic frame, x, from fnname, fnobj, and arglist”, where x
denotes a meta-variable, fnname is a Literal Atom, inobj is a function object, and arglist is a
proper list of k forms, the following procedure is followed: ' e

 "Create and associate a new *FN* field, a new *FORM* field -

- and a new *TAIL* field with this activation of the blip-using function
using this definition. C o I
Set *fn* to fnname.

If frobj is a nospread function object of noveval type: -
" Let k be 1. - o ' '
Create and associate a new *ARGVAL* field with this
‘activation. ' ' :
Replace the contents of this *ARGVAL* field with argtist.
else (we must consider the successive elements of arglist):
Set *tail* to arglist.
For i from 1 to k do the Tollowing:
Set *form* to CAR[*tail*]. S
If fnobj is of noeval type, let val be *form*;
else, let wval be EVAL[*form*]. . o
Create and associate a new *ARGVAL* field with this

50

activation, and replace the contents of this field by val.
Set *tail* to CDR[*taii*]. o ‘

(We-~have now stored all of the*argument-values“in‘g new- *ARGVAL*
ields and are prepared-to build a suitable basic frama.) : o

In the following, consider the E;FARGVAL'Wfields:in-the'revarsérordar

of their creation, i.e., let the 1st *ARGVAL* field be the one most
recently created “and -associated. with this actdivation, and the kth L
. *ARGVAL* -field be the one first created and associated -with .this .
“activation.. . .) h o . - S

‘(We must now inspect the contents of the *FN* field in case it has
‘béen modified (with SETBLIPVAL) during an interrupt or a lgwer call to .
CEVALLY ¢ ' S DS - vor &’ 1 to

Let Tnname be *in*.

If fnname.is a function or function object: - - -
(We only actually build a basic frame, bframe, if fnname s
still a function or function object. If -the contents of the

. *EN* field was replaced by some other kind of object,
_ po. basic frame is constructed anrd special-action ‘is taken
_by. the procedure which employed this definition.) '

If fnname is a function:
Let Tnobj be GETD{fnname]; ‘
elseif fnname is a function object:
) Let fnobj be fnname.

" If fpobj is a nospread function object:
Let param be the parameter of fnobj.
If fnobj is of .noeval type:
Create a new basic frame, bframe, of size i.
Let the frame name of bframe be fnname.

Let the binding in bframe have argname param and argval the
contents of the 1st *ARGVAL* field associated with this
activation (or NIL if k i8 0).. -~ : '

-~ _else (fnobji is of eval type):
Create a new basic frame, bframe, of size k+1.
Let the frame name of bframe be fnname.
For i from 1 to k do the following: s .
Replace the argname field of the ith binding in
bframe by some unspecified object or meta-object
other than a Literal Atom. :

Replace the argval field of .the ith binding in ° . _
_pframe by the contents of the k-i+lst *ARGVAL* field. :
Let the k+lst binding in bframe have argname param-and argval the

representation of k as an Integer. ' B o
else (fnobj is a spread function object): .
" Let n be the number of parameter names in the parameter n-tuple
of ‘fnobj and let param; (1=<i=<p) be the ith component of this
n-tuple. :
Create a new basic frame, bframe, of size n.
tet the frame name of bframe bhe fnpame, '
for i from 1 to n do the following:
Replace the argname field of the ith binding in
bframe by paramy. - : : ‘
If i =<.k:. _— o '
Replace the contents of the argval field of
the ith binding in bframe by the contents of the
k-i+1st *ARGVAL* field associated with this activation.
else: . o :
Replace the contents of the argval field of the ith

51

binding in bframe by NIL.
Let x be bframe.”

Note that after.a use of the phrase "construct a new basic frame, basic, from fn, fnobj; and
arglist", new blip fields will be associated with -the frame extension: of .the function
concerned, and, unless the *FN* field does not contain a function or function object, the
meta- vanable basn: will denote a new basic frame constructed as descnbed above

The existence and use of the blip- f:elds (and the ex:stence of the function BLlPVAL) allow‘
DWIM to discover the context in which certain errors occur. In particular, DWIM ¢an find out
the function which is waiting to be called (*FN*), the values of the argument forms already
evaluated (the *ARGVAL* fieids), the argument form currently being evaluated (*FORM?*),
and the proper list of remaining argument. forms (*TAIL*). The function SETBLIPVAL allows
DWIM to alter these fields if the error is dlagnosed so that the interpreter continues with the
evaluation as if no error had cccurred.

Contmumg with the discussion of bound variables, we now make two useful deflnltlons
regardmg references to varlables " S

Definition: A Literal Atom is sald to be a-"local variable" of a function obiect or PROG form if
the Literal Atom is referenced as a variable (see the specifications of EVAL) in the body of
the function object or PROG form, and is always bound in a basic frame at or below the one
in which the function object or PROG form is evaluated. In particular, the local variables of a
function object include its parameter names and the locals. of PROG, LAMBDA and
NLAMBDA expressions appearing (structurally) within the body.-

Definition: A Literal Atom is said to be a "non-local" or "free" variable of function dbiect or
PROG form if it is referenced as a vanable in that form but is not a local variable of the
~ function object or PROG.

We next formalize the notions of function call and return.

Definition: The "resuit of evaluatin'g (or calling) ‘fnname on arglist”, where fri'name is a
function or function object and arglist is either a proper list of forms or a basic frame is the
object denoted by the meta-variable result after the following computation:

"If LITATOM[fnname}:
Let fnobj be GETD[fnnamel;

else (fnname is a function obJect)
Let fnobj be fnname.

If fnobj is a FUNARG function object: '
Let blink be a new basic frame with frame name NIL and 0 bindings.
tet stkptr be CAR[CDR[CDR[fnobj]l].
If not STACKP[stkptr] or RELSTKP[stkptr],’
cause error 19 with culprit stkptr.
Let alink be the frame extension contained in tkgt H
else:
If arglist is a basic frame:
Let bframe be arglist;
else (arglist is a proper list of forms):
(In this case we must construct the appropriate basic frame)
Construct a new basic frame, bframe, from fnname, fnobi, and arglist.
(We must now treat the contents of the *FN* field as though it
is the function or function object to be applied.)
Let fnname be the contents of the *FN* field created and associated
with this activation during the construction of bframs.
If foname is not a function and is not a function object:

52

gt argvals be a new piroper 1ist of the contents of the *ARGVAL*
fipids associated with this activation, in the order of their
creation. T : .
Return FAULTAPPLY[fnname;argvals]:
elseif LITATOM[fnnamel}: - & -
Let fnobj be GETD[fnname];
else (fnname is a function object):
" Let fnobj be fnname.
~ Let blink be bframe. -
- Let alink be *actframe®..

‘Let frame be a new frame extension. such that:
The blink field of frame contains blink.
The alink field of frame contains alink.
The ciink field of frame contains *actframe*;

Set *actframe* to frame. _
If fnobj is a FUNARG function object: :
~ Let result be the result of evaluating CAR[CDR[fnobi]] on arglist.
‘elseif fnobj is directly executable!’ ' ' " o
" Let result be the result of executing the instructions
in the bedy of fmobj; _
eise (fnobi is not directly executable): -
For successive elements, form, dn the (assumed proper list)
body of fnobj: o
Let result be EVAlL[form]. .

Set *actframe* to the clink of *actframe®.”

The preceding definition is only used by EVAL and APPLY and consequently, use of those
- functions (or their variants) are the only way the user can evatuate forms or apply functions.
Thus, user calls to VM functions always have frames associated with them. .
The action of the interpreter, EVAL, on forms other than Literal Atoms, Numbers, and List
Cells is determined by a table, called the "EVAL table": B

Definition: The "EVAL table" is a meta-obiec_:’t which has as many fieids as there are existing
data types. Each field is identified by one the Literal Atom data type names, and may contain
any object. Note that the size of the EVAL table increases with each new user defined data
type. ' ' .

When EVAL encounters a form whose data type is other than one of those mentioned above,
the data type’s entry in the EVAL table determines the actions of EVAL. If the entry is T,
EVAL will return the form as its value. If the entry is a function object, EVAL will apply the
“function. object to the form and return the result as the form’s value. The function DEFEVAL
(specified below) allows the user to modify the entries in this table.

The initial configuration of the EVAL table is that the entries for LITATOM, FIXP, FLOATP,
and LISTP are unspecified (they are never inspected since the behavior of EVAL on such
forms is built-in) and the entry for every other existing data type is T. Whenever a new data
type is created by the user, the associated field in the EVAL table is initialized to T.

EVAL[form] If LITATOM[form]: o _
" If form = NIL or form = T, return form;
else: : :

(We say that form “"has been referenced as 2
variable” in any form whose evaluation might
arrive at this point.) : :

If form is.bound on the access chain from *actframe®,
. Return the binding of form;. .
‘elseif GETTOPVAL[form] = NOBIND:
Return FAULTEVAL[ferm]:
else, return GETTOPVAL]form]
etseif FIXP[form] or FLOATP[form]
Return form;
eliseif LISTP[form] = _
{Note: form is assumed to be a proper- 11st }
If CAR[form] is a function or function object:
Return the result of evaluating CAR[form] on COR[form]:
" else, return FAULTEVAL[form].
else (form is other than a Literal Atom, Number,
or List Cell): .
Let type be TYPENAME|form]
Let fnobj be.the contents of.the type f1eld in the
EVAL table.
If fnobj = T, return form;
else, return APPLY[fnobj;CONS[form;NIL]].

Note: We aséume that EVAL is implemented as a directly executable function (or else
"evaluate fnobj on arglist” would never be a terminating process on-EXPR function objects).

EVALV[var frame]

SET[var;val]

(We asssume var to be a Literal Atom.)

Get frame extension frams.

If there is a frame.extension in the alink chain of

frame with a basic frame conta1n1ng a bind1ng

with argname var:
Return the conteats of the argva] field of the last
such binding in the first such basic frame.

slse return GETTOPVAL[va].

If there is a frame extension, x, in the access
chain from *actframe*, which binds var:
Let bframe be the basic frame of the first such.
frame extension.
Set the argval field of the 1ast b1nd1ng of vapr
in bframe to val,
Return val;

' e!se SETTOPVALIva ;val].

SETQ[var val] (NOEVAL)

.EVALA[form a11st]

Return SET{var EVAL[va]]]

(We assume alist is a proper 11st of List Cells.)
Let n be the temgth of alist. '

Construct a new basic frame, bframe, of sizen..
such that the ith binding)

has argname u and argval v, where u and v are the
CAR and CDR (respect1ve1y) of the ith etement of
alist (1 =< i =< n),

Construct a new frame extension, frame, such that:
The blink field of frame contains bframe.
The alink fTield of frame contains *actframe®.
The ¢link field of frame c¢ontains *actframe*.

Set *actframe* to frame.
Let val be EVAL]form]
Set *actframe* to the cliank of *actframe*

DEFEVAL[type;fno

Return val.

bjl o - :

If type is not the name of an existing data type:
. Cause_error 33 with culprit typse; - o
giseif type is one of the Literal Atoms LITATOM,

FIXP, FLOATP, or LISTP: :

FUNCTION[form;en

gNyEVAL[form;a1j

Cause error 33 with culprit type;
elseif fnobj is NIL: : ‘
"Return the. contents of the type field of the EVAL table;
glse: ' ' o ' ' :
Let oldval be the contents of the type field of
the EVAL table. : ' .
Set the contents of the type field of the EVAL table =
to fnobj. : ’ .
Return oldval.

v] (NOEVAL)
If env=NIL, return form; : ’
elseif STACKP[env]}, return LIST[FUNARG;form;anv]:
eiseif LISTP[env]: I _
~ (We assume gnv 10 be a proper 1ist of n Literal Atoms.) .
Construct a new basic frame, bframe, with frame name
FUNARG and containing p bindings, such. that the’
jth binding, (1=<i=<n) has argname u and argval EVALV[u],
where u is the ith etement of env. -~ -~

Construct a new frame extension, frame, such that:
The blink field of frame contains bframe.
The alink field of frame contains *actframe®.
The clink field of frame contains NIL.

Construct a new Stack Pointer, stkptr, containing frame.'

Return LIST[FUNARG:form:stkptr]i
else, cause error 27 with culprit env,

nk:c1ink;aflg;pflg]

Let. origalink be alink.

Let origclink be clink.
Get frame extension alink.
Get frame extension clink. o
Let frame be a new frame extension such that:
The blink field of frame contains a basic frame
containing no bindings and frame name NIL.
The alink field of frame contains alink.
The clink fieid of frame contains clink.

It STACKP[oRigalink] and aflg, RELSTK[origalink].

If STACKP{origclink] and cf]g.VRELSTK[orjgc11nk].
Save the continuation point for the active frame in
sactframe* so that, if *actframe* is ever reactivated
with result x, this activation will return X.

Set *actframe* to frame.

- Let-val be EVAL[form].

If the:clink of *actframe* is NIL,

cause error 3 with culprit val,
Set *actframe* to the clink of tactframe®.
Reactivate the process in the clink of *aciframe*
with result val. o R

)

RETFROM{frame val;fig]
' Let origframe be frame,
Get frame extension frame.

If STACKP[origframe] and f1g, RELSTK[origframe].

If the c¢link of frame is NIL,

cause error 3 with culprit val.
Set *actframe* to the clink of frame.
Reactivate the process in the clink of frame
with resu1t val.

RETTO[frame val;flg]
Let origframe be frame.
Get frame extension frame.

If STACKP[origframe] and flg, RELSTK[origframe].

Set *actframe* to frame
Reactivate the process associated with frame
with result val.

APPLY[fn arg]1st]
"(Assumg arg1is is a_ proper 1ist.)
If fn is not a function or function object,
return FAULTAPPLY[fn:argtist].

Return the resu1t:of”evé1uating fn on arglist (treating
fn as though it were of noeval typa).

APPLY*[fn argl,argz.. .arg.}
Return APPLY[__ LIST[gggi gggz,.T;gggﬁ]},'

Note: APPLY* is used so frequently it is best lmplemented s0 as to avoid creatmg a proper
list of the arg;’s when possible. For noeval/nospread functlons it is not possible to avmd
creating the llst ‘

ENVAPPLY[fn arglist;alink:clink:aflg; cflg]

Let origatink be alink.

Let origctink be clink,

Get frame extension alink.

Get frame extension clink, ,

Let frame be a new frame extension such that:
The blink field of frame contains a basic frame containing
no bindings and frame name NIL.
The alink field of frame contains alink.
The clink field of frame contains clink.

it STACKP|0P1ga11n] ‘and aflg. RELSTK[bniga11nk].
If STACKP[origclink] and cflg, RELSTK[origclink].

Save the continuation point,ﬁor the active-frame in
actframe so that, upon reactivation with result x,
this activation of ENVAPPLY will return x.

Set *actframe* to frame.

Let val be APPLY[fn;arglist].
If the clink of *actframe* is NIL,

ARG[var;n] (NOEV

SETARG[var;n;val

causé error 3 with culprit val.
Set *actframe* to the clink of *actframe®,
Reactivate the process associated with the clink
of *actframe* with result val. o ‘

AL)

Let n be EVAL[n]. T ‘

If var is not bound on the access chain from
»actframe*, cause error 27 with culprit var.

Let k be the value of var on the access chain
from *actframe®, and let bframe be the basic
frame containing the binding of var to K.

Let size be the size of bframe. S v

If k /= size~1, cause error-27 with culprit:var;
elseif n < 1 or p > k. cause erroer 27 with culprit n.
Return the argval of the nth binding in bframe.

T (NOEVAL)

Let val be EVAL[val].

Let n be EVAL[n]. ' :

1f var is not bound on the access chain from *actframe*,

‘cause errpr 27 with culprit var.

let k be the value of var on the access chain

from *actframe*, and let bframe be the basic frame
containing the binding of var to k.

Let size be the size of bframe. n

If k /= size-1, cause error 27 with culprit var;
elseif n < 1 or n > k, cause error 27 with culprit n.
Set the argval of the nth binding in bframe to val.
Return val.

COND[c]ausei:c1ause2$...c1ausen] (NOEVAL)

(Each clausey 15 assumed to be a proper 1ist of forms
and is called a "clause”.)

Associate new *FORM* and *TAIL* fields with *actframe®.
Let *tail* be the contents of the first argval
field of *actframe®. - :

"{This will be the proper 1ist of gclausey's in
‘the COND form being evaluated). ‘ .

Until *tail* is NIL do the following:
-Let *form* be CAR[CAR[*tail*]].
Let val be EVAL[*form*].
If val is not NIL:
Let *tail* be CDR[CAR[*tail*]].
_Until *taili* is NIL .do the following:
Let *form* be CAR[*tail*].
Let val be EVAL[*form*].
Let *tail* be CDR[*tail*].
Return val.
Let *tail* be CDR[*tail*].
(If control reaches this point, the CAR of
each clausey EVALd to NIL.) ‘
Returan NIL.

PROG[1ocalvars:formy;formy;...form 1 (NOEVAL)

(Note: lgcalvars is assumed to be 2 proper 1ist.)
Let progbody be the argval of the first binding in
the basic frame associated with *actframe* (this will
be the proper iist of arguments to the PROG form

being evaluated). '

Mark the temporaries field of *actframe* so that it can

_be recognized as a frame in which an activation of

PROG is running (see Note below).

57

Let k.be the length of localvars.
For i from 1 to k do the following: :
Let x be the ith element of lpcalvars.
If x is a Literal Atom:
Let vary be x.
Let val; be NIL; N
else (x is assumed to be & proper list with
a Literal Atom in its CAR): - X
Let var;.be CAR[x]. .
Let valy be EVAL[CAR[CDR[x]1].
Copstruct a_new basic frame, bframe, with frame name
*PROG*LAM and contajning k bindings such that the ith
- binding, 1=<{i=<k. binds vary to val;. :

Construct a new frame extension, frams, such that:
The blink field of frame contains bframe. -
The alink field of frame contains *actframe®*.
The clink field of frame contains *actframe*.

Set *actframe* to Trame. : .
Associate new *FORM* and *TAIL* fields with *actframe*.
Let "tail* be CDR{grogbpdy}.

Until *tail* is NIL do the following:
Let *form* be CAR[*tail®*]. _ _
If *form* is not a Litera) Atom, EVAL[*form*].
Lat *tail* be CDR[*tail*].)

Set *actframe* to the clink of *actframe®.
Return NIL.

Note: The following two-functions, GO and RETURN, are used to modify the flow of control
in PROG. They do this by inspecting the stack and reactivating the appropriate frames
(possibly madifying the biip fields used by PROG). Thus, it is important that these two
functions be able to recognize PROG frames. It is not sufficient to assume that the frame
name of such frames will always be PROG. This is because some of the high-level functions
in the Interlisp user support facilities {e.g., the ADVISE feature) may deposit the function
object associated with PROG in the function definition field of another Literal Atom and
activate it by applying that Literal Atom instead of PROG;

!
!

GO[1abel1] (NOEVAL) _ '
' If there is a frame extension in the control chain from
actframe that is marked as a PROG frame (cf. PROG above)
and label is an element of the (assumed) proper 1ist
in the first argval field of its basic frame:

Let progframe be the first such .frame extension.

Let progbody be the contents of the first argval

field in the basic frame of progframg; '
else, cause error 8 with culprit labal.

(If progframe exists then the call to EVAL running in the
frame named frame in the specification of PROG above

is suspended while waiting for the results of the computation
that involved this application of GO.)

Let 10werprogframe be the frame immediately under
progframe (i.e., the frame called frame in the speci-
Fication of PROG above). : '

Let progtail be the terminal sublist of progbody

58

starting with the first occurrence of label in progbody.

Set the contents of the *TAIL* blip field in Jowerprogframe
to progtail. - . Lo
Reactivate the process in lowerprogframe with result NIL

" (i.e., continue the "Untii™ loop rurning in lowerprogframe
just as though the call.-to EVAL had returned NIL).

RETURN[val] If there is a framé extension, frame, in the control chain
a : from *actframe* that is marked as a PROG frame
(cf. PROG abova): : :
Let frame be the first such frame.
1f the clink of frame is NIL,
cause error 3 with culprit frame.
Set *actframe* to the clink of frame.
Reactivate -the computation associated with
~ #ggtframe* with result val.
else, cause error 3 with culprit NIL.

PROGN[formy; fOFmy; ... Tormy] (NOEVAL)
Let val be NIL. : ‘
Associate new *FORM* and *TAIL* fields with *actframe*.
Lot *tajl* be the contents of the first argval
field in the basic frame of wactframe* (this will
be the proper list of forms supplied as arguments to the
PROGN form being evaluated).
Until *tail* is NIL do the following:
Let *form* be CAR[*tail*].
Let val be EVAL[*form*].
Let *tail* be CDR[*tail*].
Return val.

PROGi[forml;formz:...formn] (NOEVAL) - T :
: Associate new *FORM* and *TAIL® fields with *actframe®.
Let *tail* be the contents of the first argval field .
~ in the basic frame *actframe* (this will be the proper tist:
"of forms supplied as arguments to .the PROG1 form being
evaluated). o . '
If *tail* is NIL, return NIL.
Let *form* be CAR[*tail*].
Let val be EVAL[*form*].
Let *tail* be CDR[*tail*].
Until *tail* is NIL do the following:
Let *form* be CAR[*taii*].
EVAL[*form*7.
Let *tail* be CDR[*tail*].
Return val. .
BACKTRACE[framel;framez:f1ags] -
: - “Get frame gxtension frameq.
If frame, is NIL, let frame; be T.
Get frame extension framep.

If not FIXP[flags], et flags be FIX[flags].
Let n be some integer greater than 3 and let
b9, by, .. by be the binary digits so that

tlags = by + bp*2l # ... + by*2l.

1f bu=1, let ¢hain be that subsequence of
ths alink chain from frame; to (and including) .
frame, (or. if frame, is not in frame4's alink chain,
| . the top-most frame extension in frame,'s alink chain)

aise, let chain -be that subsequence of the clink

59

chain from framel to (and including) frame2 (or, if
» © - frame, is not’in frambi“s clink chain, the top-most
frame extension in frame;'s clink chain).

For each frame, frame, in chain, do the following:
Let fn be the frame name of the basic frame of frame:
‘Write (to the terminal and in any format ‘desired)
the following information (provided the conditions
on the b;'s and fn are satisfied): ' '
(1) fn (provided bz=0). : :
(2) both components of each binding in the
basic frame of frame (provided either
(a} bg=1 and not SUBRP[fn]} -
or '
(b) bo=1 and SUBRP[fn]}. . o
(3) names and values of all temporaries. used
by EVAL (provided by=1 and by=0).
(4) names and values of all temporaries
(whether used by EVAL or not) whose values can be
- meanirgly displayed (provided by=1}. '

Return T.

19. RESTRICTIONS ON THE IMPLEMENTATION OF VM FUNCTIONS

There are several important points which should be made relating to the actual
implementation of the VM functions specified in this document. . e

The first concerns the CONS count, and the Large Integer, and Floating Point Number box
count fields. Many specifications use CONS (or LIST) or the numeric functions from
Sections 9, 10, and 11, to’ construct objects for internal use. For example, many functions
use FiX to convert their arguments to Integers, even though In many cases. the user cannot
actually obtain the Integer constructed (cf. IPLUS in Section 9). In these cases the
implementor would naturally be tempted to avoid actually constructing the new object.
However, because of the counter fields above, this would be in technical violation of the
specifications (since even though the user could not obtain the results of the constructions
- he could detect whether something was constructed). Since these fields are intended
merely to provide the user with a way to monitor his use of these resources, the implementor
is hereby encouraged to adopt the more efficient implementations (avoiding the
constructions) when possible, despite the technical violation of the specifications.

User calls to VM functions are always associated with frame extensions {simply because
such calls are always evaluated using EVAL or APPLY or one of their variants). However,
frequently the specifications for VM functions reference other VM functions. Given the
conventions on the meaning of flxg;--%] where f is a VM function (cf. Section 4), no
constraints are placed on the implementor regarding how these internal calls to are be
handled. For example, the implementor may choose to implement these calls with the stack
mechanism available to the user or to implement them on a private stack used only by
internal calls, or to code them "inline".

't is understood that this flexibility with regard. t.o internal control is detectable by the user.
For example, calls to STKNTH from within interpreted code will be sensitive to whether or not

the recursion of EVAL is visible. ;

60

S

- Ofourse, this private control information is considered part of the "continuation point" of
T‘?the_j"USer_fproc':_ess which invoked the VM function evaluation, since, should this process be
susgpended, the private control information would be’ necessary in order to resume the
process later. Hence, if a private stack for internal control of VM functions is employed, it is
_considered to be merely a part of the temporaries. field of the frame extension of the
associated user process. LT ' L

Because a frame extension is regarded as containing all of the access and control
information associated with any function activation (implementations differ only in whéther
‘this information is explicitly visible to the user of hidden in the temporaries field), we
‘ntroduce the following unifying definition: o o

Definition: A function activation is "controlled from" a frame extension if the frame
extension” contains the access and contro! information associated ‘with that function
-agctivation. . AR ' -

It is possible for one frame extension to be controliing'rhore than one -activation of a VM
function. This happens whenever there are several levels of internal calls to VM functions
pushed on the private stack within the frame’s temporaries field. R

We now present the restrictions upon the use of the user’s stack by VM functions:

(1) No VM function: activation which binds the parameter names of the VM
function in a user-visible basic frame may modify the bindings found in that
_basic frame during the execution of the function body. ' '

(2) A basic frame built to bind the variables (i.e., parameter names or PROG
variables) of a VM function may not intreduce bindings (of Literal Atoms)
which are visible in the access chain from any activation of a user function.

Because user calls to VM functions are always represented on the stack, the error handling
facilities can inspect the stack to discover. (and possibly diagnose and fix) the cause of the
error- One fairly common error handling scenario is as follows: After controi has been
passed from some VM function to the error package (ERRORX), the package discovers (by
inspecting the stack) that the VM function was given the wrong arguments. it decides what
the "right" arguments were and maodifies the expression being interpreted so that on
subsequent encounters with the expression the error should not reoccur. tis. desirable to
continue the computation at this point, but control cannot be returned to the VM function
which caused the error because no assumptions are made about how that furiction will
behave after an error. Thus, the error handler obtains the argument values for the VM
function by fetching them from the basic frame of the function (it cannot afford to assume
the argument forms can be reevajuated without unintended side-effects) and then applies
the VM function to the correct list of values to obtain the result. The error handler then uses
RETFROM to jump -out of the error and the call to the VM function on the stack, so as to

continue the computation without further interruption. '

Restriction (1) allows ERRORX and the other user-support facilities (such as DWIM) to use
STKARG to recover the initial values of the parameters to the function, thereby permitting
the possible diagnosis and recovery from the error., ' S

This restriction has the following implication for the specifications in this document: If a VM

function is implemented with some Literal Atom parameter, say X, as the realization of of
some meta-variable, say X, in the specification, then X will be bound in the basic frame

61

H

assaciated with the activation of the function. If the specification contains a sentence-such

: "Letxbe x+1", the cbvious implementation is to rebind X to the value of (ADD1 X}.in the
basnc frame. This is in violation. of restriction (1), since it would destroy the initial binding of
'X. Instead, the implementor must allot additional storage (either-in a lower basic frame.or the
temporaries field) for the current value of X {and all other modified parameters). We use
phrases like "let xbe x+ 1" , where x appears as a parameter in the specification, to reduce
the number of meta—vanable names the reader must wade through

Restnctmn (2) prevents vanab!e clashes. between VM and user functtons Basncally, lf a VM
function call binds its variables in the usual way and then evaluates user forms, the. bindings
of the VM function’s variables must not conflict the bindings set up for the user.. There are
two obvious ways to avoid this problem: (1) The contents of the argname fields of the basic
frames set up for. VM functions can be objects other than Literal Atoms (thereby precluding
the possibility of rebinding -any user variable) and the code in the body of the function object
can reference the argval fields directly (by position rather than argname), or (2) the alink
fields of user frames can be set so that no access chain from a user frame includes the basic
frame set up for a VM function. v : S ‘

Fmally, note that a basic frame is "visible" to the user only if the useris gwen the opportumty
to inspect the stack. In general this may occur during the evaluation of a VM function
provided either {1} the' VM function itself inspects. the stack, (2) the function contains some
"safe function calls" (cf. Section 25) permitting interrupts to occur, (3) the function calls
EVAL or APPLY on a user supplied form, -or (4) the function causes an error. There are
many functions for which the first three possibilities do not arise (e.g., LISTP, CONS, etc.).
Therefore, these restrictions do not prevent fairly efficient implementations of calls to VM
functions, prowded appropnate action is taken to update the user stack in the event of an
error. . o _ S

We now.c_O._nsider the implementation of the blip fields.- It should be clear that the information
contained in the blip fields is necessary for any implementation of the blip-using functions.
That is, the fields are really just temporaries of the functions concerned. - Should the blip-
using functions use:the variable binding mechanism supplied to.the user, then blip. fields are
merely the argval fields in basic frames. .If blip-using .functions.use a. private access and
control- mechanism, then the representation of blip fields is entirely up to the implementor.
(Of course, even in this case, as part of the private control information for the blip-using
function, we consuier the blip fields to be in the temporanes field of the frame extension
controlling the blip-using function.activation.) - i : :

To permit the user to inspeact and,update- _the contents "of‘."the blip fields regardlesé of the
implementation, we provide the functions BLIPSCAN, BLIPVAL, and SETBLIPVAL (specified
below). The specifications of these functions rely upon the following defmmons :

Defm:t:on A frame extensmn is sard to "contam blip. fte!ds" (or "have bllp flelds") |f such
fields are associated with the activation of a blip-using function controlled from that frame
extension. This definition thus ignores the issue of whether the blip fields are in the basic
frame or temporaries field.

Since a frame extension may control more than one VM funct:on actlvatlon (|n some
implementations), a frame extension might contain more than one collection of blip fields.

We must be able to talk conveniently about the ith blip-field of a-given type from a given
frame. We therefore introduce the following deflmtlons e

62

el

o B ﬁ" i’ B4 .
Definition: The "bliptype Blip field sequence of frame", where frame is a frame extension, is
the empty sequence if bliptype is not one of the Literal Atoms *FN*, *ARGVAL*, *FORM*, or
TAIL: or if frame coniains no bliptype blip fields. ‘Otherwise, it is the sequence of blip fields
- obtained by ordering the blip fields of type bliptype in frame in the reverse order of their

_.. -creation. Thatis, if frame hasn, n > 0, bliptype blip fields, then the 1st element of the bliptype

blip:field sequence of frame is the newest bliptype blip field in frame (i.e., that which was
most recently created), and the nth element is the oldest bliptype blip field in frame.

Definition: The "bliptype blip field sequence in chain”, where chain is a chain of frame
extensions, is ihe sequence of blip fields obtained by concatenating (in the order the frames
occur in ¢chain) the bliptype blip field sequences of the successive frames in ¢chain.

We now specify the blip prbce_ssing functions.

BLIPSCAN[b1iptype;frame]
Get frame extension frame. .
If there is a frame extension in the ciink chain of frame
which contains a bliptype blip field,
create and .return a Stack Pointer containing
the first such frame extension;
eise, return NIL.)

BLIPVAL[bYiptype;frame;n] _
Get frame extension frame.
“If n = NIL, let n be 1.

If n=T: . .
‘Represent and return as an Imnteger the number
of bliptype blip fields contained in frame;
else: . : '
If not FIXP[n], let n be FIX[n].
Let blipseq be the bliptype biip field Sequence
in the clink chain of frame.
If blipseq contains at least n elements, A
return the contents of ths nth blip field in blipseq;
else, return NIL. . .

SETBLIPVAL[b11ptype;frame:n;va1]-
: Get frame extension frame.
S If‘n = NIL, let n be 1; o
elseif not FIXP[n]., let n be FIX[nl.

‘Let blipseq be the blipiype b1ip field sequence in
the clink chain from frame. o ‘ ‘
If blipseq contains at leat n elements: '
Set the contents of the nth blip field in blipseq to val.
Return val;
else, return- NIL.

20. THE COMPILER

The Virtual Machine does not réquire the existence ofa coMpi|er. However, should one be
present, the VM puts certain constraints on it. These are listed below.

The compiler is a function which maps from EXPRs to CEXPRs -- that is, 'th_e output of the

compiler for a given interpreted function objectlsa directly executabie function ‘object. In

some sense, this directly executable function ¢ ject behaves the same way under evaluation’

'~ asthe.original EXPR.

If exgr-‘fn'obi is.an EXPR function objéét. and'céigf-fnobi is thre'_-*oj'.tt;'jut_‘ -6,f :th:e-'compil_er' ;for"_
expr-fnobj, then the following conditions must-be satisfied: - - - o T

(1) The implementor can recognize cexpr-fnobj as a function object produced
by the'compiter. - S S

(2) The parameter n-tuple, eval/noeval type, and spread/nospread type of
cexpr-fnobj must be the same as those of expr-fnobj,. =~ -~ =

(3). The bady of cexpr-fnobj may be obtained (by the implementor) and directly -
executed. . e L ‘

{4) The execution of the body of cexpr-fnobj on any collection of arguments
shall cause the same series of function calls (with the same visible effects
on the user's stack) as calling expr-fnobj on those arguments, with the
following exception: The implementor may designate (and document) a set
of so-called "open functions," the code for which may appear "inling" in
cexpr-fnobj where calls on these functions appear in'expr-fnobj. The code
compiled for these open functions may be made more efficient than that
executed during interpreted calls by eliminating error checking (provided

" that incorrect arguments cannot render the state of the VM meaningless),

and by eliminating the allocation and maintenance of blip fields. Except for
these cases, the code compiled for open functions must cause the same
user-visible side-effects (if any) and return the same results as interpreted
calls to these functions. ' T '

(5) The functions CALLSCCODE .and CHANGEGCODE must be
.- implementable.- : R , -

- The previous Section makes it clear that the basic frame and frame extension built for a call
. to a compiled function object is indistinguishable (to the user) from that which would be
used for the same call to the interpreted version of that ‘objéect. Furthermore, given the
definition of “call", it is clear that a compiled function can call an interpreted one (and vice
versa). : ' ' . :

The implementor may wish to provide a ran_gi_a,o‘f _optionélfp‘r_ producing more efficient code.
This is permitted so long as some arrangement of the options produces code which meets
the restrictions above. - . o

Below we introduce definitions which indicate two fairly obvious dptibns. The VM does not

require these options of a compiler, however the terms defined below are used in the
function CALLSCCODE,

Definition: "(Literal Atom) var is a global variable of {(CEXPR) fnobj"'if-~g§j is & variable of the
EXPR funcion object from which fnobj was produced and selected variable references to var
in fnobj have been compiled so as to access the_tqQ-l_evei value field of var directly (rather

than aftér a search of the access chain). -

In light of this definition, we will.refine the notion of "non‘-rlo_cal.“‘,yariarblesr to be those that are
not local variables but still involve a search through the access chain. o

Definition; A "linked. function calt”" in compiled .code is.an ‘implementatio'n of the Interlisp
function calling méChanism'whereby the function object referenced in the code is that which

was in the function’s function definition fieid at the time of the compilation.
: Presumab|y,_1inked calls are faster since they _avoid'the reference through the Literal Atom
function name and the check to verify that the objectis a function object.

CALLSCCODE[¥nobj;f1g] N
S 4§ LITATOM[fnobj]. let fnobj be GE}D[fnobj].

If fnobji is a CEXPR: o
Let localvars be a new proper71ist of all of the
Literal Atoms used as local variabies in fnobi.
Let nonlocalvars be a new proper 1ist of all of
the Literal Atoms used as non-local variables in fnobj.
Let globalvars be a new proper 1ist of all of the
Literal Atoms used as global variables in fnobi.
If flq: : -
. Return LIST[NIL:NIL:1oca1vars:non1oca1vars:qlbba1vars];
slse: - : } o S :
Let 1linkedcalls be a new proper 1ist of all of
the functions called with 1inked calls in the
.code in fnobj. . ‘ : :
Let othercalls be a new proper 1list of all of.
the functions called without 1inked function calls
in the code in fnobi. :
Return LIST[1inkedcalls;. .
: othercalls;
localvars;
nonlocalvars;

glqba]yars]. .

The following function, CHANGECCODE, destructively replaces all references to one obiect
in some CEXPR by references to another object. We assume the references can be of any
nature: named variables, constants, function calls, etc. Note that CHANGECCODE actually -
modifies the function object rather than copyingit. - ' o

In order to allow higher level functions to "undo” the effects of the ‘modification we
introduce the notion of a "reference map". ST - ' IR
Definition: A "refereﬁce map for (CEXPR) fnobj" is any object the implementor wishes to
use to indicate selected references to objects by the compiled code in fnobj. The function
CHANGECCODE constructs and uses references maps. '

It is assumed that if a reference map, refmap,. gives the locations of (say) all.references to
some object, x, in fnobj, then after CHANGECCODE is used to replace those references tox
by references to some other object, y, refmap can be validly interpreted as a refence map to
selected occurrences of y in fnobj. Thatis, a reference map does not specify the object
referenced, but the references themselves. _ S :

CHANGECCODE[newref;refmap;fnoﬁj]
1f LITATOM[fnobj], let fnobj be GETD[fnobjl.

If fnobj is a CEXPR:
If refmap is not 2 reference mag,

let irefmap be ‘a-new rgfergnce ‘map ‘For fnobj ‘giving
- the’Tocations-6f all references to “the object refmap
elseif refmap is not a reference map for fnobj,
~ cause error 17 with culprit. T 0 - L
'CONS["Intonsistent reférence map";CONS[refmap;fiobj]].

. Modify fnobj so that all references indicated in
refinap become references to newref.

- Return refmap.

21. FILES AND FILE NAMES

As noted in Section 2, files are not objects, but are assumed to be uniquely identified by file
names which are represented as Literal Atoms. .. - EAE R

Definition: "the file x" means "the file named x".

Files are used as sources and sinks for input and output functions. These functions are
specified in Sections 26 and 27 and deal entirely with transferring sequences of characters
to or from files. However, there are some facilities'in the VM which involve files but do not
cause the transferral of characters. These functions are specified in this Section and
embody all the file handling capability of the VM other than mere character transfer.

In many implementations file conventions ‘and-filé ‘handling facilities are determined by the
host operating system, and are beyond the contro} of the VM LISP implementor. The
discussion and specifications in this Section attempt to summarize the assumptions Interlisp
makes about the host filing system. For convenience, we will tag with the phrase "File
Assumption”, any, paragraph describing properties of Interlisp files. e : o

Two “disfinct kinds ‘of :‘_i'net‘a-obi'éc,t'é ‘are -treated as files: -input/output devices such, as

terminals and lineprinters, and secondary storage devices such as discs and drums: .- -

Like strings, files specify a sequence of -Charaters, We associate with each character:in-a
file an integer "address” which specifies the number. of characters to the'left of the
addressed character. Thus, the first character in a file has address 0. The characters in a

file' may be inspected sequentially or (in some cases) randomly. - -

Convention: The lowest level input operation on a sequentially accessed file will be called
"fetching” and returns the next Character in the file. When discussing the analogous -
operation for random access files we will specify the position from 'which’the Characteris to
be fetched. ‘The lowest level output operation-on a sequential file will be called "depositing”
and transfers a character to'the file. 'When ‘discussing the'corresponding random ‘access
- Operation we will specify the target position. None of these operations is available in'the VM.
We reserve the words "reading” and "writing” for’ the higher level VM file transfer
operations. Reading and writing are specified in terms. of these low level operations (cf.
Sections 26 and 27), _ B '

File Assumption 1: It is assumed the user is directing the computationat processes of the VM

from: :;gn';;inteﬁa,ctiye.,-terminal-.‘, ‘The: assumptions made about the. terminal aré' specified in
-.Section23. . : o : o S

.File Assumption 2 1t is assumed that most files wili require some initialization before they
can be read or written. This will be called "opening” the file and the user must explicitly
-ppen a file (except the terminal) before using it It is agsumed that the intended use of a file
is-declared. when it is opened, and this use may. be.enforced.. The uses: are declared by
supplying “"access modes” when the file is opened. These -are -defined below.
Implementations may limit the number of files open simuitan_eously“. Finally, when a file is
-opened:the user. mayspecify the "bytesize" of the file.- This is the number of bits which must
be fetched or deposited to represent one Character on the file. In general the. VM supports
only one bytesize: the standard VM bytesize. When a VM function is called upon to fetch
from or deposit to a file with a non-standard bytesize, the implementor is free to truncate or
pad the character codes as necessary.. The implementor: is also free to extend the VM
facilities for reading from such files, or to provide additional fetching and depositing
facilities. : :

Definition: An "access m_ode“. is one of the Literal Atoms INPUT, OUTPUT, BOTH, or
APPEND. The relationship between the access mode used when a file is opened and

subsequent use of the file is specified below: . -
" Access Mode . Use -
INPUT " The file may be readﬁfrom‘ only. When the file is opened its
. filepointer field mustbe setto 0 (see below). - S
OUTPUT . The file may be written toonly. When the file is opened its file
FOURRR TR . pointer field must be setto 0. : R .

BOTH The file may be read from and written to. When opened the
_— : file pointer field mustbe setto0. - - - - SR

“ ."AP_PEND_ o ' Thefiie. may be writtenf;co oniy.. When the file is-opehed: ité file
pointer field:must be set to the contents of the end. of file
pointer field (see below).

'I"_h_e‘VM associates three fields with every qpeh fi_ie., Thejnaméé'df these fields ar_é: -
. {1) position field, .
(2) file pointer field,
(3) end of file pointer field.

_Eéch fiéld contains an integer {(note lower case). The contents of these fields are specified
below. _ _

The intuitive purposé of the position field is to maintain an indication of how many characters
have been deposited to (or fetched from) the file since the last carriage return character was

—.—._..—————'-_-——.———-—-—..-——.-.-———-—--—._—

-Interlisp-10 restricts it ta 16.

67

written (fetched). The precise manipulation of this field is left tothe rmplementor The Ieast
sophrstrcated procedure is outlined below: - o

{1 Whenever a frle is opened its posrtron field i is set to 0

{2) Whenever any non: carrlage return: character is fetched from g file the
contents of the position field of that fl!e is mcremented by 1 and stored
back intothe posmon held :

(3) ‘Whenever.a carriage return character is fetched from a flle the pos:tron
' fre!d ot that file'is set to0. -

(4) Whenever any non: carriage return character is deposited in'a file; the
- contents of the position held of that hle is mcremented by 1 and stored'
back into the position field.* - :

(5) Whenever the carriage return character is deposrted m any frle, the
B posmon freld of that file is set to 0. :

The implementor may choose to rmplement (and document) elaboratrons on this’ procedure

For example, the procedure might be sensitive to the primary Terminal! Table (see Section

24) when dealing with the terminal since some characters (such as <tab> or <form feedd)

might requrre more than one character posmon to prlnt .

The :nturtrve purpose of the file pornter freld is to: specrfy the target address from whrch {orto
which) a character is to be fetched {(deposited). The initial contents of a file’s pointer field is
determined according to how the file'ig: opened and is specified in the function OPENFILE.
The definitions of reading and writing characters specify the actual use and manipulation of
the frle pomter field.

The end of file pomter field a!ways contarns the number of characters in the file, When a file
is opened, this number is computed and stored in the end of file pointer field for the file.
(The end of file pointer figld is unspecified for the terminal) ‘The next file assumption
specifies how the end of file pointer is maintalned :

File Assumption 3: If a character is deposrted inafileatan address, n, WhlGh is less than the
end of file pointer, ecf, the old character at address n is overwritten with thé-new character.
If n is equal to or greater than eof, the file is expanded by the addition of n-eof +1
unspecified characters to the right of the current last character, the end of frle pornter is set
ton+1, and the character is then deposited at address n.

File Assumphon 4: When operations on a file are complete, it is assumed some termmatrng
actions may be performed. This is called "closmg" the tile and usually files are expllcrtly
closed by the user.

File Assumption 5: If a non-existent file with an acceptable name is opened for output the
effect is the same as though an exlstrng file, havmg the sarne name and contalnmg no
characters, hadbeen opened.

Convention: A file is said to permit "random access” if it is possible for the user to set the
file’s file pointer.

File Assumption 6. The user can create, read, and write’ stored files permiting random
access.

s réébghiied that some file systems allow certain abbreviations and default --cdnve_n,t_ions

_when specifying file names in various contexts. Thus we ‘distinguish two kinds of file names,
those that contain abbreviations or rely upon defaults supplied by _th‘e__ynde_rlgfmg file system,

- and those that represent the fully specified file name.

Convention: A “full file name" is a character sequence not depending on abbreviations or
defaults to specify a.unique file.: ' : K EETE

For convenience we allow character sequences which do not represent ful! file names to be
“recognized" as abbreviations for full names, should the host filing system or implementor
choose to supply such a scheme. We allow such an abbreviation to actually denote one of
several files and introduce the notion of a "recognition mode" to distinguish precisely one of
the possible matches. : e

Definition:. A "recognition mode" is one of the Literal Atoms OLD, NEW, or OLDEST. The
mode places certain restrictions on the file denoted by a recognized name. These
restrictions are given below.

Definition: "(character sequence) name is recognized in {recognition mode) mode" if the
filing system’s naming conventions allow.name-to denopte a unique file, file, with full file

name, fullname, satisfying the property required by mode. The mode properties are:
mode prope

oD | . file is the most recently created existing file which
name could denote. - '

NEW “file does not yet exist, but the user could create a new
file with fuli name fuliname. , : :

'OLDEST _file is the oldest existing file which name could denote.

File Assumption 7: Interlisp as-sumes' tha't‘ both full file names and those that can be
recognized are the names of Literal Atoms {i.e., neither denotes an Interlisp Number).

. 1t is actually the case that the high level facilities in Interlisp make some assumptions about
the form and characteristics of file names themselves. For example, in Interlisp-10, which
relies on the file naming conventions of TENEX, functions which create new files "know"
that file names have extensions and version numbers appended to the end of the "main
name" and separated by the characters '’ and ’; respectively. The VM does not require
these naming conventions, but it is probable that that part of the high level code which
generates file names will have to be reimplemented to suit the local conventions. This was
deemed more practical than trying to standardize file name conventions. However, the high
level code which manipulates file names uses the Interlisp-10 functions UNPACKFILENAME
and PACKFILENAME so that possible discrepancies betwesn filing systems can be identified
and localized.

Definition: A "File Name" (note capitalization) is a Literal Atom whose name is a file name.
We will use the adjectives "recognizable" and "full” in the obvious way.

The File Name T is reserved for the interactive terminal the user is presumed to be using.
The file T is always open for both input and output. The implementor is free 10 supply an
arbitrary number of reserved recognizable File Names for online site-dependent devices
such as lineprinters, etc. ‘ ' .

€9

The VM also provides a facility for producing "typescript" files, that is, files containing all of
the input/output transactions:with the terminal. . The user.may designate one file to. be used _
for this purpose (see DRIBBLE below). Sections 26 and 27 specify what is written to this file. N

Interlisp maintains three distinguished full file names (and thus, three distinguished files).
These file names are the defauit file names for input and output {i.e., they are used when any
VM file handiing function is given NIL instead of a File Name) and the name of the current
typescript file: (if any). The corresponding files are’called the "primary input file", the
"primarfy output file", and the "dribble file", Initially, the first two. are T ‘and there is no
dribble file.

If not LITATOM[1itatom], cause error 14 with culprit Titatom;
elseif recog is NIL, let recog be OLD;
elseif recog is not a recognition mode,

Cause error 27 with culprit recogq.

FULLNAME[litatpm;recﬁg]

If-litatom is recognized in recognition ‘mode recog as an

abbreviation for some filte with full name fullname,
return fullname: : ;

etse, return NIL.

OPENFILE[file;access:recog;bytssize] . _
- ' Let fullname be FULLNAME[fileirecog].
If fuliname is NIL, return NIL.
IT access is not an access mode,
cause error 27 with culprit access.
If bytesize is NIL,
- Tet bytesize be the standard VM bytesize;
else, let bytesize be FIXfbytesize].
If the implementation defined 1imit on the
number of open files has been reached,
cause error 15 with culprit NIL.

Open file fullname with access access and byte size
bytesize, and should it be found impossible to.
- do so (e.¢g., due to a protection violation
‘cause error 9 'with culprit fullname. .
Return fullname. - :

OPENP[file;access:recog] _
If file is not a Literal Atom,

cause error 27 with culprit file;

elseif file is NIL:

If access 1s NIL: : :
Create and return a proper 1ist of the full File Names
of all open files (excluding T and the dribbie file,
it any); : : : : '

elseif access is an access mode: C _ _
Create and return a proper 1ist of the full File Names
of all files open for the mode of access specified
by access (excluding T and the dribble -file, if any);

else (file is a non-NIL Literal Atom}: ’

If access is NIL, let access be INPUT.)

If recog s NIL: '

.o If access . is OUTPUT, 1let recog be NEW;
else, let recog be OLD.

Let fuliname be FULLNAME[file;recog].

If Yuliname is open for the mode of access specified

by access, return fullname: '

else, return NIL. .

70

- -

g INPUT[file]

INFILE[file]
INFILEP[file]

OUTPUT[file]

QUTFILE[file)]
OUTFILEP[file]
IOFILE[file]

DRIBBLE[file]

DRIBBLEFILE[]

CLOSEF[file] .

else: IR

- If file is NIL, return the fuil File Name of the

current primary input file.

Let fullname be OPENP[file;INPUT].

If fullname is NIL, cause error 13 with culprit file.
Let oldfile be the full File Name of the current
primary input file.

Set. the primary input file to fullname.

Return oldfile. : o

Return INPUT[OPENFILE[fi]e;INPyT;OLD]]. '
Return. FULLNAME[file;O0LD].

If file is NIL, return the full File Name of

the current primary output file.

Let fuliname be OPENPIfiIe:OUTPUT].:

If fullname is NIL, cause error 13 with culprit fils.
Let oldfile be the full File Name of the current
primary output file. - '

Set the primary output file to fullname.

Return oldfile.

Return OUTPUT[OPENFILE[file;O0UTPUT;NEW]].
Return FULLNAME[fila:NEW].

OPEMFILE[file:BOTH;OLD];

'If file=T, let filé be NIL.

If there is a dribble file: _ :
Let oldfile be the full File Name of the dribbie file.
If pldfile is the primary output file,
set the primary output file to T.

- .Close oldfile:

else, let oldfile be NIL, =

If file /= NIL: '__‘ -
If OPENP[file;0UTPUT], iet newfile be OPENP[fi1e;0UTPUT];
else, let newfile bhe OPENFILE]fi1a:0UTPUT:NEW].
Set the dribble file to newfila,

Return oldfile.

If there is a dribble file, .
return the full File Name of the current dribble file;
else, return NIL.

If-file is NIL: _ _ _ : ' :
If the primary input File Name is not T, : ¢
let Tullname be the primary input full File Name;
elseif the primary output File Name is not T,
let fullname be the primary output full File Name;
_else return NIL; -
else: : P
Let fullmame be OPENP[file]. '
If fullname is NIL, -cause error 13 with culprit file.
If fullname is the primary iaput File Name,
set the primary input file to T.. . :
If fullname is the primary output Filte Name,
set the primary. output file to T.

If there is a dribble file and it is_fullname:
Return NIL: - . Gl .

71

Close Tile fullname.
Return fullname.

Note: The dribble file cannot be clbsed with CLOSEF.

CLOSEALLL] Let 1st be a new proper 1ist of the full names of all open
: ' files (except T and the dribble file, if any).
For each fiiename in 1st do:
CLOSEF[filename]:
Return 1st.

RANDACCESSP[file] _
If file s NIL, let file be the primary dinput file;
elseif OPENP[filel}, let file be OPENP[file]:
else, cause error 13 with culprit file.
If file permits random access, return filsg;
else, return NIL. ' v

GETFILEPTR[file] ' o ' '

If file is NIL, et file be the primary tinput file:
elseif OPENP[file], let file be OPENP[file];

else, causeé error 13 with culprit file.

Represent and return as an Integer the contents

of the file pointer field of file.

GETEQFPTR[fil1e] If file is NIL, let Tile be the primary input file;
elseif OPENP[file], 1et file be GPENP[file]:; :
else cause error 13 with culprit file.

Represent and return as an Integer the contents
“of the end of f11e pointer field of file.

SETFILEPTR{file;val] : IR -
If RANDACCESSP!f1]]. let file be RANDACCESSP{fils];
else, cause error 17 with culprit file. g
If not FIXP[val], let val be FIX[vai]
If val < -1, cause error 27 with cu1pr1t val;
e1se1f val=-1:
‘Set-the fiile po1nter f1e1d of file to the
contents of the end of file pointer Tie1d of file.
Return val;
else: ’
Set the file pointer Tield of file to the 1nteger
reprasented by val. :
“‘Return-val.

POSETION{file;val] : ~
If file 4s NIL, let file be the primary ocutput file;
elseif OPENP[file], let file be OPENP[file]:
else. cause error 13 w1th culpr1t file.

: Let oldval be the Integer representing the
contents of the position field-of the file fi]e.
If val is NIL, return oldval.

If not FIXP[vall, let val ‘be FIX[val].

Set the position field of f11e to the 1ntegar
represented by val. .

Return onvaI

DELFILE[file] Let fullname be FULLNAME[f1le OLDEST].
If “fullaame is not NIL:
IT fuliname +is open, cause error 17 with culprit
CONS{"Close file before deleting”;fullname].

..Delete file fullname. .
~_.Return fullname; . e
‘else, cause arror 23 with culprit file.
RENAMEFILE[file;newname]
R Let file be INFILEP[file].
<1f file-is NIL, return NIL. S
If file <s open, cause erfor 17 with culprit’
. :CONS["Close file before renaming™;filel.
. .lLet.newname .be QUTFILEP[newname]. R
If newname is an existing file, return NIL.
. Rename the file file to have name fpewname.
Return newname. R

Many operating systems associate with each file name atiributes other than the contents of
the file. . For example, TENEX records such attributes as the time and date the file was
created and how the file is protected. As a convenience to the user, Interlisp provides
functions for accessing and possibly changing the values of those attributes maintained by
the host system. The implementor must choose a set of Literal Atoms, each Literal Atom
denoting one of the file attributes maintained by the operating system, and the implementor
must implement the following two functions. ~ — ~ S o E

GETFILEINFO[file:attrib] - : o
. tet file be FULLNAME[file;OLD]. e
If attrib is a Literal Atom denoting a file attribute,
return as an object-some-representation of the value
of the attrib attribute for file.
else, cause error 27 with culprit attrib.

SETFILEINFO[file:attribival]- i
o ' tet file be FULLNAME[file:OLD]. .
If attrib is a Literal Atom denoting a file attribute and
the operating system permits the user of this job to
set the value of the attrib attribute of file to some
meta-object, x, that GETFILEINFO represénts as
" (EQUAL to) val,
set the attrib attribute of file to X.
return T;
else, return NIL.

22. READ TABLES

Read Tables are objects that specify the syntactic properties of characters for the input {and
some- output) routines. Since the input routines are concerned with parsing incoming
character sequences into objects, the Read Table in use at the time determines which
sequences are recognized as Literal Atoms, List Structures, etc. '

We will present the specifications of the input/output functions in Sections 26 and 27. This
Section is concerned with the manipulation of the-Read Tables themselves. :

Each character must belong to precisely one *syntax class”. By definition of a syntax class,
all characters in a given syntax class. exhibit identical syntactic properties. There are nine
basic syntax classes, each associated with a primitive syntactic property, and then an
unlimited assortment of user-defined syntax classes (jointly referred to as "read macros” but
individually constituting unique syntax classes). ' ' S ‘ '

73

For example, the characters which indicate the ‘beginning of (a character sequence -
representing) a List Structure form a basic syntax class. The general property uniting all
read macro characters is that a user-specified computation is performed to determine the
syntactic effect of each character. ' ‘ o

It should be noted that a "syntax class" is ai abstraction provided by the VM. There is no
object referencing a collection -of .characters and called a Syntax Class. A Read Table
provides the association between a character and its syntax class, .and the input/output
routines enforce the abstraction by using Read Tables to drive the parsing.

To allow the user to specify the association between CharaCters and sy‘ritax CIasses we must
introduce names for the basic syntax classes and the attributes of read macros.

~ Definition: A "basic syntax class” is one of the Literal Atoms LEFTPAREN, RIGHTPAREN,
LEFTBRACKET, RIGHTBRACKET, STRINGDELIM, ESCAPE, BREAKCHAR, SEPRCHAR,
and OTHER. L) L

‘The properties of these classes are defined.in, Sections 26 and 27. Briefly, the first four
classes mark character sequences representing' List Structures, STRINGDELIM marks
Strings, BREAKCHAR and SEPRCHAR mark Literal Atoms and Numbers, ESCAPE provides -
a mechanism for inputting these syntactically special characters, and OTHER is the ¢lass of
all other characters except those that are read macros. L

It is convenient to refer to some of these clases jointly.

Definitiom: The "break syntax clésses“ are LEFTPAREN, LEFTBRACKET, RIGHTPAREN,
RIGHTBRACKET, STRINGDELIM, and BREAKCHAR. ‘ ,

The syntactic properties of read macros afe determiﬁed by the vaues of five attributes.
Definition: The five read macro attiibdtes ,are'"typ_é"l, "context”, "wakeup mode" "escape

. flag", and "body". Each attribute may take on one of the discrete "legal” values shown
below: '

attribute ‘ legal value

type MACRO, SPLICE, INFiX

context ALWAYS, FIRST, ALONE
wakeup made WAKEUP, NOWAKEUP

escape flag ESCQUOTE, NOESCQUOTE
body a Literal Atom or function object

Briefly, the meanings of these attributes are as follows: The body specifies a computation to
be performed when the character is read in a certain syntactic context specified by the
context attribute. The type attribute determines what is done with the value-of the
. computation. The wakeup mode attribute is important only when the macro is read from the
terminal and, if it is WAKEUP, means that the reading routines should begin reading and
parsing the characters in the line buffer as soon as the read macro character has been
deposited in that buffer (see Sections 23 and 27). The escape flag attribute affects how the
character is to be printed.

It is convenient to define a read macro specification itself as a 5-tuple meta-object,

c}onténining interlisp 'objec_ts.' We use the notion of a meta-object because the user specifies
the individual components but does not supply a read macro specification as an object.:

74

Definition: A "read m_a_Crg specification” is a 5-tuple meta-object containing Interlisp
objects: <type, context, wakeup miode, escape flag, body> where the components are legal
values of the corresponding read macro attributes. - o .

Definition: A "syntax class spe.cifiéation" is either one of the basic syntax classes.or a &
fupleread macro spec;ifi_cation. N _ : g

It is sometimes desirable to prevent all read macros in a Read Table from invoking .
computation, even though their attributes would otherwise allow it. When in such a state, we
~say that the read macros are "disabled"”. This is controlled by a flag field in the Read Table.

" péfinition: A "Read Table" isan object with the following properties:

(1) For each character, ¢, there is-a field which contains a syntax class
specification, called the "syntax class of ¢". :

(2) There is a binary field, called the "read macros enabled™ field, which may
: contain T or NIL, - : S i

Read Tables constitute a distinct class of objects with class name READTABLEP.

" Definition: "(character) char is a LEFTPAREN of (Read Table} rdtbl”, if the contents of the
char syntax class field of rdtbl contains LEFTPAREN.. Analogous definitions are asserted for
the other syntax classes. A "break character of rdtbl" is any character having one of the
break syntax classes in its syntax class field of rdtbl. A "separator” character is one having
SEPRCHAR in its syntax class field of rdtbl. - ' .

Because the user is allowed to specify the syntax class to which eat:h,character belongs, we
must define the process by which the implementor translates user-supplied objects
describing read macros into {(meta-object) read macro specifications.

Definition: To "obtain the 5-tuple correéponding to (propér iist) Ist (with iehgth n)" means:

“If n<2, cause error 27 with culprit ist.
If CAR[1st] is a legal type. type,
let the type of the 5-tuple be type:
else cause arror 27 with culprit 1st.
If the last element of 1st is-a legal body, body.
let the body of the.5-tuple be body.
else cause error 27 with culprit 1st.

‘Consider the remaining n-2 elements in 1st as a set, remainder,
but using ESCQUOTE ia place of all occurrences of ESC
and NOESCQUOTE in place of ail occurrences of NOESC.

If there is more than one legal context (or wakeup mode or escape flag)
attribute value in remainder, :
cause error 27 with culprit 1st. :
1f any element of remainder is not a legal contexi or wakeup mode or
gscape flag valus,
cause error 27 with culprit 1st.
If there is no context value in remainder, ‘
add ALWAYS to remainder (i.e., let remainder be the new set
obtained by adding the elemeni ALWAYS to remainder).
If there is no wakeup mode vatue in remainder,
add NOWAKEUP to remainder.
If there is no escape flag value in remainder,
add ESCQUOTE to remainder. '

Let the context, wakeup mode, and escape f1agmcqmpoméntsf 7
in the 5-tuple be the context, wakeup mode, and escape flag °
values in remainder." C Lo ST :

. Similarly, we must define the process used by the implementor to construct an object;.(fprihe
- user) which contains all of the information in a read macro speéification. IR

Definition: To "create a proper list corresponding to (a réad macro sbéé’ifi_catioh).-(tjpe,

context, wakeup, escape, body>” means "LISTIgy_Qe;ct’)ntext;wakeup;es'cape';body]'f—, s

Thus, the proper list the user supplies to a Read Table to define a read macro is not the same

(EQ) proper list the user obtains when querrying the Read Table. In fact, the two proper lists
may not even be the same length or contain the same elements. However, both translate
into the same 5-tuple. ' : z e

The VM maintains three distinguished Read Tables. The first is, called the "original" Read
Table. This Read Table may not be obtained by the user and is used to provide a way to
recover the initial settings in the other two distinguished Read Tables. The second is called
the "system” Read Table; and is the one used when the system itself is interacting with the
user’s terminal (e.g., reading for the top-level input to EVALQT). The third is called the
"primary" Read Table, and is the default Read Table for user programs. The latter two Read
Tables initially contain copies of the original Read Table (i.e., they are distinct Read T able
objects containing the same settings). We will be precise regarding the use of these three
tables when precision is required. For the moment it is sufficient simply-to. state the
existence of these three Read Tables. C :

Provided the characters are available in the implementation, the following asSociatiénS
should be found in the or‘ig_,ingl Read Table: - ' '

Character Initial Syntax Class Specification
{tab> SEPRCHAR
<carriage return> SEPRCHAR
<linefeed> SEPRCHAR
<formfeed> SEPRCHAR
<end-of-lined> SEPRCHAR
<blani> SEPRCHAR

" STRINGDELIM
{percent> ESCAPE

« LEFTPAREN

) . RIGHTPAREN

[- LEFTBRACKET

1 RIGHTBRACKET

All other characters should have syntax class OTHER. The read macros enabled field of the
original Read Table is setto T. o

READTABLEP[x] If x is a Read Table, return x;
else, return NIL. '

GETREADTABLE[rdtb1] -
If rdtbl is NIL, return the primary Read Table:
elseif rdtbl is T, return the system's Read Table;
elseif READTABLEP[rdtbl], return rdthl;
else, cause error 38 with culprit rdtb].

76

SETREADTABLE[rdtb1:f1g]l SO SR

- Let rdtbl be GETREADTABLE|rdth]. oo
if f_‘m: Ty '.-.-'._:'.-'.' O : i :_-".\ §

Let oldrdtbl be the system's Read Table.

Set the system's Read Table to rdtbi.. o
* ‘Return oldrdibl. - '
else: ' R R -

Let oldrdtb] be the primary Read Table.
'§gt the primary Read Table to rdibi.
Return oldrdtbl. . _ L

RESETREADTABLE[rdtb1;source] . _
 If not READTABLEP[rdtbil], '
let rdtbl be GETREADTABLE[rdtb1].
If not READTABLEP[source]:
If source = ORIG,
Yet source be the orignal Read Tablae;
else, let source be GETREADTABLE[source]. .

1f the read macros enabled field of source 15 T,
set the read macros enabled field of rdthl to T;
else, set the read macros enbabled field of rdtbl to NIL.

For each characfer, c., rep1ace:the gnsyntéx class field in
rdtbl with the contents of the ¢ syntax ctass
field in source. :

Return rdthl. .

COPYREADTABLE[rdtb1] - _
Let newrdtbl be a new Read Table.
Return RESETREADTABLErnewrdtb1;ﬁdtbl].

The following two functions operate on both Read Tables and Terminal Tables. Terminal -
Tables are described in Section 24. One of their functions is to specify "terminal syntax
classes" for characters. For details and definitions of terms used, see Section 24.

GETSYNTAX[char;tbl] _
Let origchar be char. . IR
If char is-a Character or character code
(treat Characters ¢ through 9 as.character codes),
1et char be the corresponding character. t

1f not READTABLEP[tb1] and not TERMTABLEP[tb11:
If chap is a terminal syntax class: .
If tbl = ORIG, o
Jet tb1 be the original Terminal Table;
eise, let tbl be GETTERMTABLE[tb11:
elseif tbl = ORIG, .
‘let tbl be the original Read Table;
aelse, Teil tbl be GETREADTABLE[tb1];

If char is a character:
1T READTABLEP[ib1]:
Let class be the contents of the char syntax class
field ia tbl. '
If class is a H-tuple,
create and return.a proper 1ist corresponding to class;
else return the basic syntax class class;
else (tbl in a Terminal Table):
Return the contents of the terminal syntax
class field of char in tbl;
elseif char is a basic syntax class:

7

“If TERMTABLEP[tb1], cause error 38 with culprit tbl. .- . -
Create and return-a proper 1ist of all of . the :
character codes whose syntax class fields: in ibil
contain char. L S

elseif char = BREAK: AP -

If TERMTABLEP[tbl1], cause error 38 with culprit tbl,
Create and return a new proper 135t of. all of the
character codes whose syntax class fields in
ib] contain one of the break syntax classes,
elseif char:is a terminal syntax class: :
17 READTABLEP[tb1], cause error 39 with culprit ibi.
Create and return a proper Tist of all of the character
codes whose terminal syntax class. fields in b1
contain char; o : - _
else, cause error 27 with culprit origchar,

SETSYNTAx[char:c1ass:tb]] .
Let origchar be char, .
If char is a Character or character codeg (treat
Characters 0 through 9 as character codes), -
~ let-char be the corresponding character;
“.else, ‘cause error 27 with culprit char.
n o1 SE b _ Lhar

L If not.READTABLEP!tb]] and not TERMTABLEP[tb1]:

i If TERMTABLEP{class] or class is a Terminal Syntax Class,
et tbl be GETTERMTABLE]tbl];
else, let tbl be GETREADTABLE[tb]};

If READTABLEP[class] or TERMTABLEP[class]
or class = NIL or class = T or class = ORIG:

Let class Be GETSYNTAXicharcode;cIass]. T

where charcode is the character code corresponding to char:
elseif ciass is a Character or character code;

_Let class be GETSYNTAX|c]ass;tb1];

elseif class = SEPR: ' _
‘Let class be SEPRCHAR. o
Let oldclass be GETSYNTAchhar;tb]].

‘If class is a basic syntax class: :
If TERMTABLEP[tb1], cause error 38 with culprit
Set the char syntax ciass field in tbl to class.

" Return oldclass; : o '

elseif class = BREAK: :

If TERMTABLEP[tb1], cause error 38 with culprit tb,
If oldclass s not a break syntax class or a read
macro specification, set the char syntax class field
in tb1 to BREAKCHAR.

Return gldclass,

elseif LISTP[ciass]:

If TERMTABLEP[tb1], cause srror 38 with culprit tb).
Obtain the 5-tuple cerresponding to class, and
set the char syntax class field in 1b1 to -this 5-tuple.
Return oidclass. '
elseif class is a terminal syntax ‘class name:
If READTABLEP[tb1], cause error 39 with cuiprit ib1.
If class = NONE, seot the char terminal syntax class
field in tbl to NONE; S
elseif char is not a special terminal
-character, cause error 27 with culprit origchar.
else: - i : : '
If there is any character, ¢, whose
terminal syntax class field in 1bl contains class,
set the ¢ terminal syntax class Tield in tbl to NONE.
Set the char terminal syntax class field

1.

bl

78

in tbl to class.
‘Return oldclass; B ,
else, cause error 27 with culprit class.

GETBRK[rdtbl1] Return GETSYNTAX[BREAK;rdtb1].

. GETSEPR[rdtbl] Return GETSYNTAX[SEPRCHAR;rdtb1]

SETBRK[]st;f1g;rdth]

If 1st=T:
- : . If rdtbl1=T, let ist be GETBRK[ORIG]:
B else, let ist be GETBRK[T].

(We assumé 15t is a'proper list of either
Characters or character codes.)

If fig=NIL:
For every element, char, of GETBRK[rdtb1] do:
SETSYNTAX[char;OTHER;rdtb]]. o
For every element, char, of 1st, do:
SETSYNTAX[€har ; BREAKCHARY;
elseif flg=0: :
For every element, char, in 1st do:
SETSYNTAX]char;OTHER;rdtbl];
elseif f1g=1: :
For svery element, char, in-1st do:
SETSYNTAX[char;BREAKCHAR:rdtb1].

Return NIL.

SETSEPR[1st:f1girdtbl] , : .
(Same specification as for GETBRK except -
use GETSEPR for GETBRK and SEPRCHAR for_BREAKCHAR.)

READMACROS[f1g}rdtb1] .
If not READTABLEPIrdtbl]. . -
let rdtbl be GETREADTABLE[rdtb1].
tet oldflg be the contents of the
read macros enabled field of rdibl.
If flg, set the read macros enabled field of rdthl to T3
eise, set the read macros enabled Tield of rdtbl to NIL.

Return oldfla.
23. TERMINALS

This Section describes"the assuinptions the VM makes about the terminal input/output
capabilities of the underlying operating system or machine. o _

As File Assumption 1 makes clear, the VM assumes the user is directing the computations of
the VM from an interactive terminat. The VM allows the implementor to class terminals as
gither "display” or "non-display”. The only distinction made by Interlisp is that if the user's
terminal is a display terminal some of the high-leve! facilities assume that information can be
displayed to the user faster than with a non-display terminal, and hence (in their default
mode) supply mcre information. ' : ' D

The next assumption about the terminal concerns interrupt characters.

79

e

=

Terminal Assumption 1: Whenever certain characters (determined under software control)
are typed at the terminal, an implementor supplied procedure is immediately invoked,
regardless of any ongoing COmputational processes. If a character causes such an
invocation, it is called an “interrupt character". Section 25 deals with the VM interrupt
facilities.

We next introduce the concept of a wpuffer" and define the operations of "fetching” and
"depositing" on buffers. Intuitively, a buffer is just a queue of characters. R

Definition: A “buffer” of length n>0is a meta-object _with the following properties:
(1) There are n character fields, each identified by an integer, 1 =<i=<n.

(2) There is a field, called the "deposit pointer" field, which contains a non-
negative integer not exceeding n. ‘ '

When a buffer is created, its déposit pointer field is set to 0.

Definition: If the deposit pointer of a buffer is 0, the buffer is said to be "empty". To "clear"
a buffer is to set its deposit pointer to ‘0. 1 the deposit pointer is equal to the length of the
buffer, the buffer is said to be "replete”. We reserve the word “full" for future use (cf.
Section 27). ' : :

Definition: 1f a buffer, buff, is non-empty, then to "fetch” the next character from it means:

"let ¢ be the character in the first fieid of buff.

Let n be the deposit pointer of buff. '

For every integer i, 2=<i=<n, set the contenis of 7

the i-ist field of buff to the contents of the ith field of buff

(i.e.., shift all of the characters in buff to the left by 1).

Set the deposit pointer of buff to n-1.
Return ¢." i

Definition: {f a buffer, buff, is not replete, théri:to *deposit” a cha'rac'ter., ¢, in the buffer
means: ‘ : o : :

“Let n be the contents of‘thevdeposit pointef-fia1d of buff.
.Set the deposit pointer field of buff -to n+l. '
Set the n+lst character field of puff to c."”

Of course, buffers need not be implemented this way as long as the functional beha_vior of

depositing and fetching is preserved.

At any instant a buffer can be considered to correspond to the character sequence which
would be obtained by fetching successive characters from the buffer until it was empty.

Terminal Assumption 2. There is a buffer of unspecified length, called the "systém input
buffer", with the property that whenever any character, char, is typed at the terminal, the
following procedure is followed: =~ " o o 1 L

4IF ghar is a leﬁdlintgrfdpf character (cf. Section 25) and.the
. interrupt ¢lass of char, class. is something ‘other than NONE: "

(Note: The terms used in ihis clause are defined in:Sectiom 25.)
If the interrupts armed field contains T, immediately

perform the computétion speéified for the class {nterb&pt:

else, set the saved interrupt character field to cthar,
Ignore char (i.e., do not deposit it in the system input buffer),
- else: _ -
If the system input buffer is replets:
send the bell character (e.g9.. *G in ASCII) to the terminal
(and ignore char); . - .
else, deposit ghar in the system input buffepr."

Terminal Assumption 3: Whenever a fetch is requested from the system input buffer while
that buffer is empty, all of the users computational processes are halted until the user
begins typing at the terminal._ :

Recognizing that the VM is often implemented in a time shared environment,. the folfowing
assum_ption is made. ’ ‘

Terminal Assumption 4: There is a butfer of unspecified length, called the “"system output
buffer”, with the property that whenever any character is "deposited in the terminal” it is
actually deposited into this buffer. It is assumed a concurrent process is actually fetching

-characters from this buffer and transferi'ing them to the actual terminal.
in the next Section we outline the distinguishing characteristics of terminal input/output and
present the data structure which specifies how the input/outputroutines should behave with
respect to the terminal. -) : :

DISPLAYTERMP[] If the terminal is a display terminal, return T:
else, return NIL, :

DOBE[] Wait until the system output buffer
: is empty and then return NIL.

Note: "DOBE" stands for "dismiss until output buffer empty".

24. TERMINAL TABLES

Terminal Tables are objects which supply the input/output routines with information
specifically pertaining to the file T. Because the terminal is an interactive source/sink it has
charag:teristics not found in any other file.

The fo_l!owing special characteristics are recognized for terminal input/output:

(1} Some characters should cause interrupts as soon as they are typed (to
allow the termination of infinite computations, for example). -

(2} Some su'bs-et of the characters may be reserved for editing type-in' during
' input by the user. , ' ' _

(3} Many control characters in the alphabet do not usually perform meaningful
functions when deposited in the terminal and there should therefore be
special provisions for outputting them.'

(4) ltis usually necessary to echo (i.e., print to the terminal) characters read
from the terminal.

81

T AT e T

Briefly, the five respective messages are printed when the LINEDELETE character is read,
when the first of a series of CHARDELETE characters is read, when the nth consecutive
'CHARDELETE character is read, when the first non- -CHARDELETE non-editing character is
read after a CHARDELETE; and when a CHARDELETE character is read when there are no
characters in the buffer.

It is also possnble to specify whether or not the characters deleted by CHARDELETE are
echoed when deleted :

Finally, there is a mechanism which allows the user to defeat the line buffering.

This concludes the survey of fac:llties suggested by characteristic (2) of terminal
input/output. Section 27 presents the details. Next, we consider the problem of non-
printing control and formattmg characters

It does not make a great deal of sense to deposit most control and formatting characters to
the terminal. This is either because the functions traditionally performed by such characters
are not meaningful in an user-controlled interactive environment {e.g., end-of-transmission),
or because the necessary hardware formatting capability is not present in the terminal {e.g.,
form-feed). Itis therefore useful to provide a range of "control character echo modes” for

‘each control character (independently). These modes specify different ways of deallng with

the problem of echoing or writing control characters to terminals.

Definition: A "contro!l character echo mode" is one of the theral Atoms IGNORE,: REAL
‘ SIMULATE or UPARROW. :

1t.a control character has echo mode IGNORE, then it is simply not deposﬁed in the termlnai
if the mode is REAL, the control character is deposited and the terminal hardware is

expected to deal with it. |f the mode is SIMULATE then (when possible) a sequence of -

characters will be deposited which simulate the effect of the character {e.g., a simulated tab
witl deposn a sequence of spaces). Finally, if the mode is UPARROW the character is printed
as the 't* character followed by the control character s tequivalent. The details are
presented in Section 26.

Characteristics (4) and (5) of terminal input/output imply that the user should exercise
control over whether any characters are echoed, ‘and whether they are converted to upper
case. The facilities for these features are specified in Section 27.

We are now in a position to state the characteristics of a Terminal Table.
Def:mtron A "Terminal Table" is an object with the following propertles

(1) For each character there is a held containing & terminal syntax class; with
the restrictions that at most one character may have CHARDELETE (or
LINEDELETE or RETYPE or CTRLV) in its field and only special terminal
characters may have CHARDELETE, LINEDELETE, RETYPE, CTRLV, or
WAKEUPCHAR in their syntax class fields.

(2) For each deletion control message name, there is a field containing a
(meta-object) character sequence (possibly limited to an unspecified

e e
TR A S B A st S (e T S et] e g

i

number of characters'?),

(3) Thereisa binary fiel‘d,‘ balled the "control " field, containihg éither TorNIL
- (determining whether line buffering is performed), . : . :

(4) For each control character there is a field containing a contfol -character
echo mode, : : o L

(5) There is 3 binary field, called the "deleted character echo mode” figld,
which contains either ECHO or NOECHO, , -

(6) Thereisa binary field, called the "global echo mode" field, which contains
either TorNIL, :

(7) There is a ternary field, called the "lower-to-upper case conversion mode"
field, containing either T,0, or NIL., _ . :

Terminal Tables cbnstitute a distinct class of objects witlh-‘class name TERMTABLEP;

Definition: "(character) xis the (or é) CHARDELETE character of (Teﬁninal Tablé) y"ifthex

terminal syntax class field of y.contains CHARDELETE. Analogous definitions are asserted.
for the other terminal syntax classes,

Initially, the original Terminal Table shall contain the'following settings, assuming these .
characters are available as special terminal characters: . : :

character terminal syntax class
TA CHARDELETE
<end-of-line> . WAKELIPCHAR
MQ LINEDELETE
1R RETYPE
TV , CTRLV

if any of these character ié not available, the implementor should designate and document
suitable replacements. Al other characters should have terminal syntax class NONE,

deletion control message name message
LINEDELETE ~ # #<carriage-return>
1STCHDEL A\
NTHCHDEL <the empty sequence>

Interlisp-10 limits these character sequences to 5 characters,

" POSTCHDEL ~ \. _-
EMPTYCHDEL # # <carriage-return>

The control field should be set to NIL. The deleted character echo mode field should be set
to ECHO. The global echo mode field should be set to T. The lower-to-upper case
conversion mode field should be set to NIL. ‘

The control character echo mOdes should be set as follows:

character ' _contro['éharacter echo mode
tA ~ IGNORE.
10 IGNORE
1R . IGNORE
v . UPARROW.

The control character echo mode of <end-of-line> should be set so as to cause to the
standard terminal in use to print subsequent characters on the line below the last, starting at
the left-hand margin. If the sequence of characters. used as the carriage return characters
can be obtained singly, they must have echo mode REAL. The ‘implementor may set the
remaining control character echo mode fields at his -own discretion '(presumably being
sensitive to the characters available ahd the hardware properties of the terminals used by
prospective users). o S i '

TERMTABLEP[x] If x is a Terminal Table, return x;
else, return NIL.

GETTERMTABLE[termtb1]
If iermtbl is NIL, return the primary Terminal Table;
elseif TERMTABLEP[termtbi], reiurn termtbl;
else, causa error 39 with culprit termtbld.

SETTERMTABLE[termtb1]
If not TERMTABLEP[termtb1],
Jet termtbi be GETTERMTABLE[termtbl]. :
Let oldtermibl be the current primary Terminal Tabls.
Set the primary Terminal Table to termtbt.
Return oldtermtbl. ' ' S

RESETTERMTABLE[termtbl;source]
If not TERMTABLEP[termtb1],
let termtbl be GETTERMTABLE[termib1].
If not TERMTABLEP[source]:
If source = ORIG, let source be the original
Terminal Table; '
else, let source be GETTERMTABLE[source].

For every character, char, set the char terminal
syntax class field in termtbl to the contents
of that of char in source.

For each deletion control message name, h.‘set
the n deletion control message field in termtbl
to the contents of that of n in source. '

Set the control field of termtbl to the contents of
that of. source. o

For every control character, char, set the char control
characterﬂecho mode field in termtbl to

the contents of that of char in source.

set the deleted character echo mode field of termthl

to the contents of that of source.

set the global echo mode field of termibl to ithe
contents of that of. source.

get the lower-to-~upper case conversion mode
field of termtbl to the contents of that of source.

—

Return termtbl.

COPYTERMTABLE[termtbl]
Let newtermtbl be 8 new Terminal Table.
Return RESETTERMTABLE|newtermtbl;termtb]]. _

-

ECHOCONTROL[char;mode;termtbi]
Let origchar be char.
If char s a Character or character code {treat
Characters 0 through 9 as character codes),
et char. be the corresponding character;
. glse, cause error 27 with culprit char.

1f char is not & control character: C
If char is the requivalent of a control character,
lat char be that control character;

else, cause error 27 with culprit origchar.

If not TERMTABLEP[termtbl].
let termtbl be GETTERMTABLE[termtb]].

Let dldmodé be the contents of the char control
character echo mode Tield of termtbl.

1f mode is NIL:
‘Return oldmode. _
elseif mode is & control character echo mode:
Set the char control character echo mode field
of termtbl to mode.
kReturn oldmode;

e ———

glse, cause efrror 27 with culprit mods.

DELETECONTROL[msgname;msg:tarmtb]]
if not TERMTABLEP[termtbl]. - '
let termtbi be GETTERMTABLE[termtb1].
1f msgname is DELETELINE, .
1et msgname be LINEDELETE. -
If msgname is & deletion control message name:
© If msg is NIL: :
Create and return 2 String representing the
msgname deietion control message‘of‘termtb1;
elseif STRINGP[msg] orf LITATOM[msg]:
If NCHARS[msg] is longer than the maximum
deletion control message jength,
cause error 17 with culprit _ _
CONS["I11egal message length - DELETECONTROL" msg].
Create a new string, oldmsg, representing -
the msgname deletion control message of termibl.
Set the msgname detetion control message
of termtbi to the charactier sequence in the

current prame of msq.
Return oldmsq; ’ _
else, cause error 17 with culprit '
CONS{"Illega) message type - DELETECONTROL";msg];
elseif msgname is a deleted character scho mode:
Let oldmode be the current deieted character
echo mode of termtb].
Set the deleted character echo mode fiald of termth]
to msgname.
Return oldmode: C '
else, cause error 27 with culprit msgname.
CONTROL[mode; termtb1]
If not TERMTABLEPitermtbl].

' let termtbl be GETTERMTABLEItermtb]]. ’
Let oldmode be the comtents of the control field of termth?.
If mode, set the control Tield of termtb]l to T;

“else, set the control field of termtbl to NIL.

Return oldmode. .

ECHOMODE[f1g; termth1] ‘
' If not TERMTABLEP[termth1],
let termtbt be GETTERMTABLE[termtbi].

Let 01df1g be the contents of the global echo mode -
field of termtbl. .

If flg is NIL, set the global echo mode field

of termtbi to NIL; ' o :
else, set the global echo mode field of termtbl to T,

Return oldfig.

RAISE[f1g;termtbl] o
e ' If not TERMTABLEP[termtb1],
' "~ tet termtbl be GETTERMTABLE[termtb17].
Let 01df1g be the contents of the lower-to-~upper case
conversion mode field of termtbl.
 If fig=0, set. the lower~to-upper case conversion
mode field of termthl to 0; ' .
elseif flg, set the lower-to-upper case conversion
mode field of termtbl to T; _ :
. else, set the Tower-to-upper case conversion mode field
~of termtbl to NIL, = :

Return oldfig.

25. INTERRUPTS

As noted iri the previous.Section, it is desirable to brdvide.._the user with the ability to interrupt
computational processes by typing special characters at the terminal. The VM provides a
very flexible interrupt facility, based on TerminalAssu,mption_s tand 2 (cf. Section 23).

Briefly, the user can associate "interrupt classes" with any of several "interrupt character

codes". Whenever interrupts are "armed" (a condition under user control) and one of these
interrupt character codes is typed an appropriate “interrupt process” . is invoked. by the
process defined in Terminal Assumption 2. Some of these processes provide handles for
user specified computations. if an interrupt character is typed while:-interrupts are disarmed
the character is ignored (as far as the system input buffer is concerned) and the interrupt
process associated with that character is not invoked until interrupts are re-armed. The VM
requires only that the last interrupt character typed while interrupts are disarmed be

remembered for prbcessing when interrupts are re-armed. implementations may be more
general, for example, by stacking interrupts while they are disarmed.:

Recognizing that 'mtei‘rupts require speéial provisions in most dperating systems and that
often the available character codes are limited, the implementor is allowed to designate
those character codes which may trigger interrupts. '

Definition: A "valid interrupt character" is any character permitted by the imp!emeritation to
trigger interrupts on terminal typein. '

We will now describe the details of the interrupt capability.

The VM requires the existence of the following two fields to specify the stafe of the interrupt
arm/disarm feature: :

(1) the "interrupts armed" field, which contains either T or NIL, and

(2) the "saved interrupt character” field, which contains either NiL or a valid e
interrupt character. : - ' .

When the interrupts armed field contains T we say interrupts are varmed”. Otherwise they
are "disarmed".

The initial contents of the interrupts armed field is T and the iniﬁal contents of the saved
interrupt character fieid is NIL. These fields are used by the process defined in Terminal
Assumption 2 and the function INTERRUPTABLE. '

There is a third meta-object necessary 10 the specification of the interrupt facility and that is
the "interrupt table". The interrupt table is somewhat like a Read or Termina! Table, in that it
associates an “interrupt class” with each valid interrupt character,

Definition: A “basic .interrupt class" is one of the Literal Atoms HELP, PRINTLEVEL,
RUBOUT, ERROR, RESET, OUTPUTBUFFER, BREAK, ERRORY, INTERRUPT, or NONE.

Definition: The "interrupt table" is a meta-object such that for each valid interrupt character
there is a field which contains either (1) a basic interrupt class, with the restriction that each
of the first seven basic interrupt classes above may be in the field of at most one character,
or (2) an arbitrary Literal Atom other than NiL or T. :

Definition: The "interrupt class of (valid interrupt character) char” is the basic interrupt
class or other Literal Atom in the char field of the interrupt table. : s -

Each of the basic interrupt classes causes a certain VM specified process 10 be invoked
when the associatéd characters are fetched from the terminal. If @ character’s inteTrupt
class is-a Literal Atom other than a basic interrupt class, the Literal Atom is used-as a flag '
and set to T when the character is typed. ' '

Béfo_re we can_,speci_fy the processes invoked by these interrupts, we -muét-clarify.preciseljk
when interrupts can-ocour.. - T L : C

it is not possible to in_tefru'pt an afbitrary process of the VM at an arbitrary point and then

continue the interrupted- process after an arbitrary VM computation. This 1s because th_’_ef

Virtual Machine is”actua.\liy' reali_zed by an abstraction imposed upon a physical mé.ch'ine_. The

Virtual Machine is carried from one well-defined state to anotheér by a series of “virtual

steps" each of which is realized as a series of " actual steps” carried out by the physical
magchine. If the sequence of actual steps is interrupted atan arbitrary point the configuration -
of the physical machine may not correspond to the imposed abstraction, so that certain VM.

computations may not have any meaning (e.g., a function call when the stack is improperly
configured due to the interruption). : ’ '

We therefore assume that there are some implementor defined "safe" points at which
arbitrary VM computations can be performed. —_— '

Definition:. A “safe function call of fn on args" is a point during & computation at which the
physical machine is in a "clean " state (one corresponding to a state of the Virtual Machine)
and is about to do the equivalent of calling.some function, In, on some proper list of
arguments, args. : S :

The obvious safe calls are precisely those at which the Virtual Machine is about to execute a
function call of a VM.or user defined function in on the proper list of arguments args.
However, it is possible that there are ‘additional safe states, depending on the
implementation. -

Interrupts are actually processed as soon as the corresponding interrupt character is typed.

(provided, of course, that interrupts are armed). Since interrupts involve computations
entirely controlled by the implementor, it is assumed the interrupt handling can be done
whether or not the physical machine is in'a "clean" state. However, some interrupts provide
the user with the illusion of being able to invoke an arbitrary user-specified computation at
interrupt time. This, as we have seen, is not always meaningful. Therefare, at interrupt time
these interrupts merely store sufficient information to cause the user-specified computation
to be performed at the next safe point. ' '

Some of the specifications for the interrupt procesées below involve VM function calls, such -

as "CLEARBUFF[T]". it may not always be possible to execute such calls in the manner
non-VM function calls would be executed (i.e., by building frames on the user stack), given
the arbitrary state of the physical machine at the time the interrupt character is fetched from
the terminal. What is meant by these specifications is that the actions specified for the called
VM function should be performed (and the precise mechanism of the call is unspecified). Ifa
non-VM function is to be called by an interrupt process, the specifications will explicitly say
that the stack should be destructively backed up to an acceptable state (i.e., any partially
constructed frame at the end of the stack is removed and the user is to understand that this
represents an irrecoverable detour in the flow of control).

One of the interrupt classes, PRINTLEVEL, uses special auxilary buffers in which to save the
contents of the line and system buffers while interacting with the user. ‘This requires the
existence of two distinct buffers. '

Definition: The “interrupt line buffer” is a buffer of the same length as the line buffer'®, The

"interrupt system buffer” is a buffer of the same length as the system buffer. These four
buffers are all distinct.

The "line butfer” is defined in Section 27.

i

e

, The following definition allows us to "copy" one butfer from another (and empty the first in
the process). . _ ‘

Definition: To "copy bufft to buff2" (where buff1 and buff2 are buffers of the same length)
means: : _ -

*Clear buff2.

Until puffl is empty, fetch characiers from buffl
and deposit them in buff2."

We can now specify the processes associated with each interrupt class. Recall Terminal
Assumption 2. Let char be the character just fetched from the terminal. Assume char is a
valid interrupt character, not preceded by the CTRLV character, assume interrupts "are
armed, and let charcode be the character code of char. Finally, let classname be the
_interrupt class for char. Then the process invoked when char is typed is specified below,
according to clagsname: :

classname . : Process
HELP Clear the system output buffer. ,
Send the bell character to the terminal.
CLEARBUF[T].

If the implementation allows an immediate
interrupt (i.e., during this interrupt processing the
Virtual Machine is in a safe state). A
INTERRUPT[NIL;NIL;:2];
else, save sufficient information so that
INTERRUPT[fn;args;1] is evaluated at
the next safe function call of some
function fn on argument Tist args.

PRINTLEVEL Copy the line buffer to the interrupt
line buffer. _
Copy the system buffer to the interrupt system
buffar.
“Send the bell character tO the terminal.

Let seg be the character seguence obtained

by fetching characters directly from the

terminal up to and jncluding the first . L
character which is peither a <digit> (cf. Section 9)
nor a ',' (comma}.

Let lastchar be the last character fetched.
Let seq be a new sequence obtained by removing
the last character in seq. - '
If (the new) seq contains a L' _

Let carval be the integer denoted by

the digit sequence to the left of the

*,' in seq (with the empty segquencé

denoting 0).

Let cdrval be the integer denoted by

the digit sequence to the right of the

', in seq (with the empty sequence

denoting 0).
else:

Let carval be the integer denoted by

seq {with the empty sequence

denoting 0).

Let cdrval be NIL..

RUBOUT

ERROR

RESET

If lastchar is 'i':
Set the temporary car print level field
to carval (cf. Section 26).
Set the car print Tevel field to
carval.,
Set the temporary cdr print level field
to cdrval. "
Set the cdr print Jevel fieid to
cdrvat.

e@lseif lastchar is '.':
Set the temporary car print level fisid
to carval.
If cdrval, set the temporary cdr
print level fTield to cdrval.

Copy the interrupt system buffer to the
system buffer. -

-Copy the interrupt 1ine buffer to the

line buffer. o
Continue the interrupted computation
without further change of state,

Clear the system input buffer.

Send the bell character to the terminal.

Continue the interrupted computation
without further change of state.

"Clear the system output buffer,
~Send a carriage return character to

the terminal,

CLEARBUF[T].

If the interrupted process was adding
a new frame to the stack, clear off
any uncompleted frame (thereby backing

‘the stack up to the last completed function

call and allowing a normat non~VM function

call to be executed). '

ERROR!I[]. .
Note: If the interrupted process is any vM
process which, if terminated prematurely, is
Tiable to leave the VM in a meaningless state
(such as a garbage collector or storage compactor

might) the execution of ERROR!I[] should be delayed

until-the process has terminated normally.

Clear the system output buffer,

Send a carriage return character to
the terminal.

CLEARBUF[T]. :

If the interrupted process was adding
a new frame to the stack, clear off

~any uncompleted frame (thereby backing

the stack up to the last completed function
call and allowing a normal non-VM function

- call to be executed).

RESET[]. ‘ : :
Note: If the interrupted process is any VM
process which, if terminated prematurely, is

- 1iable-to leave the VM in a meaningless state

(such as a garbage collectar or storage compactor
might) the execution of RESET[] should be delayed
until the process has terminated normally.

OUTPUTBUFFER Clear the system output buffer.
: : """ Send the ¢arriage return character to the terminal.
Continue the interrupted computation
without further change of
state.

BREAK _ Clear- the system output buffar.
S '~ CLEARBUFTT].
‘ _ If the interrupted process was adding
0 ’ . a new frame to the stack, clear off
i ' any uncompleted frame (thereby backing

the stack up to the last completed function

call and allowing a normal non-VM function

call to be executed).) :

: Cavse error 18 with cu]pr1t NIL.

h : Note: If the 1nterrupted process is any VM
: ' i process which, if terminated prematurely, is
1iabie to leave the VM in a meaningless state
{such as. a garbage collector or storage compactor
might) delay causing the error unt11 the process
has terminated normally.

ERRORX ‘ Clear the system output buffer,
" CLEARBUF[T].

If the sinterrupted process was add1ng
a new frame to the. stack, clear off
any -uncompleted frame {thereby backing
the stack. up to the last completed function
call and allowing a normal non-VM function
call to be executed).
Cause error 43 with culprit charcode.
Note: If the interrupted process is any VM
process wh1ch if terminated prematurely, is
liable to leave the VM in a meaningless state
{such as a garbage coliector or storage compactor
might) delay causing the error until the process
has terminated normaliy.

INTERRUPT = . Clear the system ocutput buffer.
. . Send the bell character to.the terminal.
CLEARBUF[T].
Save sufficient 1nformat1on so that
INTERRUPT[fn;args: charcode+65] is eva1uated at
. the next safe Tunction call: of some function -
fn on argument 1ist args

NONE .Cause no- 1nterrupt

all other classes Immediately perform SETQ[classnams;T],
: where classname.is the Literal Atom which
is the name of the interrupt class of charcode.
Continue the dinterrupted: computation without
further change of state

The functions for manipulating the state of the lnterrupt armed field and the interrupt table
are specmed below.

INTERRUPTABLE[f]gl.. f1g]
o Let oidf1g be the contents of the interrupts
armed field.

IT k > 0:
It £1g4.

92

Set the interrupts armed field to T. :
If the saved ipterrupt character field contains a
Character, char, (rather than NIL) with interrupt
class, class: o
Set the saved interrupt character field to NIL.
Perform. the computation specified for the class
interrupt. ‘
else, set the interrupts armed field to NIL.

Return 01dfig.

Note: The purpose of the saved interrupt character field is to insure that if an interrupt
character is typed while interrupts are disarmed then the last such interrupt is processed
once interrupts are re-armed. ' The implementor may choose a more general regime, such as
- stacking or queuing the interrupts (even though that means that the last interrupt may not be
processed because an earlier one aborted the entire computation). '

GETINTERRUPT[x]
If x is T,
create and return & new proper list of all
valid intefrupt character codes having
any interrupt c¢lass other than NONE;
elseif x is NIL,
create and return a new proper 1ist of
all valid interrupt character codes having
- an interrupt class other than one of the
basic interrupt classes; :
elseif x is a basic interrupt class and some
character c-has x as its interrupt class,
return c; S
elseif x is 'a valid interrupt character code
and has some interrupt class, c, other than NONE,
return c; L ' :
else, return KIL.

SETINTERRUPT[char;class] P L _
. . If char is not a valid interrupt character code,
cause error 27 with culprit char.
If class = NIL or class = T,
cause error 27 with culprit ¢lass,

If class is a basic interrupt class other than
ERRORX, "INTERRUPT, -or NONE: '

If any valid interrupt character, c, has

class in its field of the dinterrupt table,

set the.c 'field of the interrupt table to NONE.

Set the char field of- the. interrupt table to class.
else: :

Set the char field of the interrupt table to c¢lass.
Return NIL. : o : .

26. OUTPUT

The output routines are responsible for transférring characters from the VM to the terminal
and other files. These routines therefore translate objects into character sequences.

Because almost every function in this Section deals with a file, a Read Table, and the primary
Terminal Table, the followmg definitions are useful.

Definition: To "check File Name file for output” where file denotes a meta-variable which
denotes an object, means:

"tgt obj be the object denoted by file.

If obj is NIt, let file be the primary output file;
glseif obj is T, let file be T (no-op);

elseif OPENP[obj;0UTPUT], let file be OPENP[ggl QUTPUT];
else, cause error 13 with cqur1t obj."

We also’ assert the analagous definition for "check Flle Name file for input" (reptace
"output" above by "mput" and replace OUTPUT by INPUT). o

Note that after "check File Name x for output” is used, x denotes the full File Name of a file
open for output (or else an error was caused).

Definition: To “check Read Table rdtbl” where rdtb! is a meta-variable denoting a meta-
variable which denotes an object, means "Let obj be the object denoted by rdtbl. if not
READTABLEP[objl, let rdtbl be GETREADTABLE[objl."

Convention: All references to a Terminal Table refer to the primary Terminal Table at the
time of the operation specified. Example: "the terminal syntax class of char" means "the
contents of the char terminal syntax class field in the primary Terminal Tabie."

Convention: Any operation which requires a file or Read Table but does not specify one will
implicitly refer to some file or Read Table which was distinguished earlier in the sarne
definition or specification by the phrase “use File Name (or Read Table) x implicitly below."

The most basic definable output operation is that of writing a single character to a specified
file. This relies upon the primitive idea of "depositing” a character in a specified file.
However writing is complicated by the possible involvement of a Terminal Table.

Definition: To "write (character) char to (file) file" means:

"If file is T:
If char is & conirol character
Let mode he the control character echo mode of char.
-If mode = REAL, deposit char in the terminal;
elseif mode = SIMULATE, qinvoke the control character simulation
procedure for char {see Note below);
elseif mode = UPARROW: .
Deposit the character 't' in the terminal.
Deposit the tequivalent of char in the terminal.
else, deposit char in the terminal.
If there is a dribble file,
write character char to the dr1bb]e file;
elseif file is an addressable Tile:
Let i be the file pointer of file.
Deposit char in the ith character field of file.
Set the file pointer of file to i+1;
else, deposit char in file file."

Note: We assume that for each control character there is a simulation procedure which
computes some sequence of characters and writes them successwely to the file'in questlon

The premse sequepce computed for any control character in any situation is unspecrfled it

- is supposed that the sequence attempts to immitate, when possible, the: lormattmg functlon

normally performed by the control character.
The following trivial extension of our terminology is useful.

Definition: To "write (character sequence) seq to file" means to "write the successive
characters in seq to file.”

It is convenient to allow the user to globally spemfy certain parameters influencing output.
These include the maximum allowable line length, the depth to which List Structures are
printed, the length to which List Structures are printed, and the radix used to print integers.
These parameters are held in fields accessible to the user through certain functlons

The VM requires the existence of the following six fields:

\

(1) There is a field, called the Hline length™ field, which contains an integer.
(2) Thereis afield, called the "car print level” field, which contains an integer.

(3) There is a field, called the "temporary car print level" field, which contains
an integer.

(4) Thereis a field, called the "cdr print level” fleld whlch contalns anvinteger.

(5) There is a field, called the "temporary cdr print level" field, whsch contams
" an integer.

(6) There is a field, called the "radix” field which contains an integer in an
implementor specified range which must include 2 through 10 and may
mclude other mtegers (see dlscussmn below) :

The output funct:ons specrfled below (PRIN1 PRIN2, PRING, PRIN4 SPACES, TERPR! and
PRINT) use these flelds to control printing. The functions LINELENGTH, PRlNTLEVEL and
RADIX are available for accessmg/replacmg these fields.

The initial contents of the line length field is to be determined by the implementor, with due
regard to the line length of the standard terminal in use. The car print level field initially
contains 1000. The cdr print level field -initially contains -1. The contents of the two

~temporary print leve! fields are unspecified, since they are always initialized before use. The

radix field initially contains 10." The contents of the radix field determines the base in which
Integers are printed. The following definition specifies the restrictions on the contents of the
radix field by defining the relationship between the contents of the radix field and the

‘character sequence used fo output an lnteger

Definition: By "let seq be the base—r representatibn of (Integer) i", where seq denotes a

meta-variable, r is an integer which the |mplementor allows to be in the radix field andiis an

Integer, we mean the followmg

"If 2=<r=<10 (the implementor must allow this ‘range .in the radix):
Let seq be the standard base-r notation.for the integer i,
employing the usual digits 0 through r-1, being explicitly
signed (with '-') only if negat1ve. dnd - hav1ng leadtng 0's removed

elseif r > 10 (for-this fo occur the 1mplementor '

e T U T T
e s = =
. 3 = =

— e e

i ey

i

must have chosen a set of characters _
to be used as digits beyond 9! 110w1ng consistent
notation in:base-r}): T
Let seq be the standard base-r notat1on for the 1nteger i, -
employing the implementors extended alphabet and
following the sign and 0 conventions above;
else (r is negative, the implementor aliows representation
in base-|r|, and the host machine uses complements representation
of integers): e
If i<0:
Let b be the bit pattern represent1ng the 1nteger i
i the host machine,
Let i' be ithe positive 1nteger w1th binary expansion b
~(i.e., with no special 1nterpretat1on of the sign b1t)
Let seq be the base-|r| representation of i’
else, let seq be the base-|r| representat1on of ht

We assume that the notion of balanced (or "matched") parentheses is understood.

The following function, PRINt, is the basic output function in the VM. The specification of
PRIN1 is recursive: PRIN1 is called saveral times from within the specification. We assume
that the notion of the "top-level” call is understood to mean an invocation not contained
within the specification below.

PRINI[x;Tile] Check File Name file for output and use file impTicitly
below.
Let pos be the contents of the position field of file.
Let Inten be the contents of the line length field.
Set the temporary car print level field to the contents
of the car print level field,
Set the temporary cdr pr1nt level field to the contents
of the cdr print level Tield.
If file is T, set plviflg to T;
elseif PLVLFILEFLG, set p1v1f1g to T;
else, set plviflg to NIL. -
(Note: pliviflg is set to T when PRIN1 is to be
sensitive to the print level fields -- i.e., terminate
“the printing of Tists after a certain depth/]ength,
The value of the Literal Atom PLVLFILEFLG determines
whether the print levels are to influence output to
files other than the terminal.)

If LITATOM[x]:
U . Let n be the number of characters in the name of x.
T If inlen>=0 and pas+n>lnlen,
- write a carriage return.character.
Write the name of X. :
' Return Xx; -
- elseif FIXP[x]:
Let r be the contents of the radix field.
Let seq be the base-r representation of x.
Let n be the number of characters in __g
-If 1nlen>=0 and pos+a>lnlen,
write a carriage return character
Write seq.
Return Xx;
elseif FLOATP[x]:
Let seq be a character sequence defined by
<{floating point number> (cf. Section 10)
denoting the real represented by X.
(The dimplementor is allowed to choose the
form of seq desired.)

96

Let-n ba the number. of characters in seg.

It 1nlen>=0 and pos+a>lnlen,

write a carriage return character.’-

Write seq

el

el

Return X}

seif STRINGP[x]: S AR :

Let seq be the character sequence'represented by %.
Write seq. : _ L . -

Return X3

seif LISTP[x]: e

If plviflg and -the number of unmatched *('s
printed by the "Write r('." statement (see below)

.thus far. under the top-level call to. PRIN1 is equal
" to or greater than the absolute value of:the -

contents of the temporary car print level field:
Write '"&',
Return X: ’ :
gelseif plviflg and the contents of -the temporary

‘car print level field is negative and the last character

printed by-PRINI was -the ')’ written by the "Write ')'."

' statement below,

write the carriage return character..

Let origx be X.
Let cdrcnt be 0.
write "('. o : .
(The above “Write” increments the current number
of unmatched '{''s printed thus far.) _
Until "x has been printed” (defined below}, do the
following: B o C
(x is reset during this "uUntil” loop.)
If plvifig and the contents of the temporary cdr
print Tevel field is equal to cdrecnt:
Write '--'. § . -
Wwe now say that x has been printed and the
"Until" loop should be immediately exited.
etseif not LISTP[x]: .
Write '.'.
Write " . ‘ : _ _ L :
Decrement the contents of the temporary cdr print
level field by 1 and store the results back in the
temporary cdr print ‘level field.
PRIN1[x;file]. R '
Increment the contents of the temporary cdr print
level field by 1 and store the results. back in the
temporary cdr print 1evel fiald,
We now say that x has been printed and the
vUntil” loop should be immediately exited.
else, .

. Decrement the contents of the temporary cdr print
“ tevel field by 1 and store the result back in the
~ temporary cdr print Tevel field.

PRIN1{CAR[x];file].

Increment the contents of the temporary cdr print
level field by 1 and store the results back in the
temporary cdr print 1evel fisld.

Let x be CDR[x].
If x is NIL, we say x has been printed and the
"until” loop should be immediately exited.

Write ' '. 2 o o
1f plvifig and the number of unmatched '('s
printed by the swrite '({'." statement (see above)

thus far under the top-level call tor PRIN1 exceeds

the absolute value of the contents of the temporary
car print level fiald:
Write "--", ‘
We say that x has been printed and the "Until"
loop should be immediately exited;
glse, cont1nue the "Unt11" 1oop
Write ')'. '
{(This "Write" decrements the current numbar of
unmatched '(''s printed thus far.)

Return origx:
else, write some (unspecified) sequence of characters.

Note that for.objects other than Literal Atoms,; Numbers, Strings, and List Cells the VM does
not specify the sequence of characters printed (beyond the requirement that some sequence
be prlnted)

PRINZ2[x:;file;rdtbhl]
Check File Name file for output and use f11a
~implicitly below. _
Check Read Table rdtbl and use rdthl implicitly below.
Let pos be the contents of the position field of file.
tet 1nlen be the contents of the Tine length field.
Set the temporary car print 1eve] field to the contents of
“the car print level field.
Set the temporary cdr print 1eve1 field to the contents of
the cdr print level field.
- If file is T, set piviflg to T;

_ elseif PLVLFILEFLG set plvifig to T;
else, set plviflig to NIL.
(Note plvifig is set to T when PRINT is to be .
seasitive to the print level fields -- i.e., terminate
the printing of lists after a certain depth/length.
The value of the Literal Atom PLVLFILEFLG determines-
whether the print levels are to influence oputput to
files other than the terminal.)

If LITATOM[x]:
Let seq be the character sequence formed from
the name of x by placing a '<percent>' character
- immediately before every. character, ¢,
in the name of x such that:
£ is a break character, a separator character,
or an ESCAPE character, or ¢ is a read macro whose
escape fiag component is ESCQUOTE.
Let n be the number of characters in seg.
If 1nien>=0 and pos+n>lnlen,
‘write a carriage return character.
Write seq.
Return x;
IT FIXP{x]:
PRIN1{x;file].
If the contents of the rad1x f1e]d is 8, write 'Q'.
Return x:
etseif FLOATP[x], PRIN1fx:file]:
elseif STRINGP[x]:
Let seq be the character sequence formed from
the character sequence represented by
x by placing a '<{percent>' character
immediately before every '"' character
in. the character sequence represented by x.
let n be the number of characters in seq.
If Inlen>=0 and pos+n>inlen,
) write a carriage returna charactar
Write """,

vWrite seq.
write 'Hl-
‘Refurn x;
elseif LISTP[x]: IR .
(Same specification as in the LISTP[x] clause
in PRIN1 except’ that WpRIN2" -should be used instead
of "PRIN1" (and "rdtbl” should ‘be added as a third
argument in those PRIN2 calls).
else, write some (unspecified) sequence: of characters.

PRIN3[x:file;:] {Same specification as For PRIN1 except that:
all statements involving the meta-variable pos
and all statement§1inv01ving;the matafvariab1a Inlen
are left out.) = L L

PRINA[x:file;rdtbi] : : P
- (Same specification 'as for PRIN2 except that
all statements involving the meta-variable pos
and all statemenis involving the meta-variable 1nlen
are left out.) R T

e

SPACES[n:filel If n=NIL, let n be 1;
S > elseif not FIXP[n], let n be FIX[nl.

e e

ey

If n<0, let n be 0.

Let str be a string.of length m, containing. n
space (i.e.. ' ') characters. . : L
PRIN1[str:file]. '

Return NIL. '

i

Note: SPACES is used so frequently it is best implemented so ‘as to avoid actually
'coqstructinganew String str. o . S C ' ,

TERPRI[file] Let-sir be a $tring ‘consisting of a single
. : % carriage return character.~ = 7 7
PRIN1[str;file]. " '
Return NIL.

PRINT[x;file;rdtbl] _ _
: pRIN2[x;file;pdibl]. -

TERPRI[file].

LINELENGTH[n] Let oldn be the repreggntation”as,an,

o Integer of the contents of the 1ine length field.
If n is NIL, return oldn.
1f not FIXP[n], let n be FIXIn]- _ . _
Set the 1ine length field to the finteger representéd by n.~
Return oldn. - e o o

PRINTLEVEL[carva1;cdrva]]. g : : '
: - Let oldval be CONS{o1dcarva1;o]dcdrva]]. where oldcarval
4s the representation as an Inieger of the contents of
the car print level field, and oldcdrval is. the- S
representation as an Integer of the. contents of the cdr -
print 1evel field. -

Tf LISTP[carvalls. -

" Let cdrval be CDthaEva1]:
Let carval be CAR[carva1g.

If carval is not NIL: .
Set the car print leve) field to the integer represented
by FIX[carval]. ' : o
. If -edrval is.pot NIL: e e .
'5$§t the qdé;prjnt_aeve] field to the integer represented
by FIX[cdrval]..:- S '

Return oldval,

RADIX[n] Let oTdn be the representation as an
: Integer ‘of ‘the contents &f ‘the radix field.
-If n 4s NIL, return oidn: '
If hot FIXP[n], let r be FIX[n].
If the implementation does not allow
the radix field to contain n (i.e., the implementation.
does not allow base-n representation as defined above),
_cause error 27 with culprit n. .

Set the radix field to the integer represented by n.
Return oldn, : : .

27. INPUT

The input routines are resporisible for transferring characters from files into the VM. These
routines parse the incoming sequences into objects, according to information contained in
Read and Terminal Tables available at the time of the transfer.

The most basic definable input operation is reading the "next" character from a:specified
file. "'We rely on the analogous primitive operation, that of "fetching"” the next character from
a dynamic stream from some device, or of "fetching” the character at some address of a
stored file. Reading and fetching are distinguished because the former must give the latter a
file pointer from which to fetch, and must interpret the resulting character in light of the Read
Table in use. ' S R

The process of reading from the terminal is even more complicated due to the involvement of
a Terminal Table. We introduce the idea of the "line buffer” to define the operation of
reading from the terminal. Then we will return to the problem of reading from files in general.

Definition: The "line buffer” is af_.:bq_ffer of unspecified Ierigth, used to hold characters
obtained from the system input’buffer while they are still subject to user controlled editing
operations. ' T o '

Recall that we assume that characters from the terminal are continuously being deposited
into the system input buffer. Whenever an input request is made by the VM, characters are
fetched from the system input buffer and deposited in the line buffer as described below.
Two buffers are required for two reasons: The system buffer must continue to accept
characters even while the editing operations or other computational processes accupy the
line buffer (thus, the system buffer is &t a very low level), and the method by which the line
buffer is filled from the system input buffer is very sensitive to computational context within

the VM (thus, the line buifer is at a very high level).

Convention: Because the system input buffer is usually below the level we need for our
specifications, we will henceforth refer to the line buffer simply as "the buffer".

100

Definition: To "fill the puffer until p”, where p is some statement describing a situation
means: o : : it CIITY. 2.3

"In the following, use the system inpul puffer implicity
for all. fetches, the terminal for atl writes, and whatevep: =~
Read Table has been distiqguished,a§~thefonecin use. o T

Until the buffer is "full” (defined below), do the following:
LIT the puffer is replete, T e
the puffer is said to be "full” and. the fi1ling process

. 'i¢ complete, and the "yntil" shouid be immediately exited. .
Fetch the next character, char.

1f: char is. lower case and:.the lnwer4to;upper'case'conversion

mode field is:0, let char be the corresponding upper case character.
If the global echo mode is T, write char.

Let class pe .the terminal syntax class.of -char..

If statement p is true or class = WAKEUPCHAR or char is a read

LA~

macro (in the distﬁngui;hed.Read_Tab1e) with.wakgup:mode WAKEUP:
" If char i3 Jower casé and the Tower-to-upper éasa'convarsibn
mode is T, let char be the corresponding upper case character.
. peposit char in the buffer. CET e e
© The buffer is now said to be nful1”, the:-Ti11ing process
‘45 complete, and the "Until" should be immediately exited;
elseif class = CHARDELETE)
1t the buffer 1is empty: :
‘Write the EMPTYCHDEL deletion control message:;
else: . : - S . : L
Let oldchar be the. character code fetched from T immediately
vefore char was fetched (note that this is _ - ,
not necessarily the last character in the buffer).. .
If oldchar was the CHARDELETE character code. C
write the NTHCHDEL deletion control message;
alse, write the 1STCHDEL deletion ¢control message.
If the deleted character echo mode is T: - -
Let char' be the character in the lins puffer fiald -
indicated by the deposit pointer. : :
Write char'. - . .) B L
I1f char' was preceded when fetched by an ESCAPE character, escchar,
write esechar. L o . :
pecrement the line puffer deposit pointer tield by 1.
and store the result in the 1ine puffer deposit pointer_fiaId.
If the next character 1o be fetched is not the
CHARDELETE character, write the POSTCHDEL deletion control message;
elseif class = LINEDELETE: -~ ° G - ' S
- Mrite ihe .LINEDELETE deletion control message.
Clear the buffer; . ’
elseif class = RETYPE:
Write the carriage return character. . . : :
Write the charagter sequencg_currently corresponding to the buffer;
e1seif ciass = CTRLV: o
Fetch the next character, char.
1f char is the t+gquivalent of some control character,
Yot char be the control character; R -
.elseif char is lower case and the lower-to-upper case
conversion mode is T. - S -
jet char be the corresponding upper case character:
peposit char in the buffer: ' " v
pise (class musi be NOWNE):)
If char is lower case and the lower-10-upper case .conversion
mbde is T, let char be the corresponding upper. case gharacter.
peposit char in the pbuffer. R

‘Continue the "Until"."

Convention: If no statement p is suppliéd for'as.fillring operation",- p is assumed to be always
false. If we say "filling until T", we mean p is considered always true, which is equivalent to
“saying deposit exactly one character in the buffer and then consider it "full". '

Of course, in general, the statement p just allows higher level :r'o_ut'ines to specify conditions
under which the buffer should be considered to be full {e.9., when a matching right

parenthesis is fetched).

Note that whether the buffer is "full" depends upon the process which éont'rolled filing it.
The buifer is "replete”- when every field in it:contains ‘a character. This condition is
independe’nt:of the controlling process. . S C '

Once the buffer is full, we think of it as a queue of characters, precisely like the system input
buffer.

We can now specify what it means to "read” a character from a specified file.

Definition: To "read a (or the next) character, char, from (File Name) file (filling until p)",
where char denotes-a meta-variable means: - L :

"If file is T:
If the line buffer is empty: -
If the control mode -is T, fi11 the buffer until p:
elge, . Til11 the buffer.)
- Fetch?the next character, ¢, from the buffer,
IT there is a dribble file, write character’
¢ to the dribble file. - :
elseif file is an addressable file:
Let i be file pointer of file fila. :
If i is equal to or greater than the end of .file pointer of file:
CLOSEF[file]. - : . o :
Cause error 16 with culprit file.
Fetch the character, ¢, in field i of filse,
Set the file pointer of file to i+1.
else, Tetch the next character, c, from file,.
Let char be c." = .~ - .

Note that if the file is T, the character is actually fetched from .th'e line buffer. Note also that
the parenthetical clause specifying the statement p has no effect if the file is other than T, or
if the control mode in the primary Terminal Table is NIL., o :

We have now formally specified the effect of every field in'a Terminal Tablé. We have also
defined the two basic input/output operations, upon which the VM LISP functions can be
based. _

Definition: The following rather uncomfortable phrase: "Let seq be the sequence of
characters obtained by reading from file (filling until p) until 9", where seq denotes a meta-
variable, means "Let seq be the sequence of successive characters obtained by reading
characters from file repeatedly until condition g is satisfied (with all fill operations to be done
being governed by statement p)." S ' :

The following definition specifies when a read macro character's syntactic context permits
invocation of the body of the read macro. ' '

102

Definition: it char is the first character of‘a character séquence we say that "char isa
read macro in its context” if the following three statements are true: char has a read macro
5-tuple, <type, context, wakeup mode, escape flag, body, in its syntax class field, the read
macros enabled field of the Read Table in use contains T, and either (1) context is ALWAYS

or FIRST, or (2) context is ALONE, and the following character of the sequence is-a break or
separator character.

Note (by inspection of the definition of "fill the buffer until p™) that if a-read macro character

_has wakeup mode WAKEUP the line buffer is considered full {and may be processed by the

read routines defined below) as soon as the character has been ‘deposited into the buffer.

Usually, this would mean the macro would be expanded as soon as the READ routine sees it
in the line buffer. But if its contextis ALONE it is not possible to determine whether the read

macro is in its context until the next fill operation has been completed {making the following

character available). Thus, its expansion wouid be delayed. -

1t is convenient if programs can discover whether they are executing "under” a call to a read
macro. Therefore, whenever a read magcro is evaluated, the frame extension associated with
that activation is marked (in the temporaries field). T here are two kinds of marks: one
denoting an "armed" call to a read macro, and one denoting an "ynarmed". call to a read
macro. The difference is that certain situations cause errors when they occur under armed
calls, and do not cause errors under unarmed calls. The. user can change the mark
associated with ‘a read macro activation by using the function SETREADMACROFLG
(defined below). Both the functions READ and INREADMACROP inspect these marks.

Convention: We assume the notion of balanced parentheses is well-defined. We extend it to
the characters in the syntax classes LEFTPAREN and RIGHTPAREN by merely considering
(for the purposes of matching or balancing characters) every character in the first to be a left
parenthesis and every character in the second to be a right parenthesis.

We will define the functions of the ESCAPE, LEFTBRACKET, and RIGHTBRACKET syntax
© classes below. Essentially, ESCAPE allows the next character to be treated as though it had

syntax class OTHER. The LEFTBRACKET and RIGHTBRACKET classes contain "super-
parentheses”. o ' ‘ _

Definition: 'By"'observe the ESCAPE guidelines” we mean:

»in the following, if an ESCAPE character is ever

fetched into the 1ine buffer, the character should be ignored, the next
character, char, should be fetched and used in its place, and

that occurrence of char should be treated as though it had syntax

class OTHER." ' ' '

Definition: By "observe the LEFTBRACKET and RIGHTBRACKET guidelines” we mean;

"In the following, if a LEFTBRACKET character, char,
js fetched into the Tine buffer:
We say that it is an wynmatched LEFTBRACKET" (until a matching
RIGHTBRACKET character is fetched)}.
Treat this occurrence of char as though it were a LEFTPAREN.
In the following, if & RIGHTBRACKET character, char, is fetched:
If a still unmatched LEFTBRACKET has been fetched:
(Below we consider char to denote the occurrence of the RIGHTBRACKET.)
Let char' be the last unmatched occurrence of a LEFTBRACKET.
(We say that char’ is now matched.)
Let n be the number of unmatched LEFTPAREN characters fetched
between char' and char. N ' '
Treat char as though it were a RIGHTPAREN character, followed by

103

et = =0

=

=

li
i

n additional RIGHTPAREN characters;
,e1se'.
o Let n be the number of still unmatched LEFTPAREN characters fetched
If n is 0, treat char as though it were a. RIGHTPAREN character; =
' e]se treat char as though it were a RIGHTPAREN character
foliowed by n- n-1 RIGHTPAREN characters "

The function below, READ, is recursive. As for PRIN1 we assume the notion of the top-level

call is ‘understood 1o be an invocation of READ not contained within the specification of
READ.‘Note that the state of the fiie being read at the time of the top-level call to the function

determlnes certain behavior exhibited by all of the recurswe calls

READ[f11e rdth1;71g]
Check File Name file for 1nput and use file 1mp]1c1t1y below;
Check Read Table rdibl and use rdthl 1mp11c1t]y below.

In the foliowing. any read macro character with
context ALWAYS is to be treated as though it
were a break character.

In the following, every fill operation is to

- keep track of the balanced LEFTPAREN, LEFTBRACKET,
RIGHTPAREN, and RIGHTBRACKET characters from
the top-level call of READ, and all fi1ling operations
-are to be done as though the control field of the
primary Terminal Table were T and.until:a matching or .
unmatched RIGHTPAREN or RIGHTBRACKET +is fetched into the
Tine buffer, AL the iime that character is fetched,
if file is T and flg is non-NIL, the carriage return
character is. to be written to T. .

Observe the ESCAPE,_LEFTBRACKET. and RIGHTBRACKET guﬁde]inés{

Let char be the next character to be read.
If char is a separator character, read characters until
the next character, char, is not a separator character.

If char is a STRINGDELIM:
Read character char and ignore it.
Let seq be the sequence of characters obtained by reading
until the next character to be read is.a STRINGDELIM
{and treat LEFTPAREN, LEFTBRACKET, RIGHTPAREN,
and RIGHTBRACKET characters as though they had
syntax ¢lass OTHER -- j.e., do not consider them for
the purposes of balancing).
Read the final STRINGDELIM and ignore it.
" Create-and return a new String with pname seq.
elseif char is an (unmatched) RIGHTPAREN:
Return NIL;
eiseif char is a LEFTPAREN:
Read the LEFTPAREN and ignore it.
Assemble a new List Structure in the following way:
(We say a List Structure is being assembled.)
Let anscell be CONS[NIL:NIL].
(anscell will be used as what the Interlisp
Reference Manual calls a TCONC~list: its CAR
will generally contain a proper 1ist
and its CDR will contain the last 1ist cell in the
CDR-chain of that proper 1list.)

104

1
i

Until the next character, char, to be read
(by any recursive call to.READ:--below)
is the RIGHTPAREN matching the LEFTPAREN
just read, do the following: o
If char is a SPLICE type read macro
in its context: o :
Read char. L
Let macval be the result of evaluating
body[file:rdtbl], where body is the
value of the body atiribute of read macro char,
. 4n a frame extension marked as armed
(see Note below). '
If macvai is a List Cell:

‘Let iastcell be the iast List Cell in the CDR

chain of macval, :

Let tastcdr be CDR[lastcell].

If lastcdr is non-NIL: .

(Then macval is a not a proper Tist.)

Make macval a proper list by replacing

the CDR of lastcell with a new proper Tist

of Tength 2 with the Literal Atom . as

its first element and lastcdr as its second:
elseif macval is non-NIL:

(Then macval is not a proper 1ist.)

Make macval a proper 1ist by letting

macval be a new proper 1ist of length 2 with

the Literal Atom . as its first giement

and macval as its second.

(Now macval denoies a proper 1ist.)
If macval is ‘non-NIL:

‘Let lastcell be the Jast List Cell in the

CDR chain of macval.

If CDR[anscell] is NIL:
RPLACA[anscell:lastcell].
RPLACD[anscell;lastcell]:

else: ;
RPLACD[CDR[ansce]1];1astc011].
RPLACD[anscell;lastcell]:

elseif char is an INFIX. type read macro in its
context: '
Read char. '
Let macval be the result of evaluating
bodxrfi1e;rdtb1;ansce11]. where body =
is the value of the boedy attribute of read
macro char, in a frame extension marked as armed
(see Note below).
Assume macval is a List Cell whose CAR
contains a proper list and whose CDR contains the
1ast List Celi in the CDR chain of that proper list.
Let anscell be macval. -
else: .
(We will not make a special case.
above for reading MACRO type read macros
while assembling List Structures.
These are handled outside the context of ..
assembling List Structures (below) and are . .
handied inside List Structures without further
special consideration by;thegBEAD“ca]J in
this "else" clause.) o R IO
Let macval be CONS[READ file;rdtbl I NILY © O S
{note recursion). o T i
If CDR[anscell] is NIL:
RPLACATanscell;macvall
RPLACD[ansce11;macva]1:
glse:

105

RPLACD{CDR[anscel1];macval].
RPLACD[anscell;macval].

: Read the matching RIGHTPAREN and -ign
! Let ans be CARfanscell]. ‘ ‘
it “(ans should be a proper list.)
: * If ans has more than 2 elements:
Let lastcells be the second from the last List Cell
[. in the CDR chain of ans.
‘ : “If CAR[lastcells] is the Literal Atom . and was
either (1) produced by a recursive call to READ
{in the else-c¢lause of the Until above)
which read the characier '.' not preceded
by an ESCAPE or (2) was one of the two occurrences
of . introduced in order to make macval a proper list
(in the SPLICE read macro clause above),
perform RPLACD[lastcells:;CAR[CDR[1astcells]]].
(We have now completed assembling the List Structure.)
Return-ans; :
;. elseif char is a read macro in its context:
i Read char. ‘
If the type of char is MACRO:
Let macval be the result of evaluating
body[file:rdtb1], where body is the
vajue of the body attribute of read macro char,
in a frame extension marked as armed (see Note below).
Return macval; '
elseif the type of char is SPLICE:
(Note that occurrences of SPLICE read macros within
List Structures is handlied above.)
Compute and ignore the result of evaluating
body[file;rdtbl], where body is the
value of the body attribute of read macro char,
in a frame extension marked as armed (see Note below).
Return READ[file;rdtbhl];
else (the type of char is INFIX):
(Note that occurrences of INFIX read macros within
List Structures is handled above.)
Let macval be the result of evaluating
body[fite;rdtbi;NIL3, where body is the
value of the body attribute of read macro char,
in a frame extension marked as armed (see Note bolow).
If not LISTP[{macval] or if CDR[macval] = NIL:
Return READ{file;rdtbl1];
a8lseif CAR[macval] = CDR[macval],
return CAR[CAR[macval]]:
else, return CAR[macval]. -
else; ‘
Let charlst be the proper 1ist of Characters corresponding
to the seguence of characters obtained by reading at
least character and until the next character to be read
is a break or ssparator character.

Return PACK[charlst].

Note: I the body of an armed read macro attempts to read a RIGHTPAREN or
RIGHTBRACKET (with a call to READ in or under the read macro body) while that call is not
assembling a List Structure (at some level), the character should not be removed from the
fite (or line buffer) and error 37 with culprit NIL shouid be caused. If the call is assembling a
List Structure and the character to be read is a RIGHTBRACKET, it should be read (i.e., used
as the result of the read procedure) but not removed from the file (or line buffer) unless it
was maitched by a LEFTBRACKET read by the internal call. This alows the RIGHTBRACKET
to close LEFTPAREN characters read both by calls to READ inside and ocutside the body.

ore it.

106

Below are three examples. If the top-level call 1o READ is presented with the character
sequence (ABS Cy where'$’ Is a read macro, then a call to-READ within the body of '$ may
read the 'C’. However, if a second call to READ in or under the body of '$’ attempts to read
the)’ an error is generated. If the top-level call {o READ is presented with (A B $ (C)) the
body of '$' is permitted to read the *(C)’ with an inner READ, but an error would occur if an
attempt to read the second 'y was made, since no List Structure was being assembled inthe
inner READ. Finally, if "(A B $ (CV is presented, the call to READ in '$’ can read the ']’ since
it is agsembling a List Structure, but the ']’ should not be removed from the line buffer so that
the top-level call to READ will still see it. o ‘

SETREADMACROFLGLf19] o - o :
S E If there is a frame extension in the clink chain
of *actframe* which ie marked as either an armed or
unarmed call to.a read macro: WA
Let frame be the first such frame.. -
If frame is marked as armed, let oldflg be T:
else, lei oldflg he NIL. . . S
If flg, mark frame as armed;
else, mark frame as unarmed.
Retuirn oldfla;
glse, return NIL.

INREADMACROPL] _If there is a frame extension in the cTink
-7 chain of *actframe® which is.marked as an armed
call to a read macro: : ' SR
Represent and return as an Integer
the number of List Structures
being assembled by the various recursive -
calls to READ under the top-tevel call to
READ under which the read macro is being evaluated.
else, return NIL. ' o '

SKREAD[fi]e:rereadstr] _ : ‘
, _ Check File Name file for input. .
Let ptr be the file pointer of file.
If rereadstr=NIL, let rereadstr be the empty String.
Let n be the number of characters in the pname of rereadstr.
Let newptr be the value that would be found in the file
pointer field of file if the following hypothetical
situation were the case and READ[file;ORIG] had just
been performed: o
. The n characters in file preceding the one addressed by
ptr were those of the pname'of'rereadstr.and the file
pointer of fils were positioned at the tirst character in

—

this hypothetical occurrence of rereadstr.
If newptr > ptr, set the file pointer of file to newptr.

If the hypothetical READ would have ijmmediately encountered
a ')' character, '

return the Character '}': O
e1seiﬁ:this.hypothetica1 READ would have encountered
any unmatched right paretheses (or brackets).,

return the Character ']': R :
eise, -return NIL.

READC[file] Check File Name file for input.
Read and return the next Character from file
(fi1ling until). '

PEEKC[file;rdtb]]

;

E‘
i
i
?

T e

- Check.File Name fTile for input.

- If rdtbl _check Read Table rdthl and use rdthl

. 1mp}1c1t1y betow;
else, proceed. as though the contro1 f1er of

the Terminal Table in. use contained T

Let char be the next Character to. be
read from file (f11]1ng until T) but do .
not remove the character from the file (or 11ne buffer)

Return char

RSTRING[file;rdthl]
Check File Name file for input. '
Check Read Table rdtbl and use rdtbl 1mp11c1t1y below.
Observe the ESCAPE gu1de]1ne
Let seq be the sequence of characters obtained by read1ng ;L
from file (f1111ng until a break or separator i
chardcter is fetched) until the next charagter to be :
read is a break or separator character, : : 3
(Hote that seg may be the empty sequence.)
Create and return ‘a new String with s seq
as its pname.

RATOM[f1]e rdtb1}
Check File Name file for input and -use file 1mp]1cit1y balow.
Check Read: Table rdtbi and use rdth1 implicitly below.
Observe the ESCAPE guideiine.
In the following, all.fi11ing operations are to bs
done until either the first break character is g
fetched, or until the first separator character 1
following a non-separator character is fetched. 7

If the next character to be read is a.separator _ :
character, read characters until the next character) 2
to be read is a non-separator character.]

Let charlst be the proper 1tist of Characters
--corresponding to.the seguence of characters obtained

by reading one character and then continuing

read1ng untit the next character to be read

is a preak or separator character.

Return PACK|char1s].

LASTC[file] Check Fi]e'Name file for input.
‘ If no character has been read from file
_ return ome (unspecified) Character;
Blse, return the last Character read from file.

RATEST[f1g] Let seq be the sequence of characters parsed
by the last call to RATOM or READ (whichevar
was most recently executed).

IT seq was not parsed into an Atom (i.e., READ
was the last called and it did not return’
an Atom): ‘
Except for the requ1rement that no error
‘be caused, RATEST is unspec1fied in this .
situation;
elseif flg = '
If seq was preceded by a separator character
return T;
etse return NIL:;
elseif flg = NIL:
If seq consisted of a single break character.
return T;
else return NIL;

108

elseif flg = 1: ‘
If seq containpd an ESCAPE,
~ return T;
else return NIL.

The following three functions él!ow the u-ser'to manipulate the conients of the line buffer and
the system input buffer. We assume the existence of two additional buffers, used by
CLEARRBUF to hold characters removed from the two standard bufifers. _ :

Definition: The "L INBUF-buffer” is a buffer of the same Jength as the line buffer. The
"SYSBUF-buffer” is a buffer of the same length as the system input buffer. These four
buffers and the twao interrupt buffers are all distinct. : :

BUFPL] If the line buffer is empty, return NIL; .
else, represent and return as an Integer
the number of characters currently in the-
- 1ine buffer (the contents of 1its deposit pointer).

READP[file;f1g] Check File Name file for input.
: If file=T: . ~ :
If BUFP[]: , '
CIf f1g., return T; : : _
elseif PEEKC[T;:T] is the EOL Charater in
the primary Terminal Table, return NIL;
~else, return T; '
else, return NIL;
_elseif the file pointer of file is less thanm
thé end of file pointer for file: .
If f1g. return T; T
elseif PEEXC[file] is the EOL Character in the
primary Terminal Table, retorn NIL; ' :
else, return T;
- glse, return NIL.

CLEARBUF[f1g] If flg: . _ :
_If the iine buffer and the system input buffer
are both empty, return RIL;
olse: ' :
Copy the 1line buffer into the LINBUF-buffer.
Copy the system buffer into the SYSBUF-buffer.
Return NIL; ' -
else:
Clear the line buffer,
Clear the system input buffer.
Return NIL.

LINBUF[f1g] - If flg: ' o

: If the LINBUF-buffer is empty, return NIL;
eise, create and return a new String
representing the character sequence corresponding
to the LINBUF-buffer;)

else: .

Clear the LINBUF-buffer.
Return NIL.

SYSBUF[f1g] (Same specification as LINBUF except that -
o . . "SYSBUF-buffer” 4s used instead of "LINBUF-buffer".)

Clear the line buffer. - -
“For every successive: character, .char, in str . E
(or until the 1ine buffer is reptete), deposit char in

'BKLINBUF[str] * If STRINGP[str]:

109

the line buffer.
Return str.

BKSYSBUF[str] (Same specification as BKLINBUF except that
"system input buffer”"is used instead of
;" "line buffer".) ' : ' :

FILEPOS[pat;file;start;end;skip;tail]
Check File Name file for input.
If start=NIL, Tet start be GETFILEPTR[file].
“if end=NIL, let end be GETEOFPTR[file].

If not FIXP[start], let start be FIXfstart].

If not FIXP[gnd], let end be FIX[end]. .

If either start or end is less than 0 or greater
than GETEQFPTR[file], cause error 17 with

culprit CONS["Attempt tc read past end of file"].

If there is an integer, i, start =< i < end,
such that the pname of pat and the patlen long
character sequence containing the characters in file
starting with the ith are equal with respect to the
wild -card skip (cf. Section 12): ‘
Let i be the smallest value denoted by such an i.
If tail, let newptr be the representation as an Integer
of the integer i+patlen; g
else, et newptr be the representation as an Integer
of the integer i.~ -
SETFILEPTR[fiTe;newptr].

Return newptr;
else, return NIL.

COPYBYTES[infile;outfile;start;end]
. Check Fite Name infile for input.
Check File Name outfile for output.)
IT not FIXP[start], let start be FIX[start].
If not FIXPfend]. let end be FIX[gnd].

SETFILEPTR[infile;start].

Let bytecount be end-start.

If bytecount<0, cause error 17 with culprit
CONS["Negative number of bytes to copy";bytecount].

For i from 1 to bytecount do the following:
Read the next character, char, from file infils.
Write character char to Tile outfile.

Retura T.

28. STORAGE ALLOCATION

As noted in Section 2, Interlisp programs can dynamically create "new" objects using
- "creation functions" supplied in the VM. An object is considered "new" if it is EQ to no
object the user could obtain before invoking the creation function. it is desirable to allow the
creation of an arbitrarily large number of objects. But of course, since it takes a certain non-
zero amount of storage to represent an object, and since there is {presumably) only a finite _

110

amount of storage available, one can only represent a finite number of objects-at any:‘ohe-
time. However, most of the time the user cannot ‘obtain all of the objects he has created,

simply because he has discarded all of the references to some of them. Thus, the
implementor is free to-collect these "unreachable” objects and reuse the storage associated
with them. This process is called "garbage collection”.” If at. any given time the user
. happens to be able to reference no more objects than can be represented at once, garbage
collection provides an illusion of infinite storage. ' -

‘The VM doés not require the existence of a garbage collector. (However, the utility of an
implementation without a garbage collector will suffer greatly uniess enormous amounts of
storage are available.) Whether or not a garbage collector is present it is still possible to
exhaust the amount of physical space available for the representation of objects. This
document does not specify the action.taken by the VM when it cannot fullfill a request for the
creation of a new object due to lack of space. However, that action must make it clear to the
user that this situation has arisen (rather than, say, merely begin reusing valid objects).

if a garbage collector is present, the VM'puis very few constf_ainté on its behavior.
The garbage collector may be invoked automatically at any-time. We make the convéntion

that every garbage collection is initiated in order to reclaim space for the representation of a
particular data type. This is called the "type" of that activation of the garbage collector.

Garbage collection may alter the state of the actual machine in any way the implementor

desires, so long as the following condition hotds:™ -~

If the garbage collection message is NIL and the garbage collection trap field
contains -1 (see below), it must not be possible for any Interlisp program, using
VM functions other than GCGAG, GCTRP, RECLAIM, STORAGE, CLOCK and.
DATE to detect whether or hot a garbage collection has occurred, with the
single exception that the program may abort or give warning messages due to.
lack of storage if garbage collections are avoided. .~

The VM requires the existence of two fields, used'to_prbvide a limited amount of user access
to the garbage collector: - :

(1) The "garbage collection message" field, which contains some object.
(2) The "garbage collection trap” field, which contains an integer.

The use of these fields is as follows:

If the garbage collection message field contains T, the implementor should print (to the -
terminal) some informative message on entry to and on exit from the garba‘gercollector”; If

the garbage collection print flag is NIL, no message is printed on entry or exit.” If the garbage
collection message field contains a String, str, then PRIN1[str;T] is executed on entry to the
garbage collector, and no message is printed on exit. If the garbage collection message is
some List Cell{(m4;m,), then PRIN1 [my;T]is executed on entry to-the garbage collector, and

PRIN1 [ﬂ_"z;T] is executed on exit from the garbage collector. The action taken when the

tn Interlisp-10, the entry message is simply "GC: " followed by the type of the garbage collection. The
exit message says how many words of that type of storage were actually reclaimed, and how many words
remain. S

11

|

b

arbage collection message field is other than NIL, T, a Strlng or a List Celi is left to the
implementor. :

if the contents of the garbage collection trap field is some mteger, n, and at any time the.total
number of new List Cells which could be represented equals n, then at the next safe function

call (cf.-Section 25) (of some function fn with argument list args) INTERRUPT[_ args 3]
“should be executed. '

Initially, the garbage collection message fleid shall contain T and the garbage collection trap
field shall contain -1.

GCGAG[mess] Let oldmess be the contents of the
garbage collection message field.

Set the garbage collection message f1e1d to mess.
“Return ' oldmess.

GCTRP[n] Let oTdgctrpn be the contents of the
garbage collection trap field.
let n be FIX[n].
Set the garbage collection trap field to
the integer represented by n.

Represent and return the. Integer represent1ng 1dgctrg

RECLAIMftype] Initiate a garbage coTtect1on of type type
The impliementor may define (and document)
the resulti returned by RECLAIM'S

Note: If no garbage collector is present, this function would be a no-op.

STORAGE[] Print any information deemed by the implementor
to be useful to the user who wishes to ascertain
the kinds and amounts of storage currently

in use (or allocated) to the VM,
Return NIL.

29. MISCELLANEOUS VM FUNCTIONS

Definition: The "VM ordering" is a partial order on the universe of VM objects, such that
Numbers (both Integers and Floating Point Numbers) are less than Literal Atoms and Strings,
Literal Atoms and Strings are less than List Cells, and List Celis are less than all other
objects. Within these constraints, Numbers (both Integers and Fioating Point Numbers) are
ordered according to signed magnitude and Literal Atoms and Strings are ordered

alphabetlcally according to pname (the ardering of the characters of the alphabet being that
of the character codes).

ALPHORDER[x;y] If x is y or x is less than y in the VM ordering,return T;
else, return NIL.

in Interlisp-10, the result is the total number of words available for storage of data of type type, after
the garbage collection,

112

e e e R T AR

o
3
Be

o i

COPYALL[x] . . If LISTP[x1: . . . oconopveme o o res Tl on o w
o T return,CONS[COPYALL[CAB[E]];COPYALL[CDR[E]]];_-T.;” S e
if LITATOM[x], return x; . . . P P
~ elseif FIXP[x], represent and return as an Integer the.
integer represented by Xi -) T o
elseif FLOATP[x]. represent and return as a Fioating C | :
Point Number the real represented by X: o A R
- eTseif STRINGP[x]}, return CONCAT[x]; _ _ S j
alseif ARRAYP[x]: « -7~ S . I
Let size be ARRAYSIZE[x]. ;»
Let typ be ARRAYTYP[x]. - R i
IT typ=FIXP: _ .f
Create and return a new Array .of size size : |
and type typ, containing in its ‘successive . -l
fields the same succession of unboxed. Integers '
.as in x;. _ L . e
‘else (lyp=POINTER): , o
Create and return.a new Array of size size and type
POINTER, such that the ith field, 1={i=<(size,
contains COPYALL[ELT[x:i]]: :
elseif HARRAYP[x]:: _ _
Create and return a new Hash Array, newx, of the same
size as x, such that for every hash-Tink 1in x.
. with hash-item item and hash-value val,
. hewx contains a new hash-Tink with '
hash-item COPYALL[item] and hash-value COPYALL[val]
and no other hash-links; % . | ' .
elseif -x s a User-Data Typer _
Create and return a new object, newx, of the same type
as x, such that for every Tield in x which contains
some object, obj, the corresponding field in pewx
contains COPYALL[obj]. and-for every field-in
% which contains some meta-object, the corresponding
Tield in newx contains the same meta-object;
elseif STACKP[x], create and return-a new Stack Pointer
containing the frame extension in x; ' :
el1seif READTABLEP[x], return COPYREADTABLE[x];
elseif TERMTABLEP[x]. return COPYTERMTABLE[x]:
efse, return X U - o

The following two functions assume the existence of a clock, which can be used fo measure
both elapsed real time and elapsed time spentin Qg'mputing (rather than i/o waits).

CLOCK[n] If EQP[n:0]: S ,
: ’ Represent and return as an Integer the number of

milliseconds which have elapsed since the clock
was initialized;

elseif EQP[n;1]:
Represent and return as an Integer the number of
milliseconds which etapsed between the time the
clock was initialized and the time the VM was entered;

elseif EQP[n:2]:
Represent and return &s an Integer the number of
milliseconds of compute time spent in the VM;

elseif EQPIn;31:
.Represent and return as an Integer the number of
milliseconds the VM has spent in garbage collection
(if a garbage collector is present). .

Note: If some of these quanities cannot be computed the implementor is responsible for
. documenting this. :

DISMISS[n] If not FIXP[nl, let n be FIX[n].
} Wait n milliseconds. and return NIL.

113

DATE[]

IDATE[x]

USERNAME[]

SYSIN[file]

LOGOUTL]

SYSOUT[file]

Definition: The "VM format for a date and time". is a character’ sequence giving a day ef the
month (as an integer) dy, the name of a morith (or an abbrev:at:on), mo, a year (or the last
two decimal digits), yr, and an elapsed time singe, mldmght measured in hours hr, mmutes,
P mi, and seconds, sc, in the format: gx mo-yr hr. hr mi SC. ' .

Create and return a new String whose pname denotes
the current date and t1me in the VM format

If the pname of x represents a date and:; t1me in
the VM format:

Represent and retura as .an Integer 50me - 1nteger

-1, .such that for a1l objects, 'y, whose pnames -

‘represent. a"date and time: in the VM format,

i = IDATE[y] if and only if x and 'y represent the

same date and time, and-i X IDATE[l] if and only if

; the date - and ‘time" represented by x occurs chronologically
' before that represented by Yoo

Create and return a new Str1ng whose pname s
the name of the user.

Let file be. 0PENFILE[f11e OUTPUT NEW; bxtesiz]}. where
bytesize is an implementation defined Integer.

CWrite suff1c1ent dnformation.to file -so as to

allow the function SYSIN (be1ow) to .completely
reconstruct.the state of the Virtual Machine

.. as of -the compJet1on of this statement
- {with the. exception-of certain-externally .

controlled features: such as :the real=tims . -
clock or open .files, .all:of which should be
documented). N T L
CLOSEF[fi1e} BT

Return f11e ‘

Let’ f11e be 0PENFILE[f11e INPUT;OLD; bytes1ze]
where bytesize is an implementation defined Integer.
Assuming file is a file constructed by SYSOUT,
reconstruct the state of the Virtual Machine at the.
time the SYSOUT occurred.

e

© CLOSEF[fils].

Return LIST[file] (this will return from what (at the

_t1me of the SYSOUT) was the call .to SYSOUT)

Exit the Virtual Machine and reenter the host
operat1ng system

114

E
k:

S
sEf'
#
?

L

B

REFERENCES

"A Modet and Stack implementation for Multitple

1] Bobrow, D. G., and Wegbreit, B.
s of the ACM, Vol. 10. 10, October, 1973. -

Environments”, Communication

[2] Teitelman, W lnteriigg Reference Manual, Xerox Palo Alto Research Center, 197_8.“':_ e

115

class T et et T T . . 9

CLEARBUFLFIG] ...\t iiiiinnnnnnns. e e e 109
CLEARSTK[f1g]oovitvinninnnn.n, e 48
clink chain from frame e e P 44 A
clink Field oneoin it i . 43.
CLOCK[n] ' , e reaa e Ce e e ir e S I
CLOSEALLF] .. e, EE N - T
CLOSEFEfiledn.n st iiiiiiiiiiiieren e, Crresr e, Lo T
CToSIng @ File . ..oiittiiiet ittt ittt etieerenriennennes .- 68
CLRHASH[harray} St ae i aaa, 32 P
compiler S e e 37, 83
CONCATIXI;Xz.;;,:...Xn] .._...,......;..._. P rs s 27
COND[c]ausech1ause2:,,.c1ausen] Fetarreeeaas S rerranr e 57
CONS count .field T S Ceeiraen ‘e 10, 60
CONSCOUNT[n] e, Cereaaaaa, e N
construct a new basic frame from fnname, frobj, and arglist . 50
CONSTX:¥] vovenivnvannnnnn, e reaiaaes e ieerer e, e 10
contain blip fields et D 62
context (read macro attribute) re e cereraan 74
continuation point S esaaa bbb e ceeen 42
control character L e el i e ere e . 3
control.character echo mode PSP et 83
controlled from S errerenreeeenas e e R -5)

. CONTROL[mode;termtb1] [feriaenae veeea 87
Convention: e e fr e . 5
copy buffl to buff2 Ce s Eh et eransnanas . 90
copy of a basic frame0.0iiiun.. Ceereeeraa. 42
copy of the-.alink chain of startframe to endframe 48 .
copy of the temporaries field of a frame extension,..... 44
COPYALL[x] ..vvvvvnvunonnn, e i e e et 113
COPYBYTES[infile;outfile;start;end] Cersheasserae s e e - 110
COPYREADTABLE[rdtb1] e r e ettt aaaas 77
COPYSTKEstaptframe:;endframe]ovoveerenennnn B |
COPYTERMTABLE[termtb1] e e . |
COS[x;radiansfl1g]iivnnennennonn.. e rrteaarterneenn. - 24
CTRLV (terminal syntax class) Sttt ra et e PR g2
€TRLY character of ttbl O, e Crreean . 84
data type .iveiiniiiiiii i e, e et 9
DATE[] N s fereraaees ceaden 114
DCHCONEx;scratchlst:flg:;rttbl] Lt rese e, 15
DECLAREDATATYPE[type:specTst] ..ovvreunnnnn.,, Mreeeanaa RN 34
DEFEVAL[type;fnobj]oonvvnunn... T b 55
Definition:, R, . 7
DELETECONTROL[msgname;msg;termtbl] Cee e 86
deletion control message name b, Ceraaa 82
DELFILE[fi1e] vuvrivenninnenennnnnn. e, e P
deposit (in a buffer) et PR . 80
deposit. (to.a file) .,..... et ettt r e ceeaen "~ 66
deposit pointer (of a buffer) b e e 80
DIFFERENCELX:YT v vvrveinininnesrnnnes Per e beraeaaae 23
directly executablecvviieinennnnnnn.. . Cheae e 37
disarmed (interrupt)0ovvevrunnnnnnn. e asaeeas 88
DISMISS[R] ivvvininn i, N e 113
display terminal0iiirerrnnnnnnnn. crrreraeas 79
DISPLAYTERMP[]c.vovnn.., e et 81
L] Preaaree e, .81
dribble file e e - 70
DRIBBLEFILE[] e . Pereaas e 71
DRIBBLEffile],......... e e it 71
DUNPACK[x;scratchist;fig;rdtb1]venu...... Pree e . 13

118

INDEX

Page
tequivalent T e ra e eaa hrias e veas 3
actframe |, v s R e e e e e i N PRI 43
ARGVAL e et aae e rraanaans ciees 49
B 4 P r et te i ey Cerenees 49
fn .. Cerer e e terrene s 50
B 0 P, Ceererieiees 49
R T o 1 Pereaaaaeas freenan 50
TAIL ... vviinnn bl e rere it it ettt enas Creerienaes 49
tail ... i e feneae e cae 50
(in. the parameter 1ist-of a function specification) 37
1STCHDEL {deletion control message name) A 82
{floating point number>cicviivrnnnnn. e e 20
<integer> e trrereraset e asanens e 15
access environment S asarrner et ve 41
access mode000000.. e i ee e rarerreaa v 67
ACCESSING . ovv it tei ittt e i i, et eaar s . 3
o - 1 e 1 cerarean 41
active frame (or process or module) arra s ereaean 43
active frame extension field Cees e e - 43
alink chain from frame T T T T veau 44
I 1 e - I« ce b e s eheerne 43
ALONE (read macro attr1bute value) e frenas 74
ALPHORDERE X YT v vve et mee it itnrnresseansnoneenasennesns 112
ALWAYS (read macro attribute value) Ceenaan R 74
ANDTXg:iXpi e Xkd cenrennniniinnnnnnnnseeas et ea e 9
ANTILOG{X] e e eien.. 23
APPEND (access mode) fe i ar sttt .. . 867
APPLY*[fn;ar09;8r00:...8r0n] tvviiiiininneninnsnnnnonnnancnan 56
APPLYETD;arglist] ovivvrrennnnn P et i ee e eaanaanaseraas ‘. 56
ARCCOSx;radiantlg] ..o.ciirnrinniennnannnnrrnnsnnns e 24
ARCSINI X radiansflg] oottt ittt it e eersannns . 249
ARCTANT x;radianfig]cvvvvnvnvnnn.. T e ettt ee e 24
ARGLIST[fnobj] N e r e eean 40
argrame00000n B e e ettt b e . 42
ARGTYPE[fnobj] ..oviiren i et rnnnnens Cerr e 39
argval S . 42
ARGIvarsn] ..ttt it it fe e e . 57
arithmetic overflow Tlag fieldciiiiriinrerrnne. . 16
armed (call to read macro) Fe b h et s 103
armed (interrupt) ...l et 88
Array ey e e aar e, Crrerer e ' 29
ARRAYP[x] e esean e i e e e a e 30
ARRAY STZELArPraY] o ivvin it iiner i mneennenenensnnns e 30
ARRAY TY P arFaY] oot it it ie ittt et iiernrsnransnnennns 30

ARRAY[n;typ;initvall e e Fr et i et 30

116

BACKTRACE[frama1;tramez:f1ags] fesresassesaran

base-r representation of an-Integervvenioennes PN

basi¢ frame of size n R S
pasic interrupt C188S <..o-enrrreres Cileesmanaens R
basic syntax CIASS ..iseevrnevre: e earerevenes treeias s
below e ieeveres reanrriivaesrenanns PR shrinen
DANAING o oavoersnnronsmeneresnsremrrrrersrs T
bittable: T R i iieecessarerenraensrras
BKLINBUF[StP] +.vvvevinrennrnnnrs e eeeeierasrr ey .
BKSYSBUF[SLP] ovevrnvnmrmerenroeress Ceasanesarains ferresees
blink field ...eeeerervens tresheannse s R
blip fieldovevrsreinreraronunnone e e vesarenes
nlip field sequence in chain B R LR R
blip field sequence of frameco-0s D rseseenesuarannranas
b1ip-using TUNCLIONS .oouvvurbonnenronrres vereas fhserareans
BLIPSCAN[b1iptype:frame] cevene TR
BLIPVAL[b1iptype;frame;n]ccoeerr-- PR B
body (of a function ObJBCE) wvusrnianensararranres cireeaenun
body (of a read MACFO) +envenrrnsrares T A feearenesas
BOTH {(access mode}ereverreres J T LR
bound in bframeceenrrerrrrree veesea R A L
bound on the access chain from frame heesenumasarraas
BOKX «oevsrssomecrsanssnsaransensmes vereas T
BOXCOUNT[typesnl .covvverenes N crerarsaens N
boxed S LR R Cereas Ve ssannas earares
BREAK {basic interrupi CIASS) «rrevmmonnvaroronasnaeursovrese
preak character of rdiblcowever T R
break syntax c1asSeSve-.ne eresavars eesmrrseranesas RPN
BREAKCHAR (basic syntax CTASS) wveersnnssnmonrossonssomennnes
BREAKCHAR character of rdtbl ..ot Cresaerramaa ey
BUFFBE -vvveonnasmarrsasrannenmsroreanrert . beeveearansasnna
BUFP[] +vvvrosrnenronnmnnnnenes Cresa e venrne . cas .
calling fnname on arglistouvarnnenn Cesar s e etraes
CALLSCCODE[fnobj;fig} -veveverr-n Caseerrarares Crseasenas PN
car print level field ..vcivnerens ieesanassrserusarrenanraee
carriage FOLUFD .. .oveomrmeurerees s enaes Civeersaserrn e
CAR[X] ..verve e e P feenesseaerarnsr e
cause error n with culpril X coveenevnen Ceemressaraasaenrerens
CCODEP[fnobj] eea e e R E T ERER TR
COR chain from X .. veerceveneens P vearresrn cerrrerasnas
cdr print level Field ...ocnuneanne censaus Vesermessrrranasans
COR[X] vovvemenmmnmnuonanmneeces s P R R
€eiling OF X «vevvrannannrnnsrermrerrrers feedsenr e Vo .
CEXPRvvcesnn T vewnaens Crerrarrenas .

CHANGECCODE[newref;refmap:fnobj] R

character R R haaranars T T R R
Charactersrsvesree heresarrensanas Wesessemarnemsrarary
character €O0Buevvovonvenrrs Chaens aeerearnens herar s
Character corresponding 10 X- e L L
character sequence-....-.- R R R R R
CHARACTEREN] . vovvvnvrrenrenns N L L
charcount field (ef a String)-- e raeias s

CHARDELETE (termipal syntax £1a558) +errvens Ceesecnrevanebenas
CHARDELETE character of tthl ..ovseieeaeen carreraney RN
. CHCONALX] «evvvrnsvenenns e eaeeraaaeran RN S
CHCON[x:f1g;rdtb1]ve.- i P R
check File Name file for output» ereeranrerrae .
check Read Table rdtblcvcernuren veeaarae tresrev ey

117

ECHOCONTROL[char ;mode;termtb] ...ovve-. e averarisere e [86°

ECHOMODE[F1g:termibl] oueursnunnverrrnenes NP 1 £
aiement of a proper 1ist: e R 3
elipsis (in the parameter 1ist of a function specification) . 37
ELT[array;n] «.ovoeoeverrs Cevn e Chraaes A S 30
empty BUTTET ..vovineneorennmmmrenmmnmr s enser e 80 -
empty STRingcovvaeve-n rr e nsa e ks e sesaranee 26
EMPTYCHDEL (deletion control MeSSAge NAMB) ..suesverraenrones .82
end of file pointer field ..cvvonrrnns J T L 67
ENVAPPLY[fn;argjist;a1ink;c1ink;aflg:cf]g} cearenns A 56
ENVEVAL[form;alﬁnk;c]ink:af1g;cflg], T R I 55
EQP[X:Y] svvnsnrnvarmnsronsrss Y e e ceene 8
EQUALLXIY] cvvvnercrnsnnrnmmeneeres R feaarsaraanaians N 9
EQ[x;y] -vvvnnnns o iesesersensrsanaaeree anenen B 8
ERROR {basic interrupt class) .eovens eerrae O L
ERRORX (basic interrupt C1888) ceureraranrrnene hrreraarasens g2
ESCAPE {basic syntax c1ass) svrerreenens Ceeraans beeeerraareae 74
ESCAPE character of rdtb) cheenaes Y ereaeans 75
escape flag (read macro attribute} ... eeennrees Crereaaras 74
ESCQUOTE (read macro attribute valug)eerernreorrmreanees 74
EVAL tablesvovvs e sessen [53 :
pval tYPE ...ocennrrnne feeaeasesnaes herer i ranss ebnaav e 36, 39
EVALA[form;alist] ...o-vovrenunnnerrens beeraans vesierraae e . 54
gvaluating Tnname on arglist: ves s cresarransarenres - b2
EVALV[var;frame]ovoerrrerereess R vevaas ve.s. 54
EVAL[TOrM] «.oonvnenronrnreens T benens errasesees 53
-~ EXPR S L R 38
EXPRPLTRODJ] «vvvrrvrvorsonnmenenemmeery veserees chranas caaes 40
EXPTLRIY] +revvoncrnomrronenunsnmuromresness beres e . 23
FOIFFERENCE[XYY - vvvrverennmorenns i reveaaeanes Ceenssaeseess R2
. fetch (from a Buffer) ..o.eerecnnrerarssadunraruess errrse s 80
fetch (from a file)ceerevronnmerurenes evssernnassrenness BB
FETCHFIELD[descr:obj} «.....--- e o areaeaaaeas e 34
FGREATERP[X:¥T -vvvvvvnrnirenuens eeecmaeearasaa e e 22
Y TR T I I I N creaaraes R R EE R 2
Ffield descriptorc.eerecrvenrers er e erseanrees . 33
field satisfies field specification SPeCrovevrncererrre a3
field specificationc.evuvenns [conn 33
fields satisfying specy., SpPecz, ... SpeCy +es-- ceerrarsseraan 33 .
FATE wvvevevvmensnrasnssnamsnsnnonnrse P besmssrseraes ‘s 4, 66
File Assumption 1vseceanneres R TR 66
File Assumption 2cconrermmornre S R R . 67 -
Fite Assumption 3ceseceroercvre berassarevennn cerrarane - 68
File Assumption 4 ere s creaen Ve esamensararn e 68
File Assumption &: e aaees e WeessesrnnrEne 68
File Assumption B: feeraa s R R R 68
File ASSUMPLION 7 «.oervarrornsrnmoanmrressrs Creressaarann i 69
File NAME .vrevesnnorsocoreosssanes ceeuns R besmeaen 69
file pointer fieldooveonrmennonere L L. 67
FILEPOS[pat:fi1e;start;end;skip;tail] P emaaerrens . 110
£i11 the buffer until pcvrvvvnrnenes R R 101
FIRST (read macro attribule value) heneaetraearenaens 74
FIXPLIX] wvvovrmvnnonrnennnonsmnnenorsmsrsrorssesss b 17
FIX[N] cvvevnnnnnnen Cheeseraren R R R R . 18
CFLESSPLX:Y] veerinrrnnasnnesen AT feererana e . 22
Floating Point Number besens R L R - 20
Floating Point Number box count Fieldevcevamurnrers P 21, 60
FLOATP[xYvvevn B R A TR LR AL Caeraseeanan 21
FLOAT[NT «vvvvnrrenonennmmnnnnnens R T) . 21
F100P OF X vevnureinvrsnsassnssnrmssrmmsessrosses berarmrreaee 17
CEMINUS[AT ouvvnsvnensnereminee e Cewenrr e 22
FNTYP[fnobj] T LR L PR . 39
fOrm ...ouvnvrrens T S L R R . crrarasaans 2
119

)

FPLUS[nqsngs...m] L..s, e e e N ere e .22
L FQUOTIENT[i;31 oot N e ieer e, e . 22
Vo frame T e e Cermaas beersenneas 42
1 frame extension e e RN e e 42
b frame name St e e e .42
o - - FRAMESCAM[var; frame] et et taraaaas cieaan ce 49 -
. free variable e e renees P 13
o FREMAINDER[x 3 e T L cer s 22
O FTIMESEnq; Moio o oMl e, Sereeen e e cereans Ve 22
: Tutl (buffer) P T e e e 101
full (Hash Array)voirvvvvennen. O 31
full filenameovvevvenvnnnn Feeras . e e 69
i FULLNAME[1itatom; racog] e e e e e e a e 70
A FUNARGvneenvunns e r e Creaes v e - 37, 38
T FUNARG EXPR . vviennnenrnrnnnees e e e s .. 39
o function i B T . 4, 35
Lo function definition field Veverss Fheesas P e, 12
P function object Weeaaeaen Ceraaan e 35
A function specification,....... R
FUNCTION[formienv] e terenearas P e e 55
S 0 R 1 b renaaaaas Cerens ereenen e ea e . 6, 7
garbage collection message field cereran e R § 5 |
garbage collection .trap field N et r e eanaans . 111
garbage collector cerraras e eeas crerrans N . 111 -
101 Iy S 5 S B R T Chrrar e ' 20
GCGAG[mess] P e Ce e et ean e 112
GCTRP[N] et e O e e e 112
get frame extension x ceneenn trre it 45
get Hash Array harray e seerisreans i et aanaaa 31
GETBRKEPALbI] . o.'retieeriiiiereninennnnn. et - 79
GETDESCRIPTORS[type] Pe e e 35
GETD[Titatom],ovvrinennnnnnns Ceraaan e erar e v 13
GETEOFPTR[file] e e e arene e e, 72
GETFIELDSPECS[type] [e s e e 35
GETFILEINFO[file;attrib]} S e e 73
GETFILEPTRLFile] ... oottt innnnn, frre i e 72
GETHASH[item;harray]covvvennvenn, Ceneeenn Crresiassannans - 3z
GETINTERRUPT[x] [e et 93
GETPROPLIST[1itatom] cerean e trerraaa e O K
GETREADTABLE{rdtb1] et s essr et estaanr e ter e e 76
GETSEPR[rdtb1] v i e 79
GETSYNTAX[char;th1] Perran Ceer e e . 77
GETTERMTABLE[termtb1]covivivunnn, Crrragasas Ceeeaas 85
GETTOPVAL[1itatom] R S R Cerean 13
GLCLstr) .ot it s e h i aeer ey 28
global vardable ittt ittt trreseanes 64
o - o N e e 28
GO[Tabel] T, e, ‘e 58
GREATERP[x:¥y] [e S 23
HARRAYPIXT v veviimriiiiiininnnennnnn R e ceeaenn s a2
HARRAYSIZE[harray]c0vvunn.. e . Crraeerenes - 32
HARRAY[size] et ee bt e Creraaaassaaes 32
Hash Arrayiiieiiiiiinnnnnnnsnnn R ceraan Cee e 31
hash Tinking¢e0..o... vt ra b aeass 31
hash-item i, e fr e et e s 31
hash-1ink, e e e aeaiase e 31
hash-valuecvivinnnenn Per e e e . 31
HELP (basic interrupt ¢lass)ovvvrveinnn.. . Cheaa a0

120

. IDATELXT o vevvosnnmnrnnssinnnscsessonnsssanes PPN Lo 314
' IDIFFERENCED 45 svvvnnnrnsrinenrsnes TR vee.: 18
TEQP[:J] vvvvevenmensmrnes R i .17
IGNORE (control character echo mode) ...ievrrieesian e ©.83
IGREATERP[1:§] +--vv o N e 18
TLESSPTIH1J] +revvevrunnmnonnssasennrrnnseneenss Ch e e e .18
IMINUSENT «vvrrivnsiinmnncnnesens berars U PP IS S £ S
immediately below O S S 44 -
INFILEP[file] ... cc-v Ceeea e feeiens S 71
CINFILE[F418] +vvnvnrvninmrmoonnnnrransnrnnnanneeses Creeranaas 71
INFIX (read macro attribute valug) ..evuvesn e 74
INPUT {access mode)oevorsvrnne T T R 67
INPUT[FIT8] o vvvrnerrmnrrenrrnraenanener P A e 71
INREADMACROPE] wvvvvvnvnrrenvrrnnmvnnnnes ST 107
integercoeerirennen e i e e AP IPI N Pesen e 6
INLEGEE .o vnesrsonsnasasnurresnormrets e esesaata s 15
integer part of Xoeceneneneen reesrean e r et raeres 17
INTERRUPT (basic interrupt class) R R 92
interrupt characterco00vee S 80
interrupt class of charocovveve P cirer e _ 88
interrupt 1ine buffer ... occuienerrrnnererreen e P 89
interrupt system buffercccvivreeren: e b e ceaees 29
interrupt TADTE .. .vii ittt PPN a8
INTERRUPTABLE[fligq;...T18g] +vvvvrvvnnennr-ne e SN 92
interrupts: armed }ield e 88
IOFILE[file] v tesadasa ey Ceverrererer e . 71 -
IPLUS[nliﬂzi...ﬂk] e Wissvassansanneas 18
TOUOTIERTIT: T v rrnnroonrnnrresrsnnnoaaennrrerenmnnsr s .19
TREMAINDER[3] «vevcreroernmrnnsnarrenevoey s mr e Eeasen e 19
ITIMES[nl:nZ;...nk] sesaenanr e e e 19
LAMBDA R S e e 39
Large S heaene T E R R PR i6
large Integer box count. field0ov crreeenenn e 16, 60
LASTELFIT@] vvvvvvvnrrernmrnesronnarrrsenrsasns Ce e e 108
LEFTBRACKET (basic syntax c1ass}eenervee PN e 74
LEFTBRACKET character of rdtbl R R 75
LEFTPAREN (basic syntax C18SE) cvnssrneroreasersasrsarannrnns 74
LEETPAREN character of rdtbl Ceeenaes [T R 75
tegal value (of a read macro attribute)} Ceraareen s 74
length of a proper TStoovrrnmerrrrenreraererree e 11
LESSPIXIY] tovvernrnnnemnornneenanens resseanens e 23
Tet VAT D@ BXPF ...ueinanrnesorsonnrrrer s 5, 62
LINBUF-BUFTEr .vvrianacanossrnnrsanacenrsrs . Crerest s - 108
LINBUF[FTG] +crvvonrvrrononnnnonssnns et eereaare ey 109
T T T R S L E R R AR 100
Tine Tength FieTd ..oveveuirueeervnnmmnrrnnreneerrenromrres 95
LINEDELETE (deletion control message NAMEY ..eserarrnanrrrae 8z
LINEDELETE (terminal syntax £1as88) ..iavraaenn eene e e B2
{ INEDELETE character of ttblvcvtorennns i areraaas 84
CLINELENGTHIN] .0vvnvnnennn s Ceeens e eneeee s 99
Tinked function call . .vcveennruernernsnnrarrrenrnrernss . .85
List CB1Y .o iiirannssnransnnns e P 1
List STPUCLUPE «.vvrnrrvnrrrsanenassnesnseemcensmenerrsrsss 10
LISTP[X] .ovvvvvsrvennnn R beeneers 10
LISTXq3Xp5er e Xg] vovvroonnmensmmmnrmenenes v e 11
LITATOMIX] oovveenivinnnonnnenennenes Crieeehresiumeeran e 12
Literal ALOMovinnenrnnnrenennrmerees i erar e r s 11
LAteral ALOM X . veusssrnsreeasnrsnereossmsnresssmsermrmsssns 8
LLSH[n;Tactor] .. covvvvievvnnenes Ceebrae i A Y 20
local variable O T LR R RS 52
LOGAND[ﬂlinzi...ﬂ],.i.L.........-..;.l...;?._ - 19
LOGOR[n ;nz;...nkﬁ B - 19
i .. sareennas 114

LOGOUT[

LOGXOR[ng;np;. ..o] o oven.n. b e sest e T - 19
LOGT x] .?,.?....;F Caeaaas e ceseans Caerrens cenaann .o 23
LRSH[n;factor] Cerenaan Chaaean feresen Ceeeaaen veeas 20
LSHn;factor] ..ottt cinn s ke e cereeaas voe 20
MACRO (read macro attribute value) craeras Y X |
-MAKEBITTABLE[1st;complimentfig; o]dh1ttab1e] i §
MAPATOMSETRY] ... i iie i Ceaearaas Chaeaes I . 15
MAPHASH[fniharray] ceresas bieeenan erhenasas teveas Fees 32
meta-object et rierrraras frrer et i errenae 2
meta-variable Cirenses e Feaenaas e .)
MINUSP[x] ceeraas caserans et ar e, . 23
MINUS[X] -ovevnninnnnnnn. e e .o 237
MKATOMEXT] oot e e Y e rearens 12

- MKFRAME[frame;alink;clink;fig: stkptr] e E e e by e . 48
MKSTRINGLX;f1g:rdthb1] Ceeeean RN e T ¥]
N-bit birary expansion of nv.evnvnnneenns T 1)
name field (of a Literal Atom) N R § |
NARGS[fnobj]ovvii i i ittt e el 40
NCHARS[x:flg;rdtb1] e seereseenean s ariaeaaaa, - 14
NCREATE[type;oldobj] s e Perrras e eaaas s .35
new Per e e e cia e -110
NEW (recognition mode) e eraanaear e . 68
new proper-14ist e e e v ch e 11
new String represent1ng 2 eerdeeaen Crereiieaaens . 2B
NLAMBDA i i e e e i e asenan -39
NOESCQUOTE" {read macro attr1bute value) N wven. 74
0 36
MOBVRT BYDE Lttt ittt ittt ittt s resaae et s errrenannnnns 36, 39.
non-FUNARG EXPRv0uvun.. cearean N faeen 39 -
non-Tocal variable S . B P -
NONE'. (basic interrupt class) e b P 92
NONE (terminal syntax €T1asS8) ...ivivvinennnnnronrnrncensns e 8z - .
nospread function object FEE R R T T S 37, .39
nospread type function object P e - ¥ J
L B e FIPIPI TR 9.
NOWAKEUP (read macro attr1bute value) e A [
NTHCHAR[x:;n;flg;rdth1]0t T 1
NTHCHDEL (de1et1on control message name) ehe e Ceaa 82
NULLLXT ...vonviennnn.., Cemeiai e iee et et et .. 9
Number Ceneanaan e e e Ceeaeaas 8.
NUMBERP[x] benens Cerreetias et anan s . . 22
object ... i e re e S e ea e 2
observe the ESCAPE guadel1nes s . 103
observe the LEFTBRACKET and RIGHTBRACKET gu1de11nes feasaaans 103
obtain the 5-tuple corresponding to 1st e 75
OLD (recognition mode) ...vriiiiornrinnnnnnn, bereaenns e 69
OLDEST (recognition mode)uvviirnrnsnerenenerronesens R 69
OPENFILE[file;access;recog; bytes1za} s Ve 70
opening & file ..o.niiinini it eiee e et veea 67
OPENP[file;access;recog]ovvvennnnn, Creria e cre s 70
eriginal Read Table Laersanae et it arnnnns R 76
OR[Xgi%piuuXp] viiviinnnnnnn.. e i ars e eaaaea e 9
OTHER (hasac syntax class) P veaaaa rr e e 74
OUTFILEP{fite] e b e st Ceeaeas - 1N
OQUTFILE[fiT1e]vvrevinnnnnnnnnes Cheararsranaan Pereans hees 71
OUTPUT (access mode)cvvuiinvennnnennssnnnnennn errena. .. 67
OUTPUTBUFFER (basic 1nterrupt class) haies Cerrnaaaas 92
OUTPUT[file] cenenaes Cere e eanas e e 71

122

OVERFLow[f1gJ‘...;.....}.;...;...{ et beereeseri ey

PACKCEX] - vvrvenvvnrns beebarensaser e ceraer e R SN
PACK[Xx]-"» Cerraaae Chewas T O I
parameter n-tuple G ererressrare s Y
parameter NamMeSosceree: R N Y
PEEKC[file;rdtbi] R A A
PLUS[xl:xz;...xk] Ceeenan R T R R R Sreaasaaies

PLVLFILEFLG ceeares B Ceesisbracasrurrasens
pname of Xenuenn e AR S
position field (of a file) Cheaaaresaeaas s eraaaeres

position field {of a String) feieareeiaraaens Ceeeesanan
POSITION[filesvall R R T
POSTCHDEL (deletion control Mmessage Name)evevosenences .

primary input file ...ovcuvpevennrenne: carerens reberressenry
primary output fileocevnevnrvrenner T
primary Read Tableoveounremureeees e T

PRIN1[x:file] S berens caneseen .
PRIM2-pname of x with respect to Y orenrnreanars e eneais
PRIN2[x;filesrdthl] .oovuevrnnerunes Cesvsearsaarrase e s .o
PRIN3[x;file:]navenee Careeesanranan S R
PRINA[x;file;rdtb1] e Ceerrranaan feerenaaen
PRINTLEVEL (basic interrupt c1ass) ..o erriarresnas
PRINTLEVEL[carval;cdrval]oeueirenrnrees cerasreares I
PRINT{x;file;rdtbl] R R
PROGl[forml;formz;...formn] carena s e aeaarasasresairensanes
PROGN[formI:formz:...formn] Chreasrarans creresaare s pamene
PROG[]oca]vars;formi:fqrmzz...formn] T
proper 1ist-n dererasaneen eeaeae [N ves
proper 1list corresponding to a read macro specification
property list field Craarasnses hesaraeararea ks
PUTD[Vitatomidefn]ovevnninnns vessenan cersererraanaes e
PUTHASH[item;valiharray] «...covnvrrrnrerees beesera s v

QUOTIENTIX:¥y] -covvvvrvnns . Cererasarens :

radix field ;....,.....................}.....................
RADIX[n] e eraaseereeas e

RAISE[f1g:termtb1] ferae e b oeeersrnsrerassannarres
RAND stateecocsnnsons eeersasan e Cereeras ey .-
RAND State Ceeaaeerees Y Ceirarssaneans
RANDACCESSP[fi18] ...cvnurrvnns R crassaerrens
FAandom ACCeSS ...servse- Cersearsasen s Cereanes Cereraesrarans
RANDSET[state] e hesisesararereanran e N .

RANDSTATE ...vvercners Wh e ersssberr s e rann s e
RAND[Tower;upper]c.-s heners s rras e anse s cree
RATESTLFIG] . .vvevsrnrvaanenennnerns S e
RATOM[file;rdtb1]vovns s raaa e henerrarrerans berarn

reactivate oo varesans R LR veevar e
read a (or the next) character from file (fi11ing until p) ..
read macro attribute e reerrareres creene CereaEeana
read macro in its contextcvcevnerenen rrer e Prerrees
read macro specificationoecerervres R

read macros enabled fieldcocvvnen besresrrans crrer e
Read Tablecv-n- heebrsneraane B R CRE R Y
READC[Tile] ...ovvrvenrsran reae e s narerasrasas i ar e
reading from file (filling until p) until gvv-n breareas
READMACROS[f1g;rdtb1] Cenessrasanas R ceaeas
READP[Fil1esfig] «ovvevrrrnrrnmsnremnrenene freevraar e rr ey
READTABLEP[x] ... Ceereae eears ; .
READ[fi1e;rdtb1:f1g] herrsesaras L T cernrre

123

REAL (control character echo mode) Cheeseearr e 83
RECLAIM{tYPO] vvvvvnvennvrrens @t [112
recognition mode, o resaasaaarres ceeenen . 69
recognized in mode X00, Cestreraasaa e T 69
reference map for (CEXPR) fnobj ...ceoviiunrinininnennsannnns 66
REHASH[otdharray;newharray]coovuveenns et e e .. 32
released markiivrieriannraeasinan veeenn it 45
RELSTKP[stkptr] ...vovvvnrnnnnnan. reaens Cirecesreaaa s 48
RELSTKISERPEP] v i it iiieinncrereraarecnsranses e, 48
REMATNDERTXIY] +vvvvvvnararorneccnncnnrnvnenns e irereaaaees 23
RENAMEFILE[fi10:newname] ...veverrrrsrvooenvaanrnnessnonsesss 73
REPLACEFIELD[descri;objsval] «ooviririiininneisneatanvrnsns .. 34 .
PEPlacCing ..ovvveenea i iannrsanneasuivsns Gt saer e 3
replete buffer ittt tnarenns eraesr e e 80
representation of x as a Floating Point Number PRI 5 |
representation of x as an Integer e 17
represents to maximum precision eereeseereraes Ceneas 21
RESET (basic interrupt CTaSS) ..c.vivunurrenssarnesonnrnannss 91
RESETREADTABLE[rdtbiisource]ccu.iiiiiiinnnirireencnnnsnn 17
RESETTERMTABLE[termtbl source] ...i.. i iiiinarcnenirrannens .es 85
RETFROM[frame;val;flig]l v eiviennennvennns eheeeaeaae 56
RETTO[frame;val; f1g] Pt 56
return a Stack Po1nter containing frame (using stkpter) 46 .
RETURNEVAT] 4 v vvvesveinnneeaannenessssnsansnsesnnnnavenos cenn 59
RETYPE (terminal syntax €lass) ...vvvns traraaareabes e e 82
RETYPE chardcter of tthl P 84
RIGHTBRACKET (basic syntax class})cceercuuisss e aaeaas 74
RIGHTBRACKET character of rdthl ... i it . 75
RIGHTPAREN (basic syntax ciass) ereraasans i 14
RIGHTPAREN character of rdtbhl heeeea e PRI 75
RPLACATCE1IT:VAT] tvvneinennnnnsensnssnnsnssssenssonnsns ceeien 10
RPLACD[cell:val]l SRR N 10
RPLSTRING[strininewchars]cvvuvveenaanieen, e 27
RSHIN:FACEOr] it iinie s ivaraseitonncarnctorrocnnaanorasssns . 20
RSTRING[file;rdtbl] ... i, e sa e 108
RUBOUT {basic interrupt class)seeecevesneriiarnasecnnsss 91
safe function call of fn on args- P raeaa eeir s e 89
saved interrupt character field Chesraaa e PN 88, 93
separator character of rdthl Wesererrrtraransenens 76
SEPRCHAR. (basic syntax c1as8)vsvrviinrrieinennnnoesnennn 74
SEPRCHAR character of rdthl ... cviiveiivirioerrencensncecnns - 75
seqq and seqp are equal with respect to the wild card sk1p . 28
SETALINK[frame;newframe;fig]oveunenen. Cederreearaaanae 47
SETARG[var;n;val] Creisesratasrarassanaasatnn i 57
SETA[array:n;va]] .. 30
SETBLIPVAL[bliptype;frame;n;val] Cerenrearirasuaans reenn 83
SETBRK[ISt;f1g:irdtbl] «..cvviiinnnnrrenns e e 79
SETCLINK[frame;newframe;fig]covrierrmeersvuinans e . 47
SETFILEINFO[file;attribival]l0utn feeereab e veseen 73
SETFILEPTRIFI10;VAT] terrrmnnrcamnvannnsnnnennans J 72
SETINTERRUPT[char;class] ...c.eeuuuuunnns e cereees ceeees 23
SETN[nvar;vaiform] cidarrsiaresenn P Ceeenen 18
SETPROPLIST[1itatom; prop11st] feeseeasser s 13-
SETQ[var;val] ...virineiiinaeennss eiarrranaes veereas N 54 -
SETREADMACROFLG[f1g]Y T T T 107 -
SETREADTABLE[rdtb1;:f1g] P, e erereraaeeas S &
SEYSEPR[1st;flg;rdth1] e Seannen Leenanas caeaes ceraa 79
SETSTKARGNAME[n;frame;name] hesrressisena e 47
SETSTKARG[n;frame;vall Peaeaees eeradr e e 48
SETSYNTAX[char:class;thbl]o.t, e ieesa e ey 78
SETTERMTABLE{termtb1] e Cenar e M eereeer ey . 85
SETTOPVAL[litatom;vat] Pareenans henreesnearernsan o 13.
SETf{var;val] baresraee . Ceserre Ceeranaraas 54
124

SIMULATE (controtl charac

ter echo mode) ,

SIN[x;radiansfig]0vovinnenennnnn.n. th et et
SKREAD[fileirereadstr] ..\.o.vuevensunnennnnnnn.. Ceereaen .
SMALLP{xT P v e et
source field (of a String) e, e d von
SPACES[n;fi1e] et e Catrareiannea . cee
special terminal character e e .
SPLICE {read macro attribute value} seren Ceeeenas -
spread function object o reeiarereer s e e ‘o
spread type function object BN e
SQRT[x] ...vvuveui.... .. e Ceeereriraeas e
Stack Pointer e Caeee [P .
STACKPEX] vovevnvnnn ... Ceedd . N Cereeeiear e .
standard VM bytesize .,.......... St et et s et rar e veas e
standard VM character set R R R T T ereanasay
STKARGNAME[n:frame] ettt ae e .o chena .
STKARG[n;frame] N R L LR T T I,
STKNAME[frame]. et ieera et i eeerranas
STKNARGS[frame] e e N
STKNTHNAME[n;Trame] ‘e eraens P et eva e
STKNTHLn;frame;stkptr] Ceanniena Crereienen tereraerraae
STKPOS[name:n;frame;:stkptr] e eteas e Ceeeaaa seenan
STKSCAN[var;frame:o]dptr] S e eeieaer e .
STORAGE[] e e e Ceriieeaae. berea.
STREQUALEX;yY e P e e e Cerareeas se e
string, [S siae
String ..o i v de e r e e, . Peeiaas
STRINGDELIM (basic syntax class) Caeseaeaanras v
STRINGDELIM character of rdtbl Pe i taeses s e ‘e
STRINGPLX] ooviniinieeinnnnn, Ceneeeeeraaaen, Crerenaen cenee
STRPOSL[bittab]e;str;start;comp]imentf}g] e ses e rereaa s
STRPOS[pat:str:start;skip;anchor:tail] chresiaasas e et
SUBR S, et ra e Crerrratesena - P
SUBRPLTNODI] .ottt e
SUBSTRING[strin:m] et eraes s e eenean veds
suspended ..., 0 i e, el et aaaa et enaas
syntax class field ‘v T U Ceedin
syntax class specification T e veasaa
SYSBUF-buffer ceran . tereeeas cree
SYSBUF[F1g9] v.ovvvvnnn... B e . . crrereaaa
SYSHASHARRAY e rneaes et
SYSIN[file] st ere e Creerriaeaas ceriieaas cens
SYSOUT[file] Cere e e . et ieaeaa ..
system input buffer Ceeerraa eraneeraen e cesenda
system output buffer e e P ee st iee et e cens
system Read Table e . eesaas rerrass e
TAN[x;radiansfig] Fereaes vt e et e e e
temporaries e . resannn
temporary car print level field ceraas eesssenunae .
temporary cdr print level field00.vunn... cresea
Terminal Assumption 1 Cre i tataeens .o sesseanues
Terminal Assumption 2 vereees s -
- Terminal Assumption 3 S e eeaaes e Versaans cen
Terminal Assumption 4 e esaenaas se e ee e e
terminal characteristicsvvvivnnnnnn.sn. et e .
terminal syntax class T .
~terminal syntax class of char ...v.vvvevnnvnnnnnnns. cees s
Terminal Table .,....... harraas . . . e cereans
TERMTABLEP[X] e ceeanen feees i e
TERPRI[fi18} creaes cerie e cereriesaaas . .
TIMES[xgixp:... %] ...0.. R R R IPI PPN T
to clear a buffer Chbes e araes ‘e veaa
top-level frame extension e veens

top-18Vel ProCOSS ..vuevssrnsnsnsnrararnrssesasansnaratesses 43

top-level value field U 12
truncating an Integer e v raresraaene . 35
type (read macro atiribute)c.eeveiinariririiniineen 74
TYPENAME[X] -vvvvvvuvnnnnnn Cerenn e Ceereana e 10
unarmed (call to read macro) e seeaereesiaaanes - 103
unboxed valueceeerunrivnres ceeaaaas freaeaeaes veesianes . 15
unboxing ..., o0 it eeaa ey Ceee s aaanar et en 16
underlinegco0evenens ereesaresesana hetesrareraaena e 5
URATOFM ACCESS MOBUTE . .uuvvrrorsoaoannuossoansioaranssssanss 41
UNPACK[x;flgirdthl]vvvniiniinns e B P 14
UPARROW (control character echo mode) . cetsararenn e .. 83
use File Name file implicitly below;........;.......... 94
use Read Table x implicitly belowcouivveenvrrvivenennnas 04
USERDATATYPES[LT ...:ccvvvnnns Creeravane G eararsesesasreranin s 35
USERNAMEL] +uvvrevnnrronnnnnnns AP & 1
valid interrupt character e erararrestnbinenns 88
Value of @ TOPM .vvrreecsirsvnnernaersoanaes Cheiassaseeaes 2
value of var on the acgess chain from frame eeenun 44
VM format for a date and t1me tesarseerrenaae tetesaatesensnas 114
VM .orderingc.c00nn fesmereaans saeens “aae

treesrsanarrans 112

WAKEUP (read macro attribute va!ue) Cererareenat e aas e s 74

wakeup mode (read macro attribute) P &
WAKEUPCHAR: (terminal syntax class} rsresraesrasesenae 82
WAKEUPCHAR character of ttb1 veaane eesaasaerereasn . B4
write char to fileivereneinncananranns Cherreaeec et 94

write seq to file e et eeeeraanens

feeeaaane ve. 95

