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Abstract

This is an easy read introduction to multifractals. We start with a thorough
study of the Binomial measure from a multifractal point of view, introducing the
main multifractal tools. We then continue by showing how to generate more general
multiplicative measures and close by presenting an extensive set of examples on
which we elaborate how to ‘read’ a multifractal spectrum.

1 Introduction

Multifractal analysis is concerned with describing the local singular behavior of measures
or functions in a geometrical and statistical fashion. It was first introduced in the con-
text of turbulence [M2, M3, FP, Grl, GP1, HP, HJKPS, M5], and then studied as a
mathematical tool in increasingly general settings [EM, KP, CM, BMP, R1, F2, AP, J,
LV, HW, O, S2, RSch] Multifractals are applied in many contexts such as DLA patterns
investigation [ME], earth quake distribution analysis [HI|, signal processing [LM], and
internet data traffic modelling [RL]. Here, we present only some very basic results in a
simple setting, accessible also to graduate students with only little knowledge of probabil-
ity theory. Intending to motivate the reader for further study, proofs and heavy notation
are avoided. As this monograph is continuously ‘under construction’ the author welcomes
comments towards an improvement of the presentation and appologizes for parts which
are still in a preliminary status.

With multifractals, an new approach to dealing with (preferably irregular, erratic) data
— or with geometrical and/or probabilistic objects — and a new set of models for such is
at hand. The main reason for this novelty lies in the fact that multiplicative iterative
schemes are essentially different from additive ones. One could object that a simple
‘exponentiating’ respectively ‘taking logarithms’ leads from one to the other. While this
is true at every step of the iteration, it becomes false when going to the limit. In addition,
controling the correlation structure of the ‘exponentiated’ process is combersome and not
always doable. We hope that this will become clear as we go along in our presentation.
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2 A paradigm: The Binomial Measure

Purpose and techniques of multifractal analysis are best explained in the most simple
situation: the binomial measure on the unit interval.

2.1 Definition

The binomial measure is a probability measure p which is defined conveniently via a
recursive construction. Start by splitting I := [0,1] into two subintervals Iy and I
of equal length and assign the masses my and m; = 1 — my to them. With the two
subintervals one proceeds in the same manner and so forth: at stage two, e.g. the four
subintervals Iyg, o1, 19, and I1; have masses momg, momy, mi;myg, and m;m; respectively.
At stage n, the total mass 1 is distributed among the 2" dyadic intervals of order n such

that I, . has mass m, -...-m, . This defines a sequence of measures (i, all piecewise
uniform. Since pg (I, c,) = pn(ls . ,) for all & > n we may define the limit measure
wby p(ley . e) = me - ... mg,, in other words, p, converges weakly towards p. By

construction, the restrictions of u to the intervals Iy and I; have the same structure as p
itself. In fact, they are reduced copies of y where the reductions in space and mass are
by 1/2 and m;, respectively. We conclude that p is self-similar in a very strict way (see
Fig. 1): for all intervals [a, b]

p(la, b]) = mop([2a, 20]) + map([2a — 1,20 — 1]). (1)

It is instructing to prove this formula by pluging in the special intervals [a,b] = I, ., ,
starting with Iy = [0,1/2], I, = [1/2,1], Ipo = [0,1/4] etc. Note in particular that
1([2a, 2b]) = 0 for [a,b] C [1/2,1]. An alternative proof uses that p,.1([a, b]) = mou,([2a, 20])
for every [a,b] C [0,1/2] and pip41([a, b]) = mipn([2a — 1,2b — 1]) for [a,b] C [1/2,1].

Another way of defining  is the following. Let z = .0y05 ... be the dyadic representation
of a point in [0,1]. Here, we don’t have to care about points with multiple expansions
since our results concern ‘almost all points z’. Imagine that the digits o, are picked
randomly such that P[oy, = i| = m,; independently of k. Then, p is the law—or probability
distribution—of the corresponding = on [0, 1].

This measure p has no density, unless mg = m; = 1/2, which can be seen in two ways.
First, for a typical point ¢ the densities, say ¢,(t), of the approximating measures f,, tend
either to infinity or to 0. Second, M (z) = u([0, z]) has zero derivative almost everywhere,
whence M(z) # 0 = [ M'(t)dt. We are about to prove these two facts using the LLN,
but it is also well illustrated with Fig. 1. Nevertheless, any coarse graining (or sampling)
of p on the dyadic intervals I, ., is equal to p, which has the density ¢,,. It is, therefore,
essential to understand the limit behavior of such an approximation .
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Figure 1: The Binomial measure with my = .4 as obtained after 13 iterations.

2.2 Singular behavior

The absence of a density for u is responsible for its erratic, or ‘fractal’ appearance (see
Fig. 1). It is the aim of multifractal analysis to characterize this erratic behavior. The
multiplicative construction of p makes clear that the mass of a sequence of intervals
p(I,. ., ) will decay roughly exponentially fast as the I, .. shrinks down to a point x,
say approximately as 27"*®)_ Such an exponential rate a(z) could be though of as a
generalization of the local degree of differentiability of M at x. Indeed, M(2') — M (x) ~
|z — z|® which is called Hélder continuity of order a at x. Therefore, set

log p(1:,..c,) 1
n = = ——] Ia en)s
(z) og L - | ~logy u(l:....)

and

a(z) == lim oy (z)

whenever this limit exists.

A simple calculation reveals that «(x) does indeed exist for ‘many’ points z and that it
takes quite different values depending on the dyadic expansion z = ¥, £,2°%. Denoting
the number of ones among the first n binary digits of x by [,(z) we find immediately
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WLy ) = ml @b @ anq

I, (z

1,
a(r) = — lim n = ln(z) log, mg +

log, m
n—0o0 n n g2 1

So, a(z) can take all values between log, my and log, m; and some of these values will
be assumed ‘more likely’ than others. Before elaborating further on this issue we would
like to mention informally that the points x where «(x) assumes a given value « will
typically form highly interwoven fractal sets, whence the term multifractal. Thereby, the
term fractal is not so much referring to this ‘fractured’ appearance as rather to the fact
that the aforementioned sets have a dimension which is not integer. A precise statement
of this fact, however, has to wait for later (or can be looked up in [R1]).

Let us now become more precise about ‘more frequent’ and ‘more rare’ values «(z) of the
binomial measure. The first, trivial observation is that a(z) is entirely determined by the
limiting frequency of digits of x, x(z) := lim, [,(z)/n. It is clear how to produce points
x where x(x) assumes some given value between 0 and 1. E.g. for z = .001001001... we
have x(z) = 1/3. As one lowers the value of x(z) one has to plug in more and more zeros
and the ‘choice’ of © becomes more and more restricted. This fact is what we would like
to make more precise.

In order to gain information about how ‘likely’ y(z) assumes a certain value we use
theorems from probability theory. Picking x randomly with uniform distribution U, we
can consider its binary digits ¢, to be random variables. The Law of Large Numbers
implies that (1/n)l,(z) = (1/n)(e1 + ...+ &,) converges to 1/2, whence x(z) = 1/2 and
a(x) = —(1/2)logy, mem, for U-almost all z. Equivalently, we could argue directly by
considering m,, as random variables and conclude with the LLN that for U-almost all

log pu(Iz, .c,) 1 & 1
an(z) = m = kX:Illogg Mg, — By[—log,m,,] = —5 10gy mom. (2)

For convenience we set «p := [Ey[—log, m,,| = —(1/2) logy mem; .

Usually, one is happy with an ‘almost sure’ result such as (2). Here, we would like to ask
the question what one could say about points x with «(x) different from (2). Again, we
may put the LLN to use towards the question, how often [,(z)/n converges to a number
different, from 1/2. Therefore, let us pick x randomly with distribution u, i.e. the binary
digits of such a point equal 1 with probability m;. Then, the LLN gives x(z) = my, or,
equivalently

0 (1) = 08 ple,..c,)

IOg |Ial...5n| - IE”[_ 10g2 mgi] = —Mo 10g2 (mU) —m 10g2 (ml) (3)

We conclude that the ‘almost sure’ result (2) depends heavily on the distribution according
to which points are picked randomly. This is, after all, an obvious, but nevertheless notable
remark.
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Let us stop for a moment and comment on the differentiability of M. From —% log, memy >

1 we conclude that s
M'(z) = lim 7;;( c1..c0)

n—00 2—n

=0

almost surely (in the uniform sense), as mentioned above. Alternatively, using the obvious
formula ¢, (z) = p(I.,. ., )/2 " for the density of u, (as always x = 3°;;27°) we find that
bn(T) on(1-a(7)) " Thus, the densities tend to zero or infinity, depending on the value of
a(x). As we have just seen, it will actually be zero for (uniformly) almost all z, and oo
for p-almost all z.

2.3 Large Deviation Principles

Before we can come to a general treatment of the possible values of a(x) we need to gain
some intuition.

The theory of Large Deviation Principles (LDP) deals with a problem intimately related
to our quest. In order to make the connection let us note that (2) implies the following:
if we pick an interval I, . for each n randomly in an uniform way then the probability
of finding (1/n)log, (1, .,) outside [ag — €, ap + £] must tend to zero for any fixed e.
Theorems on LDP state more sharply that this decay must be exponentially fast.

A first explanation for this exponential decay comes from the so-called Cramer-Chernoff
bound. It reads as follows. Consider a sequence of i.i.d. random variables W,, and set

1
V% :::;;(LLH + ... +-VVﬁ).

While the LLN states that V;, converges to IEW almost surely, the theorem of Cramer-
Chernoff says the following:

Theorem 1 IfIEW < a and P[W > a] # 0, then

1
—log PV, > a] — ir>1g(log Elexp(¢W)] — qa).
n q

For a proof at least of the upper bound note that for all ¢ > 0

]Eeq(Wl—l—...—l—Wn)

PlVoza=P [eann 2 enqa] < = (E[eqw]e_qa)n

enqa
using Tschebischev’s inequality and independence.
This result is generalized by the well-known theorem on LDP by Géartner-Ellis [Ell, Thm

2]. We present its contents in a simplified version fit to suit our purpose. The familiarity
with theorem 1 is nevertheless still apparent.
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Theorem 2 LetY, be an arbitrary sequence of random variables on a sequence of prob-
ability spaces, and let a,, — oo. Assume that the following limit exists

— L logBafexpla, Ya)] — e(q) (4)

n

and assume furthermore that ¢(q) is finite, concave and differentiable. Then,

ai log P, ~a;'Y;, € A] > infl(ga — c(g))  (n— o0 and A {a}). (5)

The term ‘large deviations’ stems from the fact that (5) deals with probabilities of the
renormalized —a,, 'Y, deviating from its expected value for large n.

Let us illustrate how this result relates to the occurance of coarse Holder exponents
ay,(z) for measures in general and for the binomial in particular. To this end, let P,

be the uniform distribution on the set of all dyadic intervals I ,En) C [0,1] of order n, i.e.
Pn[IgL()w) =M =P[K =k =1/2"forall k = 1,...,2". Denote expectation w.r.t. P,

by IE, and consider the sequence of random variables Y,, = log /L(Igl)). Also, let us choose

a, = nlog2.

In this setting we have —a;lYn = a,(z) where z = Y, £,27F as before. In order to
apply theorem 2 one has to calculate the asymptotic behavior of the moment generating
functions:

~1 ~1 2
olg) := fim, = log, Eulexp(qY,)] = fim, = log, 27 3 u(") (6)

The basic assumption of the LDP theorem 2 is that this limit ¢ exists and is a differentiable,
concave function. Theorem 2 implies then that the following limit does exist and takes
the stated value:

1
ﬁlog2 #{k=0,...2" =1 : a—e<(1/n) logQ/L(I,gn)) <a+e} (7)

1
= 1+—log2Pn[ Yne[a—e,a—l—s]]
n

nlog2
— 1+ c*(a) (n — 00,6 — 0).

Hereby, ¢* denotes the Legendre transform, i.e. ¢*(a) = inf,(qa — ¢(g)). For a typical
shape of ¢* see Fig. 3, which actually shows ¢*(«) + 1. It is natural to consider 1 + ¢*
rather than ¢* itself since (7) is easily interpretated as a limit of renormalized histograms.

For the binomial measure in particular, the binomial formula gives

> u(r(")" = (mf +mi)",
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and
c(q) =1 —log, (mg + m'{). (8)
Thus, theorem 2 can be applied for the binomial measure.

In order to derive some simple formulas for Legendre transforms let us assume for a
moment that ¢ is strictly concave and twice continuously differentiable for all g. (Such is
the case for the binomial.) First, using calculus to compute the infimum in the definition
of ¢* reveals that ¢*(a) = gqa — ¢(q) at @ = (q). Note that ¢ is strictly increasing,
positive and will in general not cover the entire positive a-asis. Now, by taking implicit
derivatives we find that ¢*(«) is differentiable with derivative (¢*)'(a) = ¢ at o = ¢ (q),
and that ¢* is strictly concave by monotony of ¢(¢). Let us derive, finally, a formula for the
Legendre transform of ¢*, i.e. for ¢**(¢) := inf, (at — c*(«)): as above ¢™*(t) = at — c*(«) at
t = (¢*)'(a). Thus, if o = ¢(q) then t = ¢. Using also that ¢*(a) = qa — ¢(q) at o = (q)
one finds ¢**(¢) = ¢(q). In other words, for such functions ¢, the Legendre transform is
its own inverse.

We end this short introduction of LDP-s with an intuitive argument explaining why the
Legendre transform shows up in theorem 2. To this end, we will assume that the limits
in (6) as well as in (7) exist and denote them by ¢(q) and 1 + g(«) for the time being.
We would like to establish that ¢ = ¢*. By assumption, approximately 2™9(@)+1) of the
dyadic intervals [,En) carry mass u([,gn)) ~ 27" Rearranging terms we find:

.
2 = ) =2 S )
k=1

@ )2 e

— 9 Z on(g(a)+1)g—nga _ Z 9—n(ga—g(a))

~ 9—ninfa(ga—g(a))

In the last step we used that the bulk contribution to this sum will come from the term
with the largest exponent. Thus, we argued that ¢* = ¢ which is somewhat weaker than
the desired g = ¢*. But it is sufficient when ¢ has enough regularity as described above.

2.4 Practical issues

In practice, on estimates ¢ from a log-log plot of the sample moment Y%, ,u([,gn))q (8)

against scale 27" and interprets the LDP result (7) as a convergence of normalized, log-
arithmic histograms (Fig. 2). Indeed, since the distribution P, used here is uniform, it
reduces to counting. The histogram will be in terms of

-1 . logp(Ig)) _

which have been called the coarse Holder exponents of p as these values provide informa-
tion on the degree of Holder continuity of M at x: «,(z) = a(l,,. .,). The LDP results
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states, thus, that the number of a([,in)) at given resolution n ‘close’ to some given a: grows
like 27(¢"(@*+1) (which is exponentially slower than the total number 2"). This approach
to the multiplicative structure of the measure p and to its singularities has been called
coarse graining and will be introduced in the next section with all rigor.

Convergence of histograms
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Figure 2: Convergence of the normalized histograms f& of coarse Holder exponents for some
real world data: normalizing the total time of a trace recording Internet packets arriving at a
gateway to unit time the number of packets arriving in a time slot over the total number of
packets in the trace are interpreted as a probability distribution or measure. The estimates fg
are as in Fig. 10 and the f7, is added as the solid line. The convergence of f; to fr, is convincing,
but a ‘bump’ around a = .9 cannot go unnoticed. It indicates that the traffic is composed of two
different components as explained in Fig. 4, arising from the use of two different communication
speeds.

2.5 Locating the singularities «(z)

To conclude this section and to give the promised insight into the ‘appearance’ of the a(x)
let us take a more careful look into the Large Deviation result. The LLN, as we have seen,
tells us that the peak of the histograms (7) will be close to «p (2). To obtain information
about other parts of the histograms we need to have a way of choosing intervals (or points

I(n)

x) where the ‘unusual’ happens, i.e. where a(f;") is ‘far’ from ay.

The technical term is a ‘change of probability’ meaning that the intervals [ ,En) are chosen
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randomly according to a law p, which insures the convergence of a([,En)) towards some

value a, provided that points are picked randomly with distribution f,. This distribution
1, is defined in the same way as p but with probabilities My := mg2° and m; := m{2°
where (3 is such that my 4+ m; = 1. Hence,

B =PB(q) = —log, (m§ +mf) = c(q) — 1.
Note that
(@) = inf(ga = B(g)) = ¢*(@) + 1.

Choosing the digits o4 of the dyadic expansion of a point = such that Ploy, = i] = m{2°
amounts to picking x randomly with law j,. Let us apply now the LLN to this situation
to get

log (I, ., L
) = OB ess) 1 tog, (g )] = — Y logy mi = #(a).
]'Og |‘[515n| =0
In other words, for the points picked randomly with distribution p, the «, converge
(almost surely) to a, := #'(¢). Whence, these points lie all in

Ko, :=A{z : a(z) :=liman(r) = a,},

and 1, helps us ‘concentrate’ on the part of the histograms close to a,.

To find out about ‘where’ this distribution s, concentrates let us note that for the same
points = in K, we find that

log pq (L, ...c. 1 & _ 1 & .
Ol lecs) LS 0g,m,, = L S ogm, -2%) 40, — Blg) = B0 (O
k=1 k=1

.

log |1

This result is helpful in two ways. First, a very rough but useful estimation (which can be
made precise [RM3, p 137]) shows, how many intervals have a/(I(™) ~ aq. These intervals

are the ones contributing the bulk probability to p,. Using (9),
L Y () = #{k - a(IV) = ag) -2 ),

a(I,E"))zaq

whence this number is approximately 27" (%) = 27(c*(e))+1)  But this is the content of the
LDP and provides, thus, a second proof.

Second, (9) allows us to determine the Hausdorff dimension [F] of K. For those familiar
with this notion, let us fix ¢ and let @ = 3'(¢). Then (9) means that y, is equivalent to the
(*(cr)-dimensional Hausdorff measure [F] restricted to K,. Since K, has full y,-measure,
(*(a) is a lower bound on the dimension of K,. From the coarse graining approach it
follows easily that this bound is in fact exact [R1].

In summary, we verified that in this simple situation three approaches coincide: one
through a ‘partition function’ ¢ or (3, one through ‘coarse graining’ and one using the
concept of ‘dimensions’. In a notion which we are about to introduce this reads as

fula) = fala) = fula). (10)
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3 Multifractal spectra and the multifractal formal-
ism

We introduce now rigorously what has been motivated in the preceding section.

Much effort has been made in order to obtain rigorous mathematical extensions of the
aforementioned result (10) to more general cases [KP, CM, O, F2, AP, LV, R1]. The
general setting is as follows.

Assume that a distribution of points in d-space is given in form of a measure u: the
probability for a point to fall in a set F is p(F). If this distribution is singular one cannot
describe it by means of a density and multifractal analysis proves useful in characterizing
the complicated geometrical properties of p. The basic idea is to classify the singularities
of u by strength. This strength is measured as a singularity exponent «(z), called Hélder
exponent. Usually, points of equal strength lie on interwoven fractal sets K,:

,_ 0. _ . logu(B) _

K, ={zeR’: a(z) = Blirg} log |B] al, (11)
which explains the name ‘multifractal’. Here, B — {x} means that B is a ball containing
x, and that its diameter | B| tends to zero. The geometry of the singular distribution u can
then be characterized by giving the ‘size’ of the sets K,, more precisely their Hausdorff
dimension [F]:

fu(a) == dim(K,).

This definition is most useful in purely mathematical settings. It is not required, though,
for the understanding of this paper. For the interested reader we refer to [F, AP, R1, LV]
for further details.

In applications, one assumes that i has bounded support! and considers a coarse grained
version fg, also called large deviation spectrum:

o logNe(ay )
folo) = By log1/s
with the convention log(0 := —oo. Here, Ny denotes the number of cubes C' of size § with
coarse Hélder exponent a(C) ‘roughly equal to o’. More precisely, denote by G4 the set
of all cubes of the form C = [I16, (l; + 1)d) x ... X [l40, (l4 + 1)0) with integer [1,...,[4
and with p(C) # 0. Then, we set

O = [(I, = 1)8, (I, +2)8) % ... % [(Ia — 1)6, (g + 2)d),

_log u(C*)

a(C) = T (12)

!The complement of the support is the union of the intervals with no measure, resp. over which a
function is constant.
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and
Ns(a,e) =#{C € Gs : a(C) € (a — e, +¢|}.

As is pointed out in [R1, PR] using C* instead of C' in (12) greatly improves the theoretical
properties as well as the numerical behavior of f. The reason for this is that C' provides a
poor approximation of a ball centered in a point of the distribution p, especially in points
close to the border of the support of u. Since singular measures are typically supported
on fractals, these problems are present on all scales leading to wrong results. A further
advantage of using C* is the fact that the spectrum fg (o) does not change when replacing
the continuous limit § — 0 by the discrete limit §,, = ¢2™™ (n — oo). Finally, we should
point out, that this choice 9, provokes no ‘border effects’ for measures supported on an
interval of length c¢. In this special case C* may again be replaced by C' without changing
the outcome. These properties have been used throughout our numerical analysis. For
the ease of notation we will write NZ(«) = Nj, (o, €).

Though tempting it is wrong to interpret fg as the box dimension (see [F, R1]) of K,.
This function fqg is better explained in statistical terms: Note first that the number Nj
of cubes in G5 behaves roughly as Ns ~ §=P° where D, denotes the box dimension of the
support of p. It follows that fg(a) < Dy for all @. Now suppose that one picks a cube C'
out of G5 randomly and determines its coarse Holder exponent a(C) := log u(C*)/log?é.
Then, the probability of finding o(C') ~ « behaves roughly like

Nj(a, €) /N5 = Ps[a(C) ~ o ~ §PoJa(@), (13)

This is the statistical interpretation of fg. Note in particular that in the limit 6 — 0
the only Holder exponent which is observed with non-vanishing probability is «g, where

fG(Oéo) = Dy.

What shapes of the spectra fy and fg can we expect?? Could they be trivial functions
(f(a) = —00)? Certainly not, since there is always at least oy with fg(ag) = Dp. Let
give a simple argument for ‘self-similar measures’ with Dy = 1 using the Law of Large
Numbers (LLN). A general and rigorous proof is obtained by combining theorem 4 below
with the fact that 7(1) = 0 # —oo.

Write
1 N p(C(x))
a(z) = lim ——log, u(Cy(z)) = lim —— > logy, — -~
A, s P e

where C,(x) is the unique cube in G;/s» containing x. Then, the assumption of self-
similarity means that the random variables log, u(Cj(x))/u(Cy_,(z)) are i.i.d. (compare
Section 2 and [R1, AP]). Denote the common expectation by . The LLN implies that
almost surely a(x) = oy when picking points x randomly with ‘uniform’ distribution, i.e.
when picking C' randomly in GG5. This establishes the claim.

2Some answers of a general kind can be found in [LV].
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In special cases such as the binomial measure with my = m; = 1/2 (uniform distribution)
ap is the only Hélder exponent. More precisely, a(z) = ap =1 for all x € [0, 1], fu(ao) =
falap) =1 and fu(a) = fo(a) = —oo for o # « in this case. Such measures with only
one Holder exponent are called uniform or monofractal.

In general, other Holder exponents occur. For the binomial, e.g. we find «(0) = — log,(my)
a(l) = —logy(my) etc. Also, the coarse graining will show non-trivial spectra, i.e. on
every finite level of approximation G5 one will have a whole histogram of coarse Hélder
exponents a(I,En)). For oo # ag, however, the probability of finding a([,ﬁn)) ~ o will
decrease exponentially fast to 0 as § — 0 (13). A rigorous proof of this fact is most
easily obtained — at least under certain conditions — by applying the Principle of Large
Deviations (LDP) of Gértner-Ellis (see [Ell]). Translated into our setting the LDP states,

in simple terms, that
1 * ne* (a
Pul=—logy p(C () ~ o] = 27

with some scaling function ¢*. Note that ¢*(a) < 0 unless v = a. A rigorous formulation
is the following:

Theorem 3 ([Ell, R1]) Assume that the ‘moment generating function’

n—o0

. —1 .
c(g) = lim —log, Elexp (¢log u(C7(x)))]
exists and is convex and differentiable for all ¢ € IR. Then,

1
lim lim
e=0n—00 n log 2

P |- tog n(Ci(e)) — o] < <] = (@)

where ¢*(«) = inf,(qa — ¢(q)) is the Legendre transform of c.

So, it is natural to introduce the partition function 7(q)

. log S5(q) :
7(q) := lim —— with Ss(q) = w(C)1.
(9) i—0  logé o(4) Cg(:;& ()

As a matter of fact, 7(¢q) stands at the beginning of multifractal analysis and has since
played an central role [M, M5, FP, Grl, HP, HIKPS, JKP, R1, LV].

It is notable that Ss(0) simply counts the number of cubes with non-vanishing measure.
Thus, —7(0) is actually the box-dimension of the support of y, i.e.

Dy = —7(0).

It follows then from the definitions that ¢(q) = 7(¢) — 7(0) = 7(¢) + Dy. For the binomial
measure defined in Section 2 one finds with (8)

7(q) = —logy(mg + m7).
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For other examples see Section 4 below.

Provided that Ellis’ theorem applies, i.e. assuming that 7(q) exists and is differentiable,
it follows that (13) holds with ¢* = fg(a) — Dy, i.e.

fala) = 7" (). (14)

This has been termed the multifractal formalism. The similarity to the well-known
thermo-dynamical formalism [V, R3] is immediate (see also [R3]).

Since 7(g) is obtained by averaging, it depends more regularly on the data than fg(«)
and is easier to compute. It is important to note, though, that it contains in general less
information than fg. Let us make this point more precise.

The partition function is always convex since S;(¢) is convex for all §. But it is not
necessarily differentiable in every ¢ and the multifractal formalism may not hold for all a.
For some simple and convincing counterexamples see Fig. 4 and [R1, MR, RM2, RM3, LV].
It is natural, thus, to introduce the Legendre spectrum

fu(a) = 1"(a).
This spectrum is sometimes referred to as obtained by the method of moments.

While (14) may be wrong for certain «, the opposite relation holds for all ¢ as is shown
in [R3] an d[R]:

Theorem 4

m(q) = f&(g) = inf (g — fa(@))

=i
aclR

As a first consequence, Dy is indeed the maximal value of fg in general. Secondly,
fi =7 = f&™ is the concave hull of fg. Thus,

fala) < fila).

Thirdly, it follows that even a not everywhere differentiable 7(¢) determines fg(a) at least
in its concave points. To be more precise let at := 7/(¢+) for ¢ > 0 and o~ := 7'(¢—)
for ¢ < 0 denote the one-sided derivatives of 7(¢) which must exist since 7(g) is convex.
Then [R3, R],

)
) (15)

An alternative way of displaying the scaling of moments is through the so-called general-
wzed dimensions
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Besides Dy, a notable value of D, is a; = 7'(1) = D;. It has been termed information
dimension [Gr2, GP1, GP2, OWY]: With respect to the given distribution p we have
a(z) = a; = Dy almost surely. For a binomial measure «; is given by (3).

We conclude the section by noting that in all generality we have

fu(a) < fa(a) < fla.

This has been shown in [RM3] and in [R3]. If equality holds for a particular measure
then the multifractal formalism is said to hold for pu.

4 How to read a spectrum

Before listing some general rules on how to derive underlying properties of a measure
from the shape of its multifractal spectrum we give an intuitive interpretation of the
actual values (a, f(a)) seen in a spectrum.

4.1 Values

The multifractal spectra provide a global description of the singularities of the observed
measure p. The parameter o quantifies the degree of regularity in a point x: loosely
speaking, the measure of an interval [z, + Az] — in applications usually the number of
events occurring in this interval — behaves as (Az)* (11,12).

For a uniform distribution one finds a(x) = 1 for all z. More generally, for any a > 0
the distribution with density 2%~" on [0, 1] has a(0) = a@ and a(z) = 1 for all z € (0, 1].
Values a(x) < 1 indicate, thus, a burst of events around x ‘on all levels’ (bursts of bursts),
while a(x) > 1 is found in regions where events occur sparsely.

The spectrum fg(«) captures how ‘frequently’ a value a(z) = « is found: the number
of dyadic intervals C' of size Az with a(C) = a behaves as (Az)~7¢(®). For the ‘almost
sure’ value « one has fg(ap) = Dy which is necessarily the maximal value of fg. A more
precise characterization is given by (13).

The spectrum fi(«) gives the size of the ‘set of Holder exponent o’ K, in terms of its
dimension.
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4.2 Shape

In order to give an idea of how to extract information from the shape of a spectrum f
we proceed by giving examples for which the spectra are known explicitly. The plots of
Fig. 3 to 9 are obtained by first solving implicit equations for 7(g) similar as the one for
the Binomial measure of Section 2:

mg2" +mi2" = 1.

Applying then the multifractal formalism (which has beed shown to hold for these exam-
ples in [CM, AP, R1]) one finds the multifractal spectrum of the measure (or parts of it,
see below) by taking Legendre transform. The resulting graphs can be plotted by varying
the parameter ¢:

alq) =7'(q) () = q7'(q) — 7(q).

The most simple shape of a multifractal spectrum is found for those measures for which
the multifractal formalism applies and for which 7 is a twice continuously differentiable
function. Such is the case for the binomial measure (see Fig. 3), as well as more general
self-similar measures, that is, measures with multiplicative rescaling structure (see below).
Obvously, the spectrum f = f7, is then a smooth, concave function, with an overall shape
like the symbol N (see Fig. 3). These are properties which most spectra encountered in
the real world do not share.

Figure 3: The most simple shape of a multifractal spec-
trum is found for fr, = 7* with smooth 7 as here for
the binomial measure with my = .15, m; = .85, and
ro = r; = 1/2, and rg = r; = 1/2. However, all spec-
tra of measures touch the bisector (dashed) and reach the
maximum Dy = —7(0). Here, p is supported on the
unit interval which has dimension Dy = 1. The extremal
Holder exponents are amin = log(.85)/log(.5) ~ .234 and
max = log(.15)/log(.5) ~ 2.737.

Here are some features which are common to all spectra of measures:

The spectrum of a measure touches the internal bisector of the axis.

Moreover, for any measure f(«) < « for all «.

The spectrum touches the horizontal line through (0, Dy) where Dy = —7(0).

Moreover, f(a) < Dy for all c.

To prove the first two points we begin by noting that 7(1) = 0 because 1 < Ss(1) <
3. Now, in the cases where f = 7* the claim follows immediately by taking Legendre
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transform. But, even in the general case, i.e. when f = 7% is not guaranteed, we have
always 7% = f by theorem 4. Now, if there was an « such that f(a) > « then 7(1) >
f(a) —a > 0, a contradiction. Similarly, if there was € > 0 such that f(a) < a — ¢ for
all o then 7(1) < & < 0, another contradiction. This proves the two claims®. The other
claims follow in a similar fashion.

Whenever a spectrum f fails to show a concave N-shape we have evidence that p is
not purely multiplicative, or self-similar. A search of models with similar features as
the observed spectra may reveal telling details on the structure of the distribution u. A
most prominent example is found with the left sided spectra of DLA [M4, MEH, RM1]
where the shape of the spectrum hints to an infinite rather than finite set of multiplicative
rescaling laws present with DLA.

In the sequel we provide various examples with atypical spectra and explain the particular
appearances.

First, let us note a few generalizations of the binomial. For all of them, the multifractal
formalism is valid with smooth 7 as is shown in [AP, F2] and [R3].

e Arbitrary contraction ratios r; instead of 1/2. More precisely, the ratio between the
length of the subintervals I;, ; , and the length of their ‘mother’ I; will be 7.
The invariance of p reads then as

1enln

p(la, 0]) = mop(la/ro, b/ro]) + map(la/ri +1 =1/r,b/ri +1 = 1/r1])
(compare (1)) and the formula for 7(¢) generalizes to
mire™ " +mir, " = 1.

As a consequence, 7(0) < 1 if the support is fractal, i.e. if 7o + 71 < 1 (compare
Fig. 3).

e Arbitrary number n of subintervals instead of 2:
n—1
> mir, 7T =1.
i=0

e Random contraction ratios r; and weigths m; :

EY mir,7 =1

3In the first two points we have emphasized the assumption that the multifractal spectrum f be
computed from a measure. More generally, one could define Holder exponents and spectra for functions
by replacing p(B) in the definition of a(z) (see (12)) by the maximal increment of the function over the
interval (cube) B and other quantities (compare [R3]). Then, the zero of 7 is typically not in 1, but say
in ¢ = 1/H, and the tangent to f which goes through the origin has slope 1/H.
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F(@) F@

0.0

a 0.0
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Figure 4: The spectrum of the sum g = p; + po of two measures which live on disjoint
supports is simply the maximum of the individual spectra. This will in general result in
a non-concave spectrum as shown in two cases here. The dashed parts show the internal
bisector of the axes and the spectra of the binomial measures p; and pus where they do
not coincide with the spectrum of p.

Second, a few examples with non-concave spectra. Note, that in particular the multifractal
formalism can not hold here. The easiest way of breaking the concavity-property is by
considering sums of binomial measures 1 = pq + po. If the supports of p; and py are
disjoint we have

f(@) = max(fi(a), fa(@))  7(q) = min(ri(g), 72(q))-

which is valid for both, fq and fy. It does not and cannot hold, however, for f;, simply
because the maximum of concave functions is not concave (see Fig. 4). With this remark,
it is now clear that the multifractal formalism must break down (here: fg = fo < fr) for
sums 11 + p2 unless their spectra are identical.

The failure of the multifractal formalism and the non-concave shape of fg is in this
example a direct consequence of a sort of phase transition: At the a-value where the
irregularity of the spectrum fg occurs, the major contributor to the set of singularities
K, changes from p; to ps.

Similar phenomena of phase transitions have been observed with the considerably richer
class of self-affine measures which are invariant similar as in (1) but with general affine
maps of the plane replacing z/2 and z/2 + 1/2 [R]. Here, 7(q) is often found to be
differentiable, thus at least fg(a) = fi.(a)). The phase transition occurs here as the main
contributor changes between the two eigendirections, i.e. as it changes from the horizontal
rectangles to the vertical rectangels and vice versa. See Fig. 5 through 8.

Thus, we take departures from concavity of the spectrum as evidence of the absence of
a ‘universal’ multiplicative law, thus, in the most simple first assumption as evidence for
the presence of several measures following such laws.
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Figure 5: An image of a self-affine measure with a ‘circular’ appearance. The phase
transition observed here is mild: 7(g¢) is once but not twice differentiable. The sudden
end in the trajectory of f corresponds to 7(¢) becoming linear.

Less violent departures from concavity are linear parts in the spectrum. In the cases
observed so far, this comes along with fg < fg and may be produced either by a high
order zero of a limiting density or a hierarchy of atoms. In the first case the measure is
in fact nonsingular, a fact that can be encountered in situations as obvious as in Fig. 9
and as unexpected as in Fig. 10 [RM4].

2/5 2/15 T Y

Y
Y

415 2 =

5 .

»
-

Figure 6: On the right the image of a self-affine multifractal composed of 30’000 points
obtained by a random algorithm. The affine maps and the probabilities involved in its
construction are indicated on the left.
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Figure 7: On the left the spectrum of the self-affine measure given in Figure 6 above. Its
asymmetry reflects the fact that contraction ratios are asymmetrical with respect to the
weights p; = 1/5, po = 4/15, p3 = 2/5 and p, = 2/15. On the right the spectrum when
changing the weights to p; = py = p3 = py = 1/4. With this choice, which is of course
asymmetrical as well, we find a mild phase transition: the structure function 7(g) is still
smooth. This results in a concavity of the spectrum which is disturbed but not destroyed.
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