COMP 242 Class Notes
Section 3: Interprocess Communication

1 Interprocess Communication

Readings: Chapter 7, Comer.

An operating system provideater process communication to allow processes to exchange informa-
tion. Interprocess communication is useful for creatingperating processes. For instance an ‘Is’ process
and a ‘more’ process can cooperate to produce a paged listing of a directory.

There are several mechanisms for interprocess communication. We discuss some of these below.

1.1 Shared Memory

Processes that share memory can exchange data by writing and reading shared variables. As an example,
consider two processgsandq that share some variabte Thenp can communicate information by
writing new data irs, which g can then read.

The above discussion raises an important question. How gi&asw whenp writes new information
into s? In some cases, q does not need to know. For instance, if it is a load balancing program that simply
looks at the current load in p's machine stored in s. When it does need to know, it could poll, but polling
puts undue burden on the cpu. Another possibility is that it could geftware interrupt, which we discuss
below. A familiar alternative is to use semaphores or conditions. Prapessld block till p changes and
sends a signal that unblocks However, these solutions would not allapto (automatically) block ifs
cannot hold all the data it wants to write. (The programmer could manually implement a bounded buffer
using semaphores.) Moreover, conventional shared memory is accessed by processes on a single machine,
so it cannot be used for communicating information among remote processes. Recently, there has been
a lot of work in distributed shared memory over LANs, which you will study in 203/243, which tends to
be implemented using interprocess communication. However, even if we could implement shared memory
directly over WANSs (without message passing), itis not an ideal abstraction for all kinds of IPC. In particular,
it is not the best abstraction for sending requests to servers, which requires coding of these requests as data
structures (unless these data structures are encapsulated in monitors, which we shall study later). As we shall
see later, message passing (in particular, RPC) is more appropriate for supporting client-server interaction.

1.2 SoftwarelInterrupt

We can introduce a service call that lets one process cause a software interrupt in another:
Interrupt(process id, interrupt nunber)

and another that allows a process to associ&@ndler with an interrupt:

Handl e(i nterrupt nunber, handl er)

Software interruprts allow only one bit information to be communicate - that an event associated with the
interrupt number has occurred. They are typically used by an operating system to inform a process about
the following events:

The user typed the “attention key”.

An alarm scheduled by the process has expired.
Some limit, such as file size or virtual time, has been exceeded.

It is important to distinguish among interrupts, traps, software interrupts, and exceptions. In all cases,
an event is processed asynchronously by some handler procedure. Interrupt and trap numbers are defined by
the hardware which is also responsible for calling the procedure in the kernel space. An interrupt handler is
called in response to a signal from another device while a trap handler is called in response to an instruction
executed within the cpu.

Software interrupt and exception handlers are called in user space. A software interrupt handler is called
in response to the invocation of a system call. Software interrupt humbers are defined by the operating
system. Exceptions are defined and processed by the programming language. An exception raised in some
block, b, of some process p, can be caught by a handler in the same block, or a block/procedure (in p)
along static/dynamic links from b, or by a process q that (directly or indirectly) forked p. The raiser of an
exception does not identify which process should handle it, so exceptions are not IPC mechanisms.

The notion of software interrupts is somewhat confused in some environments such as the PC, where
traps to kernel-provided I/O routines are called software interrupts. There is a special instruction on the PC
called INT which is used to invoke these traps. For instance, the instruction

int 16H

executes the BIOS interrupt routine for processing the current character received from the keyboard. (It is
executed by the interrupt handler of the Xinu kernel to ask the PC BIOS handler to fetch the character from
the keyboard.) The term interrupt is used because these rountines are called usually by hardware interrupt
routines. We are using the term software interrupts for what Unix calls signals, which are not to be confused
with semaphores, though you invoke the signal operation on both!

1.3 Message Passing

The most popular form of interprocess communication involmessage passing. Processes communicate
with each other by exchanging messages. A processsamyinformation to aport, from which another
process mayeceive information. The sending and receiving processes can be on the same or different
computers connected via a communication medium.

One reason for the popularity of message passing is its ability to support client-server interaction. A
server is a process that offers a set of servicesltent processes. These services are invoked in response
to messages from the clients and results are returned in messages to the client. Thus a process may act as a
web search server by accepting messages that ask it to search the web for a string.

In this course we shall be particularly interested in servers that offer operating system services. With
such servers, part of the operating system functionality can be transferred from the kernel to utility processes.
For instance file management can be handledfilg server, which offers services such apen, read, write,
andseek. Similarly, terminal management can also be handled by a server that offers servicesggiteas
andputchar.

There are several issues involved in message passing. We discuss some of these below.

1.3.1 Reiability of Messages

Messages sent between computers can fail to arrive or can be garbled because of noise and contention
for the communication line. There are techniques to increase the reliability of data transfer. However, these

techniques cost both extra space (longer messages to increase redundancy, more code to check the messages)
and time
Message passing techniques can be distinguished by the reliability by which they deliver messages.

1.3.2 Order

Another issue is whether messages sent to a port are received in the order in which they are sent. Differential
buffering delays and routings in a network environment can place messages out of order. It takes extra effort
(in the form of sequence number, and more generally, time stamps) to ensure order.

1.3.3 Access

An important issue is how many readers and writers can exchange information at a port. Different ap-
proaches impose various restrictions on the access to porbouAd port is the most restrictive: There
may be only one reader and writer. At the other extremefrteeport allows any number of readers and
writers. These are suitable for programming client/server interactions basddnityeof servers providing
a common service. A common service is associated with a single port; clients send their service requests to
this port and servers providing the requested service receive service requests from the port. Unfortunately,
implementing free ports can be quite costly if in-order messages are to be supported. The message queue
associated with the port is kept at a site which, in general, is remote to both a sender and a receiver. Thus
both sends and receives result in messages being sent to this site. The former put messages in this queue and
the latter request messages from it. (Often the implementation used is a little different from the centralized
one described above: When a message is sent to a port, it is relayed to all sites where a receive could be
performed on the destination port; then, after a message has been received, all these sites are notified that
a message is no longer available for receipt. However, even in this replciated case, both sends and receives
result in remote communication.)

Between these two extremes an@ut ports andoutput ports. An input port has only one reader but
any number of writers. It models the fairly typical many client, one server situation. Input ports are easy
to implement since all receives that designate a port occur in the same process. Thus the message queue
associated with a port can be kept with the receiver. Output ports, in contrast, allow any number of readers
but only one writer. They are easier to implement than free ports since the message queue can be kept with
the sender. However, they are not popular since the one client, many server situation is very unusual. A
send to an output port has recently been termed 'anycast’. Perhaps a “practical” use of an output port is
distribution of tickets or other resources by a “vendor” to a set of “buyers” or even more compelling the
SETI project in which a cental site sends problems to be solved to user machines registered with the site.

Note that sending to an output/free port does not broadcast the message to all the receivers - a specific
message is received by a single server.

Several applications can use more than one kind of port. For instance a client can enclose a bound port
in arequest message to the input report of a file server. This bound port can represent the opened file, and
subsequent reads and write requests can be directed to this port.

1.3.4 Integration with I/O

Another issue is whether the IPC primitives are integated with file and terminal I/O. The integration would
make the OS API become smaller, hence easier to understand and learn, and also allow late binding of a

source or destination of information. On the other hand, it would not allow functionality specific to message
passing such as send this message urgently.

1.3.5 Integration with Programming Language

The IPC facilities could be integrated with a programming language, that is, a programming language would

provide the interface to invoke them (e.g. Ada). The advantage is the ability to communicate values of

programmer-defined types and and the possibility of using high-level declarative constructs, the disadvan-
tage the inability of processes written in different languages to communicate with each other.

1.3.6 Remote Assignment vs Procedure Call

Some systems such as CSP regard the information in a messagddtatseibject to interpretation by the
recipient. In these systems, thand operation is of the form:

send (port, outdata)

while the receive is of the form:
receive (port, indata)

The completion of the receive causes tiikdata to be assigned timdata (if the ports named are the same).
Thus, a matching send and receive essentially perforemate assignment:

i ndata : = outdata

Typically, indata and outdata are untyped byte streams though with language support typed data may be
transmitted in messages.

Other systems, such as Ada regard the information in a message tedues for service. The service
is named by the port, and message contains parameters. In these systeamsl dperation is of the form:

<result> := send <port or service nane> (<parameters>)
and thereceive operation is of the form:

receive <port or service name> (<formal paraneters>): <result type>
begi n

servi ce request

reply (answer)
end

(Here, we are assuming language support for specifying these operations)

The send operation is similar to a procedure call, and tieeeive operation is similar to a procedure
declaration. When the receive succeeds, the parameters of the incoming message are assigned to the formal
parameters of theeceive statement. The receiving process then executes code that services the request, and
then sends any results imreply message. The following are examples of matcrsergl andreceive:

[* client */
foo := send add (3, 5);

/* server */
receive add (pl, p2: int): int
begi n
reply (pl + p2)
end

The main difference between tlsend and a procedure call is that the former can result in code being
executed in a process on a remote machine. Thus the parametewar shialled into a message from which
they areunmarshalled into the receiver’'s address space. Hence, such a send is calatbte procedure
call. The main difference between theceive and a procedure declaration is that the code associated with
the receive is not executed till the process executes tbeeive operation. At this point, in the case of
synchronous RPC, the sender and the receiver are said to beendezvous. Later, we shall see other
differences between local and remote procedure calls.

The second form of message-passing can be simulated by the first. Thus the following communication
according to the first form simulates the ‘add’ example:

[*client*/

send (addPort, 3) /* addPort is an input port */

send (addPort, 5)

send (addPort, replyPort); /* reply port is a bound port */
receive (replyPort, result);

[*server*/

recei ve (addPort, pl);

recei ve (addPort, p2);

receive (addPort, replyPort); /* assuming a port can handle nultiple types */
send (replyPort, pl + p2);

Thus the second form of communication is higher-level compared to the first and requires fewer kernel
calls. However, it is also less flexible, since it requires exactly one reply to a message from the receiver of
the message, does not allow incremental transmission of the parameters or the results, and also requires that
all parameters of a request come from a single source. Sometimes it is useful if the receiver of a message
forwards the request to another server. In such a situation the answer could come from a process other than
the one to which the request was made. Alsaataflow computations, often each operand of an operation
comes from a different process. When all operands of an operation arrive at a server process, the operation
is said to be triggered. Finally, a “more” process receiving a file from an “Is’ process or a video receiver
receiving a video stream from a video sender would wish to receive and display the received information
incrementally. RPC does not directly support the above scenarios.

1.3.7 Synchronousvs Asynchronous

The send, receive, andreply operations may beynchronous or asynchronous. A synchronous operation
blocksa process till the operation completes. An asynchronous operation-blocking and onlyinitiates

the operation. The caller could discover completion by some other mechanism discussed later. (Does it make
sense to have an asynchronous RPC send?)

The notion of synchronous operations requires an understanding of what it means for an operation to
complete. In the case of remote assignment, both the send and receive complete when the message has been
delivered to the receiver. In the case of remote procedure call, the send, receive, and reply complete when
the result has been delivered to the sender, assuming there is a return value. Otherwise, the send and receive
complete when the procedure finishes execution. During the time the procedure is executing, the sender and
receiver are in a rendezvous, as mentioned before.

Note that synchronous/asynchronous implies blocking/not blocking but not vice versa, that is, not every
blocking operation is synchronous and not every non blocking operation is asynchronous. For instance, a
send that blocks till the receiver machine has received the message is blocking but not synchronous since the
receiver process may not have received it. Similarly, we will see later a Xinu receive that is non-blocking but
is not asynchronous. These definitions of synchronous/asynchronous operations are similar but not identical
to the ones given in your text books, which tend to equate synchronous with blocking.

Asynchronous message passing allows more parallelism. Since a process does not block, it can do
some computation while the message is in transit. In the case of receive, this means a process can express
its interest in receving messages on multiple ports siumtaneously. (The select primitive discussed later
provides this facility for synchronous receives). In a synchronous system, such parallelism can be achieved
by forking a separate process for each concurrent operation, but this approach incurs the cost of extra process
management. This cost is typically bearable with Iwps but not hwps.

Asynchronous message passing introduces several problems. What happens if a message cannot be
delivered? The sender may neve wait for delivery of the message, and thus never hear about the error. Sim-
ilarly, a mechanism is needed to notify an asynchronous receiver that a message has arrived. The operation
invoker could learn about completion/errors by polling, getting a software interrupt, or by waiting explicitly
for completion later using a special sycnhronous wait call. An asynchronous operation needs to return a
call/transaction id if the application needs to be later notified about the operation. At notification time, this
id would be placed in some global location or passed as an argument to a handler or wait call.

Another problem related to asynchronous message passing has to do with buffering. If messages sent
asynchronously are buffered in a space managed by the OS, then a process may fill this space by flooding
the system with a large number of messages.

1.3.8 Buffering of Messages

Consider the case when a process sends the value of vesiadsg to some port. While the message is in
transit, it needs to be kept in some memory area. It may be kept in the sender’s address space or may be
buffered in an address space managed by the operating system such as the process table.

Keeping the data in the sender’s address space is both time and space efficient: It does not require space
for buffering and does not require copying to and from a buffer. However, it is not suitable if asynchronous
sends are allowed (why?).

Several questions arise when data are buffered by the OS: What is the size of a message buffered by
the OS? How many buffers are allocated? What happens when the buffer area gets exhausted? Are buffers
allocated per port, per process, or shared by all processes and ports? There are no good general answers to
these questions.

1.3.9 Pipes

One solution to some of the buffering problems of asynchronous send is to provide an intermediate degree
of synchrony between pure synchronous and asynchronous. We can treat the set of message buffers as a
“traditional bounded buffer” that blocks the sending process when there are no more buffers available. That
is exactly the kind of message passing supported by Unix pipes. Pipes also allow the output of one process
to become the input of another.

A pipe is like a file opened for reading and writing. Pipes are constructed by the servipgealhich
opens a hew pipe and returtvgo descriptors for it, one for reading and another for writing. Reading a pipe
advances the read buffer, and writing it advances the write buffer. The operating system may only wish to
buffer a limited amount of data for each pipe, so an attempt to write to a full pipe may block the writer.
Likewise, an attempt to read from an empty buffer will block the reader.

Though a pipe may have several readers and writers, itis really intended for one reader and writer. Pipes
are used to unify input/output mechanisms and interprocess communication. Processes expect that they
will have two descriptors when they start, one called ‘standard input’ and another called ‘standard output’.
Typically, the first is a descriptor to the terminal open for input, and the second is a similar descriptor for
output. However, the command interpreter, which starts most processes, can arrange for these descriptors to
be different. If the standard output descriptor happens to be a file descriptor, the output of the process will
go to the file, and not to the terminal. Similarly, the command interpreter can arrange for the standard output
of one process to be one end of a pipe and for the other end of the pipe to be standard input for a second
process. Thus a listing program can be piped to a sorting program which in turn directs its output to a file.

1.3.10 Selectivity of Receipt

A process may wish to receive information from a subset of the set of ports available for receipt. Systems
differ in the amount of selectivity provided to a receiving process. Some allow a process to receive either
from a particular port or all ports. Others allow a process to specify any subset of the set of all ports. Still
others allow a process to peek at the value of incoming messages and make its decision to accept or reject
messages based on the contents of messages.

As we saw before, asynchronous receives allow us to declare our willingness to receive messages from
multiple ports. A special select mechanisn is required to provide this flexibility with synchronous receives,
which is illustrated below assuming language support:

sel ect
recei ve <port>
recei ve <port> ...

recei ve <port> ...
end

(We are assuming RPC here, with synchronous send) If none of the ports has a message, then the process
blocks. If several ports have messages, then one port is chosen non-deterministically. If only one port has
a message, then the corresponding receive is executed. Typicadlgcais enclosed within a loop. Thus
after servicing a request, a process can service another request.

Often a system allowsguard to be attached to an arm of teeect. The guard is a boolean expression
and the associaterkceive occurs only if the condition is true. The following example shows guarded
receives in a ‘bounded buffer’ process:

| oop
sel ect
when count > 0 receive consunme (...) ...
when count < size receive produce (...)
end
end | oop.

Here count keeps the number of filled buffers. The consuming process is blocked if the buffer is empty and
the producing process is blocked if it is full.

A process executing such a loop statement is similar to a monitor (which we will study later.) Each
receive in an arm of a select corresponds to an entry procedure declaration in a monitor (which we will
study under process coordination). A process services one receive at a time, just as a monitor executes one
entry procedure at a time. The guards correspond to waits on conditions. The Lauer and Needham paper
contains a more detailed discussion on this topic.

In the example above we are assuming language-level support. Similar semantics can be supported
through system calls.

1.4 Xinu Low-Level Message Passing

Xinu offers two kinds of message passing primitives: one ‘low-level’, and the other ‘high-level’. We now
discuss the first kind. A discussion of the implementation of the second kind requires discussion of some of
the memory management issues.

We first discuss the semantics of the low-level message passing and then its implementation.

1.4.1 Semantics

Ports are input ports limited to one per process. Thus the process id of the receiver of the port is used as an
identifier to this port.

The information in a message is considered as data to be interpreted by the recipient. Thus remote
assignment instead of RPC is supported.

The send operation takes as arguments the message and process id and delivers the message to the
specified process. The operation is asynchronous, thus a sender does not wait till the message is received.

The queue associated with the port holds at most one message. Moreover, a message size is restricted to
1 word. Thus memory allocated to buffer and queue messages is kept under control.

Two kinds of receives are provided. The first calleteive is a synchronous receive. It blocks the
receiver till a message arrives. The second, calkesclr is non-blocking. If the process has a message
when it callsrecvclr, the call returns the message. Otherwise it returns the \@kue the caller without
delaying to wait for a message to arrive. Thasvclr allows a process tpoll the system for message arrival.

It is useful when the process does not know whether a message will arrive or not and does not want to block
forever in case a message does not arrive. An example of its use: if software interrupts are not allowed, a
process may usexvclr to check, every now and then, if the user has hit the “attention” key.

Communicating processes reside within the same computer, so the message passing is trivially reliable
and ordered. Aeply operation is not supported. Since a process is limited to one input port, the issue of
selective receipt does not arise.

1.4.2 Implementation

The Receive State

A process waiting for a message is put in tieeeive state. The arrival of a message moves it toriaely
state.

Send

It checks to see if the specified recipient process has a message outstanding or not. If there is an out-
standing message, tilsend does nothing and returns (why?). Otherwise, it buffers the message and sets a
field to indicate that now there is an outstanding message. Finally, if the receiving process is waiting for a
message, it moves the process to the ready list (andreatlsed), enabling the receiving process to access
the message and continue execution.

A message is buffered in a field in the process table entry of the receiving process. (Could it be stored
in the process table entry of the sending process?)

Receive

It checks to see if there is a message waiting. If not, it moves the processrexe¢he state (does the
process need to be moved to any list?), and casichedule.

It then picks up the message, changes a process table entry field indicating there are no outstanding
messages, and returns the message.

Recvclr

It checks if a message has arrived. If no, it retud¥& If yes, it picks the message, changes appropriate
fields, and returns the message.

2 Communication across a Networ k

Our implementation has assumed intra-machine IPC. Distributed systems require communication between
remote machines. For instance a long-haul network that supports remote file copy requires communication
between the remote and local process involved in the file copy, a local-area network that supports file servers
needs to support communication between a client and a file server, and a multicomputer OS needs to be able
to support communication between arbitrary processes running on different machines.

One of the important concepts behind network communicatidayising. The hardware provides the
most primitive layer of network communication. Layers on top embellish this communication. We will look
at both the hardware (or physical) layer and embellishments to it.

2.1 ThePhysical Layer

In this layer we study the low-level hardware primitives for network communication. This communication
may becircuit switched or packet-switched. Circuit-switched networks operate by forming a dedicated
connection (circuit) between the two points. While a circuit is in place, no other communication can take

place between the channels involved in the communication. The US telephone system uses such commu-
nication between two telephones. Packet-switched networks operate by dividing the conversation between
two parties intopackets, and multiplexing the packets of different conversations onto the communication
channels. A packet, typically, contains only a few hundred bytes of data that includes header information
that identifies the sender and receiver.

Each approach has its advantages. Circuit switching guarantees a constant communication rate: once the
circuit is established, no other network activity will decrease the communication rate. This is particularly
important for audio/video communication. One disadvantage is throughput: no one else can use the circuit
during a ‘lull’ in the conversation between the two parties. Therefore circuit switching is not a very pop-
ular method for computer communication and packet switching is always preferred since it provides better
utilization of the channel bandwidth, which is specially important for asynchronous transfer of bulk data.
Since a channel bandwidth, typically, is fairly high, sharing of its does not present many problems, specially
for traditional data transfer applications. For multimedia communication, packet-switched networks have
been designed that try to reserve part of the network bandwith for some communication channels. In the
remainder of the discussion we shall assume packet switching.

2.2 Network Topologies and Access Control Protocols

An important issue in the design of a network is the network topology. A popular network topology is
the bus topology. Under this topology, the communicating devices are connected to a common bus, and
packets contain addresses of the receiving devices. Thus, while a packet is available to all devices, only the
addressed device actually receives it.

Since all devices share a common bus, we need a protocol to ensure that devices to do not corrupt
packets by simultaneously transmitting them on the bus. One such protocol @GSM&/CD (Carrier
Sense Multiple Access with Collision Detection) protocol. Under this protocol, a sending device listens to
the bus to detect another concurrent transmission. In case of collision, it sends a jamming signal to all other
devices asking them to ignore the packet and backs off for a random period of time before trying again, The
backoff period increases exponentially with each successive unsuccessful attempt at sending a message.

An alternative access protocol is tteken ring protocol, which prevents rather than cures collisions.

It arranges the devices inlagical ring and allows a unique token to be passed along this ring from device
to device. Only the token holder is allowed to send messages. Token passing is implemented as a special
control packet.

One can also arrange the devig#wysically in a token ring topology, which supports point-to-point
transmission rather than broadcast of messages. At each point, a device either consumes the packet or
forwards it to the next point.

This topology can, of course, use the token ring protocol for controlling access. This protocol is imple-
mented under this topology by continuously keeping a physical token in circulation, which may be free or
busy. A sending device marks a free token as busy before sending the message and marks it as free the next
time it arrives at that site after the transmission is completed.

It can also use thdotted ring protocol, which circulates, instead of a single token, a number of fixed
length slots, which may be busy or free. A sending device waits for a slot marked free, sends the message
in it, and marks it as busy. To ensure than one device does not hog the network, a device can use only one
slot at a time.

10

2.2.1 TheEthernet

We now look very briefly at théthernet, a local-area packet-switched network technology invented at
Xerox PARC in the early 1970s that originally used the bus topology with the CSMA/CD protocol. The
channel used for communication was a coaxial cable calledttie®, whose bandwidth is 10 Mbps and
maximum total length 1500 meters.

Each connection to the ether has two major componentsamsceiver connects directly to the ether ca-
ble, sensing and sending signals to the ethdro# inter face connects to the transceiver and communicates
(as a device) with the computer (usually through the computer bus).

Each host interface attached to a computer is assigned a E&heitnet address also called ghysical
address. This address is used to direct communication to a particular machine. Vendors purchase blocks of
physical addresses and assign them in sequence as they manufacture Ethernet interface hardware.

Each packet transmitted along an ether is called an Ethéramte. A frame is a maximum of 1536
bytes and contains:

a preamble (64 bits or 8 octets), used for synchronization,

source and destination addresses (6 octets),

packet type (2 octets), used by higher layers,

data (46 to 1522 octets), and

Cyclic Redundancy Code (CRC) (4 octets), which is a function of the data in the frame and is computed
by both the sender and the receiver.

The first three fields of a frame form iteader.

A destination address in the packet may be the physical address of a single maahittecast address
of a group of nodes in the network, or the netwbrladcast address (usually all 1's). A host interface picks
up a frame if the destination address is:

the physical address of the interface

a multicast address of the group to which the host belongs, or

one of the alternate addresses specified by the operating system.

the broadcast address

Today, Ethernet consists of twisted pairs connecting to a central hub. The twisted pairs can come in
two configurations: (a) a single physical link for carrying traffic in both directions, or (b) separate physical
links for incoming and outgoing traffic. The hub behaves as a switch, directing an incoming message to its
destination(s).

2.3 Internetworking

So far we have seen how packets travel between machines on one network. Internetworking addresses
transmission of packets between machines on different networks.

Communication of data between computers on different networks requires machines that connect (di-
rectly or indirectly) to both networks that are willing to shuffle packets from one network to another. Such
machines are calleloridges, switches, gateways or routers. These denote two kinds of "internetworking”

- one performed by the hardware and the other by the IP layer. Bridges or switches do hardware-supported
internetworking, allowing two physical networks of the same kind (e.g. ethernet) to become one network.
They send packets from one network to the other. Bridge is the traditional term for this concept while switch
is the more fashionable one.

Gateways or routers do software-supported internetworking, allowing arbitrary heterogeneous networks
to form one logical network. Gateway is the traditional term and router the modern one. We will focus here

11

on gateways/routers.
As an example, the machire@ scoki d. oi t. unc. edu serves as a router between our departmen-
tal FDDI network and the rest of the world. Similarly, the machine cury. cs. unc. edu serves as a
bridge between an Ethernet subnet and the main departmental FDDI backbone. Look at http://www.cs.unc.edu/cel
for our current network configuration.
Not every machine connected to two networks is a gateway. For instance, the njaehfreey. cs. unc. edu
is connected to connected to both an ethernet and the FDDI backbone, but is not a gateway.

2.3.1 Internet Addresses

Internetworking across heterogenous networks requires a network-independent communication paradigm.
One such paradigm is illustrated by the Internet. In particular, it requires a network-independent unique
address. How many bits should be used for this address? 32 bits are used n the current version, V4, of
IP. The proposed IPV6 version has 128 bits for addressing. In a world of internet appliances in which our
toasters, light bulbs and other appliances would be on the network, 32 bits is not sufficient to address all
internetworked devices.

In the rest of the discussion, however, we will focus on IPV4. We might imagine independently assigning
each computer an IP address. However, that makes routing a nightmare as routing tables will get very big.
Therefore computers on the same physical network are assigned addresses with a common prefix that serves
as a network address. This prefix is like street or city in our US mail address. The size of the prefix varies
based on the number of computers in the physical network.

In general, an IP address is a tripsal(Kind, netid, hostid), whereadrKind identifies the kind of address
(A, B, andC), netid identifies a network, antlostid identifies a host on that network. The number of bits
devoted to each element depends on the kind of address:

ClassA addresses, which are used for the few networks like the Internet backbone that have a large
number of hosts, have the 1st bit set to ‘0’, next 7 bits allocated fonetid, and the next 24 bits fdnostid.

ClassB addresses, which are used for intermediate sized networks, have the first two bits set to ‘10’, the
next 14 bits allocated fametid, and the next 16 bits fdrostid.

ClassC addresses, which are used for small sized networks like Ethernets, have the first three bits set to
110, the next 21 bits allocated fawetid, and the remaining 8 bits fdwostid.

ClassD addresses, which are used for multicast groups, have the first three bits set to ‘111’, and the
remaining bits allocated for the multicast address.

Internet addresses are usually written as four decimal integers separated by decimal points, where each
integer gives one octet of the internet address. Thus the 32 bit internet address:

10000000 00001010 00000010 00011110
is written
128.10.2.30

Note that a host connected to more than one network has more than one internet address. For instance
the internet addresses @fcokid.oit.unc.edu look like:

152. 2. 254. 254 (for the departnental network)
192.101.24.38 (for a network that connects to G eensboro).

12

The internet addresses are assigned by a central authority. By convention, an internet address with host
set to zero is considered to be an address of the network, and not a particular host. Thus the address of the
local FDDI backbone is

152.2.254.0

(Look at the file/ et c/ host s and/ et c/ net wor ks for internet addresses of different computers and
networks. Executé usr/ | ocal / bi n/ nsl ookup to find the IP address of a machine from its name.
Execute/ usr/ | ocal / et ¢/t racer out e to find the path a message takes from the local machine to a
remote machine specified as an argument.) Also the hostid consisting of all 1's indicates a broadcast.

The internet is implemented as a layer above the physical layer. It provides its own unit of transfer
called adatagram. Like an Ethernet frame, a datagram is divided into a header and data area. Like the
frame header, a datagram header contains the source and destination addresses, which are internet addresses
instead of physical addresses.

A datagram needs to be embedded in the physical unit of transfer. For instance a datagram transmitted
on an Ethernet is embedded in the data area of an Ethernet frame. (Thus the data area of an Ethernet frame
is divided into the header and data areas of the Internet datagram)

How are internet addresses mapped to physical addresses? We first consider communication between
hosts on the same network. Later we will consider communication that spans networks.

2.3.2 Communication within a Network

One approach is to make each machine on the network maintain a table that maps internet addresses to
physical addresses. A machine that needs to send a datagram to another machine on the network consults
the table to find the destination physical address, and fills this address in the physical header.

A disadvantage of this approach is that if the physical address of a host changes (due to replacement of
a hardware interface, for instance) tables of all hosts need to be changed. Moreover, it is difficult to bring a
new machine dynamically into the network, which is something we want in this word of mobile computing.
Therefore the DARPA Internet uses a different approach calRE (for Address Resolution Protocol). The
idea is very simple: When machimewants to send a datagram to machidt broadcasts a packet that
supplies the internet addressBfand requestB’s physical address. HoBtreceives the request and sends
a reply that contains its physical address. WAarceives the reply, it uses the physical address to send the
datagram directly t®.

Each host maintains a cache of recently acquired internet-physical address

This cache is looked up before an ARP packet is sent.

In the above discussion we have assumed that Bdaws its internet address. How does a node know
its internet address? Machines connected to secondary storage can keep the address on a local file, which
the operating system reads at startup. Diskless machines however support only remote files, to access which
they need to communicate with some file server. However, they do not know the internet address of the file
server either.

One approach, illustrated by thHReverse Address Trandation Protocol (RARP), is for a diskless
machine to broadcast a packet requesting its internet address. Some server, that serves such requests, locates
the internet address of the machine and sends back a message containing the internet address of the requester.

13

2.3.3 Indirect Routing

Now assume thal andB are on different networksll andN2. In this situationA needs to identify some
gateway orN1 that can deliver the packet &2, and sends the datagram (using ARP) to that gateway. The
gateway, when it receives the message either delivers it directly to the host or forwards it to some other
gateway, depending on the internet address of the destination.

How does a node find a gateway for a network? It maintainannet routing table, that consists
of pairs (N, G), where\ is an internet network address a@ds an internet gateway address. This table is
updated dynamically to optimize the routing.

2.4 Processto Process Communication: UDP and TCP/IP

So far we have seen how arbitrary hosts communicate with each other. How do arbitrary processes on
different machines communicate with each other?

One approach to such communication is illustrated by the User Datagram Protocol (UDP) which is a
layer above the Internet. The unit of transfer in this layer isWi¥ datagram, and the destination is
an input port within a host. Thus, the destination of a message is specified as the pair (host, port). A
UDP datagram is embedded in the data field of the Internet datagram, and contains its own header and data
areas. The UDP header identifies the destination port and a reply port. Appropriate software distributes the
datagrams reaching a host onto the queues of appropriate ports.

UDP provides unreliable delivery: datagrams may be lost due to electrical interference, congestion, or
physical disconnection. Often processes require a communication protocol that provides reliable delivery.
One such protocol built on top of IP is TCP (for Transmission Control Protocol). TCP/IP supports end-to-end
stream communication: a stream is established by connecting to it and terminated by closing it. To support
reliable delivery, each packet is acknowledged. Should the acknowledgement also be acknowledged? If so,
what about the ack of the ack of the ack, an so on...? The answer is that the ack is not acked. Instead, if the
sender does not send the ack within some transmission period, T, it retransmits the packet, and repeats the
process till it gets the ack. This process is expected but not guaranteed to terminate as long as the remote
machine/network is not down. After a certain number of tries, the sender gives up and closes the connection.

Retransmission can result in duplicate packets being received at the sending site. As discussed below,
TCP/IP allows a packet to be sent without waiting for the acknowledgement of the previous packet. Packets
are associated with sequence numbers to distinguish between normal packets and duplicates. A packet
with a sequence number less than or equal to the last one received successfully is discarded as a duplicate.
However, its ack is resent since the ack for the original packet may have been lost.

The system allows a sequence of packets withgiding window to have outstanding acknowledge-
ments. This approach increases the concurrency in the system since packets and acks can be travelling
simultaneously on the system. It also reduces the number of messages in the system since an ack for a
packet simply indicates the next expected sequence number, thereby implicitly acking for all messages with
a lower sequence number. With each ack, the transmission window slides forward past the message acked,
hence the term sliding window. TCP/IP allows the size of the sliding window to vary depending on how
much buffer space the receiver has and how much congestion there is in then network. TCP/IP connections
are two-way and an ack for a packet received from a machine can be piggybacked on a message sent to that
machine.

14

2.5 OSInterface: Sockets

We have seen earlier abstract ideas behind OS-supported message passing, which can be implemented on
the network layers mentioned above. To show how an OS layer sits on top of these network layers, let
us consider the concrete example of Unix sockets. Unix sockets have several unique characteristics. They
are are not tied to a particular network protocol, and provide a uniform interface to UDP and TCP/IP and
other protocols at the process-to-process level. They are united with the file system, with socket descriptors
essentially being a special case of file descriptors. Moreover, like TCP, they have been designed for transfer
of bulk data such as files. They support a combination of free, input, and bound ports, allowing dynamic
creation of new input and free ports. Unlike the Xinu IPC mechanism you have seen so far, they allow
processes in different address spaces and on different hosts to communicate with each other. We see below
how these goals are met.

Socket declarations are given in the fteys/ socket . h>. The following code fragments executed
by the server and client illustrate the use of sockets. The server executes code of the form:

---------- datagram-------

server _end = socket (af, type, protocol)

bi nd (server_end, |ocal addr, |ocal _addr _|en)

recvfrom (server_end, nsg, length, flags, & rom addr, &f rom addr_| en)
sendto (server_end, msg, length, flags, dest_addr, addr_I|en)
--------- stream---------

i nput _sock = socket (af, type, protocol)

bi nd (i nput_socket, | ocal addr, |ocal addr_|Ien)

listen (input_socket, gl ength)

server_end = accept (input_socket, & enote_addr, & enpte_addr I en)

write (server_end, nsg, |en)
or
send (server_end, msg, length, flags)

read (server_end, &msg, |en)
or
recv (server_end, &mrsg, len, flags)

and the receiver similarly executes

------- datagram------

client_end = socket (af, type, protocol)

bind (client_end, |ocal addr, |ocal _addr_|en)

sendto (client_end, nmsg, length, flags, dest_addr, addr_Ien)

-------- stream-----

client_end = socket (af, type, protocol)

/[* client end is automatically bounbd to sonme port no chosen by system */

15

connect (client_end, dest addr, dest_addr | en)
read, wite, send, receive

Datagram communication: Consider first data gram communication. A server providing a service first
uses the socket() call to create a socket that serves as an end point for communicateiparameter indi-
cates address family or name space(NET - (host, port), AEUnix - Unix file system, AFAPPLETALK),
type indicates type of connection (SOCBGRAM, SOCK STREAM) andprotocoal indicates the kind of
protocol to be used (IPPROT® - System Picks, IPPROTOCP, ...)

The bi nd call binds the socket to a source address. A separate external name space is needed for
the source address since communicating processes do not share memory. It is the structure of this address
that the name space argument specified in the previous call. The external address is a Unix file name if
the address family is Akinix. The system creates an internal file in which it stores information telling it
information about receiving processes and their socket descriptors bound to the file. This name space is
restrictive as it does not allow processes not sharing a file system to communicate with each other.

In case of the popular ARNET address family, the receiver IP address and a port number are used as the
external address. With port numbers on the receiver machine, information about receving processes and their
socket descriptors are kept. The structure of local IP addresses is given in thedilé net /i n. h>.

As mentioned before, the external address indicates an internet address and port humber. The port
number is chosen by the server. Port numbers 0..1023 are reserved by system serverd spchrabs
t el net. Look at the file/ et ¢/ servi ces for port number of system servers. A user-defined server
must choose an unbound port number greater than 1023. You can explicitly pick one of these values and
hope no other process is using the port. A port number of O in the port field indicates that the system should
choose the next unbound port number, which can then be read back by the serveyaissng knane.

When communicating internet addresses, port numbers, and other data among machines with different byte
orders, you should use routines (suchhasns, ht onl , andnt ohs) that convert between network and

host byte orders for shorts/longs. A bind call can use a special constant (htonl (INADDR) for an

internet address to indicate that it will listen on any of the internet addresses of the local host.

To talk to a server using datagram a client needs to create a connection endpoint through its own socket
and bind call. The server and client can now talk to each other using the sendto and recvfrom calls.

Now consider stream communication. The server uses the socket() call to create a socket that serves as
an "input port” for creating new stream-based sockets.

To talk to the server, a client needs to create a connection endpoint through its own socket call. Then
it can useconnect to link its socket with the server socket in a stream. If it does not have the internet
address of the host, it can determine this address from the host nameasingst bynane.

A socket bound by the server serves as an “input port” to which multiple clients can connect. The
connect call creates a new “bound port” for the server-client connection. The client end of the bound port
is the socket connected by the client. The other end is returned to the serverdgyctdpt call, when a
successful connection is established by the client. Typically, a server forks a new copy of itself when the
connection is established, with the copy inheriting the new socket descriptor. The server determines the
number of connections to a bound socket usingd thet en call. For UDP datagrams, no connections need
to be established througittcept andconnect (as we saw before) — thmonnect call can be invoked
but it is a local operation simply storing the intended remote address with the socket and allowing the use of
read() and write(). In the stream case, the client usually does not bind its end of the socket to a local port,
the system automatically binds the socket to an anonymous port. Sockets are not strictly input or bound
ports since they can be inherited and accessed by children of the process that created them (through the

16

mechanism of file descriptor inheritance we shall see later).

Data can be send/received using either the reguésrd andwr i t e calls, or the speciatend and
recv calls, which take additional message-specific arguments such as send/receive “out of band” data
(which makes sense for stream-based communication in which normaly data are received in the order they
are sent.)

If a process is willing to receive data on more than one 1/O descriptor (socket, standard input), then it
should use the select call:

int select (width, readfds, witefds, exceptfds, tineout)
int wdth;
fd set *readfds, *witefds, *exceptfds;
struct tinmeval *tinmeout;

The call blocks till activities occur in the the file descriptors specified in the arguments. The activity
could be completion of a read or write or the occurence of an exceptional condition. The file descriptors
are specified by setting bits in the &t bitmasks. Only 0..width-1 bits are examined. The bitmasks return
the descriptors on which the activities occured, and the program can then use them in subsequent read/write
calls. You should always do a select before doing a read or write since the I/O calls are not guaranteed to
block.

26 SunRPC

Sockets require a client to encode its request and parameters in the data area of the message, and then
wait for a reply. The server in turn needs to decode the request, perform the service, and then encode the
reply. In other words, the client and server must use remote assignment semantics to request and respond
to service requests. It would be more useful if the client could directly call a remote procedure which the
server executes to service the request.

Sun RPC demonstrates how a remote procedure call paradigm can be supported on top of sockets via
library routines rather than compiler support. Each server registers a procedure paimegitse err pc
call,

regi sterrpc (prognum versnum procnum procaddr, inproc, outproc)
A client can invokecal | r pc to call the remote procedure:
callrpc (host, prognum versum procnum inproc, & n, outproc, &out)

The procedureal | r pc takes as arguments the machine number of the server, the procedure identifier, and
the input and output parameters. It sends an appropriate UDP or TCP message to the destination machine,
waits for a reply, extracts the results, and returns them in the output parameters.

The XDR (eXternal Data Routines) are responsible for marshalling/unmarshalling procedure parameters
onto/from XDR streams.

To illustrate, an add server, that adds an integer and a float, can declare the following “interface” in a
header file:

#def i ne PROGNUM 1
#def i ne VERSNUM 0O

17

#defi ne ADDNUM O

t ypedef struct {
int f1;
float f2 } S;

extern float add ();

Then it can provide an implementation of the add procedure:

float add (s)
S *s;
{

}

return (s->f1 + s->f2);

A procedure such as add that can be called remotely by Sun RPC is required to take a one-word argu-
ment. It takes only one argument so that callrpc does not have to deal with a variable number of arguments.
Like any other procedure, callrpc has to fix the type of the argument. The trick to pass a user-defined value
to a remote procedure through callrpc is to pass its address and then let the procedure cast it as a pointer to
a value of the correct type.

Next it can provide an implementation of the following xdr procedure between the client and server:

xdr _s (xdrsp, arg)
XDRS *xdr sp;

S *arg;
{
xdr _int (xdrsp, &arg->f1l);
xdr _float (xdrsp, &arg->f2);
}

It is called in the marshalling/unmarshalling modes by the client and server RPC system. In the mar-
shalling mode, it writes the argument onto the stream and in the unmarshalling mode it extracts data from
the stream into the argument.

Finally, it can register the procedure with the RPC system:

regi sterrpc (PROGNUM VERSNUM ADDNUM add, xdr_s, xdr_float)

Once it has registered all of its procedures, it can execute
svc_run()

to wait for invocations of its registered procedures. A client can now execute the procedure:

18

S *s;
float *result;

s->f1 = 3;
s-f2 = 4.12;

callrpc (host, PROGNUM VERSNUM ADDNUM xdr_s, s, xdr_float, result);

svecrun() is a looping select operation, which:

1. blocks the receiver until one of its registered procedures is invoked,

2. services the call

3. goes back to 1.

Sun RPC is built on top of the socket layer, and_swn() calls the Unix select() call. An RPC program
may wish to have control over the loop execute by ame(). For example, it may wish to read data from
files, or communicate via sockets, or poll (rather than block) for RPC calls. Sun RPC allows programs
to invoke the select() call manually. A special call, dds() returns the bit mask describing the socket(s)
created by RPC, which can be passed to the select() call. The operatiayetseg() can be used to service
an RPC message when activity occurs on these sockets. For polling, the operations, pg¢)lfd¢ and
getreqpoll() are provided.

2.7 Transparent RPC

Sun remote “procedure call” is different from a local procedure call. Some systems, such as the Xerox Cedar
language, try to suppottansparent RPC which looks and behaves like an ordinary procedure call. Such
RPC differs from Sun RPC in two main ways:

Since a remote procedure call looks exactly like a local procedure call, it does not explicitly indicate
the location of the remote machine. The remote machine is determined by a special binding phase, which
occurs before the call is made.

Programmers do not explicitly marshall parameters or unmarshall results. The marshalling and un-
marshalling (XDR) routines are generated from the declarations of procedures invoked remotely. For this
reason, systems that support such RPC are sometimes alsoRROagbnerators.

Let us fill some of the details behind the concept of transparent RPC system. Such a system expects
procedure headers and the types of the procedure parameters to be encapsiitgeihdes. An interface
is implemented by a server and used by a client to invoke the procedures defined in the interface. An
interface can be compiled for remote invocation. Before we look at the implementation of transparent RPC,
let us resolve some semantic issues.

2.7.1 Semantics

Reference Parameters

An important difference between a local and remote procedure call has to do with address parameters.
Since addresses in one process have no meaning in another (unless we have shared memory), some systems
disallow address parameters while others create an isomorphic copy of the data structure pointed to by the

19

actual parameter at the receiving process and point the formal parameter at this copy. The latter systems
support transparency only for languages that do not allow address arithmetic.

Binding

How does a client machine identify the server? We can associate each interface definition with a global
type name, T. Each servber that implements the interface creates an instance, | of T. An instance is imple-
mented by some process P on some host H. There is a spectrum of binding strategies possible, based on the
binding awarenessin the client program:

One extreme approach is for the client program to simply identify which interfaces types it is using.
The server RPC system publishes the interfaces implemented by each server, giving the location (host,
process, and interface id) of the implementation. The client RPC system chooses one of these published
implementations for the interfaces used by the client. This is the minimum amount of binding awareness
possible since the interface type is necessary to link the client to appropriate generated routines.

The other extreme is for the client to indicate not only the type of the interface but also the complete
location of the implementation in which it is interested (H, P, I). This is essentially the approach adopted in
Java RMI.

Intermediate choices are to specify some but not all the details of the location, letting the system figure
out the unspecified details. In particular, a client program can specify H or (H, P).

Less binding awareness makes the program more portable and easier to write. On the other hand, it gives
the client programmer less control and also makes the binding less efficient since the system must maintain
and search (centralised or replicated) information about published interfaces.

Usually, there is no well known way to name processes - a port number or string would normally be
used instead of process no. Java RMI uses a host-wide unique string.

No of Invocations

How many times has the remote procedure call executed when it returns to the invoker? Ideally, we
would want to maintain the semantics of local procedure call, which is guaranteed to have executed execute
exactly once when it returns. However, these semantics are difficult to maintain in a distributed environment
since messages may be lost and remote machines may crash. Different semantics have been proposed for
number of remote invocations based on how much work the RPC system is willing to do:

At-least-once: The call executes at least once as long as the server machine does not fail. These se-
mantics require very little overhead and are easy to implement. The client machine continues to send call
requests to the server machine until it gets an acknowledgement. If one or more acknowledgements are lost,
the server may execute the call multiple times. This approach works only if the requested operdon is
potent, that is, multiple invocations of it return the same result. Servers that implement only idempotent
operations must bgateless, that is, must not change global state in response to client requests. Thus, RPC
systems that support these semantics rely on the design of stateless servers.

At-most-once: The call executes at most once - either it does not execute at all or it executes exactly
once depending on whether the server machine goes down. Unlike the previous semantics, these semantics
require the detection of duplicate packets, but work for non-idempotent operations.

Exactly once: The system guarantees the local semantics assuming that a server machine that crashes

20

will eventually restart. It keeps track of phan calls, that is, calls on server machines that have crashed, and
allows them to be later adopted by a new server. These semantics and their implementation were proposed
in Bruce Nelson'’s thesis, but because of the complexity of the implementation, were never implemented as
far as | know. Nelson joined Xerox where he implemented the weaker at-most-once semantics in the Cedar
environment.

How should the caller be told of RPC failures in the case of at-least once or at-most-once semantics?
We cannot return a special status in case of transparent RPC since local procedure calls do not return such
values. One approach, used in Cedar, is to raise a host failure exception, which makes the client program
network aware even though the call syntax is transparent.

2.7.2 Implementation

There are several basic components that work together to allow a client to make a distributed invocation in
a server that implements a remote interface:

Client Code

Client code, C, written by the client programmer, that makes the remote invocation. For instance, a call
of the form:

i : =P (s)

where P is a procedure defined in some remote interface.

Server Code

The server code, S, written by the server programmer, that implements the remote procedure. For
instance a procedure of the form:

procedure P (s: S): int {
/* inplement the functionality of P */

return (result)

Client Stub

A client stub, for each remote procedure P, generated by the interface compiler, that is linked to the
client code and is called by C when it makes the remote invocation. C cannot call the remote P directly since
they are in separately linked address spaces. Therefore, what it actually does is call the client stub, which
marshalls the parameters, talks to the RPC runtime to send a remote message, receives a return message
from the runtime, unmarshalls the results, and returns it to C. Thus, the form of the stub is:

procedure P (s: S): int {
/* marshall s */

21

xdr _int (xdrsp, s->f1)
xdr_float (xdrsp, s->f2)
/* send nessage via RPC runtinme */

/[* receive nessage fromRPC runtine */

/* unmarshal |l result */
xdr_int (xdrsp, result);
return (result)

Server Stub

A server stub, for each each remote procedure P, generated by the interface compiler, that is linked to
the server code, S, and invokes the implementation of P. It is the dual of the client stub - It unmarshalls the
parameters and marshalls the results. Thus, its form is:

procedure PServer Stub {
/* unmarshall s */
xdr _int (xdrsp, s->f1);
xdr_float (xdrsp, s->f2);
[* call P */
result := P (s);
/* marshal |l result */
xdr _int (xdrsp, result);
/* send result via RPC runtinme */

Server Dispatcher

A dispatcher, generated by the RPC system, and linked to the server, which receives an incoming call
request and invokes the corresponding server stub. The call request identifies the procedure to be invoked
and the dispatcher is responsible for mapping it to the server stub. This mapping is generated at interface
compilation time.

XDR Routines
The XDR routines for predefined (simple) types are written by the implementer of the RPC system,
while the routines for user-defined types are generated by the compiler based on the definitions of the types

of the arguments of the remote procedures.

RPC Runtime

22

The RPC runtime, which exists at both the client and server sites. It is responsible for sending and
receiving messages from remote sites. It is also responsible for binding remote calls. It can, like Sun RPC,
simply use a general, lower-level networking layer such as UDP or TCP/IP to send and receive messages.
However, it is possible to define efficient, specialised communication protocols for implementing transpar-
ent RPC, as illustrated by Cedar.

Specialised Protocols

The Cedar system uses a special network protocol to support at-most-once RPC semantics. Such se-
mantics can be supported on top of a connection-based reliable protocol such as TCP/IP. However, they are
not optimal for RPC mechanisms, since they have been designed to support asynchronous reliable transfer
of bulk data such as files. There are two possible optimisations possible in a specialised protocol:

Implicit Sessions. A bulk data protocol requires explicit opening and closing of sessions. An RPC im-
plementation on top of such a protocol can use two main approaches to opening/closing sessions: First, a
client machine can open a session with each possible server machine with which the client may communi-
cate. Second, the client machine can open/close the connection before/after each call. The first approach
amortizes the cost of opening/closing connections over all calls to a server machine, but uses more con-
nections (which are scarce resources) at any one time and requires probe messages inquiring the status of a
server machine to be sent even when no RPC is active. The second approach, on the other hand, requires
connections to be active and pinged only during the procedure call but requires an explicit opening/closing
per call. A specialised protocol can offer the advantages of both approaches by implicitly opening/closing a
connection at the start/termination of a call.

Implicit Acknowledgement: A bulk-data protocol can result in each packet being acknowledged. In a
specialised protocol, the RPC reply can acknowledge the last packet. This can result in no acknowledgments
being sent for RPC calls with small arguments.

The Cedar implementation shows how a specialised protocol may be implemented. Each call is assigned
an id from an increasing sequence of ids generated by the system. The RPC runtime at the client machine
sends to the receiver the following client informatiama| id, dispatcher id, procedure id, andarguments.

The RPC runtime at the server machine sends back to the cbalttid andresults. The client runtime

breaks the client information into one or more packets, encloses the packet number, and asks for an ac-
knowledgement for all packets except the last one, which is acknowledged by the reply. After each packet,
it waits for an ack/reply. If it does not receive the ack/reply within a certain time, T, it resends the packet,
asking for an explicit ack (even for the last packet). After receiving all acks, the client may need to wait for
the RPC to finish. It periodically sends probe packets (after P time units) to check the status of the server
machine. If it does not receive acks to normal/probe to packets after a certain number, R, of retransmissions,
it determines that the server machine has crashed and reports an exception to the client program. Once it
receives a reply, it waits for a certain period of time, D, for another call to the server. If a call is made within
that period, then that call serves as an ack for the reply of the previous call. Otherwise, the client explicitly
sends an ack.

Under this protocol, short calls (duration less than T) with small arguments (fitting in one packet) and
occurring frequently (inter call delay less than D) resulting in no lost messages require only two messages to
be communicated. A long call (duration greater than T but less than P - not requiring probe packets) requires
an additional retransmission of the argument and its explicit ack. A really long call requires transmissions

23

and acks of probe packets. A call that is not followed quickly by another call requires an ack for the reply.

Thus, this procotol is optimised for the first case: it is not possible to do better in this case. A bulk
transfer protocol would require additional open and close messages and an additional argument ack unless
it is piggybacked on the reply message. On the other hand, this protocol may result in more messages to be
communicated for other cases since it makes a client wait for an ack for a previous packet before sending
the next one. As a result, the server machine must ack all packets except the last one. A bulk data transfer
protocol allows multiple packets to have outstanding acks and allows one server message to serve as an
ack for a sequence of client messages. Thus, this protocol follows the principle of making the usual case
efficient while making the unusual cases possible but not necessarily efficient.

24

