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Abstract

This is an easy read introduction to multifractals� We start with a thorough

study of the Binomial measure from a multifractal point of view� introducing the

main multifractal tools� We then continue by showing how to generate more general

multiplicative measures and close by presenting an extensive set of examples on

which we elaborate how to �read� a multifractal spectrum�

� Introduction

Multifractal analysis is concerned with describing the local singular behavior of measures
or functions in a geometrical and statistical fashion� It was �rst introduced in the con�
text of turbulence �M�� M�� FP� Gr�� GP�� HP� HJKPS� M	�� and then studied as a
mathematical tool in increasingly general settings �EM� KP� CM� BMP� R�� F�� AP� J�
LV� HW� O� S�� RSch� Multifractals are applied in many contexts such as DLA patterns
investigation �ME�� earth quake distribution analysis �HI�� signal processing �LM�� and
internet data tra�c modelling �RL�� Here� we present only some very basic results in a
simple setting� accessible also to graduate students with only little knowledge of probabil�
ity theory� Intending to motivate the reader for further study� proofs and heavy notation
are avoided� As this monograph is continuously �under construction� the author welcomes
comments towards an improvement of the presentation and appologizes for parts which
are still in a preliminary status�

With multifractals� an new approach to dealing with �preferably irregular� erratic� data
� or with geometrical and�or probabilistic objects � and a new set of models for such is
at hand� The main reason for this novelty lies in the fact that multiplicative iterative
schemes are essentially di�erent from additive ones� One could object that a simple
�exponentiating� respectively �taking logarithms� leads from one to the other� While this
is true at every step of the iteration� it becomes false when going to the limit� In addition�
controling the correlation structure of the �exponentiated� process is combersome and not
always doable� We hope that this will become clear as we go along in our presentation�



� � A PARADIGM� THE BINOMIAL MEASURE

� A paradigm� The Binomial Measure

Purpose and techniques of multifractal analysis are best explained in the most simple
situation
 the binomial measure on the unit interval�

��� De�nition

The binomial measure is a probability measure � which is de�ned conveniently via a
recursive construction� Start by splitting I 
� ��� �� into two subintervals I� and I�
of equal length and assign the masses m� and m� � � � m� to them� With the two
subintervals one proceeds in the same manner and so forth
 at stage two� e�g� the four
subintervals I��� I��� I��� and I�� have masses m�m�� m�m�� m�m�� andm�m� respectively�
At stage n� the total mass � is distributed among the �n dyadic intervals of order n such
that I������n has mass m�� � � � � �m�n� This de�nes a sequence of measures �n� all piecewise
uniform� Since �k�I������n� � �n�I������n� for all k � n we may de�ne the limit measure
� by ��I������n� � m�� � � � � � m�n� in other words� �n converges weakly towards �� By
construction� the restrictions of � to the intervals I� and I� have the same structure as �
itself� In fact� they are reduced copies of � where the reductions in space and mass are
by ��� and mi� respectively� We conclude that � is self�similar in a very strict way �see
Fig� ��
 for all intervals �a� b�

���a� b�� � m�����a� �b�� �m�����a� �� �b� ���� ���

It is instructing to prove this formula by pluging in the special intervals �a� b� � I������n�
starting with I� � ��� ����� I� � ����� ��� I�� � ��� ���� etc� Note in particular that
����a� �b�� � � for �a� b� � ����� ��� An alternative proof uses that �n����a� b�� � m��n���a� �b��
for every �a� b� � ��� ���� and �n����a� b�� � m��n���a� �� �b� ��� for �a� b� � ����� ���

Another way of de�ning � is the following� Let x � ����� � � � be the dyadic representation
of a point in ��� ��� Here� we don�t have to care about points with multiple expansions
since our results concern �almost all points x�� Imagine that the digits �k are picked
randomly such that P ��k � i� � mi independently of k� Then� � is the law�or probability
distribution�of the corresponding x on ��� ���

This measure � has no density� unless m� � m� � ���� which can be seen in two ways�
First� for a typical point t the densities� say �n�t�� of the approximating measures �n tend
either to in�nity or to �� Second� M�x� � ����� x�� has zero derivative almost everywhere�
whence M�x� �� � �

R x
� M

��t�dt� We are about to prove these two facts using the LLN�
but it is also well illustrated with Fig� �� Nevertheless� any coarse graining �or sampling�
of � on the dyadic intervals I������n � is equal to �n which has the density �n� It is� therefore�
essential to understand the limit behavior of such an approximation �n�
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Figure �
 The Binomial measure with m� � �� as obtained after �� iterations�

��� Singular behavior

The absence of a density for � is responsible for its erratic� or �fractal� appearance �see
Fig� ��� It is the aim of multifractal analysis to characterize this erratic behavior� The
multiplicative construction of � makes clear that the mass of a sequence of intervals
��I������n� will decay roughly exponentially fast as the I������n shrinks down to a point x�
say approximately as ��n��x�� Such an exponential rate ��x� could be though of as a
generalization of the local degree of di�erentiability of M at x� Indeed� M�x���M�x� �
jx� � xj� which is called H�older continuity of order � at x� Therefore� set

�n�x� 
�
log��I������n�

log jI������nj
� � �

n
log� ��I������n��

and
��x� 
� lim

n��
�n�x�

whenever this limit exists�

A simple calculation reveals that ��x� does indeed exist for �many� points x and that it
takes quite di�erent values depending on the dyadic expansion x �

P
k �k�

�k� Denoting
the number of ones among the �rst n binary digits of x by ln�x� we �nd immediately
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��I������n� � m
n�ln�x�
� m

ln�x�
� and

��x� � � lim
n��

n� ln�x�

n
log�m� �

ln�x�

n
log�m�

So� ��x� can take all values between log�m� and log�m� and some of these values will
be assumed �more likely� than others� Before elaborating further on this issue we would
like to mention informally that the points x where ��x� assumes a given value � will
typically form highly interwoven fractal sets� whence the term multifractal� Thereby� the
term fractal is not so much referring to this �fractured� appearance as rather to the fact
that the aforementioned sets have a dimension which is not integer� A precise statement
of this fact� however� has to wait for later �or can be looked up in �R����

Let us now become more precise about �more frequent� and �more rare� values ��x� of the
binomial measure� The �rst� trivial observation is that ��x� is entirely determined by the
limiting frequency of digits of x� 	�x� 
� limn ln�x��n� It is clear how to produce points
x where 	�x� assumes some given value between � and �� E�g� for x � ������������� we
have 	�x� � ���� As one lowers the value of 	�x� one has to plug in more and more zeros
and the �choice� of x becomes more and more restricted� This fact is what we would like
to make more precise�

In order to gain information about how �likely� 	�x� assumes a certain value we use
theorems from probability theory� Picking x randomly with uniform distribution U � we
can consider its binary digits �n to be random variables� The Law of Large Numbers
implies that ���n�ln�x� � ���n���� � � � � � �n� converges to ���� whence 	�x� � ��� and
��x� � ������ log�m�m� for U �almost all x� Equivalently� we could argue directly by
considering m�i as random variables and conclude with the LLN that for U �almost all x

�n�x� �
log��I������n�

log jI������nj
� � �

n

nX
k��

log�m�k � IEU �� log�m�i � � ��

�
log�m�m�� ���

For convenience we set �� 
� IEU �� log�m�i � � ������ log�m�m��

Usually� one is happy with an �almost sure� result such as ���� Here� we would like to ask
the question what one could say about points x with ��x� di�erent from ���� Again� we
may put the LLN to use towards the question� how often ln�x��n converges to a number
di�erent from ���� Therefore� let us pick x randomly with distribution �� i�e� the binary
digits of such a point equal � with probability m�� Then� the LLN gives 	�x� � m�� or�
equivalently

�n�x� �
log��I������n�

log jI������n j
� IE��� log�m�i � � �m� log��m���m� log��m��� ���

We conclude that the �almost sure� result ��� depends heavily on the distribution according
to which points are picked randomly� This is� after all� an obvious� but nevertheless notable
remark�



��� Large Deviation Principles 	

Let us stop for a moment and comment on the di�erentiability ofM � From��
�
log�m�m� 


� we conclude that

M ��x� � lim
n��

��I������n�

��n
� �

almost surely �in the uniform sense�� as mentioned above� Alternatively� using the obvious
formula �n�x� � ��I������n���

�n for the density of �n �as always x �
P

i �i�
�i� we �nd that

�n�x� � �n�����x��� Thus� the densities tend to zero or in�nity� depending on the value of
��x�� As we have just seen� it will actually be zero for �uniformly� almost all x� and �
for ��almost all x�

��� Large Deviation Principles

Before we can come to a general treatment of the possible values of ��x� we need to gain
some intuition�

The theory of Large Deviation Principles �LDP� deals with a problem intimately related
to our quest� In order to make the connection let us note that ��� implies the following

if we pick an interval I������n for each n randomly in an uniform way then the probability
of �nding ���n� log� ��I������n� outside ��� � �� �� � �� must tend to zero for any �xed ��
Theorems on LDP state more sharply that this decay must be exponentially fast�

A �rst explanation for this exponential decay comes from the so�called Cramer�Cherno�
bound� It reads as follows� Consider a sequence of i�i�d� random variables Wn and set

Vn 
�
�

n
�W� � � � ��Wn��

While the LLN states that Vn converges to IEW almost surely� the theorem of Cramer�
Cherno� says the following


Theorem � If IEW � a and P �W 
 a� �� �� then

�

n
logP �Vn � a�� inf

q��
�log IE�exp�qW ��� qa��

For a proof at least of the upper bound note that for all q � �

P �Vn � a� � P
h
eqnVn � enqa

i
	 IEeq�W������Wn�

enqa
�
�
IE�eqW �e�qa

�n

using Tschebischev�s inequality and independence�

This result is generalized by the well�known theorem on LDP byG�artner�Ellis �Ell� Thm
��� We present its contents in a simpli�ed version �t to suit our purpose� The familiarity
with theorem � is nevertheless still apparent�
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Theorem � Let Yn be an arbitrary sequence of random variables on a sequence of prob�
ability spaces� and let an ��� Assume that the following limit exists

� �

an
log IEn�exphq� Yni�� c�q� ���

and assume furthermore that c�q� is �nite� concave and di�erentiable� Then�

�

an
logPn��a��n Yn 
 A�� inf

q
�qa� c�q�� �n�� and A� fag	� �	�

The term �large deviations� stems from the fact that �	� deals with probabilities of the
renormalized �a��n Yn deviating from its expected value for large n�

Let us illustrate how this result relates to the occurance of coarse H�older exponents
�n�x� for measures in general and for the binomial in particular� To this end� let Pn
be the uniform distribution on the set of all dyadic intervals I

�n�
k � ��� �� of order n� i�e�

Pn�I
�n�
K��� � I

�n�
k � � Pn�K � k� � ���n for all k � �� � � � � �n� Denote expectation w�r�t� Pn

by IEn and consider the sequence of random variables Yn � log��I
�n�
K �� Also� let us choose

an � n log ��

In this setting we have �a��n Yn � �n�x� where x �
P

k �k�
�k as before� In order to

apply theorem � one has to calculate the asymptotic behavior of the moment generating
functions


c�q� 
� lim
n��

��
n

log� IEn�exp�qYn�� � lim
n��

��
n

log� �
�n

�nX
k��

��I
�n�
k �

q
���

The basic assumption of the LDP theorem � is that this limit c exists and is a di�erentiable�
concave function� Theorem � implies then that the following limit does exist and takes
the stated value


�

n
log��fk � �� � � � �n � � 
 �� � 	 ���n� log� ��I

�n�
k � 	 � � �g ���

� � �
�

n
log� Pn

h ��
n log �

Yn 
 ��� �� �� ��
i

� � � c���� �n��� �� ���

Hereby� c� denotes the Legendre transform� i�e� c���� � infq�q� � c�q��� For a typical
shape of c� see Fig� �� which actually shows c���� � �� It is natural to consider � � c�

rather than c� itself since ��� is easily interpretated as a limit of renormalized histograms�

For the binomial measure in particular� the binomial formula gives

�nX
k��

��I
�n�
k �

q
�
�
mq

� �mq
�

�n
�
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and
c�q� � �� log�

�
mq

� �mq
�

�
� � �

Thus� theorem � can be applied for the binomial measure�

In order to derive some simple formulas for Legendre transforms let us assume for a
moment that c is strictly concave and twice continuously di�erentiable for all q� �Such is
the case for the binomial�� First� using calculus to compute the in�mum in the de�nition
of c� reveals that c���� � q� � c�q� at � � c��q�� Note that c� is strictly increasing�
positive and will in general not cover the entire positive ��asis� Now� by taking implicit
derivatives we �nd that c���� is di�erentiable with derivative �c������ � q at � � c��q��
and that c� is strictly concave by monotony of c��q�� Let us derive� �nally� a formula for the
Legendre transform of c�� i�e� for c���t� 
� inf���t�c�����
 as above c���t� � �t�c���� at
t � �c������� Thus� if � � c��q� then t � q� Using also that c���� � q�� c�q� at � � c��q�
one �nds c���q� � c�q�� In other words� for such functions c� the Legendre transform is
its own inverse�

We end this short introduction of LDP�s with an intuitive argument explaining why the
Legendre transform shows up in theorem �� To this end� we will assume that the limits
in ��� as well as in ��� exist and denote them by c�q� and � � g��� for the time being�
We would like to establish that g � c�� By assumption� approximately �n�g������ of the
dyadic intervals I

�n�
k carry mass ��I

�n�
k � � ��n�� Rearranging terms we �nd


��nc�q� � ��n
�nX
k��

��I
�n�
k �

q
� ��n

X
�

X
��I

�n�
k

����n�

��I
�n�
k �

q

� ��n
X
�

�n�g��������nq� �
X
�

��n�q��g����

� ��n inf��q��g�����

In the last step we used that the bulk contribution to this sum will come from the term
with the largest exponent� Thus� we argued that g� � c which is somewhat weaker than
the desired g � c�� But it is su�cient when c has enough regularity as described above�

��� Practical issues

In practice� on estimates c from a log�log plot of the sample moment
P�n

k�� ��I
�n�
k �

q
� �

against scale ��n and interprets the LDP result ��� as a convergence of normalized� log�
arithmic histograms �Fig� ��� Indeed� since the distribution Pn used here is uniform� it
reduces to counting� The histogram will be in terms of

��
n log �

Yn �
log��I

�n�
K �

log jI�n�K j
�
 ��I

�n�
K ��

which have been called the coarse H�older exponents of � as these values provide informa�
tion on the degree of H�older continuity of M at x
 �n�x� � ��I������n�� The LDP results
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states� thus� that the number of ��I
�n�
k � at given resolution n �close� to some given � grows

like �n�c
������� �which is exponentially slower than the total number �n�� This approach

to the multiplicative structure of the measure � and to its singularities has been called
coarse graining and will be introduced in the next section with all rigor�
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Figure �
 Convergence of the normalized histograms f �G of coarse H�older exponents for some

real world data� normalizing the total time of a trace recording Internet packets arriving at a

gateway to unit time the number of packets arriving in a time slot over the total number of

packets in the trace are interpreted as a probability distribution or measure� The estimates f �G
are as in Fig� �	 and the fL is added as the solid line� The convergence of f �G to fL is convincing�
but a �bump� around � 
 �� cannot go unnoticed� It indicates that the tra�c is composed of two

di
erent components as explained in Fig� �� arising from the use of two di
erent communication

speeds�

��� Locating the singularities ��x�

To conclude this section and to give the promised insight into the �appearance� of the ��x�
let us take a more careful look into the Large Deviation result� The LLN� as we have seen�
tells us that the peak of the histograms ��� will be close to �� ���� To obtain information
about other parts of the histograms we need to have a way of choosing intervals �or points

x� where the �unusual� happens� i�e� where ��I
�n�
k � is �far� from ���

The technical term is a �change of probability� meaning that the intervals I
�n�
k are chosen
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randomly according to a law �q which insures the convergence of ��I
�n�
k � towards some

value aq provided that points are picked randomly with distribution �q� This distribution
�q is de�ned in the same way as � but with probabilities m� 
� mq

��
	 and m� 
� mq

��
	

where � is such that m� �m� � �� Hence�

� � ��q� � � log�
�
mq

� �mq
�

�
� c�q�� ��

Note that
����� � inf

q
�q�� ��q�� � c���� � ��

Choosing the digits �k of the dyadic expansion of a point x such that P ��k � i� � mq
i �

	

amounts to picking x randomly with law �q� Let us apply now the LLN to this situation
to get

�n�x� �
log��I������n�

log jI������n j
� IE�q �� log��m�i�� � �

�X
i��

mi log�mi � � ��q��

In other words� for the points picked randomly with distribution �q the �n converge
�almost surely� to aq 
� � ��q�� Whence� these points lie all in

Kaq 
� fx 
 ��x� 
� lim
n
�n�x� � aqg�

and �q helps us �concentrate� on the part of the histograms close to aq�

To �nd out about �where� this distribution �q concentrates let us note that for the same
points x in K� we �nd that

log�q�I������n�

log jI������nj
� � �

n

nX
k��

log�m�k � � �

n

nX
k��

log��m
q
�k
� �	�� qaq � ��q� � ���aq�� �
�

This result is helpful in two ways� First� a very rough but useful estimation �which can be

made precise �RM�� p ����� shows� how many intervals have ��I
�n�
k � � aq� These intervals

are the ones contributing the bulk probability to �q� Using �
��

� � X
��I

�n�
k

��aq

�q�I
�n�
k � � �fk 
 ��I�n�k � � aqg � ��n	��aq��

whence this number is approximately �n	
��aq� � �n�c

��aq����� But this is the content of the
LDP and provides� thus� a second proof�

Second� �
� allows us to determine the Hausdor� dimension �F� of K�� For those familiar
with this notion� let us �x q and let � � � ��q�� Then �
� means that �q is equivalent to the
������dimensional Hausdor� measure �F� restricted to K�� Since K� has full �q�measure�
����� is a lower bound on the dimension of K�� From the coarse graining approach it
follows easily that this bound is in fact exact �R���

In summary� we veri�ed that in this simple situation three approaches coincide
 one
through a �partition function� c or �� one through �coarse graining� and one using the
concept of �dimensions�� In a notion which we are about to introduce this reads as

fL��� � fG��� � fH���� ����
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� Multifractal spectra and the multifractal formal�

ism

We introduce now rigorously what has been motivated in the preceding section�

Much e�ort has been made in order to obtain rigorous mathematical extensions of the
aforementioned result ���� to more general cases �KP� CM� O� F�� AP� LV� R��� The
general setting is as follows�

Assume that a distribution of points in d�space is given in form of a measure �
 the
probability for a point to fall in a set E is ��E�� If this distribution is singular one cannot
describe it by means of a density and multifractal analysis proves useful in characterizing
the complicated geometrical properties of �� The basic idea is to classify the singularities
of � by strength� This strength is measured as a singularity exponent ��x�� called H�older
exponent� Usually� points of equal strength lie on interwoven fractal sets K�


K� 
� fx 
 IRd 
 ��x� 
� lim
B�fxg

log��B�

log jBj � �g� ����

which explains the name �multifractal�� Here� B � fxg means that B is a ball containing
x� and that its diameter jBj tends to zero� The geometry of the singular distribution � can
then be characterized by giving the �size� of the sets K�� more precisely their Hausdor�
dimension �F�


fH��� 
� dim�K���

This de�nition is most useful in purely mathematical settings� It is not required� though�
for the understanding of this paper� For the interested reader we refer to �F� AP� R�� LV�
for further details�

In applications� one assumes that � has bounded support� and considers a coarse grained
version fG� also called large deviation spectrum


fG��� 
� lim
���

lim sup

��

logN
��� ��

log ��


with the convention log � 
� ��� Here� N
 denotes the number of cubes C of size 
 with
coarse H�older exponent ��C� �roughly equal to ��� More precisely� denote by G
 the set
of all cubes of the form C � �l�
� �l� � ��
� � � � � � �ld
� �ld � ��
� with integer l�� � � � � ld
and with ��C� �� �� Then� we set

C� � ��l� � ��
� �l� � ��
�� � � �� ��ld � ��
� �ld � ��
��

��C� 
�
log��C��

log 

� ����

�The complement of the support is the union of the intervals with no measure� resp� over which a
function is constant�



��

and

N
��� �� � �fC 
 G
 
 ��C� 
 ��� �� � � ��g�

As is pointed out in �R�� PR� using C� instead of C in ���� greatly improves the theoretical
properties as well as the numerical behavior of fG� The reason for this is that C provides a
poor approximation of a ball centered in a point of the distribution �� especially in points
close to the border of the support of �� Since singular measures are typically supported
on fractals� these problems are present on all scales leading to wrong results� A further
advantage of using C� is the fact that the spectrum fG��� does not change when replacing
the continuous limit 
 � � by the discrete limit 
n � c��n �n� ��� Finally� we should
point out� that this choice 
n provokes no �border e�ects� for measures supported on an
interval of length c� In this special case C� may again be replaced by C without changing
the outcome� These properties have been used throughout our numerical analysis� For
the ease of notation we will write N �

n��� 
� N
n��� ���

Though tempting it is wrong to interpret fG as the box dimension �see �F� R��� of K��
This function fG is better explained in statistical terms
 Note �rst that the number N


of cubes in G
 behaves roughly as N
 � 
�D� where D� denotes the box dimension of the
support of �� It follows that fG��� 	 D� for all �� Now suppose that one picks a cube C
out of G
 randomly and determines its coarse H�older exponent ��C� 
� log��C��� log 
�
Then� the probability of �nding ��C� � � behaves roughly like

N
��� ���N
 � P
���C� � �� � 
D��fG���� ����

This is the statistical interpretation of fG� Note in particular that in the limit 
 � �
the only H�older exponent which is observed with non�vanishing probability is ��� where
fG���� � D��

What shapes of the spectra fH and fG can we expect!� Could they be trivial functions
�f��� � ���! Certainly not� since there is always at least �� with fG���� � D�� Let
give a simple argument for �self�similar measures� with D� � � using the Law of Large
Numbers �LLN�� A general and rigorous proof is obtained by combining theorem � below
with the fact that ���� � � �� ���

Write

��x� � lim
n��

� �

n
log� ��C

�
n�x�� � lim

n��
� �

n

nX
k��

log�
��C�

k�x��

��C�
k���x��

where Cn�x� is the unique cube in G���n containing x� Then� the assumption of self�
similarity means that the random variables log� ��C

�
k�x�����C

�
k���x�� are i�i�d� �compare

Section � and �R�� AP��� Denote the common expectation by ��� The LLN implies that
almost surely ��x� � �� when picking points x randomly with �uniform� distribution� i�e�
when picking C randomly in G
� This establishes the claim�

�Some answers of a general kind can be found in �LV��
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In special cases such as the binomial measure with m� � m� � ��� �uniform distribution�
�� is the only H�older exponent� More precisely� ��x� � �� � � for all x 
 ��� ��� fH���� �
fG���� � � and fH��� � fG��� � �� for � �� �� in this case� Such measures with only
one H�older exponent are called uniform or monofractal�

In general� other H�older exponents occur� For the binomial� e�g� we �nd ���� � � log��m��
���� � � log��m�� etc� Also� the coarse graining will show non�trivial spectra� i�e� on
every �nite level of approximation G
 one will have a whole histogram of coarse H�older
exponents ��I

�n�
k �� For � �� ��� however� the probability of �nding ��I

�n�
k � � � will

decrease exponentially fast to � as 
 � � ����� A rigorous proof of this fact is most
easily obtained � at least under certain conditions � by applying the Principle of Large
Deviations �LDP� of G�artner�Ellis �see �Ell��� Translated into our setting the LDP states�
in simple terms� that

Pn�� �

n
log� ��C

�
n�x�� � �� � �nc

����

with some scaling function c�� Note that c���� � � unless � � ��� A rigorous formulation
is the following


Theorem � �	Ell
 R��� Assume that the 
moment generating function�

c�q� 
� lim
n��

��
n

log� IE�exp �q log��C
�
n�x����

exists and is convex and di�erentiable for all q 
 IR� Then�

lim
���

lim
n��

�

n log �
Pn

� ����� �

n
log� ��C

�
n�x��� �

���� 	 �
�
� c����

where c���� � infq�q�� c�q�� is the Legendre transform of c�

So� it is natural to introduce the partition function ��q�

��q� 
� lim

��

logS
�q�

log 

with S
�q� 
�

X
C�G�

��C��q�

As a matter of fact� ��q� stands at the beginning of multifractal analysis and has since
played an central role �M� M	� FP� Gr�� HP� HJKPS� JKP� R�� LV��

It is notable that S
��� simply counts the number of cubes with non�vanishing measure�
Thus� ����� is actually the box�dimension of the support of �� i�e�

D� � ������
It follows then from the de�nitions that c�q� � ��q�� ���� � ��q� �D�� For the binomial
measure de�ned in Section � one �nds with � �

��q� � � log��m
q
� �mq

���



��

For other examples see Section � below�

Provided that Ellis� theorem applies� i�e� assuming that ��q� exists and is di�erentiable�
it follows that ���� holds with c� � fG����D�� i�e�

fG��� � � ����� ����

This has been termed the multifractal formalism� The similarity to the well�known
thermo�dynamical formalism �V� R�� is immediate �see also �R����

Since ��q� is obtained by averaging� it depends more regularly on the data than fG���
and is easier to compute� It is important to note� though� that it contains in general less
information than fG� Let us make this point more precise�

The partition function is always convex since S
�q� is convex for all 
� But it is not
necessarily di�erentiable in every q and the multifractal formalism may not hold for all ��
For some simple and convincing counterexamples see Fig� � and �R�� MR� RM�� RM�� LV��
It is natural� thus� to introduce the Legendre spectrum

fL��� 
� � �����

This spectrum is sometimes referred to as obtained by the method of moments�

While ���� may be wrong for certain �� the opposite relation holds for all q as is shown
in �R�� an d�R�


Theorem 


��q� � f �G�q� � inf
��IR

�
q�� fG���

�

As a �rst consequence� D� is indeed the maximal value of fG in general� Secondly�
fL � � � � fG

�� is the concave hull of fG� Thus�

fG��� 	 fL����

Thirdly� it follows that even a not everywhere di�erentiable ��q� determines fG��� at least
in its concave points� To be more precise let �� 
� � ��q�� for q 
 � and �� 
� � ��q��
for q � � denote the one�sided derivatives of ��q� which must exist since ��q� is convex�
Then �R�� R��

fG��
�� � q�� � ��q� � � ����� �q 
 ��

fG��
�� � q�� � ��q� � � ����� �q � ���

��	�

An alternative way of displaying the scaling of moments is through the so�called general�
ized dimensions

Dq 
�
��q�

q � �
�
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Besides D�� a notable value of Dq is �� � � ���� � D�� It has been termed information
dimension �Gr�� GP�� GP�� OWY�
 With respect to the given distribution � we have
��x� � �� � D� almost surely� For a binomial measure �� is given by ����

We conclude the section by noting that in all generality we have

fH��� 	 fG��� 	 fla�

This has been shown in �RM�� and in �R��� If equality holds for a particular measure �
then the multifractal formalism is said to hold for ��

� How to read a spectrum

Before listing some general rules on how to derive underlying properties of a measure
from the shape of its multifractal spectrum we give an intuitive interpretation of the
actual values ��� f���� seen in a spectrum�

��� Values

The multifractal spectra provide a global description of the singularities of the observed
measure �� The parameter � quanti�es the degree of regularity in a point x
 loosely
speaking� the measure of an interval �x� x�"x� � in applications usually the number of
events occurring in this interval � behaves as �"x�� ��������

For a uniform distribution one �nds ��x� � � for all x� More generally� for any a 
 �
the distribution with density xa�� on ��� �� has ���� � a and ��x� � � for all x 
 ��� ���
Values ��x� � � indicate� thus� a burst of events around x �on all levels� �bursts of bursts��
while ��x� 
 � is found in regions where events occur sparsely�

The spectrum fG��� captures how �frequently� a value ��x� � � is found
 the number
of dyadic intervals C of size "x with ��C� � � behaves as �"x��fG���� For the �almost
sure� value �� one has fG���� � D� which is necessarily the maximal value of fG� A more
precise characterization is given by �����

The spectrum fH��� gives the size of the �set of H�older exponent �� K� in terms of its
dimension�



��� Shape �	

��� Shape

In order to give an idea of how to extract information from the shape of a spectrum f
we proceed by giving examples for which the spectra are known explicitly� The plots of
Fig� � to 
 are obtained by �rst solving implicit equations for ��q� similar as the one for
the Binomial measure of Section �


mq
��

� �mq
��

� � ��

Applying then the multifractal formalism �which has beed shown to hold for these exam�
ples in �CM� AP� R��� one �nds the multifractal spectrum of the measure �or parts of it�
see below� by taking Legendre transform� The resulting graphs can be plotted by varying
the parameter q


��q� � � ��q� � ���� � q� ��q�� ��q��

The most simple shape of a multifractal spectrum is found for those measures for which
the multifractal formalism applies and for which � is a twice continuously di�erentiable
function� Such is the case for the binomial measure �see Fig� ��� as well as more general
self�similar measures� that is� measures with multiplicative rescaling structure �see below��
Obvously� the spectrum f � fL is then a smooth� concave function� with an overall shape
like the symbol � �see Fig� ��� These are properties which most spectra encountered in
the real world do not share�

Figure �
 The most simple shape of a multifractal spec�

trum is found for fL 
 �� with smooth � as here for

the binomial measure with m� 
 ���� m� 
 ���� and

r� 
 r� 
 ���� and r� 
 r� 
 ���� However� all spec�

tra of measures touch the bisector �dashed� and reach the
maximum D� 
 ���	�� Here� � is supported on the

unit interval which has dimension D� 
 �� The extremal

H�older exponents are �min 
 log������ log���� � ���� and

�max 
 log������ log���� � ������
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Here are some features which are common to all spectra of measures



 The spectrum of a measure touches the internal bisector of the axis�


 Moreover� for any measure f��� 	 � for all ��


 The spectrum touches the horizontal line through ��� D�� where D� � ������

 Moreover� f��� 	 D� for all ��

To prove the �rst two points we begin by noting that ���� � � because � 	 S
��� 	
�� Now� in the cases where f � � � the claim follows immediately by taking Legendre
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transform� But� even in the general case� i�e� when f � � � is not guaranteed� we have
always � � � f by theorem �� Now� if there was an � such that f��� 
 � then ���� �
f��� � � 
 �� a contradiction� Similarly� if there was � 
 � such that f��� 	 � � � for
all � then ���� 	 � � �� another contradiction� This proves the two claims�� The other
claims follow in a similar fashion�

Whenever a spectrum f fails to show a concave ��shape we have evidence that � is
not purely multiplicative� or self�similar� A search of models with similar features as
the observed spectra may reveal telling details on the structure of the distribution �� A
most prominent example is found with the left sided spectra of DLA �M�� MEH� RM��
where the shape of the spectrum hints to an in�nite rather than �nite set of multiplicative
rescaling laws present with DLA�

In the sequel we provide various examples with atypical spectra and explain the particular
appearances�

First� let us note a few generalizations of the binomial� For all of them� the multifractal
formalism is valid with smooth � as is shown in �AP� F�� and �R���


 Arbitrary contraction ratios ri instead of ���� More precisely� the ratio between the
length of the subintervals Ii����ink and the length of their �mother� Ii����in will be rk�
The invariance of � reads then as

���a� b�� � m����a�r�� b�r��� �m����a�r� � �� ��r�� b�r� � �� ��r���

�compare ���� and the formula for ��q� generalizes to

mq
�r�

�� �mq
�r�

�� � ��

As a consequence� ���� � � if the support is fractal� i�e� if r� � r� � � �compare
Fig� ���


 Arbitrary number n of subintervals instead of � 


n��X
i��

mq
i ri

�� � ��


 Random contraction ratios ri and weigths mi 


IE
X
i

mq
i ri

�� � ��

�In the �rst two points we have emphasized the assumption that the multifractal spectrum f be
computed from a measure� More generally� one could de�ne H�older exponents and spectra for functions
by replacing ��B	 in the de�nition of ��x	 �see �
�		 by the maximal increment of the function over the
interval �cube	 B and other quantities �compare �R��	� Then� the zero of � is typically not in 
� but say
in q 
 
�H � and the tangent to f which goes through the origin has slope 
�H �
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F(a)

a
0.0

0.0

F(a)

a
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0.0

Figure �
 The spectrum of the sum � � �� � �� of two measures which live on disjoint
supports is simply the maximum of the individual spectra� This will in general result in
a non�concave spectrum as shown in two cases here� The dashed parts show the internal
bisector of the axes and the spectra of the binomial measures �� and �� where they do
not coincide with the spectrum of ��

Second� a few examples with non�concave spectra� Note� that in particular the multifractal
formalism can not hold here� The easiest way of breaking the concavity�property is by
considering sums of binomial measures � � �� � ��� If the supports of �� and �� are
disjoint we have

f��� � max�f����� f����� ��q� � min����q�� ���q���

which is valid for both� fG and fH� It does not and cannot hold� however� for fL simply
because the maximum of concave functions is not concave �see Fig� ��� With this remark�
it is now clear that the multifractal formalism must break down �here
 fH � fG � fL� for
sums �� � �� unless their spectra are identical�

The failure of the multifractal formalism and the non�concave shape of fG is in this
example a direct consequence of a sort of phase transition
 At the ��value where the
irregularity of the spectrum fG occurs� the major contributor to the set of singularities
K� changes from �� to ���

Similar phenomena of phase transitions have been observed with the considerably richer
class of self�a�ne measures which are invariant similar as in ��� but with general a�ne
maps of the plane replacing x�� and x�� � ��� �R�� Here� ��q� is often found to be
di�erentiable� thus at least fG��� � fL���� The phase transition occurs here as the main
contributor changes between the two eigendirections� i�e� as it changes from the horizontal
rectangles to the vertical rectangels and vice versa� See Fig� 	 through  �

Thus� we take departures from concavity of the spectrum as evidence of the absence of
a �universal� multiplicative law� thus� in the most simple �rst assumption as evidence for
the presence of several measures following such laws�
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F(a)

a

.

1.0

1.3

1.3 1.5

Figure 	
 An image of a self�a�ne measure with a �circular� appearance� The phase
transition observed here is mild
 ��q� is once but not twice di�erentiable� The sudden
end in the trajectory of f corresponds to ��q� becoming linear�

Less violent departures from concavity are linear parts in the spectrum� In the cases
observed so far� this comes along with fH � fG and may be produced either by a high
order zero of a limiting density or a hierarchy of atoms� In the �rst case the measure is
in fact nonsingular� a fact that can be encountered in situations as obvious as in Fig� 

and as unexpected as in Fig� �� �RM���

1/5

4/15

2/5 2/15

Figure �
 On the right the image of a self�a�ne multifractal composed of ������ points
obtained by a random algorithm� The a�ne maps and the probabilities involved in its
construction are indicated on the left�
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Figure �
 On the left the spectrum of the self�a�ne measure given in Figure � above� Its
asymmetry re#ects the fact that contraction ratios are asymmetrical with respect to the
weights p� � ��	� p� � ���	� p� � ��	 and p	 � ���	� On the right the spectrum when
changing the weights to p� � p� � p� � p	 � ���� With this choice� which is of course
asymmetrical as well� we �nd a mild phase transition
 the structure function ��q� is still
smooth� This results in a concavity of the spectrum which is disturbed but not destroyed�
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