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This dissertation presents novel statistical shape analysis methods for both seg-

mentation and non-rigid registration, which are two of the most important topics in

medical image analysis.

For the proposed approaches to boundary finding, the correspondence of a subset

of boundary points to a model is simultaneously determined. Global shape parameters

derived from the statistical variation of object boundary points in a training set are used

to model the object. A Bayesian formulation, based on this prior knowledge and the edge

information of the input image, is employed to find the object boundary with its subset

points in correspondence with boundaries in the training set or the mean boundary.

In order to demonstrate the power of this statistical information, the use of a generic

smoothness prior and a uniform independent prior are compared with the training set

prior. An integrated approach is also described and validated which uses a combined prior

of the smoothness and statistical variation modes when few training example shapes are

available. This approach adapts gradually to use more statistical modes of variation as

larger data sets are available.

The resulting corresponding boundary points derived from the segmentation are

then incorporated into our physical model-based non-rigid registration. The two new

atlas-based methods of 2D single modality non-rigid registration proposed in this work



use the combined power of physical and statistical shape models. A Bayesian formulation,

based on each physical model (elastic solid and viscous fluid), an intensity similarity

measure, and statistical shape information embedded in corresponding boundary points,

is employed to derive more accurate and robust approaches to non-rigid registration.

Finally, the 3D generalization to volumetric segmentation is addressed with em-

phasis on the new techniques required, which include the identification of corresponding

surface points in the training set and 3D surface triangulation. They are efficiently com-

puted together in a new hierarchical approach.

Throughout all the work in this thesis, the key link is statistical shape, which

is the prior model in segmentation, as well as the extra source of information in non-rigid

registration.
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Chapter 1

Introduction

1.1 Introduction to the Problem

The goal of this work is to first develop statistical shape model-based segmentation and

then use the resulting corresponding points which contain statistical shape information

for physical model-based non-rigid registration.

Locating the boundaries of structures in an image is of great importance in a

variety of image analysis and computer vision applications including robot vision, pattern

recognition and biomedical image processing. Numerous boundary finding methods have

been proposed [2, 23, 25, 32, 38, 45, 73, 78, 88, 92, 117, 119, 143]. However, these

methods (except to some extent, [38, 45]) do not provide any notion of correspondence.

Correspondence is a key step in a number of computer vision applications especially non-

rigid registration. There has been much work on determining boundary correspondence

using local shape features [121, 94]. In this work, however, we are interested in both

determining an object’s boundary and simultaneously determining spatial correspondence

between similar structures over different subjects. Prior shape information is quite helpful

1
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in constraining both the object boundary and point correspondence. Our first goal is

to use statistical prior shape models with shape and shape variations generated from

a training set to find the object boundary. In addition, since the shape model is a

point based statistical model, the correspondence of boundary points to the model is

simultaneously determined as a by-product of boundary finding. A Bayesian objective

function based on this model and image derived information is employed in this thesis for

segmentation. The resulting corresponding boundary points are then used in the physical

model-based non-rigid registration, whose aim is to provide representations which allow

for the generalization of a single ideal anatomical atlas to the individual.

An anatomical atlas is a registered set of images generated from typical healthy

anatomy within a population. It consists of two types of images, measured and labeled.

The measured set of images can consist of MR images, CT images, digitized photographs

of histological sections, etc. The labeled images contain information about the measured

images, consisting of structure names, sizes, locations, functionality, dependence on other

structures, etc. The goal of our non-rigid registration is to estimate the transformation

that accommodates the shape differences between the measured images of the atlas and

measured images of an individual image, or study image (Figure 1.1). Once this trans-

formation is known, all the information contained in the labeled images of the atlas can

be mapped onto the measured images of the study.

Non-rigid registration allows point-by-point comparison between individuals of

structure and function. Some of the applications of non-rigid registration are: comparing

shape between individuals, comparing function between individuals, automatic segmen-

tation, statistical characterization of shape variability, surgery, etc.

There have been many approaches to non-rigid registration in recent years [8,
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Atlas

Measured Image
   (MR, CT, ...)

Registered Labeled Image
(structure name, 
size, location, ...)

Measured Image
Study

Non−Rigid 
Registration

Deformed Atlas

Measured Image Labeled Image
   Transformation
(displacement field)

Figure 1.1: Process of non-rigid registration.

14, 29, 33, 40, 53, 96, 123]. Usually, the transformation is constrained in some way

because of the ill-posedness (i.e. in this case, the existence of many possible solutions) of

the problem. Physical models, for example, linear elastic and viscous fluid models, are

widely used to enforce topological properties on the deformation and then constrain the

enormous solution space [8, 29, 31, 40, 53, 96]. Such models are limited by themselves

since the physical analogy is artificial and sometimes they are under-constrained. With

statistical information, we have a stronger bias for the physical model. Statistical shape

models, instead of physical models, can be powerful tools to directly capture the character

of the variability of the individuals being modeled. This idea has been used successfully

for segmentation but has not yet been effectively applied to registration. Instead of relying

on a physical model to guide the deformation in a roughly plausible way, the statistics

of a sample of images can be used to guide the deformation in a way governed by the

measured variation of individuals. Also, we believe that much of the useful information
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in medical images is carried by the shape of features in the image rather than by other

properties such as area or intensity. Therefore, our second goal here is to incorporate

statistical shape information into this type of physical model-based registration and to

develop a more accurate and robust algorithm.

In conclusion, our aim in this thesis is to first develop statistical shape analy-

sis methods for segmentation and then use the resulting corresponding boundary points

which contain statistical shape information for physical model-based non-rigid registra-

tion.

1.2 Overview of the Framework

A complete system of statistical shape analysis for segmentation and non-rigid registration

has been developed in this dissertation.

Chapter 2 reviews the previous research in the field of segmentation and registra-

tion.

In Chapter 3, the statistical point model derived from the training set by principal

component analysis of the covariance matrix is described. Also the independent model,

the smoothness model and the combined model are formulated and compared with the

statistical point model. A diagram of our statistical shape analysis is shown in Figure 1.2.

Then, a Bayesian formulation for 2D boundary finding with the different prior models is

described. Finally, a number of experiments are performed on both synthetic and real

medical images of the brain and heart to evaluate the approaches, including the validation

of the dependence of the method on image quality, initialization and prior information.

Chapter 4 first presents the physical models used in non-rigid registration, includ-

ing elastic solids and viscous fluids. Then the integration of statistical shape information
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   Training Set
   with Labeled
Boundary Points

Neighboring Boundary
   Points Smoothness 
         Assumption

Boundary Points
  Independence
     Assumption

Statistical Point Model
        PCA Derived 
   Covariance Matrix
         C_training

Smoothness Model     
      Smoothness 
 Covariance Matrix
        C_smooth

Independence Model
          Identity 
  Covariance Matrix
         C_identity

       Combined Model
 Mixed Covariance Matrix
                C_mix

Used separately in 
boundary finding
 to compare with 
      C_training

1. Compare with each other 
    in boundary finding
2. As statistical shape model for 
    segmentation and registration

Statistical Shape Analysis

Figure 1.2: Diagram for our statistical shape analysis methods.

into the physical model-based non-rigid registration is formulated. A number of experi-

ments are performed on both synthetic and real medical images of the brain and heart to

evaluate the approaches. It is shown that statistical boundary shape information signif-

icantly augments and improves physical model-based non-rigid registration and the two

methods we present each have advantages under different conditions. Also, the proposed

non-rigid registration is shown to be helpful for our boundary finding.
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In Chapter 5, we extend the proposed boundary finding algorithm to 3D volu-

metric segmentation. The new techniques required that are totally different from that in

2D are addressed and described, as well as some initial synthetic results.

A diagram outlining the complete 2D system is shown in Figure 1.3.

1.3 Main Contributions

In this thesis, statistical point models with shape and shape variation generated from

sets of examples by principal component analysis of the covariance matrix are used for

boundary finding. This idea has been used previously for boundary determination (e.g.

[38, 119]). Also, the Bayesian formulation of the objective function is akin to the work of

Staib and Duncan [117]. The primary contribution of this dissertation is that it extends

these ideas to provide a more robust method for both boundary and correspondence

finding. Moreover, in order to show the important role of the statistical prior shape model,

we demonstrate the use of two other kinds of generic prior information: an independence

model and a smoothness model [126]. In addition, we consider prior shape models trained

on small sets which may not allow enough variation to adequately span the space of

plausible shapes. For this case, we further propose the use of an integrated prior model-

based on a combination of our proposed smoothness covariance matrix and the traditional

training set covariance matrix [129].

The key benefits of our boundary finding approaches include the following. During

the optimization, we search for the shape and pose parameters together directly in the

parameter space, resulting in a better optimum. Continuous penalizing criteria based

on a training set derived Gaussian distribution for the prior shape and pose parameters

are used during the search. When few training set examples are available, our combined
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Statistical Shape Analysis 
         in Figure 1.5:
    C_training / C_mix
 (C_identity, C_smooth)

Study Image

        Physical Models:
Elastic Solid / Viscous Fluid

     Study 
Edge Image

        Study
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Corresponding
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    Atlas Image
(all info. known)

   Atlas Image
 Corresponding
Boundary Points

        Atlas
Intensity Image

   Matching Term 2
(sparse set of forces)

   Matching Term 1
(dense set of forces)

   Transformation
(displacement field)

2D Boundary Finding 
with Correspondence
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Figure 1.3: Overview of the 2D system framework.
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model is more straightforward and simple than that proposed by Cootes et al. [39]. In

addition, the optimization algorithm is faster and more robust than the image search

of Cootes et al. [38]. Moreover, using a Bayesian framework allows us to adjust the

weighting between the statistical prior knowledge and the image information based on

the image quality and the reliability of the training set.

Our main contribution to non-rigid registration is to incorporate statistical shape

information into physical model-based registration (linear elastic solid [127] and viscous

fluid [128]) and to develop more accurate and robust algorithms. The power of physical

and statistical shape models are combined in our approaches using a Bayesian framework

[130].

Finally, we have developed a new approach to 3D deformable surface statistical

model construction, where the corresponding surface points are identified in a hierarchical

way based on geodesics. Meanwhile, the surface is triangulated based on the labeled

surface points, which results in an efficient algorithm for our model construction [131].



Chapter 2

Background and Related Work

In this chapter, we describe briefly the available literature on the topics that are relevant

to this work. Over the years a number of different approaches has been developed for

image segmentation and registration. Excellent reviews of segmentation [52, 66, 99] and

registration [47] survey these techniques. Here, we first describe some of those approaches.

Next, we will describe briefly the available work on rigid or deformable models for shape

matching, which includes both segmentation and registration.

2.1 Related Work in Image Segmentation

2.1.1 Region Based Methods

We classify region-based methods as those that exploit homogeneity of spatially dense

information, e.g. pixel-wise grey level values, texture properties etc., to produce the

segmented image. These methods primarily depend on the underlying consistency of any

relevant feature in the different regions of an image.

Thresholding [109] and region growing [21] are two of the oldest and widely used

9
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tools for image segmentation. While region growing methods perform better than thresh-

olding procedures, they continue to have similar problems, producing artificial and poorly

localized boundaries. Thus, to produce reliable boundary estimates, further processing

often becomes necessary. This kind of information can, however, be incorporated into

boundary methods which have better localization properties but suffer from high noise

sensitivity, as in [24].

Region-based image segmentation techniques using spatial interaction models like

Markov Random Field (MRF) or Gibbs random fields to model the image [54, 43, 44] have

become very popular. They assume that the probability of a point being in a particular

state is entirely dependent on the probabilities of the states of its neighbors. MRF models

allow the incorporation of statistical information about the local variation of gray levels.

Whereas the statistical model we use are based on shape.

Non-linear diffusion methods [102, 56, 1] are used for doing edge preserved smooth-

ing. Non-linear diffusion can be considered to be a natural extension of scale space

filtering. Linear scale space methods solve the linear diffusion equation and were first de-

veloped by Witkin [133] and Koenderink [83] and further developed by others [6, 140, 71].

The essential idea here is to produce a multiscale description of the image. Both isotropic

and anisotropic diffusion equations [102, 1] have been developed.

In the next section, we will discuss boundary methods, which have better local-

ization properties than region methods and are more related to the work here.

2.1.2 Boundary Methods

Boundary based methods rely on the pixel-wise difference to guide the process of seg-

mentation. Thus, they try to locate points of abrupt changes in grey tone images. There

are a number of approaches that use boundary information some of which are discussed
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below.

2.1.2.1 Edge Detection

Edge detection is a picture segmentation technique based on the detection of discontinuity

where there is a more or less abrupt change in gray level. There are a variety of edge

operators such as Robert’s, Sobel, Prewitt, etc. [108]. A good edge detector should

be a differential operator, taking either a first or second spatial derivative of the image.

Second, it should be capable of being tuned to act at any desired scale, so that large filters

can be used to detect blurry shadow edges, and small ones to detect sharply focused fine

details. One of the most satisfactory operator fulfilling these conditions is the Laplacian

of Gaussian operator [90]. It has the desirable property of being smooth and localized in

both spatial and frequency domains. However, since it is a second derivative operator,

it is quite sensitive to noise. Also, it is difficult to distinguish between more and less

probable edges and the only way of discarding false edges would be to do so interactively

by human operator.

The Canny edge detector [22] seeks to optimize by making the best trade-off

between detection and localization of edges, the two main yet opposing goals of edge

detection, in addition to producing one and only one response for a single edge point.

Canny showed that the ideal edge detector can be approximated by first taking the gra-

dient of the image convolved with the Gaussian kernel and then choosing the maxima of

the gradient image in the direction of the gradient. However, except under ideal circum-

stances, it results in broken edges and thus identifying objects would require grouping

those edges either interactively or by using some other algorithm [108]. The Canny edge

detector is utilized as a preprocessing step in our segmentation, where the resulting edge

images instead of the original grey level images are used as the input features for image
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segmentation.

Next, we focus on the whole boundary methods which are most related to this

dissertation.

2.1.2.2 Whole Boundary Methods

Whole boundary methods [78, 2, 38, 117] rely mainly on gradient features at a subset of

the spatial positions of an image (near an object boundary) for segmentation of structures

from an image. By considering the boundary as a whole, a global shape is imposed on

the problem that simplifies the task. Thus, gaps are prohibited and overall consistency

is emphasized. Once again, there are a number of approaches, some of which will be

described in this section and Section 2.3 — Related Work in Shape Matching. More

details can be found in the book by Blake & Yuille [11] which contains an excellent

collection of papers on deformable contour methods. Here, we will also briefly discuss

some of the most recent work on this topic using the level set method [88].

Snakes: One of the most popular methods of detecting whole boundaries is the

snakes approach due to Kass et al. [78]. A snake is a continuously deformable curve

that can be used as a mechanism to locate features of interest in an image. Its shape is

controlled both by internal forces (the implicit model) and the external or image forces.

The internal energy represents the smoothing forces on the curve, and the image

forces represent the image-derived forces that contain the curve to take the shape of the

features present in the image.

The smoothness model proposed in this work is actually similar to that of the

internal smoothness forces in Kass’s snakes. However, it is expected that our image

search algorithm with this smoothness constraint would be more efficient than Kass’s

because we select the eigenvectors of the smoothness covariance matrix corresponding to
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the largest eigenvalues and thus reduce the dimensionality of the search space.

Also, the problem with snakes initial version was that if the initial curve was not

close enough to an edge, it had difficulty in being attracted by it. Also, the curves in

the original snakes formulation had a tendency to shrink on themselves. To improve the

convergence properties, dynamic programming can be used for energy minimization [2].

This also allows the objective function to include hard local constraints. Some robustness

to the problem of finding a good initial guess was achieved by the addition of an extra

force which made the contour have a more dynamic behavior. In other works, the curve

was considered to be a balloon [32] (in 2D) that was being inflated. From an initial

oriented curve, an extra pressure force was added that pushed the curve out as if air

was being introduced inside the closed contour. However, despite all these improvements,

this direct representation still had the problem of having too many parameters (here the

position vectors along the curve) to optimize over. And more importantly, the parameters

are typically still free to take almost any smooth boundary with no constraints on the

overall shape. Model-based snakes [105] allow deformations based on a template model

but take its shape information into account only in a very limited and general way.

Shape-constrained deformable models: As an alternative to the snakes

method, orthogonal representations for curves were proposed by Staib and Duncan [116,

117] where elliptic Fourier descriptors are used as model parameters to represent open

and closed boundaries. An orthonormal set is desirable because it makes the param-

eters uncorrelated. This reduction in redundancy becomes particularly helpful during

the optimization process. The Fourier coefficients are used to bias the boundary toward

a range of shapes about a mean using a Gaussian distribution on the parameters as a

prior probability. A Bayesian approach is then used to obtain the maximum a posteriori
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estimate of the boundary. Chakraborty et al. [25] extended this approach to incorpo-

rate region homogeneity. Fourier descriptors are somewhat limited because they are not

suitable for describing some shapes, such as those with morphological convolutions or

corners. In addition, these methods are designed for boundary finding, without regard to

correspondence, which is one of our goals here.

Cootes et al. [38] combined deformable shape descriptors with statistical modal

analysis built from a training set of annotated images. Object shapes are represented by

a subset of boundary points, and a correspondence is established between these points

from the different images of the training set. The deformations are modeled using linear

combinations of the eigenvectors of the variations from the mean shape, thus defining the

characteristic pattern of a shape class and allowing deformation reflecting the variations in

the training set. In Cootes’ image search algorithm, the model is adjusted by searching

a region in the image space around each model point for an improved displacement.

These local deformations are transformed into adjustments to the pose parameters, and

followed by adjustments to the shape parameters of the point model in the parameter

space. By projecting the shape onto the shape parameters and enforcing limits, global

shape constraints are applied ensuring that the current shape remains similar to the

training set. The estimation of the displacement, however, is determined by a search only

in the normal direction toward the strongest image edge [38]. In some situations, errors in

the image search at certain points require adjustments of the pose and shape parameters

in the parameter space which results in a misadjusted boundary. Shape parameters are

accepted unless they are beyond three standard deviations. A more continuous penalty,

however, is likely to be more effective, which is the case in our segmentation approaches.

In addition, the influence of the training set on the results is always fixed, and is not
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adjusted according to image quality.

An improvement of the active shape procedure introduced by Cootes et al. to find

new examples of previous learned shapes using the point distribution models is presented

by Duta [45]. Three additional features characteristic to MR brain images were included

in the model: gray-level appearance, border strength, and average position. The search

procedure is based on a model fitting strategy, which consists of the following steps: 1)

model fitting using linear transforms, 2) model fitting using piecewise linear transforms,

3) outlier removal, 4) final point adjustment, 5) final outlier removal [45]. Although

for some images, this strategy may improve the results, the excessive procedures and

associated parameters make the algorithm too complicated to be suitable in general.

A similar modal analysis scheme is proposed by Pentland and Sclaroff [101] which

gives a set of linear deformations of the shape equivalent to the modes of vibration of the

original shape. However, the modes of vibration are based on an arbitrary elastic model

that is not likely to be representative of the real variations which occur in a class of

shapes. This approach is similar to the proposed smoothness model in this work. Cootes

and Taylor [39] incorporated this idea by combining the shape variability determined

statistically from a training set with that generated artificially by using a physically

based model[101] of the objects of interest. These processes require a computationally

intensive finite element analysis to solve for the modes of vibration. While the combined

model proposed in this work achieves the similar goal in a much simpler way.

Székely et al. [119] describes a model-based segmentation technique combining

desirable properties of physical models (snakes) [78], shape representation by Fourier pa-

rameterization [117], and modeling of natural shape variability [38]. They performed a

principal component analysis of the covariance matrix of the normalized Fourier coeffi-
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cients. Elastic fit of the mean model in the subspace of eigenmodes restricts possible

deformations and finds an optimal match between the model surface and boundary can-

didates. This approach combines the descriptive power of Fourier coefficients with the

efficiency of restriction based on natural variability. However the use of Fourier coeffi-

cients makes it suitable primarily to relatively smooth shapes.

Level set method: While such deformable boundary finding approaches have

been used successfully in computer vision applications, one important limitation of these

methods is that they are unable to handle topological changes of the deforming contour.

This limitation is removed by the level set technique, due to Osher & Sethian [98, 112,

88, 142].

The level set method is an approach that can be applied for recovering boundaries

of objects in two and three dimensions from various types of image data. The model con-

sists of a moving front and may be modeled into any desired shape by externally applied

halting criteria synthesized from the image data. The moving front γ(t) is represented as

the zero level set of a higher dimensional function Ψ given by

Ψ(x, t = 0) = d (2.1)

where d is the distance from x to γ(t = 0).

Given a moving closed boundary γ(t), an Eulerian formulation for the motion of

the boundary is produced, propagating along its normal direction with speed F , where F

can be a function of various arguments, including the curvature, normal directions, etc.

The evolution equation for Ψ is given by

Ψt + F | ∇Ψ |= 0 (2.2)
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The speed function F from the image data is applied to the propagating front and

is split into two components FA and FG. The term FA, referred to as the advection term,

is independent of the moving front’s geometry. The front uniformly expands or contracts

with speed FA depending on its sign. The second term FG depends on the geometry of

the front, such as its local curvature. This term can be used, for example, to smooth out

high curvature regions of the front.

McInerney and Terzopoulos [92] presented a variation of the original snakes ap-

proach which can handle changes in the topology of the contour by embedding the snakes

in a simplicial domain decomposition. This formulation handles the splitting or merging

of contours in a topologically consistent way. Recently, Vemuri and Guo proposed a new

geometric shape modeling scheme using snake pedals [125] which allows for the represen-

tation of both global and local shape characteristics of an object, as well as topological

changes.

However, topology changes are not necessary in this work and it is still not clear if

it is possible to incorporate global shape information into the level set formulation. Our

segmentation approaches are more related to the shape-constrained deformable models

instead of the level set method.

2.2 Related Work in Image Registration

Any registration method will produce a set of equations that transforms the coordinates of

each point in one image into the coordinates of the corresponding point in the other image.

Registration methods may be classified according to various criteria, such as dimensional-

ity (1D/2D/3D/· · ·), origin of image properties (intrinsic/extrinsic), domain of the trans-

formation (global/local), elasticity of the transformation (rigid/affine/projective/curved),
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etc. Here, we are more interested in the last criteria. A general discussion of the classes

of rigid and non-rigid transformations of images is given by Wolberg [135].

The registration in this work is non-rigid. However, some ideas of rigid registration

are relevant. Thus, a brief review of rigid registration is also given as follows.

2.2.1 Rigid Registration

A transformation is called rigid if the distance between any two points in the first image

is preserved when these two points are mapped onto the second image. Rigid image regis-

tration is the task of bringing two different images into alignment so that pixel positions

correspond to equivalent points in the space of the object imaged. Rigid registration can

also be used as the initial alignment for non-rigid registration.

Rigid transformation can be decomposed into translation and rotation. In 2D,

the point (x, y) is transformed into the point (x′, y′) using the formula:
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where α denotes the rotation angle, and
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the translation vector.

Many approaches to rigid registration have been developed that rely exclusively

on image information [69, 74, 100, 118, 46, 137], such as features [100, 103, 74, 107, 46],

or grey levels [137, 138, 86, 132, 12]. Grey level properties, unlike features, avoid losing

any valuable information by using all of it. The most basic technique of this kind is

correlation, which will try to match the grey levels, pixel by pixel. This method has

problems when the grey levels do not really correspond, such as when the images are from
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different modalities, have inhomogeneities, use different pulse sequences, etc. Registration

by mutual information [86, 132, 12] allows the comparison of images at a raw pixel level,

but is independent of the problems of scaling, level and other variations of gray level. This

is a powerful technique that avoids many of the problems of other gray-level techniques.

An essential part of feature methods is the establishment of a correspondence between

features in the two images. From this correspondence, an error of total distance can

be calculated and then minimized over the space of possible transformations. A well-

known technique to solve a 3D rigid point-to-point match, is the use of Singular Value

Decomposition (SVD) to find a least-squares fit [4, 59]. Evans et al. [48] apply this

method to PET and MR brain images, while it is used by Hill et al. [68] to register CT

and MR skull base images. This method is also used in our 3D training set alignment for

segmentation (Section 5.3).

2.2.2 Non-Rigid Registration

Comparing function or morphology between individuals requires non-rigid registration,

because the detailed structure of the brain differs, sometimes greatly, between individuals.

In addition, there is functional variability between individuals. The goal of non-rigid

registration is to remove the structural variation between individuals by matching an

atlas image to each individual or study image, in order to have a common coordinate

system for comparison. Shape differences between the atlas and study’s anatomy are

contained in the non-rigid transformation. Functional differences will remain and can

then be studied without the confounding structural variations. There have been many

approaches to non-rigid registration and most of the work has occurred in the last two

years [19, 87, 7, 8, 96, 120, 40, 97, 41, 31, 28, 53, 33, 50, 123, 5, 34, 114]. Usually,

the transformation is constrained in some way because of the ill-posedness (i.e. in this



20

case, the existence of many possible solutions) of the problem. Mathematically, non-rigid

transformations can be classified as affine, projective, curved and by other models, or

they may be general, usually at least preserving continuity.

2.2.2.1 Affine, Projective and Curved Transformations

A transformation is called affine when any straight line in the first image is mapped onto a

straight line in the second image, while parallelism is preserved. An affine transformation

can be decomposed into a linear (matrix) transformation and a translation. In 2D, the

coordinate transformation can be formulated as follows:
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where
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denotes any real-valued matrix.

An affine variation of the above SVD point match that determines scaling from

the principal axes is described by Marrett et al. [91], for matching of MRI patient data

with an MRI brain atlas.

A projective (or perspective) transformation maps any straight line in the first

image onto a straight line in the second image. It is almost exclusively used to register

projective (X-ray) images to 3D tomographic images, employing a 3D-to-2D variant of
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the projective formula as follows:
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where w represents the extra homogeneous coordinate.

Curved transformations may map a straight line onto a curve. In 2D, this is

formulated as follows:

(x′, y′) = F(x, y) (2.6)

where F denotes any function mapping the coordinates in the first image onto coordi-

nates in the second image. An example of this approach used in the determination of

mapping functions for the registration of two images is given by Goshtasby [62]. Given

the coordinates of corresponding control points in two images of the same scene, first the

images are divided into triangular regions by triangulating the control points. Then, a

linear mapping function is obtained by registering each pair of corresponding triangular

regions in the images. The overall mapping function is then obtained by piecing together

the linear functions. We have generalized this approach to 3D, and it could be used as

the initialization of our non-rigid registration. Goshtasby also extends this technique to

include piecewise nonlinear functions as mapping functions [63]. This nonlinear mapping

function, in addition to providing a continuous mapping, provides a smooth transition

from one local function to another. The obtained mapping function which is a piecewise

combination of the local mapping function is therefore continuous and smooth all over.
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2.2.2.2 Bookstein’s Thin-plate Splines

The model of deformation, based on the physics of thin-plate splines, is used by Bookstein

[14, 13]. This method requires the identification of a large number of homologous pairs of

anatomic point landmarks. Unfortunately, after the first few obvious points in the brain,

this becomes difficult because there are not enough true landmark points that can be

accurately marked. Landmarks are typically needed throughout the image because local

changes to the spline have global effects. These landmarks must be very reliable, because

the thin-plate spline forces these points exactly into correspondence. Also, while the

transformation has interesting statistical properties, especially in terms of decomposing

the warp, it can result in impossible warpings. For example, the space can fold over itself,

resulting in a non-homeomorphic warping, when the geometry is particularly warped.

This technique is intended primarily as a method for the statistical comparison of shape

through the location of homologous landmarks, and not as a general technique for image

warping [13].

2.2.2.3 Physical Models

Another classification of non-rigidity comes from who use analogous physical models, for

example, linear elastic [96] or viscous [28] models, to control the deformation. Here, the

image or underlying structure is considered to be composed of a physical material of

known properties of deformation, and is deformed in accordance with those properties.

The validity of these techniques is predicated on the applicability of such a model to this

kind of deformation. Of course, there is no true physical model, because each individual

anatomy does not literally result from the deformation of another anatomy. However,

such models are a powerful technique to constrain the enormous solution space. The
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non-rigid registration approaches developed in this dissertation are based on the physical

models.

Gee et al. [53] use a linear elastic strain model and a Markov random field to

model a displacement field for non-rigid registration. The elastic model, and other related

models, penalize deformation in proportion to the displacement distance. This captures

the idea that the deformation should be as small as possible and thus that the necessary

deformation is not large. This is too strict a model because of the large variation between

brains and does not allow for the complete deformation necessary.

A more relaxed model is the viscous fluid model used by Christensen et al. [28].

Christensen transforms a generic digital neuroanatomical atlas to closely correspond with

a specific individual’s data set, thus creating an individualized atlas. The transformations

are constrained to be consistent with the physical properties of deformable elastic solids

in the first method and those of viscous fluids in the second [29]. The fluid model has

the advantage of tracking long-distance, nonlinear deformations of small subregions. The

viscous model is used in conjunction with the topologic constraint that the transforma-

tion must be homeomorphic. This technique uses landmark-based matching to initialize,

followed by gray level intensity-based matching with a viscous fluid-flow model. Viscous

fluid models are designed to be less constraining than elastic models. Deformation occurs

in accordance with the physical properties of a flowing liquid, however, this may not be

a strong enough constraint. The homeomorphic condition is an important one. This

ensures that the deformation is continuous and one-to-one. Thus, structures do not split,

merge, fold over, etc. It is a very reasonable assumption that different individual brains

are topologically equivalent, except for severe disease and abnormal variation, such as

the absence of a corpus callosum. Joshi et al. [77] presents a coarse-to-fine approach for
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the transformation of an atlas from the ideal to the individual that combines landmark

deformation [14] and volume-based transformations [96, 28, 65, 49, 3]. Rabbitt et al.

[104] use finite deformation continuum mechanics to develop a new finite element tool

that combines image-based data with mechanics. They use a hyperelastic material model

valid for large-magnitude nonlinear deformations.

2.2.2.4 Physical Model-Based Non-rigid Registration vs. Optical Flow

In Christensen, Miller et al.’s elastic registration [96, 29], the transformations are con-

strained to be consistent with the physical properties of deformable elastic solids to main-

tain smoothness and continuity. The matching term is the intensity difference between

the two images. Therefore, the resulting displacement field is essentially optical flow,

which is the apparent motion of the brightness pattern and is solved from the optical flow

constraint equation (intensity match term) and the smoothness constraint. Also, both

of them assume small deformation displacement. However, Christensen’s fluid model

[28, 29] allows long-distance nonlinear deformations, which is quite different from optical

flow field, although the intensity matching term is similar.

2.3 Related Work in Shape Matching (for Segmentation or

Registration)

There is also a rich collection of publications on shape matching using either rigid or

deformable templates.
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2.3.1 Rigid Matching

Hough Transform (HT) [70] is a rigid template matching scheme, which transforms points

in the spatial feature space into a parameter space, and maxima in the parameter space

correspond to possible shape instances. It was originally formulated for lines and other

simply parameterizable shapes, but was extended later to generalized shapes [9, 10].

While relatively insensitive to noise and gaps, the computational requirement goes up ge-

ometrically with the number of parameters. The complete surveys on different variations

of the HT technique can be found in [72, 84].

Different from the rigid matching, the deformable models are capable of accom-

modating the variability of the objects and then fit the data by deforming itself. There

are two classes of the deformable models — unconstrained and parametric.

2.3.2 Unconstrained Deformable Models

For unconstrained deformable models, the template is only constrained by local continuity

and general smoothness constraints without any global structure of the template. The

template can be deformed to match image features, such as edges, using the energy

function produced by those features. The unconstrained deformable models have the

advantage of allowing great variability and can represent an arbitrary shape as long as the

continuity and smoothness constraints are satisfied. A typical example of segmentation

with unconstrained deformable model is the active contour model proposed by Kass et

al. [78] which has been reviewed in Section 2.1.2.2. The smoothness model and the

independence model proposed in the segmentation part of this dissertation (Chapter 3)

also belong to the application of this kind of unconstrained deformable model. The

elastic model [20, 96, 97] or fluid model [31] proposed in the atlas registration problem is
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another example of a unconstrained deformable model. The atlas deforms and matches

itself onto corresponding regions in the study image in response to local forces derived

from images based on the established elastic or fluid model. The physical model-based

non-rigid registration approaches presented in this work falls into this category.

2.3.3 Parametric Deformable Models

When prior knowledge about the geometric shape, which can be embedded in a small

number of parameters, is available, a parametric deformable model can be used.

In addition to the shape-constrained deformable models for whole boundary seg-

mentation reviewed in Section 2.1.2.2, some researchers have incorporated information of

object shape into deformable models by using deformable shape templates. These mod-

els usually use hand-crafted global shape parameters to embody a prior knowledge of

expected shape and shape variation of the structures. An excellent example is the work

of Yuille et al. [141] who construct deformable templates for detecting and describing

features of faces, such as the eyes and mouth. The parameters which control the shape

of a template are the center and the radius of a circle, etc. The eyes and mouths in real

images can be accurately located if the initialization is close to the desired objects.

Deformable models based on superquadrics are another example of parametric

deformable models. Metaxas and Terzopoulos [95] employ a dynamic deformable su-

perquadric model [122] to reconstruct and track human limbs from 3D biokinetic data.

Their models can deform both locally and globally by incorporating the global shape

parameters of a superellipsoid with the local degrees of freedom of membrane spline de-

formation in a Lagrangian dynamics formulation. The global parameters capture the

overall shape of the data, while the local deformation parameters reconstruct the de-

tails. Vemuri et al. [124] construct a deformable superquadric model in an orthonormal
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wavelet basis. This multi-resolution basis provides the model with the ability to continu-

ously transform from local to global shape deformations thereby allowing a continuum of

shape models to be created and to be represented with relatively few parameters. They

apply the model to segment and reconstruct anatomical structures in the human brain

from MRI data.

A parametric deformable template can also be represented by using a prototype

template under a parameter mapping. Grenander [64] described a systematic framework

to represent shape classes of a characteristic structure. A model template is based on

prior knowledge of the objects obtained from the training samples and describes the

overall shape. A parametric statistical mapping controls the random variations of the

shape [3, 26, 65, 96] and reflects the allowable deformations according to the application

domain. Such a framework can be very versatile depending on the choice of template and

deformation. A similar method is used in active shape models proposed by Cootes et al.

[37], which was reviewed in detail in Section 2.1.2.2. As we saw, active shape models are

able to learn the characteristic pattern of a shape class and can deform in a way that

reflects the variation in the training set. Jain et al. [73] represent the prototype template

in the form of a bitmap which consists of the representative contour/edges of an object

shape. Their deformation model is then deformed to fit salient edges in the input image

by applying a probabilistic transformation on the prototype contour which maintains

smoothness and connectedness. Note that our statistical shape analysis for boundary

finding with correspondence described in Chapter 3 is also related to this category with

the mean shape being the prototype template.



Chapter 3

Statistical Shape Analysis for

Boundary Finding with

Correspondence

3.1 Introduction

As introduced in Chapter 1, we are interested in both determining an object boundary

and simultaneously determining spatial correspondence between similar structures over

different subjects. The complete statistical shape analysis methodology (Figure 1.2)

is provided in this chapter which includes the traditional statistical point model, our

original independence model and smoothness model, and the newly formulated combined

model which is intended for situations where there are small training sets without enough

variation to adequately span the space of plausible shapes. A Bayesian formulation,

based on each of the proposed prior models and the edge information of the input image,

is employed to find the object boundary with its subset points in correspondence with

28
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boundaries in the training set or the mean boundary. A number of experiments were

performed on both synthetic and real images of the brain and heart to evaluate and

compare the approaches with different prior models. The key benefits of our approaches

has been summarized in Section 1.3.

3.2 Statistical Shape Analysis

3.2.1 Statistical Point Model — Ctraining

Suppose we want to derive a model to represent the shapes whose boundaries are shown

in Figure 3.1(b). We can represent each example shape as a set of hand-labeled landmark

points. The model is then based on the mean positions of the points on the aligned shapes

and the main variation of the points from the mean.

3.2.1.1 Labeling and Aligning the Training Set

The critical points on the boundary are usually easily identified features, such as high

curvature points, sharp corners, etc. Equally spaced points are interpolated between the

critical points along the boundary (Figure 3.1(a)).

The training set points are first aligned by scaling, rotation and translation. The

aim is to minimize a weighted sum of squared distances between equivalent points on

different shapes. Each shape is aligned with the first shape. The mean shape and pose

are calculated from the aligned shapes. Every shape is realigned with the current mean

and the standard deviation of the pose (scale, rotation, translation) is calculated.

While the resulting pose depends on the chosen first shape, as long as this shape

is not at an extreme pose, the difference is insignificant. We search for both the shape

parameters and the pose parameters together and experiments show that the results are
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Figure 3.1: Synthetic shape model. (a): synthetic image (64 × 64) with its 24 point model of

the boundary (4 critical points, (large dots), shown with equally spaced points (small dots)); (b): 16

examples of synthetic shapes from a training set; (c): effects of varying each of the first two shape

parameters of the synthetic model.
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independent of the first shape.

3.2.1.2 Capturing the Statistics

The following 2D formulation is similar to that of Cootes et al. [38]. Given a set of m

aligned examples and each example of a set of N aligned labeled points, each example

can be represented by a single point in a 2N dimensional space,

Li = (xi(1), yi(1), xi(2), yi(2), · · · , xi(N), yi(N))T (i = 1, 2, · · · ,m). (3.1)

Thus, a set of m example shapes gives a cloud of m points in this 2N dimensional space.

We assume that these points lie within some region of the space, and that the points

give an indication of the shape and size of this region. Every 2N -D point within this

domain gives a set of landmarks whose shape is broadly similar to that of those in the

original training set. Thus, by moving in this region, we can generate new shapes in this

high dimensional cloud, and hence capture the relationships between the positions of the

individual landmark points.

For the given set of m aligned shapes, the mean shape L̄ is calculated by

L̄ =
1

m

m
∑

i=1

Li (3.2)

The principal axes of a 2N -D cloud fitted to the data can be calculated by applying

a principal component analysis (PCA) to the data [75, 76]. Each axis gives a “mode of

variation”: a way in which the landmark points tend to move together as the shape varies.

For the traditional statistical problem, in order to get the unbiased estimate, the variance
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s2X of variable X and the covariance sXY of variables X and Y are defined as [57]:

s2X =

∑

i(Xi − X̄)2

degrees of freedom
; sXY =

∑

i(Xi − X̄)(Yi − Ȳ )

degrees of freedom

where degrees of freedom is one less than the sample size. Hence, we calculate the 2N×2N

covariance matrix Ctraining of random vector L (with entries of variance and covariance)

about the mean using

Ctraining =
1

m− 1

m
∑

i=1

(Li − L̄)(Li − L̄)T (3.3)

When m is large enough, whether “m−1” or “m” is used in the denominator of Equation

(3.3) makes negligible difference in the Ctraining calculation.

The principal axes of the cloud, giving the modes of variation of the points of the

shape, are described by pk (k = 1, 2, · · · , 2N), the unit eigenvectors of Ctraining such that

Ctrainingpk = λkpk (3.4)

(where λk is the kth eigenvalue of Ctraining, λk−1 ≥ λk).

It can be shown that the eigenvectors of the 2N×2N covariance matrix, Ctraining,

corresponding to the largest eigenvalues describe the most significant modes of variation

in the variables used to derive the covariance matrix. The variance explained by each

eigenvector is equal to the corresponding eigenvalue λk [75, 76]. Typically, most of the

variation can be explained by a small number of modes, t (< 2N). The space of variation

is then restricted to a subspace of eigenvectors without a significant loss of descriptive

power. We will select the appropriate number of vectors, t, using the criterion that the
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sum of the t eigenvalues (ordered from largest to smallest) is greater than some proportion,

d (say, 0.8 ∼ 0.9), of the total variance. That is, choose the minimum t such that:

t
∑

k=1

λk > d
2N
∑

n=1

λn (3.5)

Any point in this region can be reached by taking the mean and adding a linear

combination of the eigenvectors. Any shape in the training set can be approximated using

the mean shape and a weighted sum of deviations obtained from the first t modes:

L = L̄+Qa (3.6)

whereQ = (q1 | q2 | · · · | qt) is the matrix of the first t eigenvectors, and a = (a1a2 · · · at)T

is a vector of weights, which is also the set of t shape parameters to be optimized later.

This equation allows us to generate new examples of shapes by varying the pa-

rameter a so that the new shapes will be similar to those in the training set.

We have used the techniques described above to generate statistical point models

for both synthetic objects (e.g. Figure 3.1) and biological objects (e.g. Figure 3.2 for the

heart).
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Figure 3.2: Heart shape model. (a): MR heart image (150 × 150); (b): 34 point model of the

endocardium boundary (7 critical points, large dots) (cropped); (c): 16 examples of heart shapes from

a training set; (d): effects of varying each of the first two shape parameters of the heart model.
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3.2.2 Identity Covariance Matrix — Cidentity

Consider the use of a 2N×2N identity covariance matrix Cidentity (Equation (3.7)) instead

of the covariance derived from the training set.

Cidentity =

































1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

































(3.7)

This means that all points (x and y coordinates) are uncorrelated. The eigenvectors of

Cidentity, qk (size 2N), for k = 1, 2, · · · , 2N , are of the form:

q1 = (1, 0, 0, 0, · · · , 0, 0, 0)T

q2 = (0, 1, 0, 0, · · · , 0, 0, 0)T
...

...
...

q2N = (0, 0, 0, 0, · · · , 0, 0, 1)T

(3.8)

with the corresponding eigenvalues λk = 1. If k is even, the kth eigenvector moves point

k/2 in the y direction; if k is odd, the kth eigenvector moves point (k + 1)/2 in the x

direction. Combinations of vectors, one for each mode, can move the modeled landmark

points anywhere in the image. Any shape can also be approximated using the mean shape

and a weighted sum of deviations obtained from the 2N modes. Since the eigenvalues

here are very small, a large range is used (−20
√
λk ≤ ak ≤ 20

√
λk) to demonstrate the

generation of new shapes, as shown in Figure 3.3.
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Figure 3.3: Effects of varying each of the 1st, the 2nd, the 3rd and the 2N th shape parameters of

the synthetic model with the identity covariance matrix. (The mean shape here is the mean of the

shapes in Figure 3.1(b).)
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3.2.3 Smoothness Covariance Matrix — Csmooth

The identity covariance matrix is completely unconstrained; therefore, consider the incor-

poration of a type of smoothness constraint into the covariance matrix where neighboring

points are correlated. That is:

Csmooth =













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




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
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0 0.5 0 1 0 · · · 0 0

0 0 0.5 0 1 · · · 0 0

...
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. . .
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...

0.5 0 0 0 0 · · · 1 0

0 0.5 0 0 0 · · · 0 1
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













(3.9)

where Csmooth is a 2N × 2N matrix1. Here, neighboring points are more likely to move

together than if they were uncorrelated. The first two eigenvectors of Csmooth (with equal

eigenvalues) allow for a rigid translation. The other eigenvectors correspond to increasing

frequency variation. Combinations of these eigenvectors, one for each mode, can move

the modeled landmark points anywhere in the image with the neighboring points moving

together. The shapes generated (Figure 3.4) are smoother than those using the identity

covariance matrix. Shapes are not restricted by a training set and thus the model is not

1The Csmooth here is only valid for general single closed boundary. Specific Csmooth matrices need to

be generated for multiple boundaries or open boundaries.



38

specific, but allows smooth variability. Also, critical points are unlikely to correspond

when using this model. Eigenvectors corresponding to higher frequencies have lower

eigenvalues and will have less influence.

Note that the degree or scale of smoothing can be controlled by changing the

coefficients along the diagonals. This is equivalent to changing the covariance values

for the boundary neighbor points. The identity covariance matrix, Cidentity in Equation

(3.7), can be considered as an extreme case of Csmooth with scale zero (the smallest scale

by considering only zero order boundary neighbor smoothness). The Csmooth in Equation

(3.9) has a medium scale by including first order boundary neighbors with covariance 0.5.

A larger scale Csmooth could be constructed by using higher order boundary neighbor

smoothness with covariance decreasing gradually between 1.0 and 0.0 as the order of

boundary neighbor increases from zero. Another way to construct Csmooth is to set

the covariance values for the boundary neighbor points according to a Gaussian, with

larger standard deviation corresponding to larger smoothing scale and smaller standard

deviation corresponding to smaller scale. In either case, the larger the smoothing scale,

the larger the eigenvalues corresponding to the low frequency eigenvectors are and the

lower the eigenvalues corresponding to the high frequency eigenvectors are (Figure 3.5).

However, because most of the variation can be explained by a small (or medium) number

of significant modes, the cut-off of the high frequency components makes the scale of

Csmooth a relatively unimportant factor during optimization. For the example shown in

Figure 3.5, if the number of modes used is half of the number of model points, (i.e. 12),

then the only difference is
√
λk, the standard deviation of the Gaussian prior density (σj

in Equation (3.28)). In practice, results are robust to a wide range of scales. Hence, in

the later experiments, we always use Csmooth as given by Equation (3.9).
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Figure 3.4: Effects of varying each of the 3rd, the 4th, the 6th and 11th shape parameters of the

synthetic model with the smoothness covariance matrix. (The mean shape here is the mean of the

shapes in Figure 3.1(b).)
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Figure 3.5: Comparison of eigenvalues of Csmooth at three different scales for a 24 point model.

Note: Medium scale Csmooth (Equation (3.9)) with boundary points variance 1.0, 1st order boundary

neighbor covariance 0.5 and all the other higher order boundary neighbor covariance 0.0; diagonal

entries for larger scale are respectively 1.0, 0.7, 0.45, 0.25, 0.10, 0.0, · · · (approximately Gaussian

with standard deviation 1.2); diagonal entries for smaller scale are respectively 1.0, 0.05, 0.0, · · ·
(approximately Gaussian with standard deviation 0.4).
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If we examine Csmooth, we see that it is not only symmetric, a characteristic of

covariance matrices, it is also circulant. The circulant structure explains the frequency

interpretation, because the eigenvectors will be sinusoidal [108]. Since the Csmooth we

constructed is a symmetric matrix, we always have real eigenvalues and eigenvectors. The

real eigenvectors we get are linear combinations of the complex vectors, corresponding to

multiple eigenvalues [103]. This is why we do not have complex eigenvectors as predicted

by the matrix’s circulant structure.

The motivation for the use of this smoothness covariance matrix is actually similar

to that of the internal smoothness forces in Kass’s snakes [78]. However, it is expected that

our image search algorithm with this smoothness constraint would be more efficient than

Kass’s because we select the eigenvectors of Csmooth corresponding to the largest eigen-

values and thus reduce the dimensionality of the search space. The use of this smoothness

covariance matrix is also similar to Staib’s Fourier descriptors [117] and Pentland’s Modal

Analysis scheme [101] since all of them describe shapes based on frequency components.

3.2.4 Combined Model — Cmix

For a small training set, Ctraining is unlikely to contain adequate statistics to character-

ize valid distortions. The generic constraint of Csmooth can help augment the available

statistics. In order to build a training set covariance matrix, Ctraining, we need at least

two examples. Given two examples, however, there is only one mode of variation which

interpolates between the two. Csmooth, however, can generate many modes which allow

smooth deformation, but they allow variability without much specificity. The combina-

tion of Ctraining and Csmooth results in a much better model allowing variability due to

Csmooth and specificity due to Ctraining when few training set examples are available.

Cootes et al. [39] also combined the shape variability determined statistically
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from a training set with that generated artificially by using a physically based model

proposed by Pentland et al. [101]. These processes require a computationally intensive

finite element analysis to solve for the modes of variation. The combined model proposed

in this work achieves the similar goal in a different and much simpler way.

In addition to the true training set we introduced in Section 2.1, suppose we also

have a smoothness set with m′ aligned examples and each example has a set of N aligned

labeled points, L′i = (x′i(1), y
′
i(1), x

′
i(2), y

′
i(2), · · · , x′i(N), y′i(N))T (i = 1, 2, · · · ,m′). The

corresponding mean shape and covariance about the mean can be denoted as L̄′ and

Csmooth. As shown in Equation (3.3),

Ctraining =
1

m− 1

m
∑

i=1

(Li − L̄)(Li − L̄)T (3.10)

Similarly,

Csmooth =
1

m′ − 1

m′
∑

i=1

(L′i − L̄′)(L′i − L̄′)T (3.11)

Now we want to derive a pooled estimate of the covariance matrices Ctraining and Csmooth,

which is denoted as Cmix. A pooled estimate of the variance from s21 and s22 is given by

adding the sums of squares of deviations in the numerators of s21 and s22 and dividing by

the sum of their degrees of freedom, which is one less than the total sample size [115].

Therefore, Cmix can be calculated as:

Cmix =

∑m
i=1(Li − L̄)(Li − L̄)T +

∑m′

i=1(L
′
i − L̄′)(L′i − L̄′)T

(m− 1) + (m′ − 1)

=
m− 1

(m− 1) + (m′ − 1)
Ctraining +

m′ − 1

(m− 1) + (m′ − 1)
Csmooth
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=

[

Ctraining +
m′ − 1

m− 1
Csmooth

]

m− 1

(m− 1) + (m′ − 1)
(3.12)

Now, let:

w =
m′ − 1

m− 1
=⇒ (m′ − 1) = w(m− 1) (3.13)

We have:

Cmix = [Ctraining + w · Csmooth]
m− 1

(m− 1)(1 + w)

= [Ctraining + w · Csmooth]
1

1 + w
(3.14)

In this way, we can build a model by calculating the eigenvectors and eigenvalues of

matrix Cmix when few true training set examples are available.

For w > 0, Cmix will include both the training set statistics and the smoothness

model. Ctraining will have only m − 1 non-zero eigenvalues (for m < 2N). Using Cmix,

however, gives the full 2N non-zero eigenvalues no matter what the training set size and

allows for greater flexibility in the model consistent with the additional smoothness statis-

tics. For larger training sets, the statistics of the available data become more dependable

and thus we can reduce w as the number of samples m increases. Given a large number of

examples, our model is more likely to describe examples from a class of shapes by linear

combinations of the training set, without the need for additional smooth deformations.

By Equation (3.13), w tends to decrease as (m − 1)−1. If m′ is chosen as a constant,

the number of smoothness set examples is treated as fixed no matter the number of true

training examples. Therefore, when fewer training examples are available, the smooth-
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Figure 3.6: Effects of varying each of the 3rd, 4th, 7th, 10th and 11th shape parameters of the

square and rectangle shape model with smoothness covariance matrix Csmooth. (The first two shape

parameters correspond to rigid translation.)
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Figure 3.7: Effects of varying each of the 1st, 4th, 7th, 10th and 11th shape parameters of the

square and rectangle shape model with combined covariance matrix Cmix. (The 2nd and 3rd shape

parameters correspond to rigid translation.)



46

ness examples play a role of increasing the variability of the model; when more training

examples are available, the relative role played by the smoothness set is decreased because

we have more reliable variation modes derived from the true training set.

As an example, two sets of 20 points were generated: a square and a rectangle.

Figure 3.6 shows the modes of variation generated by Csmooth (Equation (3.9)) allowing

smooth changes to the mean shape. Figure 3.7 shows the modes of variation generated

by Cmix (Equation (3.14)). Here, in addition to smooth variation, the principal mode a1

changes the aspect ratio reflecting the variation in the training set. In fact, this would

be the only mode of Ctraining.

3.3 Bayesian Matching

Given the statistical models, our aim is to use them to model particular examples of

structure in individual images, and then to find the shape parameters a = (a1a2 · · · at)T ,

and pose parameters: scale s, rotation θ, translation Tx, Ty. The combined pose and shape

parameter vector to be determined is represented by p = (s, θ, Tx, Ty, a1, a2, · · · , at)T . The

point representation of the nth boundary point (n = 0, 1, ..., N − 1) is















































x(p, n) = s cos θ
{

x̄(n) +
∑t

k=1Q2n,kak − Sx
2

}

−s sin θ
{

ȳ(n) +
∑t

k=1Q2n+1,kak −
Sy
2

}

+ Tx +
Sx
2

y(p, n) = s sin θ
{

x̄(n) +
∑t

k=1Q2n,kak − Sx
2

}

+s cos θ
{

ȳ(n) +
∑t

k=1Q2n+1,kak −
Sy
2

}

+ Ty +
Sy
2

(3.15)

where x̄(n) and ȳ(n) are the mean shape of the nth point, and Sx, Sy are the image sizes

in x, y directions respectively.

In order to apply the prior knowledge of the shape model to the problem of bound-
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ary and correspondence determination, we pose the problem in a maximum a posteriori

Bayesian formulation. The prior information of the object shape comes from the sta-

tistical shape analysis described in Section 3.2. We propose an energy function based

on the image boundary strength and the deformed boundary in order to arrive at the

likelihood. The likelihood is then combined with the prior using Baye’s rule to obtain

the a posteriori probability density of the deformations of the boundary given the input

image. The boundary of the object and the point-by-point boundary correspondence are

determined when the a posteriori probability density is maximized.

3.3.1 Maximum a Posteriori Match

The estimation process involves finding optimum values of the parameters that describe

the boundary given the image data.

This is based on the expectation that the target object can be differentiated from

the background by some measure of the boundary strength and direction (if available),

computed from the image. This section described the objective function that is being

optimized based on a maximum a posteriori (MAP) formulation after [116].

A maximum a posteriori formulation is used in order to incorporate prior shape

knowledge while estimating the boundaries from the true image data. Let E(x, y) be

the smoothed edge image intensity and tp(x, y) be an image template corresponding to

the parameter vector p, which needs to be estimated. The goal is to detect the object

boundary, which in turn is given by the most probable such boundary given the prior

shape knowledge and the image information. This is done by maximizing Pr(tp | E), the

probability of the template given the edge image, where the maximization is done over
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p. Using Bayes rule, this is equivalent to:

argmax
p

Pr(tp | E) = argmax
p

Pr(E | tp) Pr(tp)
Pr(E)

(3.16)

where in the above MAP formulation, Pr(tp) is the prior probability of the template and

Pr(E | tp) is the likelihood that the template conforms to the cues available from the

image. Ignoring the denominator of the RHS(which is not a function of p, with respect

to which the optimization is carried out), and taking the logarithm of the above gives,

argmax
p

O(E, tp) = argmax
p

[ln Pr(tp) + lnPr(E | tp)] (3.17)

In the above, O(.) is the general form of the objective function that is being optimized.

This basic form shows the tradeoff or compromise that will be made between the prior

information, Pr(tp) (which will be formulated in the Section 3.3.1.1), and the data-driven

likelihood information, Pr(E | tp) (which will be discussed in Section 3.3.1.2).

3.3.1.1 Prior Probability Density

In order to use prior information, probability distributions are associated with the param-

eters. This prior information can then bias the boundary finder to search for a particular

range of shapes. In this work, the statistical point model and the combined model derived

from the training set, or the smoothness model are used as the prior model to reduce the

search space. When prior information is not available, the proposed independent model

is employed.

Instead of using the original covariance matrices corresponding to each of the four

models, we derive the mean and the variance of the shape parameters through the eigen-
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decomposition (Section 3.2.1.2). Then, an independent, multivariate Gaussian density

Pr(p) is used for the t+ 4 shape and pose parameters (as in [117]):

Pr(p) =
t+4
∏

j=1

Pr(pj) =
t+4
∏

j=1

1√
2πσj

e
−

(pj−mj)
2

2σ2
j (3.18)

Here,mj is the mean of pj and σ
2
j is the variance for each of the parameters. For the shape

parameters, translation and rotation, the means are defined to be zero relative to the mean

point configuration. The mean scale (m1) is defined to be 1. The variance for each shape

parameter is the eigenvector’s corresponding eigenvalue. For the pose parameters, the

variance is calculated from the training set alignment (see Section 3.2.1.1).

3.3.1.2 Likelihood

The likelihood is a measure of the similarity between the deformed template and the object

present in the image. Similar as that in [116], a Gaussian noise model assumption is used.

Consequently, the smoothed edge image E is assumed to consist of one of the deformed

templates, tp, corrupted by additive white zero mean Gaussian noise, i.e. E = tp + n.

Hence,

Pr(E | tp) ≡ Pr(E = tp + n) ≡ Pr(n = E − tp) (3.19)

and the noise at each pixel n(x, y) is given by:

n(x, y) = E(x, y)− tp(x, y) (3.20)
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Due to the white noise assumption (which implies independence between the pixels), the

joint probability over the entire area A is identical to the product of their individual

probabilities. The conditional probability of obtaining E given the underlying structure

is that of the template is then given by

Pr(E | tp) =
∏

A

Pr(n(x, y)) (3.21)

If the mean of the Gaussian is zero and the standard deviation is σn, then

Pr(E | p) =
∏

A

1√
2πσn

e
−

(E(x,y)−tp(x,y))2

2σ2
n (3.22)

By taking the logarithm and substituting the result in Equation (3.17), the ex-

panded objective function becomes

O(E, tp) = lnPr(tp) +
∑

A

ln
1√
2πσn

−
∑

A

(E(x, y)− tp(x, y))
2

2σ2n
(3.23)

This represents the MAP function for the images with the assumption of independent

Gaussian noise at each pixel. The first term is the prior term, the second one is a constant,

and the last one represents the data likelihood term. It is easy to see that as long as

∑

A t
2
p
(x, y) does not vary much, the last term in Equation (3.23) is similar to a correlation

term.

3.3.2 Simplified Boundary Objective Function

As already indicated before, the boundary of the target object is represented by the

template tp(x, y). The templates are assumed to form a continuum, each having a cor-
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responding value of the parameter vector p. Essentially, the boundary is 1D, but it is

embedded in a 2D image by assuming that tp(x, y) is constant along the contour and is

zero everywhere else. Thus, E(x, y) is considered to be a boundary measure applied to

the raw image data, i.e. E(x, y) = E(I(x, y)). Generally, the boundary measure is given

by the gradient magnitude, or, by both the gradient magnitude and the direction of the

original image. In this study, the Canny edge operator is used, but other features can

easily be incorporated. Only points that lie on the contour are considered because those

are the only points at which the template is non-zero. Now, Equation (3.23) becomes:

O(E, tp) = lnPr(tp) +
∑

A

ln
1√
2πσn

− 1

2σ2n





∑

A

E2(x, y) +
∑

Cp

(−2E(x, y)tp(x, y) + t2
p
(x, y))



 (3.24)

where Cp is the curve defined by the boundary (x(p), y(p)) in the template tp. Since

tp(x, y) is constant over the curve, and the curve consists of N discrete points, then:

O(E, tp) = lnPr(tp) +
∑

A

[

ln
1√
2πσn

− E2(x, y)

2σ2n

]

+
1

2σ2n

N
∑

n=1

(2E(x(p, n), y(p, n))k − k2) (3.25)

where k is the template magnitude at any point which is assumed to be a constant and is

chosen to be the maximum boundary response. The first summation term in the above

does not change with respect to variations in p. Further, the last term that involves k2,

is proportional to the length of the contour which is assumed to not change appreciably

when compared to changes in the boundary measure. In view of that, we ignore that
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term, and redefine (after simplification) O(.) as:

O(E,p) = lnPr(tp) +
1

σ2n

N
∑

n=1

E(x(p, n), y(p, n))k (3.26)

Now, we expand the first term in Equation (3.26) using the Gaussian distribution

shown in Equation (3.18) to get

O(p) =
t+4
∑

j=1

[

−(pj −mj)
2

2σ2j

]

+
1

σ2n

N
∑

n=1

E(x(p, n), y(p, n))k (3.27)

In practical implementation, we use the following equation:

O(p) = c
t+4
∑

j=1

[

−(pj −mj)
2

2σ2j

]

+
N
∑

n=1

E(x(p, n), y(p, n)) (3.28)

where c is a constant coefficient. It is fixed empirically for different training examples

within the range 0.1 ∼ 1.0.

This equation (Equation (3.28)) is the maximum a posteriori objective incorpo-

rating a prior bias to likely shapes and poses (first term) and match to the edges in the

image by maximizing the sum of the smoothed edge image intensity at the boundary

points defined by vector p (second term). The influence of the prior term is controlled by

the variance of the prior probability. If the variance of the prior is greater, the influence

of this term is smaller.
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3.4 Implementation

3.4.1 Optimization Algorithm

There are many optimization algorithms that can be used to maximize the objective

function O(p). Some methods need only the evaluation of the function to be minimized,

while others also require evaluations of the derivative of that function. We optimize the

objective function O(p) using the conjugate gradient method, which takes small steps in

the direction of the gradient. If the gradient computation is comparable with the function

computation, the overall computation can be greatly reduced by the use of the gradient.

We can efficiently compute the gradient from an analytic formulation which is described

below.

3.4.2 Gradient Formulation

A practical gradient calculation may be obtained by using a numerical approximation

based directly on the objective function calculation. First, differentiate Equation (3.28)

to get

∇O(p) = c
t+4
∑

j=1

[

−pj −mj

σ2j

]

+
N
∑

n=1

[

∂E(x(p, n), y(p, n))

∂x

∂x(p, n)

∂p

+
∂E(x(p, n), y(p, n))

∂y

∂y(p, n)

∂p

]

(3.29)

The partials of E, the edge image, with respect to x and y can be calculated using

a central discrete divided difference approximation. The partials of x(p, n) with respect
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to p can be calculated from Equation (3.15) by:

∂x(p, n)

∂s
= cos θ

[

x̄(n) +
t

∑

k=1

Q2n,kak −
Sx
2

]

− sin θ

[

ȳ(n) +
t

∑

k=1

Q2n+1,kak −
Sy
2

]

;

∂x(p, n)

∂θ
= −s(sin θ)

[

x̄(n) +
t

∑

k=1

Q2n,kak −
Sx
2

]

− s(cos θ)

[

ȳ(n) +
t

∑

k=1

Q2n+1,kak −
Sy
2

]

;

∂x(p, n)

∂Tx
= 1;

∂x(p, n)

∂Ty
= 0;

∂x(p, n)

∂aj
= s(cos θ)Q2n,j − s(sin θ)Q2n+1,j ; (3.30)

and similarly for y(p, n):

∂y(p, n)

∂s
= sin θ

[

x̄(n) +
t

∑

k=1

Q2n,kak −
Sx
2

]

+ cos θ

[

ȳ(n) +
t

∑

k=1

Q2n+1,kak −
Sy
2

]

;

∂y(p, n)

∂θ
= s(cos θ)

[

x̄(n) +
t

∑

k=1

Q2n,kak −
Sx
2

]

− s(sin θ)

[

ȳ(n) +
t

∑

k=1

Q2n+1,kak −
Sy
2

]

;

∂y(p, n)

∂Tx
= 0;

∂y(p, n)

∂Ty
= 1;

∂y(p, n)

∂aj
= s(sin θ)Q2n,j + s(cos θ)Q2n+1,j . (3.31)
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3.4.3 Comparison Method and Computation Time

For comparison, we also implemented a version of the image search method of Cootes

et al. [38], which determines a suggested movement for each model point based only on

image edges. This does not include, however, a model of the expected gray levels around

each model point [35, 67]. In this case, during image search, each point is moved toward

the nearby area which best matches its local gray level model. It is also possible for us to

incorporate this local gray level model into our method. However, in this work, only edge

information is used. In order to get a rough idea about the difference between our method

and that of Cootes, we show some real image results of Cootes’ image search method using

only edge information. On an SGI Indy 133MHZ (MIPS R4600), the convergence time

for our boundary finding method is about 5 seconds compared with 50 seconds for theirs

for an average of 36 points, a speed up by a factor of ten.

3.5 Experimental Results

3.5.1 Evaluation Criteria

The error of each labeled boundary point on the final boundary is calculated by finding

the distance to the closest point on the true boundary. We use both average, Eb a, and

maximum, Eb m, boundary error measures. The correspondence error of each critical

point on the final boundary is the distance between this point and its corresponding

critical point on the true boundary. The average error of the correspondence is denoted

Ec a.
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3.5.2 Synthetic Images

The image shown in Figure 3.8 is a simple synthetic image where the target object (the

brightest) belongs to the training set family shown in Figure 3.1, but is not among that

training set. The initial curve position is defined by the mean of the training set. The edge

map of the input image is calculated by the Canny edge detector [22]. Other appropriate

features are possible, as well. The final curve position accurately finds the target object.

The following are four sets of experiments testing the effect of noise, initialization, prior

probability bias and the form of prior.

Figure 3.8: Synthetic image example. Left: initial contour on the synthetic image (64 × 64); Middle:

Canny edge image (scale: 1.0); Right: final contour on target shape.

The first experiment, shown in Figure 3.9, demonstrates the effect of noise on the

method, by adding different amounts of zero mean Gaussian noise to the synthetic image

shown in Figure 3.8 and measuring the boundary and correspondence error. Not all the

Canny scales we chose here are optimal so that we can test our algorithm’s tolerance to

noise and to spurious and broken edges. The initial curve position is the mean of the
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Figure 3.9: Sensitivity to noise experiment. Top, left to right: image from Figure 3.8 with Gaussian

noise added with SNR of 5.0, 2.5, 0.5 (each shown with final contour); Middle, left to right: corre-

sponding Canny edge image with scale of 1.2, 1.4, 2.0; Bottom, error measures (Eb a — boundary

average error; Eb m — boundary maximum error; Ec a — correspondence average error).
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training set for all testing. Signal-to-noise ratio (SNR) is defined here as the ratio of gray-

level contrast between the target object and the background to the standard deviation

of the Gaussian noise. This example shows the method to be very robust to noise up to

1/SNR= 1.5.

The second experiment, shown in Figure 3.10, examines the effect of different

initializations. We average three results for each initialization using the synthetic im-

age from Figure 3.8 with SNR of 5.0, 2.5 and 1.0. Each of the different initializations,

which is also used as the new mean in Equation (3.6) during optimization, is derived by

individually varying the first shape parameter, scale, horizontal translation or rotation

while holding the other parameters constant. This experiment tests the robustness of the

algorithm when the object in the image is far away or quite different from the mean. All

results are good within a reasonable range. Note, some error curves are not symmetric

due to the non-symmetric test image with respect to the mean or to itself. For all the

initial parameters, when they are too far away from the true boundary, the optimization

may be trapped by local maxima corresponding to nearby edges.

In the third experiment, we demonstrate the effect of different prior probability

densities. The shape model for the training set is shown in the top of Figure 3.11. A

synthetic image, shown in the bottom of Figure 3.11, was designed containing two objects.

The light object corresponds to the shape with the first shape parameter at two standard

deviations from the mean. The dark object underneath it is the shape with the second

shape parameter at two standard deviations from the mean. Using densities with the same

mean, but different variances, we can demonstrate different results that are completely

due to the prior bias density. The prior can be biased towards finding the light object by

having a wide distribution on the first shape parameter and a narrow distribution on the
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Figure 3.10: Sensitivity to initialization experiment. Left, top to bottom: image from Figure 3.8

with Gaussian noise added (SNR = 2.5) shown with initial contours for the range of the first shape

parameter tested, the range of scale tested, the range of horizontal translation tested, and the range

of rotation tested; Right: corresponding error measures respectively (Eb a — boundary average error;

Eb m — boundary maximum error; Ec a — correspondence average error).
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Figure 3.11: Bias experiment. Top left: 6 examples of synthetic shapes from a training set, each

containing 24 points; Top right: effects of varying each of the first two shape parameters of the

synthetic model; Bottom left: initial contour on the synthetic image (64 × 64); Bottom middle: final

contour, biased to the brighter target shape; Bottom right: final contour, biased to the darker target

shape.

second parameter and vice versa (the bottom of Figure 3.11). This would not be possible

without the continuous bias of the prior term.

In the fourth experiment, we compare different prior models to illustrate the

appropriateness of our prior model. If there is no prior information, using an identity

covariance matrix, each point on the boundary can move independently. The objective

function only includes the likelihood term. The model will try to match to edges without

regard to shape or correspondence. With the smoothness covariance of Equation (3.9),

neighboring points on the boundary will tend to move together. The resulting boundary
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(a) (b)

(c) (d)

Figure 3.12: Prior experiment for synthetic image. (a): initial contour; (b): final contour on

Canny edge image using identity covariance matrix Cidentity; (c): final contour on target shape

using smoothness covariance matrix Csmooth; (d): final contour using training set covariance matrix

Ctraining.

points will try to match edges while maintaining smoothness, but the correspondence

of the points may not be maintained. Using the training set covariance matrix, both

the boundary and correspondence are found correctly. Here, we used the same synthetic

image with SNR= 2.5 and the same Canny edge image at scale 1.4 (the middle of Figure

3.9). The results with different prior models are shown in Figure 3.12 and Table 3.1. The

training set covariance Ctraining works best, as expected, while the smoothness covariance

may be suitable in situations where there is no training set and correspondence is not

needed. The identity matrix fails to locate the boundary, as expected in this noisy image.
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Cidentity Csmooth Ctraining

Eb a 2.58 1.45 0.57

Eb m 7.23 5.90 1.52

Ec a 5.04 1.86 0.36

Table 3.1: Error measure for the synthetic image in the prior experiment with different covariance

matrices: Eb a — boundary average error; Eb m — boundary maximum error; Ec a — correspondence

average error.

3.5.3 Real Images

Here, all real images (in the training sets and for testing) are 2D slices that roughly

correspond from different brains and hearts for demonstration purposes.

The result of the method applied to a sagittal magnetic resonance (MR) image of

the human brain is shown in Figure 3.14. Here, we used a 49 point model derived from a

set of 12 corpus callosum shapes (Figure 3.13). Not only is the final contour delineated

successfully, but also the correspondence of the points is established accurately.

For an axial MR image of the human brain, a 93 point model derived from a set

of 12 basal ganglia and ventricle boundaries is used. Figure 3.15 shows that our Bayesian

formulation and conjugate gradient optimization gives a quite good final contour and

correspondence, although we do not explicitly match features for correspondence, while

using Cootes’ image search method [38] the result does not converge. Their algorithm

only searches along the normal direction toward the strongest image edge for an estimate

of an improved displacement. For the brain image here, this estimation is trapped by

nearby edges of other structures, and results in the wrong adjustment of pose and shape

parameters. As the iterations continue, the result gets worse.
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Figure 3.13: Corpus callosum shape model. Top: 12 examples of corpus callosum shapes from a

training set; Bottom: effects of varying each of the first four shape parameters of the corpus callosum

model.
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(a) (b)

(c) (d)

Figure 3.14: MR sagittal brain example. (a): original MR image (100 × 64); (b): Canny edge image

(scale: 1.2); (c): initial contour (mean curve); (d): final contour on corpus callosum.

Figure 3.16 shows our method applied to the endocardium in an MR image of a

dog heart. We compared three different prior models for this heart image with the same

initial position. With the identity covariance, the boundary cannot be found since the

shape is complicated and the points move independently. With the smoothness covariance

of Equation (3.9), although the resulting boundary is similar to the true boundary, the

correspondence of the points is not determined. By using the heart shape model in Figure

3.2, both the boundary and correspondence are found correctly by our Bayesian method.

For comparison, we see that if Cootes’ image search is used, the result is not as good.

Since the initialization here is quite far away from the true boundary, the normal direction

estimation of the displacement is not accurate. The adjustment of the pose and shape

parameters can not accommodate the inaccuracies this causes resulting in an inaccurate
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(a) (b)

(c) (d)

Figure 3.15: MR axial brain example. (a): initial contour (mean curve) on the original MR image

(100 × 80); (b): Canny edge image (scale: 1.2); (c): final contour on basal ganglia and ventricle

boundaries by our method; (d): contour at iteration 20 on original image by Cootes’ method [38].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.16: MR heart image example and prior experiment. (a): original MR image (150 × 150);

(b): Canny edge image (scale: 1.5); (c): initial contour (mean curve) on endocardium (cropped);

(d): contour on endocardium drawn by an expert; (e): final contour on the endocardium using the

identity covariance matrix Cidentity by our method; (f): final contour using smoothness covariance

matrix Csmooth by our method; (g): final contour using training set covariance matrix Ctraining by

our method; (h): final contour by Cootes’ method [38].

boundary and correspondence. Table 3.2 shows the quantitative comparison with an

expert-drawn endocardium. For this type of heart image, a shape model is a necessity

for finding the endocardium and its critical points, and our Bayesian formulation and

optimization leads to a much better result than Cootes’ image search.

When few training set examples are available, we would like to show the advantage

of the combined prior model over the regular statistical point prior model. The training set

of varying size, is taken from the set shown in Figure 3.2(c). The performance is evaluated
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Our method Cootes’ method

Cidentity Csmooth Ctraining Ctraining

Eb m 6.12 1.79 1.32 2.44

Ec a 5.57 7.19 0.95 4.68

Table 3.2: Error measure for the heart image with different covariance matrices and different methods:

Eb m — boundary maximum error; Ec a — correspondence average error.

by averaging the results on eight test images, shown in Figure 3.17. As mentioned in

Section 2.4, the weighting for Csmooth, w, tends to decrease as (m − 1)−1 (Equation

(3.13)) and a reasonable choice of w is to set (m′ − 1), or w(m − 1), to a constant from

experiment. Experiments show that the error measure of the combined model is stable

over a very wide range of w(m − 1). In order to get a better idea of the error versus

w(m − 1), Figure 3.18 shows the error measure of the combined model plotted against

√

w(m− 1). When w = 0, we have a pure statistical point model. The figure shows that

our mixed model performs well and has a significant improvement over the pure statistical

point model when 2 ≤
√

w(m− 1) ≤ 5 (or 4 ≤ w(m− 1) ≤ 25). This wide range means

that our mixed model is not very sensitive to the parameter w. The difference between

the error at
√

w(m− 1) = 0 and that at
√

w(m− 1) = 2 ∼ 5 is an indication of the

benefit of adding smoothness variation to the model. Of course, this improvement is not

as large for larger training sets. Figure 3.19 shows the variation of error with training

set size for the two models. Equation (3.13) was used to set w for the mixed model with

w(m− 1) = 32 = 9, which is equivalent to pooling 10 smoothness examples into the true

heart training examples when few training set examples are available. The smaller the

training set size, the greater the improvement of the combined model. As the training
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Figure 3.17: MR heart images used to evaluate the performance of the combined model.

set size increases (>14), the improvement is negligible due to the improved quality of the

statistical information.

3.6 Conclusions

This chapter presents a systematic approach to the determination of an object’s bound-

ary, as well as the correspondence of boundary points to a model. The statistical point

models derived from a training set by principal component analysis are used as the prior

probability in a Bayesian scheme, capturing prior knowledge of the shape. The structure

is delineated and the spatial correspondence of these points to the model is established as

a by-product when the a posteriori probability is maximized using conjugate gradient op-

timization. From experimental results, it was found that this method performs well and
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Figure 3.18: Relationship between the error (averaged over the eight test images), the proportion of

Csmooth included (w) and the number of examples used to train the model (m). (Eb m — boundary

maximum error; Ec a — correspondence average error.)
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Figure 3.19: The performance (averaged over the eight test images) of Ctraining and Cmix training

with varying number of examples. (Eb m— boundary maximum error; Ec a — correspondence average

error.)
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is also relatively insensitive to noise and initialization. The prior model testing showed

that the statistical shape models are crucial for both boundary and correspondence find-

ing. When few example shapes are available, a combined model of the statistical point

model and smoothness model is proposed and adjusts smoothly to use more statistical

modes of variation as more and more data is presented. The validation of the combined

model training with varying numbers of examples further demonstrated that it improves

the results significantly when insufficient shape examples are available.



Chapter 4

Physical Model-Based Non-Rigid

Registration Incorporating

Statistical Shape Information

4.1 Introduction

As mentioned in Chapter 1, for many approaches to non-rigid registration [8, 14, 29, 33,

40, 53, 96, 123], the transformation is usually constrained in some way because of the

ill-posedness (i.e. in this case, the existence of many possible solutions) of the problem.

Physical models, for example, linear elastic and viscous fluid models, are widely used

to enforce topological properties on the deformation and then constrain the enormous

solution space [8, 29, 31, 40, 53, 96]. As with rigid registration, features or gray-level

properties can be used for matching. Non-rigid registration requires such detail locally

throughout the image that it is hard to avoid using gray-level properties. Structural fea-

tures may be too sparse for a fine-grain warping. Curves corresponding to structure have,

72
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however, been used successfully to warp images [40, 97, 41, 123]. Use of the continuous

gray-level structure within the image allows for a much richer set of data to be exploited

for matching purposes. Within medical images, there is an enormous amount of detail

that might be lost by a reduction to particular features. On the other hand, strong fea-

tures are a powerful constraint and may be best used in conjunction with gray level data.

Therefore, in this work, we are particularly interested in intensity based deformation us-

ing elastic or fluid models. Our goal is to incorporate statistical shape information into

this type of physical model-based registration and to develop a more accurate and robust

algorithm.

Christensen et al. [29] present two physical models for non-rigid registration of the

brain. The transformations are constrained to be consistent with an elastic model in the

first method and a fluid model in the second. The elastic model requires less computation

compared to the fluid model and penalizes deformation in proportion to the deformed

distance. This is often too strict a model because of the large variation between anatom-

ical structures and does not allow for the complete deformation necessary. Viscous fluid

models are less constraining than elastic models and allow long-distance, nonlinear defor-

mations of small subregions (Figure 4.1, (a) to (c) columns). However, no matter what

model is used, elastic solid [96], viscous fluid [31], or other physics model such as hypere-

lasticity [104], in these cases, the deformed configuration of the atlas is always determined

by driving the deformation using only pixel-by-pixel intensity differences between images.

In many applications, however, this kind of warping is under-constrained and yields to

unreasonable registrations. Corresponding anatomical structure may shift or twist away

from one position to another (Figure 4.2(a)(b)), and very large volumes of matter may

stream through very small areas from one region to another (Figure 4.3(a)(b)). Even



74

(a) (b) (c)

(d) (e)

Figure 4.1: Comparison of synthetic image (100 × 100) non-rigid registration by Christensen’s elastic

and fluid methods and our fluid method. (a): the atlas image (top) and the study image (bottom);

(b): the final deformed atlas by Christensen&Miller’s elastic model [29, 96] (top), showing large

distance deformations prevented using the appropriate elasticity parameter (large µ) to just ensure a

globally positive Jacobian, and the corresponding vector map (bottom); (c): the final deformed atlas by

Christensen’s fluid model [31] (top), showing that large deformations can be accommodated (compare

to (b)), but the shape of the white rectangle is not maintained (compare to (e)); (d): the atlas image

with control points (top) and the study image control points (bottom); (e): the final deformed atlas

using our viscous-fluid mapping (top), showing appropriate deformation, and the corresponding vector

map (compare to (c)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Comparison of synthetic image (64 × 64) non-rigid registration by Christensen&Miller’s

and our elastic methods. (a): atlas image; (b): study image; (c): deformed atlas image by

Christensen&Miller’s elastic method [29] [96] (based on our implementation, discussed in Section

5); (d): corresponding unreasonable vector map of (c) (The two bumps on the right side do not slide

up to the corresponding bumps, as desired); (e): atlas image with control points; (f): study image with

control points; (g): deformed atlas image by our method; (h): vector map of our elastic transformation

showing correct tracking of features.

if the driving force is very small, the transformation may not be accurate enough, or

may even be completely wrong, even though the deformed atlas and study appear simi-

lar (Figure 4.2(b)(c)(d) and 4.3(b)(c)(d)). In these circumstances, if shape information

embedded in corresponding boundary points (Figure 4.2(e)(f) and 4.3(e)(f)) had been

included, the correct mapping or registration could have been found (Figure 4.2(g)(h)

and 4.3(g)(h)). In addition, due to the use of the gray-level gradient of the deformed

atlas in the body force formulation [29], lower contrast objects deform much slower than
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Comparison of synthetic multi-object image (64 × 64) non-rigid registration by Chris-

tensen’s and our fluid methods. (a): atlas image; (b): study image; (c): final fluidly deformed atlas by

Christensen’s fluid model [31]; (d): unreasonable vector map of the final viscous-fluid transformation

by Christensen’s fluid model: objects deform rather than shifting to match shape (compare to (h));

(e): atlas image with control points; (f): study image with control points; (g): final deformed atlas

using our non-rigid registration method; (h): vector map of our final fluid transformation showing

appropriate displacement of objects (compare to (d)).

high-contrast objects, independent of their importance. Sometimes objects do not deform

correctly because their gradient is too low compared to high-gradient objects (Figure 4.4

top) and the smoothness ensured by the physical models dominates the deformation (Fig-

ure 4.1, third column top). With the incorporation of the shape information embedded

in corresponding boundary points (Figure 4.4 bottom and Figure 4.1 the fourth column),

the result is improved (Figure 4.4 bottom and Figure 4.1 the fifth column).

Davatzikos and Prince [40] propose a method that deforms the boundaries in one
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Figure 4.4: Comparison of synthetic multi-gradient image (64 × 64) non-rigid registration by

Christensen&Miller’s, Davatzikos’ and our elastic methods. Top: results of Christensen&Miller’s elas-

tic method [29, 96], and from left to right: atlas image; study image; deformed atlas at iteration 20;

deformed atlas at iteration 150; vector map at iteration 150; Middle: results of Davatzikos’ elastic

method [40] (with body force solely determined by corresponding pairs of control points) and from

left to right: atlas image control points; study image control points; deformed atlas at iteration 20;

deformed atlas at iteration 150; vector map at iteration 150; Bottom: results of our elastic method,

and from left to right: atlas image with control points; study image with control points; deformed

atlas at iteration 20; deformed atlas at iteration 150, showing good convergence without any boundary

jiggling effect; vector map at iteration 150.
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image into those in another image based on a one-to-one mapping they established. The

rest of the image is deformed by solving the equations describing the deformation of

an elastic body using the boundary deformation as input. In this approach, although

the mapping may be accurate on the boundary, the farther away the structure is from

the boundary, the more error there is, because only information from object boundaries

is used for registration. Also, the localization of the object boundary depends on the

density of the boundary control points. The resulting boundaries can have quite severe

errors producing a jiggling effect when the boundary control points are not dense enough,

as shown in Figure 4.4 middle row. In our approach, we also use intensity information

and thus the density of the control points is not as important (Figure 4.4 bottom). In

addition, the boundary information used in their approach is derived by an active contour

algorithm [40] which does not guarantee true correspondence, and it does not include any

shape information which we believe is crucial in non-rigid registration for medical images.

The algorithm we employed is based on a physical model (linear elastic [127] or

viscous fluid [128]), a gray level similarity measure and a consistency measure between

corresponding boundary points. As shown in Figure 1.3, a dense set of forces arises from

the intensity similarity measure to accommodate complex anatomical details. A sparse

set of forces constrains consistency with statistical shape models derived from a training

set. The statistical shape information is embedded in the boundary finding with corre-

spondence process [126] applied to the study. This method uses statistical point models

with shape, and shape variation, generated from sets of examples by principal component

analysis of the covariance matrix. The power of physical and statistical shape models are

combined in our approach using a Bayesian framework. For small deformations, our elas-

tic model is used because both of our methods would perform similarly and the elastic
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model requires less computation. While for large deformations, we use our fluid model-

based algorithm which can track long-distance, nonlinear deformations. Also note that

all the 2D formulation in this chapter can be directly generalize to 3D.

4.2 Physical Models

There is no true physical model for deformation between individuals because, for example,

one individual’s anatomical structure does not literally result from the deformation of

another individual’s. We use analogous physical models to enforce topological properties

on the deformation. Without them, the results could be almost completely arbitrary.

4.2.1 Reference Frames and Problem Statement

The task of non-rigid registration is to track the course of every material particle of

the atlas from its original to its final position. Each particle can be identified on the

basis of either its original or final coordinates. If a particle is tracked with respect to its

original coordinates, the reference frame is called Lagrangian; otherwise, if the particle is

tracked with respect to its final coordinates, the reference frame is called Eulerian. In an

Eulerian reference frame, the state of the deformed atlas is tracked with respect to a fixed

voxel lattice. Therefore, there is no extra processing required to display the deformed

atlas or to compare it to a study image. However, in a Lagrangian coordinate system, the

trajectories of individual material particles of the atlas are tracked over time. As the atlas

deforms the particles being tracked move to locations that do not necessary correspond

to pixel locations. Therefore, an extra step is required to project the deformed continuum

onto a voxel lattice for comparison with a study and for display.

In this work, both Eulerian and Lagrangian reference frames are used to track the
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deformation of the atlas. Our overall systems – physical models (elastic and fluid models)

– are Eulerian reference based because of its advantage described above. However, when

the statistical shape information which is embedded in the corresponding boundary points

is incorporated, we need to track the deformed atlas boundary points position so that a

sparse set of forces constrains consistency between corresponding boundary points can be

applied. A Lagrangian reference frame is used in this case. We search for the deformed

atlas boundary points based on the best consistency with the calculated displacement

field.

The non-rigid registration is defined by the transformation corresponding to a

homeomorphic mapping of the coordinate system, ~h : Ω→ Ω, defined in 2D by

~h : ~w = (x, y)→ (x− ux(~w), y − uy(~w)) (4.1)

for points ~w ∈ Ω. The vector field ~u(~w) = [ux(~w), uy(~w)]
T is called the Eulerian dis-

placement field. A time dependent displacement field is denoted by ~u(~w, t). It is defined

as a map from points in the atlas to fixed observation points in the deforming contin-

uum such that a mass particle instantaneously located at ~w at time t originated at point

~w − ~u(~w, t). The time t can correspond to real or simulation time. This mapping allows

for the detailed local transformation into the specific anatomy of the individual, or study.

Note that a homeomorphic transformation is defined to be a continuous, 1-to-1,

onto mapping. A necessary condition for a transformation ~h to be globally 1-to-1 is that

it is locally 1-to-1, which is satisfied if its Jacobian at any point ~w ∈ Ω is positive [27],

i.e.

J(~w) = det(~∇~h(~w)) > 0 (4.2)
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where

J(~w) =









∂hx(~w)
∂x

∂hx(~w)
∂y

∂hy(~w)
∂x

∂hy(~w)
∂y









. (4.3)

Our goal here is to find the transformation ~h that best matches the atlas with

the study, constrained by the physical models. The following formulations of the physical

models are similar to that in Christensen et al. [29].

4.2.2 Elastic Model

For linear elastic solids, the restoring force holding the template together grows propor-

tionately with the displacement from the original configuration of the atlas. The force is

proportional to the displacement. The spatial transformation satisfies the partial differ-

ential equation (PDE):

µ∇2~u+ (µ+ β)~∇(~∇ · ~u) = ~F (~u) (4.4)

with boundary conditions such as that ~u(~w) = 0 for ~w on the image boundary. In this

equation, the divergence and Laplacian operators are:

~∇ =

(

∂

∂x
,
∂

∂y

)T

(4.5)

and

∇2 = ∂2

∂x2
+

∂2

∂y2
(4.6)
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and µ and β are the Lamé constants. Normally, we choose them with µ = 1.0 and β = 0.0.

However, in order to guarantee a homeomorphic transformation for large deformations,

we use large µ for strong elasticity. Also note that β = 0.0 corresponds to the elastic solid

whose volume is not conserved during the deformation. The body force, ~F (~u), drives the

deformation of the atlas into the study, and will be formulated in detail in Section 4.3.

4.2.3 Fluid Model

Transformations such as those based on the theory of elasticity develop restoring forces

which are proportional to the deformed distances. Except for the smallest deformations,

such elastic transformations prevent the atlas from being fully deformed into the shape of

the study. The short-comings of the elasticity model can be overcome by a viscous fluid

which allows the restoring forces to relax over time.

For viscous fluids, the force is proportional to the time rate of change in displace-

ment. The PDE describing the fluid transformation of the atlas is given by:

µ∇2~v + (µ+ β)~∇(~∇ · ~v) = ~F (~u) (4.7)

where ~v = [vx(~w, t), vy(~w, t)]
T is the instantaneous velocity of the deformation field ~u. It

is related to its displacement, ~u, by

~v(~w, t) =
∂~u(~w, t)

∂t
+ ~v(~w, t)T ~∇~u(~w, t) (4.8)

The ∇2~v term is the viscous term of the PDE. This term constrains the velocity of

neighboring particles of the displacement field to vary smoothly. The term ~∇(~∇·~v) is the

mass source term and it allows structures in the atlas to change in mass. The coefficients
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µ and β are the viscosity coefficients, and they are chosen as µ = 1.0, β = 0.0, where β

controls the rate of growth or shrinkage of local region within the deformable atlas. For

the work herein, the boundary conditions are ~v(~w) = 0 for ~w on the image boundary. The

body force, ~F (~u), will be formulated in detail in Section 4.3. The term ~v(~w, t)T ~∇~u(~w, t)

accounts for the kinematic nonlinearities of the displacement field ~u [27, 89].

4.2.4 Viscous Fluid vs. Linear Elasticity

The fluid PDE (Equation (4.7)) is similar in form to the elastic PDE (Equation (4.4))

except that the displacement field ~u is replaced by the velocity field ~v. The resulting

behavior of the fluid is very different due to the nonlinear relationship between ~v and ~u

(Equation (4.8)) and allows long-distance, nonlinear deformations.

The linear elastic model is derived assuming small angles of rotation and small

linear deformations. Large deformations can not be accommodated with this linear PDE.

However, even though linear elasticity does not guarantee a homeomorphic transforma-

tion, in practice a homeomorphic transformation can be generated using strong elasticity

(large µ). The trade-off is that only small deformations can be generated [31]. This

limitation of linear elasticity is removed by using the viscous model because the restoring

forces relax over time and then account for the large-distance kinematic nonlinearities,

while ensuring a homeomorphic transformation (globally positive Jacobian). A detailed

comparison of the elastic and fluid models can be found in [27].

Also, note that it might be possible to use a more complex elastic model instead of

a fluid model to allow large deformation while ensuring a homeomorphic transformation.

However, it is not the goal in this work.
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4.3 Integration

While physical models are useful in non-rigid registration, they are limited by themselves

because they are too generic. Instead, the statistics of a sample of images can be used to

guide the deformation in a way governed by the measured variation of individuals. Thus,

this work proposes algorithms which use physical models, yet incorporate a statistical

shape model to constrain solutions to more anatomically consistent deformations.

We pose the displacement estimation problem in a maximum a posteriori frame-

work. As input to the problem, we have both the intensity image of the study (indi-

vidual), Is(~w), and the boundary points of the study ~bs(p, n) = (xs(p, n), ys(p, n)), for

n = 1, 2, · · · , N , given the shape and pose parameters, p, which are derived from the

statistical shape model-based boundary finding described in Chapter 3. Thus, we want

to maximize:

Pr(~u|Is,~bs(p)) =
Pr(~u, Is,~bs(p))

Pr(Is,~bs(p))
(4.9)

Ignoring the denominator, which does not change with ~u, and by using Bayes rule, our

aim is to find:

argmax
~u

Pr(~u|Is,~bs(p))

≡ argmax
~u

Pr(~bs(p)|~u, Is) Pr(Is|~u) Pr(~u)

∝ argmax
~u

[

ln Pr(~u) + lnPr(Is|~u) + lnPr(~bs(p)|~u)
]

(4.10)

where we ignore the dependence of ~bs(p) on Is (because ~bs(p) is obtained as a prior here

and is not modified in this formulation), and take the logarithm.
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The Bayesian posterior can be directly connected to the PDE in Equation (4.4)

or Equations (4.7)&(4.8) based on a variational principle from which the PDE can be

derived [31]. Such principles are well known in mechanics [106] and link the PDE formu-

lation as the minimizer of some potential. For example, the PDE for the linear elastic

model, which is given in Equation (4.4), is produced by setting the variation of the gen-

eralized Lagrangian energy density associated with constraints imposed by the linearized

mechanics equal to zero [31]. The forcing function in the PDE (Equation (4.4)) is then

the variation of the likelihood function with respect to the vector displacement field [3]

[96].

The first term in Equation (4.10) corresponds to the transformation prior term,

which gives high probability to transformations consistent with a physical model (elastic

solid or viscous fluid) and low probability to all other transformations. As mentioned

above, they are given by Equation (4.4) for the elastic model, and Equations (4.7)&(4.8)

for the fluid model.

The second term in Equation (4.10) represents the likelihood which depends on

the study image. Let Ia(~w) be the intensity image of the atlas. We model the study image

as a Gaussian process with mean given by the deformed atlas image, Ia(~w − u(~w)) [31]

(since an Eulerian reference frame is used here, a mass particle instantaneously located

at ~w originated from point ~w − ~u(~w)). That is,

ln Pr(Is|~u) = −
1

2σ21

∫

Ω
[Is(~w)− Ia(~w − u(~w))]2 d~w

where σ1 is the standard deviation of the Gaussian process.

The first body force, ~F1, is the gradient of this likelihood term with respect to ~u
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at each ~w [31]:

~F1(~u) = −
1

σ21
[Is(~w)− Ia(~w − u(~w))]∇Ia(~w − u(~w)) (4.11)

This force is a combination of Is(~w) − Ia(~w − u(~w)), the difference in intensity

between the study and the deformed atlas, and∇Ia(~w−u(~w), the gradient of the deformed

atlas. The gradient term determines the directions of the local deformation forces applied

to the atlas. As explained in the introduction, this kind of forcing by itself is often under-

constrained.

The main contribution of this work lies in the last term of Equation (4.10), which

incorporates statistical shape information into the non-rigid registration framework. The

extra constraint of corresponding boundary points is used as an additional matching

criterion. The boundary point positions are the result of the deformation of the model to

fit the data in ways consistent with the statistical shape models derived from the training

set, as described in Chapter 3. Let ~ba(n) = (xa(n), ya(n)), for n = 1, 2, · · · , N , denote the

atlas boundary points positions, which are known since we have full information about

the atlas. We now model ~bs(p) as a Gaussian process with mean given by the deformed

atlas boundary position, expressed as ~ba(n) + ~u(~w), for pixels ~w on the deformed atlas

boundary points. Then,

lnPr(~bs(p)|~u) = −
1

2σ22

N
∑

n=1

‖ ~bs(p, n)−
[

~ba(n) + ~u(~w)
]

‖2

where σ2 is again the standard deviation of the Gaussian process.

The second body force, ~F2, is then the gradient of the above equation with respect
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to ~u for pixels ~w on the deformed atlas boundary points:

~F2(~u) =
1

σ22
‖ ~bs(p, n)−

[

~ba(n) + ~u(~w)
]

‖ (4.12)

~F2(~u) is zero for pixels ~w not on the deformed atlas boundary points.

From Equation (4.12), we can see that the calculated displacements at the sparse

boundary points are constrained to match the vector difference of the corresponding atlas

and study boundary point positions. This kind of forcing contains information from the

statistical shape model. The result will match shape features of the atlas and the study,

such as high curvature points and important anatomical landmarks, in addition to the

intensity measure given by ~F1(~u).

The total force term, ~F (~u), in Equation (4.4) and Equation (4.7) is then the

weighted sum of ~F1(~u) in Equation (4.11) and ~F2(~u) in Equation (4.12), that is, for each

~w,

~F (~u) = c1 ~F1(~u) + c2 ~F2(~u) (4.13)

The two coefficients, c1 and c2, can be related to the image contrast and the deformation

between the atlas and study image. If c2 is too large, ~F2(~u) will play a dominant role

by matching only boundary points, which may cause discontinuity when the boundary

points are not dense enough. On the other hand, if c1 is too large, ~F2(~u) will have almost

no effect and the algorithm is then an elastic or a fluid regularization method (as [96, 31])

without statistical information. For the time being, they are fixed empirically so that

~F1(~u) and ~F2(~u) are of the same order.

Our approaches that incorporate statistical shape information are then composed
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of Equations (4.13)&(4.4) for the elastic model, and Equations (4.13),(4.7)&(4.8) for the

fluid model.

4.4 Implementation

4.4.1 Linear Elastic Model Algorithm — Algorithm 1

The complete algorithm for solving our elastic model-based non-rigid registration is as

follows:

Algorithm 1:

1. From boundary and correspondence finding methods developed in Chapter 3

calculate ~bs(~p) by using Ctraining in Equation (3.3) or Cmix in Equation (3.14).

2. Initialize t = 0 and ~u(~w, 0) = 0.

3. Calculate the body force F (~w, ~u(~w, t)) using Equation (4.13).

4. If F (~w, ~u(~w, t)) is below a threshold for all w, then STOP.

5. Solve the linear PDE Equation (4.4) for the displacement ~u(~w, t) using Suc-

cessive over-relaxation algorithm (SOR) (see Section 4.4.3).

6. Let t = t+ 1, and goto step 3.

4.4.2 Viscous Fluid Model Algorithm — Algorithm 2

The viscous fluid PDE is solved on a discrete lattice associated with Ω. For large curved

deformations, the transformation evaluated at these spatial grid points becomes singular

over time even though the transformation evaluated on the continuum would not. To

circumvent this problem, a method of regridding the atlas is used by generating a new, or

propagated atlas, whenever the discretized transformation approaches local singularity.

This is accomplished as follows. The discretized displacement field is propagated through
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time using a discretized version of Equation (4.8) until the Jacobian of the transformation

indicates that the transformation is approaching singularity. When the magnitude of the

Jacobian drops below a threshold (0.5 for the results shown later), the computation is

stopped and a new propagated atlas is generated equal to the deformed atlas at the pre-

vious instant. The algorithm is restarted using the new atlas. When mapped back to the

original atlas, this regridding approach is equivalent to defining a new nonhomogeneous

computation grid on the undeformed continuum. Initial conditions for the propagated

atlas are set to match the final state of the previous atlas, i.e., the instantaneous velocity

remains the same and the displacement field corresponding to the new atlas is set to zero.

The total transformation is continuously tracked via the concatenation of the displace-

ment fields associated with all of the propagated atlases. Details about this regridding

can be found in [27].

Thus, the complete algorithm for solving the viscous fluid registration is as follows:

Algorithm 2:

1. Same as step 1 in Algorithm 1.

2. Let t = 0, i = 0, I
(0)
a (~w) = Ia(~w), and ~u(0)(~w, 0) = 0. (Note: I

(i)
a (~w) for

i = 0, 1, 2, · · · denotes the sequence of propagated atlases with associated displacement

field ~u(i)(~w, t).)

3. Calculate the body force F (~w, ~u(i)(~w, t)) using Equation (4.13).

4. If F (~w, ~u(i)(~w, t)) is below a threshold for all w, then STOP.

5. Solve the linear PDE Equation (4.7) for instantaneously velocity ~v(~w, t) using

Successive over-relaxation algorithm (SOR) (see Section 4.4.3).
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6. Calculate the perturbation of the displacement field

~R(~w) = ~v(~w, t)−
[

vx(~w, t)
∂~u(i)(~w, t)

∂x
+ vy(~w, t)

∂~u(i)(~w, t)

∂y

]

7. Choose a real-time step size 4 which is a function of γ = max ~w∈Ω ‖ ~R(~w) ‖.

(In practice, 4 is chosen so that the maximum displacement at each instant of real-time

is 0.5.)

8.

• If the Jacobian of ~w − ~u(i)(~w, t) − 4~R(~w) is less than 0.5 then propagate to atlas

i+ 1

– I
(i+1)
a (~w) = I

(i)
a (~w − ~u(~w, t)), ~u(i+1)(~w, t) = 0, and i = i+ 1;

– go to step 6.

• Else, update the ith displacement field

– ~u(i)(~w, t+4) = ~u(i)(~w, t) +4~R(~w) and t = t+4;

– go to step 3.

4.4.3 Successive Over-Relaxation (SOR) Algorithm

Successive over-relaxation (SOR) [18] is used to solve Equation (4.4) for the displacement

u(~w, t) and Equation (4.7) for the instantaneous velocity v(~w, t) of the displacement field

at each grid point ~w ∈ Ω. The SOR formula used for solving Equation (4.4) at time t

with grid spacing 4 is given by

un+1x (i, j) = (1− ω)unx(i, j) +
ω

6µ+ β

{

(2µ+ β)
[

unx(i+ 1, j) + un+1x (i− 1, j)
]
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+µ
[

unx(i, j + 1) + un+1x (i, j − 1)
]

+
µ+ β

4

[

uny (i+ 1, j + 1)− uny (i− 1, j + 1)

−uny (i+ 1, j − 1) + un+1y (i− 1, j − 1)
]

− 42Fx(i, j)
}

un+1y (i, j) = (1− ω)uny (i, j) +
ω

6µ+ β

{

(2µ+ β)
[

uny (i, j + 1) + un+1y (i, j − 1)
]

+µ
[

uny (i+ 1, j) + un+1y (i− 1, j)
]

+
µ+ β

4
[unx(i+ 1, j + 1)− unx(i− 1, j + 1)

−unx(i+ 1, j − 1) + un+1x (i− 1, j − 1)
]

− 42Fy(i, j)
}

(4.14)

The ij in the brackets denote the ijth pixel location in the study image, the superscript

n denotes the relaxation iteration.

The SOR formula used for solving Equation (4.7) is similar to the above equation

(Equation (4.14)) in format except that ux is replaced by vx and uy is replaced by vy.

4.4.4 Different Methods and Computation Time Comparison

For all of the experiments, we apply either Christensen&Miller’s elastic registration

[96, 29] or Christensen’s fluid registration [31] for a direct comparison based on our own

implementation. As to the computation time, while our method requires an extra force

(~F2) calculation at sparse boundary points, this leads to fast and accurate convergence.

Also, since the boundary finding step takes only several seconds, the total convergence

time of our elastic and fluid methods are usually a little faster than or similar to Chris-

tensen’s elastic and fluid methods respectively. In general, the elastic methods take

much less time than the fluid methods since no time integration is needed1. An example

1A detailed execution time investigation of Christensen’s elastic and fluid models can be found in [29].
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comparison of the different methods’ approximate execution times on a Silicon Graphics

Octane 250-MHZ MIPS R10000 is listed in Table 4.3.

4.5 Experimental Results

In addition to the demonstration of the previous synthetic image non-rigid registration

methods (Figures 4.1, 4.2, 4.3 and 4.4), we also give the following quantitative validation

of our methods.

4.5.1 Evaluation Criterion

To evaluate the methodology, we quantify errors in the displacement field over the objects

of interest, since warping of the background is irrelevant.

Given a known warp, we can measure detailed displacement errors throughout the

object. For testing purposes, we can define a particular warp and apply it to an image,

generating a warped study image to which the algorithm can be applied. We use either

of the following sinusoidal displacement fields for transforming the atlas image to a study

image (see Figure 4.5 top right and Figure 4.9 top right respectively):

xnew = xold +Axsin(πxold/32); ynew = yold +Aysin(πyold/32) (4.15)

and

xnew = xold +Axsin(πyold/32); ynew = yold +Aysin(πxold/32) (4.16)

where xold and yold are coordinates of a point in the atlas image and xnew and ynew are



93

coordinates of the corresponding point in the transformed study image. Ax and Ay are

the limits of the maximum displacement distances along the x and y directions.

For a known non-rigid warp, the average (Eoa) and maximum (Eom) differences

between the estimated and actual displacement vectors over the objects are used to mea-

sure accuracy. We also use the average difference between the estimated and actual dis-

placement vectors on the sparse boundary control points, Eba. Since the control points

are also derived from the known warp, all three measures only reflect the non-rigid reg-

istration, and do not include the boundary finding step. For true image pairs, we only

use Eba as an accuracy measure because we do not know the true warp, except at sparse

boundary points determined by an expert. Since the study image boundary control points

are derived by our statistical shape model-based boundary finding, the error, Eba, for true

image pairs includes both the boundary finding step and the non-rigid registration step.

4.5.2 Synthetic Images with Known Warping

The experiments in this subsection test the robustness of our elastic method compared

with Christensen&Miller’s elastic method. The synthetic study image, Figure 4.5 top

middle, is obtained by resampling the synthetic atlas image, Figure 4.5 top left, based

on the predetermined displacement vectors (Figure 4.5 top right, Equation (4.15)). The

study control points are also derived from the same predetermined displacement vec-

tors. The atlas image is then registered to the synthetic study image using our image

registration procedure. Although the resulting deformed atlases for our method and

Christensen&Miller’s method are similar, the estimated displacement vectors are not.

From the errors in the estimated vectors (differences between the estimated and true

displacement vectors), we can see that our method has almost zero error over the objects,

while there is significant error in their approach.
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Figure 4.5: Synthetic images (100 × 100) and displacement vectors by our and Christensen&Miller’s

elastic methods. Top left: atlas image with its control points; Top middle: study image with its control

points; Top right: true displacement vectors by Equation (4.15); The second and third row: The left

column shows the deformed atlas by our elastic method (the second row) and by Christensen&Miller’s

elastic method (the third row); The middle column shows the corresponding errors in the estimated

vectors on the study image, showing near perfect displacement for our method (second row); The right

column shows the corresponding estimated vectors.
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Figure 4.6: Noisy images for synthetic image sensitivity-to-noise experiment by our and

Christensen&Miller’s elastic methods. Left to right, atlas image (top) and study image (bottom)

from Figure 4.1 with zero mean Gaussian noise added with standard deviation of 15.0, 30.0, 45.0,

respectively. Note: the intensity range in the atlas and study images in Figure 4.5 is 50 to 250.

The following experiment, shown in Figures 4.6 and 4.7, demonstrates the effect

of noise on the two methods, by adding varying amounts of zero mean Gaussian noise

to the synthetic images shown in Figure 4.5 top left and Figure 4.5 top middle. The

error measures defined above are computed for our method (E1oa, E1om, E1ba) and

Christensen&Miller’s elastic approach (E2oa, E2om, E2ba) and show consistent improve-

ment for our method.

4.5.3 Real Image with Known Warping

In this section, we first apply a known warping (Figure 4.8 top right, Equation (4.15)) to

a magnetic resonance (MR) sagittal brain image showing the corpus callosum to compare
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Figure 4.7: Sensitivity to noise experiment for synthetic images by our and Christensen&Miller’s

elastic methods. Eom: maximum displacement error over the deformed objects; Eoa: average dis-

placement error over the deformed objects; Eba: average displacement error on the sparse boundary

points. Note: The error for our method (E1) is significantly better than that for Christensen&Miller’s

elastic method (E2); the percentages shown are the percentages of the average errors (Eoa, Eba)

relative to the true average displacements.
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the performance of our elastic method with that of Christensen&Miller’s elastic method.

While the deformed atlases appear similar, the results (Fig.4.8 and Table 4.1) show that

our elastic method leads to a much better registration in the object of interest than

Christensen&Miller’s elastic method.

Figure 4.8: MR sagittal corpus callosum images (100 × 64) and synthetic displacement vectors by

our and Christensen&Miller’s elastic methods. Top left: atlas image with control points; Top middle:

study image with control points; Top right: true displacement vectors by Equation (4.15); Second row

left: our deformed atlas image; Second row middle: errors in our estimated vectors on study image;

Second row right: our estimated vectors; Bottom left: deformed atlas image by Christensen&Miller’s

elastic method; Bottom middle: errors in their estimated vectors on study image. Bottom right: their

estimated vectors.
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Figure 4.9: MR sagittal corpus callosum image (100 × 64) and synthetic displacement vectors by

Christensen’s and our fluid methods, and our elastic method. Top left: atlas image with control points;

Top middle: study image with control points; Top right: true displacement vectors by Equation (4.16);

From the second row to the bottom: The left column shows the deformed atlas by Christensen’s fluid

method (the second row), our fluid method (the third row), and our elastic method (bottom); The

middle column shows the corresponding errors in estimated vectors on the study image (cropped), with

significantly smaller error for our fluid method (third row); The right column shows the corresponding

estimated vectors.
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Method Eoa (%) Eom Eba (%)

Christensen&Miller’s elastic method1.26 pixels (30.0%)3.56 pixels1.51 pixels (34.7%)

Our elastic method 0.48 pixels (11.5%)1.33 pixels0.45 pixels (10.3%)

Table 4.1: Error measure for MR sagittal corpus callosum image with known warping (Figure 4.8)

showing the improvement of our elastic method. Eoa: average displacement error over corpus callosum;

Eom: maximum displacement error over corpus callosum; Eba: average displacement error on sparse

boundary points. Note: the percentages shown with each average error are with respect to the true

average displacement.

Method Eoa (%) Eom Eba (%)

Christensen’s fluid method 5.82 pixels (63.2%) 13.82 pixels 5.91 pixels (65.0%)

Our fluid method 0.99 pixels (11.4%) 2.29 pixels 0.89 pixels (9.8%)

Our elastic method 3.46 pixels (37.6%) 10.54 pixels 3.32 pixels (36.5%)

Table 4.2: Error measure for MR sagittal corpus callosum image with known warping (Figure 4.9)

showing the improvement of our fluid method. Eoa: average displacement error over corpus callosum;

Eom: maximum displacement error over corpus callosum; Eba: average displacement error on sparse

boundary points. Note: the percentages shown with each average error are with respect to the true

average displacement.

In this experiment (Figure 4.9), we apply another known warping (Figure 4.9 top

right, Equation (4.16)) to a magnetic resonance (MR) sagittal brain image showing the

corpus callosum. Because the deformation here between the atlas and study is quite large,

we use our fluid method to register the atlas image to the study image. For comparison,

we also register the two images using Christensen’s fluid method and our elastic method

by choosing the appropriate elasticity parameter (large µ) so that a homeomorphic map

is just ensured (globally positive Jacobian). The results (Figure 4.9 and Table 4.2) show



100

that our fluid method leads to a much better registration in the object of interest than

Christensen&Miller’s fluid method, and our elastic method because of the large defor-

mation of the images which can not be tracked by the elastic model. Using our elastic

method, the atlas can not deform well (Figure 4.9 bottom left).

4.5.4 Real Atlas and Study Images

Results of the method applied to MR brain (axial) and heart image pairs are shown in

Figures 4.11 and 4.12. These examples show 2D slices that roughly correspond from

different brains and hearts for demonstration purposes. The control points of the study

image are derived from statistical shape model-based boundary finding algorithm [126].

The shape model for the brain examples (Figure 4.10) incorporates multiple objects and

thus also models the distance between the objects. The shape model used for the heart

examples is shown in Figure 3.2. From the error measures shown in Table 4.3, we see that

even with the error in the boundary finding step, the final error of our methods is still

much better than Christensen’s methods. Specifically, for brain images, the final error

of our elastic and fluid methods perform similarly because for small deformations both

of our methods work well, and much better than Christensen&Miller’s elastic method.

Note in particular, in Figure 4.11 the corner of the third ventricle in the study was not

registered to the atlas correctly by Christensen&Miller’s elastic method (Figure 4.11(h)).

The structures of the study are shifted away from the corresponding ones in the atlas based

on gray level information. Our methods calculated the correct mapping (Figures 4.11(i)

and 4.11(j)) by incorporating statistical shape information and using the corresponding

boundary points as an extra constraint. Also, note that the putamen did not deform

well in Christensen&Miller’s elastic method (Figure 4.11(k)) because the contrast of the

putamen is too low compared to the contrast of the ventricles. In our approaches, the
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Figure 4.10: Axial brain shape model. (a): MR brain image (80 × 100); (b): 93 point model of basal

ganglia and ventricle boundaries; (c): 12 examples of brain shapes from a training set; (d): effects of

varying each of the first two shape parameters of the brain model.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 4.11: MR axial brain images (80 × 100) and displacement vectors. (a): atlas image; (b): atlas

image with its control points; (c): study image; (d): study image with its control points derived from

our boundary finding algorithm (Chapter 3); (e): estimated vectors by Christensen&Miller’s elastic

method over their deformed atlas; (f): our elastically estimated vectors over our elastically deformed

atlas; (g): our fluidly estimated vectors over our fluidly deformed atlas; (h): enlargement of (e) showing

mis-matching due to Christensen&Miller’s elastic method; (i): correct mapping of the ventricle corners

by our elastic method; (j): correct mapping of the ventricle corners by our fluid method; (k): poorly

deformed putamen by Christensen&Miller’s elastic method (cropped); (l): well deformed putamen by

our elastic method; (m): well deformed putamen by our fluid method.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.12: MR heart images (100 × 100) and displacement vectors. (a): atlas image; (b): atlas

image with its control points on the endocardium (cropped); (c): study image; (d): study image with

control points derived from our boundary finding algorithm; (e): estimated vectors by Christensen’s

fluid method over their deformed atlas; (f): vectors by our fluid method over our fluidly deformed

atlas; (g): vectors by our elastic method over our elastically deformed atlas (appropriate elasticity

parameter µ is used to just ensure globally positive Jacobian).
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putamen deformed correctly (Figures 4.11(l) and 4.11(m)) since shape information of

the putamen was included. For the heart images, because of the large deformation, our

fluid model works better than our elastic model, by which the atlas can not deform well

(Figure 4.12(g)). More importantly, our fluid method results in much smaller error than

Christensen’s fluid method because of the included statistical shape information.

Image Method Eba (%) Time

pixels (%) (minutes)

MR Brain (80× 100) Christensen&Miller’s elastic method 2.04 (43.7%) 15

with 93 control points Our elastic method 0.75 (16.0%) 13

(Figure 4.11) Our fluid method 0.76 (16.3%) 28

MR Heart (100× 100) Christensen’s fluid method 2.08 (28.7%) 60

with 34 control points Our fluid 0.92 (12.6%) 60

Figure 4.12 Our elastic method 1.92 (26.4%) 5

Table 4.3: Error measure Eba and approximate execution time (Silicon Graphics Octane 250-MHZ

MIPS R10000) for MR brain (axial) and heart images. Eba: average displacement error on sparse

boundary points. Note: the percentages shown with each average error are with respect to the true

average displacement; the extremely short execution time for the heart images with our elastic method

is due to pre-mature convergence.
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4.6 Segmentation Influenced by Non-Rigid Registration

From the above results, we can see that accurate boundary finding can help us to get a

more accurate and reasonable non-rigid registration. On the other hand, as mentioned

in Chapter 1, image segmentation is a very useful application of non-rigid registration

and therefore may be able to assist in the registration process. When a presegmented

atlas image is warped to a study image, the warped segmentation can then be applied. In

this section, we show an initial attempt at segmentation which is influenced by non-rigid

registration.

Let Es denote the Canny edge image of the study; Ba denote the true boundary

image of the atlas; and ~u denote the displacement vector between the atlas and study

image. We want to find the boundary points of the study image ~bs(p), defined by vector

p, given the three known inputs: Es, Ba and ~u.

As in Section 4.3 (using the same notation in Section 4.3),

Pr(~bs(p) | Es, ~u,Ba) =
Pr(~bs(p), Es, ~u,Ba)

Pr(Es, ~u,Ba)
(4.17)

Ignoring the denominator which does not change with p and by using Bayes rule, our

aim is to find:

argmax
p

Pr(~bs(p) | Es, ~u,Ba)

≡ argmax
p

Pr(Ba | ~bs(p), Es, ~u) Pr(Es | ~bs(p), ~u) Pr(~u | ~bs(p)) Pr(~bs(p))

∝ argmax
p

Pr(Ba | ~bs(p), ~u) Pr(Es | ~bs(p)) Pr(~u | ~bs(p)) Pr(~bs(p)) (4.18)

∝ argmax
p

Pr(~bs(p)) Pr(Es | ~bs(p)) Pr(Ba | ~bs(p), ~u) (4.19)
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where Equation (4.18) is valid if we ignore the dependence of Ba on Es and Es on ~u;

Equation (4.19) is true if we ignore the dependence of ~u on ~bs(p) because ~u is obtained as

a prior here and is not modified in this formulation. Thus, we ignore this constant term

Pr(~u) and reorder the remaining terms.

A Bayesian formulation (similar to that in Section 3.3) leads to the following

objective function:

O(p) = c1 ln Pr(p) + c2

N
∑

n=1

Es(x(p, n), y(p, n))

+
N
∑

n=1

Ba(x(p, n)− ux(~bs(p, n)), y(p, n)− uy(~bs(p, n)))

= c1

t+4
∑

j=1

[

−(pj −mj)
2

2σ2j

]

+ c2

N
∑

n=1

Es(x(p, n), y(p, n))

+
N
∑

n=1

Ba(x(p, n)− ux(~bs(p, n)), y(p, n)− uy(~bs(p, n))) (4.20)

where c1 and c2 are two weighting coefficients.

As in Equation (3.28), the first term in Equation (4.20) is a prior bias to likely

shapes and poses from the statistical shape analysis methods described in Section 3.2;

the second term matches to the edges in the study image by maximizing the sum of

the smoothed study edge image intensity at the boundary points defined by vector p.

However, one more term (the third term) is incorporated here which uses the known

atlas true boundary information and the non-rigid registration results between the atlas

and the study derived from our proposed algorithms. Such information will be helpful,

for example, in situations where good quality study image edges are not available. This

third term matches to the true boundary in the atlas image by maximizing the sum of the

smoothed true atlas boundary points, which is defined by the calculated study boundary
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points and the pre-calculated displacement vectors between the atlas and the study at

the calculated study boundary points.

Figure 4.13 shows a comparison of the corpus callosum segmentation results by

using our previous boundary finding with correspondence algorithm (described in Chapter

3) and by using the above proposed algorithm, which incorporates our non-rigid regis-

tration results. We can see that in this example, the non-rigid registration really helped

the segmentation, since extra information from true atlas boundary image is included

through the non-rigid mapping.

4.7 Conclusions

This work presents two systematic approaches for non-rigid registration. Transformations

are constrained to be consistent with physical deformations of elastic solids in the first

approach and viscous fluids in the second approach in order to maintain the topology,

or integrity, of the anatomic structures while allowing detailed displacements to accom-

modate complex anatomical details. Both intensity information and statistical shape

information are used as matching criteria in a Bayesian formulation. The incorporation

of statistical shape information into the framework is the main contribution of our work.

From the experimental results, statistical boundary shape information has been shown to

augment physical model formulations for non-rigid registration, and both of our methods

have their own advantages under different situations. On the other hand, our non-rigid

registration has also been shown to have the potential of improving segmentation results.
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(d) (e) (f)
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Figure 4.13: Demonstration of boundary finding with correspondence influenced by non-rigid regis-

tration (corpus callosum example (100 × 64)). (a): atlas image with its control points on the corpus

callosum; (b): study image with its control points on the corpus callosum; (c): displacement vectors

between the atlas and study by our elastic model-based non-rigid registration; (d): true atlas boundary

image (known); (e): Canny edge image of the study; (f): initial contour (mean curve) on the study

image; (g): inaccurate final contour on (e) by using objective function Equation (3.28), showing the

final contour being trapped by the stronger upper edge without our registration result; (h): inaccurate

final contour on the study image using objective function Equation (3.28); (i): accurate final contour

on the study image by using objective function Equation (4.20), which incorporates our registration

results and the true atlas boundary image information.



Chapter 5

3D Generalization to Volumetric

Segmentation

The complete 2D statistical shape analysis framework for segmentation and registration

has been finished and validated. The ideas that we have presented in this work can be

extended to 3D as well. In this chapter, we give the 3D formulation for segmentation,

which addresses the new techniques required for our 3D generalization to volumetric

segmentation that are totally different from that in 2D: identification of corresponding

surface points in the training set and 3D surface triangulation for visualization.

5.1 Introduction

Although Cootes’ Active Shape Model has been well developed in 2D [35, 38, 39, 67], the

3D volumetric generalization has been hampered due to the difficulty in identification of

corresponding surface points. As has been pointed out in [36]: the problem of devising

ways of choosing suitable model points and placing them consistently on sets of examples

109



110

is the subject of continuing research.

Recently, both Gonzalez-Ballester [60, 61] and Fleute [51] developed a 3D version

of Cootes’ algorithm. The idea of their methods is that non-organized random point

sets on the surface are identified first, and then these clouds of points are registered

and matched to establish the points correspondence. The Principal Component Analysis

and image search method they used are similar to Cootes’ Active Shape Models. One

disadvantage of their model construction is that the accuracy of the correspondence is

very dependent on the registration process, which is very computationally expensive. The

other disadvantage is that an extra method for surface triangulation from the unorganized

points is needed. We use a totally different method to identify the corresponding surface

points directly and simultaneously triangulate the surface based on the labeled points.

In order to formulate the surface matching objective function, we directly generalize our

proposed Bayesian method in 2D (Chapter 3).

5.2 Training Set Labeling and Surface Triangulation—New

Techniques Required

In 2D, manual labeling of corresponding boundary points is relatively simple. First, crit-

ical points, which are usually easily identified features, such as high curvature points,

sharp corners, etc, are labeled manually. Then, interpolated points are equally-spaced

between the critical points along the boundary. This interpolation assumes that the de-

formation is approximately a uniform stretching between critical points. Locally uniform

stretching is a reasonable assumption and can be satisfied by appropriately choosing the

critical points. In 3D, critical points labeling would be similar to the 2D case since fea-

ture points would be visually identifiable from a 3D renderings. However, interpolation is
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difficult because we have a smooth surface instead of a boundary. To solve this, we base

the interpolation on geodesics, or shortest paths, between critical points on the surface.

Again, the assumption is locally uniform stretching, or homothetic deformation [58] and

will be satisfied, at least approximately, by the appropriate selection of critical points.

Therefore, in order to label the interpolated points in 3D, we find the shortest

surface paths between the critical points and then label the interpolated points equally

spaced along these paths. Once we get all the corresponding surface points, we also

need to triangulate these 3D points to visualize and validate the surface, which is a

traditionally difficult problem. Our model construction is a brand-new approach which

can also triangulate the surface during the identification of corresponding surface points

in a hierarchical way. The detailed steps of our approach can be described as follows.

5.2.1 Step 1: Critical points labeling and initial triangle construction

First, the critical points on the surface are labeled manually. Then, based on these points,

we construct an initial triangle connection, which only involves limited number of points

and thus can be done by hand (Figure 5.1(a)).

Eventually, we would like to automatically (or semi-automatically) identify these

points and triangulate them.

5.2.2 Step 2: Shortest paths finding

The second step is to find the shortest paths between each pair of connected surface

points (Figure 5.1(b)).

There are many methods to solve the shortest surface path finding problem [111,

136, 80, 81, 82]. The algorithm we used is based on Kimmel’s two methods [80, 82], and

is almost the same as his extended Fast Marching Method [82]. When we calculate the
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(e) (f)

Figure 5.1: Diagram for corresponding surface points identification and surface triangulation in our

hierarchical approach. (a): hand-labeled critical points and initial triangulation; (b): shortest paths

between each pair of connected critical points; (c): selected mid-points on each shortest path (red

dots) and triangle subdivision; (d): more dense triangulation (compare to (a)); (e): repeating of (c)

in a hierarchical way; (f): even more dense triangulation (compare to (d)).
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shortest path between two surface points, one is treated as source point, and the other

as destination point.

The Fast Marching Method [113] is a numerical algorithm for solving the Eikonal

equation | ∇T |= F(x, y) on a rectangular orthogonal mesh in O(M logM) steps, where

M is the total number of grid points. It has been extended to triangulated domains

with the same computational complexity [82]. In our implementation, first, by using

this extended Fast Marching Method, we solve the Eikonal equation with speed F = 1

on the triangulated surface to compute the distance T from a source point. Note that

the triangulated surface we used is computed using the Marching Cube algorithm [85].

Then, we backtrack along the gradient of the distance T from the destination point. That

is, for each triangle, there is one gradient (this calculation is described in the following

paragraph). Start from a point and “flow” inside the triangle which has the largest

gradient according to the computed gradients. In this way, we get a sequence of straight

segments, each segment corresponding to a path through one triangle. Thus, the shortest

path between the source and destination points is constructed.

Gradient calculation for each triangle: Suppose we want to find the gradient

direction AD for triangle ABC given that point A is the start point for the flow (Figure

5.2). Let TA, TB and TC denote the known distance value at point A, B and C, respec-

tively, calculated by the extended Fast Marching Method. Denote a =| BC |, b =| AC |,

c =| AB | and a′ =| BD |. The gradient along AD, g(a′), is calculated as:

g(a′) =
TA − TD
| AD | (5.1)

where TD is the distance value at point D, which can be estimated as the linearly inter-
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Figure 5.2: Gradient calculation within a triangle.

polated distance between point B and C:

TD = TB +
a′(TC − TB)

a
=

a′TC + (a− a′)TB
a

(5.2)

and

| AD |=
√

a′2 + c2 − 2a′c cosB (5.3)

Now, take the gradient of g(a′) in Equation (5.1) with respect to a′ (using Equa-



115

tions (5.2)&(5.3)) and then set the numerator of ∂g(a′)
∂a′

equal to zero. Finally, we get:

a′ =
c2(TC − TB)− ac(TA − TB) cosB

c(Tc − TB) cosB − a(TA − TB)
(5.4)

where

cosB =
a2 + c2 − b2

2ac
(5.5)

Therefore, the gradient direction for triangle ABC is AD with a′ given by Equa-

tion (5.4); and the gradient for triangle ABC is calculated as Equation (5.1) with TD,

| AD | and a′ given by Equations (5.2), (5.3) and (5.4).

Figure 5.3 shows the Marching Cube triangulation and two shortest paths for a

synthetic surface.

5.2.3 Step 3: Mid-point selection and triangle subdivision

The third step of our approach is selecting the mid-point on each shortest path, and

decomposing each big triangle into four smaller ones (Figure 5.1(c)). In this way, a more

dense triangulation than the initial one is derived (Figure 5.1(a) and 5.1(d)).

5.2.4 Step 4: Repeating step 2 and step 3

Now, we simply repeat the previous step 2 — shortest path calculation, and step 3 —

mid-point selection & triangle sub-division, and thus generate even more dense surface

points and triangulation. Figure 5.1(f) shows the resulting diagram using our hierarchical

strategy: the blue dots are hand-labeled critical points; the red dots are interpolated

points generated from the 1st iteration; and the green ones are generated from the 2nd
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(a) (b)

Figure 5.3: Shortest paths on a synthetic surface. (a): the synthetic surface; (b): two shortest paths

on the Marching Cube triangulated surface of (a).

iteration, etc.

We can repeated this process until the triangles are small enough. In this way,

we can identify corresponding surface points and construct a surface triangulation based

on these points at the same time.

5.3 Aligning the 3D Labeled Training Set Points

Given the labeled training set points, we align them by scaling, translation and rotation.

Because of the increased number of parameters (7) and the complexity of the 3D formu-

lation, traditional least square matching which requires analytic derivative formulation

is not convenient for us to use. One possible 3D rigid registration method uses only a
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translation vector and a rotation matrix without the scale parameter [30]. We adopted a

method similar to the Procrustes shape distance method [15].

Procrustes distance is the distance between each point on the shape and the

centroid of the shape. We first calculate the centroid of each training example, and find

the translation parameters so that the centroids of each training shape are superimposed.

Then, the mean and scale of each set is calculated so that the sum of squares of the

Procrustes distance of each training set is normalized with respect to that of the mean

shape. After we compensate for translation and scale, singular value decomposition (SVD)

[4] is employed to find the three rotation parameters. The whole process is repeated until

convergence occurs. At last, we calculate the pose standard deviations of the training set

with respect to the finally converged mean shape, which would be the standard deviations

for the pose parameters of our prior model. The whole alignment process is shown in

Figure 5.4. The criterion of convergence is as follows: if sum of the distance between all

N points on the mean surface at time t and time t− 1 is smaller than a small number δ

times N (say, δ = 0.15), the whole process is regarded as converged at time t. That is,

N
∑

n=1

||mt(n)−mt−1(n) ||< δN (n = 1, 2, · · · , N) (5.6)

5.4 Surface Matching Objective Function

5.4.1 Transformation Matrix

The Cartesian coordinate system is used in our formulation. Let (xo, yo, zo)
T be one of

the original un-aligned points, and (x, y, z)T be the corresponding aligned point after the

following transformations: Translation vector (Tx, Ty, Tz)
T ; Scaling matrix S with scaling
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             Scale
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      normalization)

    Rotation
(Singular Value
Decomposition)
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     Final
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 Mean mt

Alignment
  Module
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  Module

   Std. Dev.
Calculation

       Std. Dev. for 
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Figure 5.4: 3D point set alignment process.
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factor about each axes sx = sy = sz = s; Rotation about the y (Ry), then x (Rx), and

then z (Rz) axes by degrees β, α, and γ degrees respectively. Then,
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x
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(5.7)

where

Rx(α) =


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1 0 0
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0 sinα cosα

















; Ry(β) =
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;
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Therefore, M(s, α, β, γ) is represented as:

M(s, α, β, γ) = s
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=
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
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
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(5.8)

5.4.2 Point Representation

As in 2D, the statistical point model is used as a 3D surface model. Given a set of m

aligned examples and each example of a set of N aligned labeled points,

Li = (xi(1), yi(1), zi(1), xi(2), yi(2), zi(2), · · · , xi(N), yi(N), zi(N))T

(i = 1, 2, · · · ,m),

we calculate the mean shape L̄, and the covariance about the mean, Ctraining. As before,

it can be shown that by principal component analysis, the eigenvectors of the 3N × 3N

covariance matrix, Ctraining, corresponding to the largest eigenvalues describe the most

significant modes of variation in the variables used to derive the covariance matrix, and

that the proportion of the total variance explained by each eigenvector is equal to the

corresponding eigenvalue λk [75, 76]. Typically, most of the variation can be explained

by a small number of modes, t (< 3N). Thus, any shape in the training set can be

approximated using the mean shape and a weighted sum of deviations obtained from the

first t modes:

L = L̄+Qa (5.9)
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where Q = [q1 | q2 | · · · | qt] is the matrix of the first t eigenvectors, and a = (a1a2 · · · at)T

is a vector of weights, which is also the set of t shape parameters to be optimized later.

This equation allows us to generate new examples of shapes by varying the parameter

a within suitable limits. Let (xshape(n), yshape(n), zshape(n))
T be the nth point of new

generated surface with origin at the mean surface centroid (Cx, Cy, Cz)
T , then































xshape(n) = x̄(n) +
∑t

k=1Q3n,kak − Cx

yshape(n) = ȳ(n) +
∑t

k=1Q3n+1,kak − Cy

zshape(n) = z̄(n) +
∑t

k=1Q3n+2,kak − Cz

(5.10)

where (x̄(n), ȳ(n), z̄(n))T is the mean shape of the nth point, and Cx, Cy, Cz are calculated

as:































Cx = 1
mN

∑N
n=1

∑m
i=1 xi(n)

Cy = 1
mN

∑N
n=1

∑m
i=1 yi(n)

Cz =
1

mN

∑N
n=1

∑m
i=1 zi(n)

(5.11)

The combined pose and shape parameter vector to be determined is

p = (s, α, β, γ, Tx, Ty, Tz, a1, a2, · · · , at)T (5.12)
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If the pose parameters are also incorporated into the point representation, the point

formulation of the nth surface point (n = 0, 1, ..., N − 1) is
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x(p, n) = s[M(1, 1)xshape(n) +M(1, 2)yshape(n) +M(1, 3)zshape(n)]

+Tx + Cx

y(p, n) = s[M(2, 1)xshape(n) +M(2, 2)yshape(n) +M(2, 3)zshape(n)]

+Ty + Cy

z(p, n) = s[M(3, 1)xshape(n) +M(3, 2)yshape(n) +M(3, 3)zshape(n)]

+Tz + Cz

(5.13)

where M(i, j) is the ith row and jth column entry of matrix M(s, α, β, γ) in Equation

5.8.

5.4.3 Bayesian Objective Function

As in 2D, by using Bayes rule, the a posteriori probability density of the deformed tem-

plate given the input edge image can be expressed as:

Pr(p | E) =
Pr(E | p) Pr(p)

Pr(E)
(5.14)

Our objective is to maximize the a posteriori density in Equation (5.14) with respect to

p. This can be simplified to maximize (see Chapter 3):

O(p) = c
t+4
∑

j=1

[

−(pj −mj)
2

2σ2j

]

+
N
∑

n=1

E(x(p, n), y(p, n), z(p, n)) (5.15)
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with p given by Equation (5.12) and c a constant coefficient. This equation is the max-

imum a posteriori objective incorporating a prior bias to likely shapes and poses (first

term) and match to the edges in the image by maximizing the sum of the smoothed edge

image intensity at the boundary points defined by vector p (second term).

5.4.4 Gradient Formulation

We optimize the objective function O(p) using the conjugate gradient method. We com-

pute the gradient formulation as follows:

First, differentiate Equation (5.15) to get

∇O(p) = c
t+4
∑

j=1

[

−pj −mj

σ2j

]

+
N
∑

n=1

[

∂E(x(p, n), y(p, n), z(p, n))

∂x

∂x(p, n)

∂p

+
∂E(x(p, n), y(p, n), z(p, n))

∂y

∂y(p, n)

∂p

+
∂E(x(p, n), y(p, n), z(p, n))

∂z

∂z(p, n)

∂p

]

(5.16)

The partials of E, the edge image, with respect to x, y and z can be calculated

using a central discrete divided difference approximation. The partials of x(p, n), y(p, n)

and z(p, n) with respect to p can be calculated from Equations (5.13), (5.10) and (5.8)

by:
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∂z(p,n)
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= M(3, 1)xshape +M(3, 2)yshape +M(3, 3)zshape
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5.5 Initial Synthetic Results

Figure 5.5(a) is one example in a synthetic training set, showing a big sphere (equal

x,y,z-axes ellipsoid) with 6 small half balls attached at each of the six directions: front,

back, top, bottom, left and right. Figure 5.5(b) is another view of the surface.

First, the critical points on the surface are labeled by hand (38 points in total). An

initial triangulation based on hand-labeled critical surface points is manually constructed

as shown in Figure 5.5(c). Shown in Figures 5.5(d)(e)(f) are the results by our hierarchical

approach after the 1st, 2nd and 3rd iterations. It can be seen that as the iterations

continue, more and more dense surface points and triangulation are derived. At this

point, except for the critical points labeling and initial triangle construction, the whole

process of our proposed algorithm is completely automatic. Also, the identification of

corresponding surface points and surface triangulation are computed at the same time.

For this model, we use a number of training examples changing the x,y,z-radii

of the centered ellipsoid and holding the y-radius the same as the z-radius. We get the

principal mode of variation a1 of this synthetic model shown in Figure 5.6. The middle

column corresponds to the mean shape, and the shape parameter for the left and right

columns are respectively -2 and +2 standard deviations. The first two rows are viewed

from the Z axis showing the changing x-y eccentricity . The bottom row is viewed from

the X axis, showing the equal y and z radii. Both of them reflect the main variation in

the training set.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: 3D Synthetic training set construction. (a): a synthetic example; (b): another view of

(a); (c): initial triangulation; (d) to (f): labeled surface points and surface triangulation based on

these points respectively after 1st, 2nd and 3rd iterations by our hierarchical approach. (Note: All

figures are viewed from the Z axis except (b)).
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The initial results I have shown here demonstrate the model construction part of

the procedure, which is very different from that in 2D. The 3D image searching is just

the direct generalization of that in 2D.

5.6 Conclusions

In this chapter, the 3D generalization to volumetric segmentation has been presented,

which includes both the new techniques required for model construction and 3D extended

formulation. Our model construction approach turns out to be a new efficient algorithm,

which can identify the corresponding surface points and finish surface triangulation at

the same time. Unlike Gonzalez-Ballester [60, 61] and Fleute’s [51] methods, no extra

step is needed for visualization in our approach since surface points are triangulated

automatically. The validation of the proposed 3D segmentation is the subject of future

work.
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View from Z

View from Z

View from X

a1 −2
√
λ1 mean 2

√
λ1

Figure 5.6: Principal mode a1 of the 3D synthetic model. Top: eigen-wireframes viewed from the Z

axis; Middle row: eigen-surfaces corresponding to the top wireframes; Bottom: eigen-surfaces viewed

from the X axis.



Chapter 6

Summary

This dissertation presents statistical shape analysis methods for segmentation and phys-

ical model-based non-rigid registration (Figure 6.1). In 2D boundary finding with corre-

spondence, the statistical point models (Ctraining) derived from a training set by principal

component analysis are used as the prior probability in a Bayesian formulation. Moreover,

in order to show the important role of the statistical prior shape model, we demonstrate

the use of two other kinds of generic prior information: an independence model (Cidentity)

and a smoothness model (Csmooth). In addition, we consider prior shape models trained

on small sets which may not allow enough variation to adequately span the space of

plausible shapes (Cmix). The resulting boundary points derived from Ctraining or Cmix

which contain statistical shape information are then used as landmarks for our physical

model-based non-rigid registration. The transformations are constrained to be consistent

with the physical properties of deformable elastic solids in the first method and those

of viscous fluids in the second, to maintain smoothness and continuity. A Bayesian for-

mulation, based on each physical model, an intensity similarity measure, and statistical

shape information embedded in corresponding boundary points, is employed to derive

129
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more accurate and robust approaches to non-rigid registration. The new techniques re-

quired and the generalized formulation for 3D volumetric segmentation are also presented.

Throughout all the work in this thesis, the key link is statistical shape.

Statistical Shape Analysis 

2D Boundary Finding 3D Volumetric Segmentation 

2D Non−Rigid Registration

3D Non−Rigid Registration

Prior:

Likelihood:

Prior:

Likelihood:

  C_training / C_mix
(C_identity, C_smooth)

 Edge info.

 Elastic / Fluid  models

 Statistical shape

 Intensity

New: 
Points labeling

Surface triangulation

Direct generalization of 2D

Statistical shape
 information

Generalize

Generalize

Figure 6.1: Statistical shape analysis framework for segmentation and registration.

Future directions include validation of the proposed 3D segmentation and gener-

alization to 3D non-rigid registration. Although finding the corresponding surface points

and statistical surface model construction in 3D require new strategies, generalizing the

purely physical model deformation to 3D is straightforward and has been developed by

Christensen et al. [29]. Therefore, the 3D non-rigid registration of our methods would be
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the direct generalization of that in 2D. Of course, the computational cost increases with

the number of voxels. The fast algorithm for non-rigid viscous fluid registration, which

is based on a linear elastic deformation for the velocity field of the fluid and is derived

through a convolution filter [16], could be applied in our fluid approach to improve the

total computation time. Also, the coupling of boundary finding and registration can be

increased by enabling registration to influence boundary finding, and thus both processes

will enhance each other.
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