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Abstract— We present a search-based planning approach for
controlling a quadrupedal robot over rough terrain. Given a
start and goal position, we consider the problem of generating
a complete joint trajectory that will result in the legged robot
successfully moving from the start to the goal. We decompose
the problem into two main phases: an initial global planning
phase, which results in a footstep trajectory; and an execution
phase, which dynamically generates a joint trajectory to best
execute the footstep trajectory. We show how R* search can
be employed to generate high-quality global plans in the high-
dimensional space of footstep trajectories. Results show that
the global plans coupled with the joint controller result in a
system robust enough to deal with a variety of terrains.

I. INTRODUCTION
We consider the problem of planning for a quadrupedal

robot over rough terrain. Traditionally, a solution to this
problem may involve two parts: (a) sensing to perceive and
create a model of the terrain in front of the robot and (b)
planning and control to negotiate the rough terrain. In this
work, we focus solely on the second part of the problem,
namely planning and control for locomotion over rough
terrain. We make the assumption of precise knowledge of the
terrain and pose of the robot with respect to the terrain. This
assumption is mostly justified by our use of a very accurate
motion capture system and precise laser scans of the rough
terrain. In spite of this assumption, creating a deliberate plan
that will take the robot safely from one location to another
remains an extremely challenging problem.

This problem can be approached using either a local or
global planning approach. A local planning approach in [1]
first planned an overall trajectory for the body of the robot
and then planned over a finite horizon of footsteps. This
approach had the benefit of planning over a small horizon and
thus the planner could react faster to perturbations since it
was always replanning the next step from the current position
of the robot. This planner, however, has the disadvantage of
getting stuck in local minima.

In contrast, a planner that pre-plans a global path from
the start position all the way to the goal can avoid such
local minima. Further, the actual plan execution is much
faster since computationally intensive planning decisions do
not have to be made in realtime and planned trajectories
can be directly played back on the robot. A global planning
method does have the disadvantage of greater initial planning
time and the need for expensive replanning when the actual
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trajectory of the robot deviates from the planned trajectory.
Replanning can be minimized by designing a controller
that can accurately track the trajectories that the planner
generates. Replanning is also minimized by choosing the cost
function for the planner appropriately so that the planned
trajectories lie well within the capabilities of the controller.

The challenge for a global planner lies primarily in the
high dimensionality of the robot’s state and action spaces.
With the capabilities of current computing and search tech-
nology, it is necessary to exploit structure in the problem to
make finding plans in this space a feasible task. We therefore
present a decomposition approach based on a combination
of global planning in the space of footstep trajectories and
execution of this global plan online by solving for the re-
maining degrees of freedom necessary to execute the footstep
trajectory. Effective planning in this high-dimensional space
is made possible by our use of the R* search algorithm,
which combines aspects of deterministic and randomized
search to produce a feasible solution that also approximately
minimizes our cost function. The effectiveness of the search
enables us to specify a detailed cost function that takes
into account many factors contributing to the stability and
efficiency of the trajectory, thus (hopefully) maximizing the
probability of the trajectory’s successful execution.

A. Previous work

Statically stable walking has been widely studied in [2],
[3], [4], [5]. Recent research using the LittleDog platform
[6], [7], [8], [1], [9] has led to further exploration of
quadruped gaits for locomotion over rough terrain. How-
ever, there has been limited recent research into the use of
graph-based planners for legged locomotion. In particular,
Eldershaw and Yim [10] and Hauser et. al. [11] have
demonstrated graph-based planners for legged vehicles based
on Probabilistic Roadmaps (PRM), a typical randomized
planning algorithm. These techniques suffer from the short-
coming that the generated plans, though feasible, may be
far from optimal. Post-processing may therefore be required
to generate acceptable results [11]. Furthermore, in both of
these cases ([10],[11]), the PRM-based planner is part of a
greater planning hierarchy, which increases the complexity
of the overall architecture. In our case, a single graph-based
planner is sufficient to efficiently generate plans that can
subsequently be followed by a reactive controller.

We also note that computational efficiency is of the utmost
importance in our application. Kolter et. al. [8] address the
efficiency issue by first planning a rough trajectory for the
robot’s center of mass without considering the trajectory of
its feet. Footsteps are then planned to roughly follow this tra-



jectory while considering appropriate constraints. The initial
center of mass trajectory provides a restricted search space
to allow a simpler planner to be used to find footsteps. This
restriction step may eliminate good plans from consideration
before they reach the second-stage planner. Our planner does
no such initial approximate pruning of the state space, and
hence does not suffer from this problem. It is nonetheless
efficient enough to generate plans of sufficient quality in
short order.

B. Organization of this paper

This paper is structured as follow. We proceed by first
discussing some important preliminary issues regarding
quadrupedal walking that will simplify the development of
our method (although we note that an extension to arbitrary
leg configurations would be straightforward). We then de-
scribe the graph-based planner and the controller used to
execute the plans. Finally, we present experimental results
and conclusions.

II. PRELIMINARIES

It will help the exposition of our method to first briefly
mention some assumptions we make about structure of the
problem and the nature of the plans we will generate, and
why these assumptions are valid.

First, we will assume a quadrupedal robot. This assump-
tion is convenient for our purposes, but it is not critical;
extending the method described in this paper to the case of
N ≥ 4 legs is straightforward. Fewer legs would necessarily
violate the following assumption. Namely, we also restrict
our attention to plans in which the robot is always statically
stable. This implies that the robot’s center of mass remains
within the convex hull of its supporting feet at all times. The
convex hull of supporting feet is otherwise known as the
support triangle in the quadrupedal case, and is illustrated
in Figure 1. In other words, this assumption implies that
the robot will only raise one leg at a time, while the others
remain stationary. This may result in a crawl gait, where the
legs are raised in a specific, periodic pattern. Our plans are
not forced into any particular gait, though they are slightly
encouraged to follow a crawl.

Although statically stable walking tends to be much slower
than dynamic locomotion, it is simple and somewhat error-
tolerant, which is of the utmost importance in dealing with
very rough terrain. Although dynamic legged locomotion
over rough terrain is certainly possible in some cases with
comparatively simple controllers [12], it is generally an
extremely difficult problem due to the added complexity
induced by the dynamics of legged locomotion. We therefore
focus on the (still-difficult) problem of finding effective,
statically stable plans.

Finally, we assume precise knowledge of the rough terrain.
A motion capture system registers the robot and terrains. The
terrains are laser mapped a-priori and the controller has full
knowledge of the terrains. The controller also has knowledge
of the state of the robot, namely all the joint angles and the
pose of the robot.
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Fig. 1. Figure illustrating a possible walking sequence. The blue, solid
triangle is the support triangle; i.e., the projection onto the ground of the
triangle formed by the three supporting feet. The point labeled 3 is the
incenter of the support triangle. The incircle radius is the distance from 3 to
5. The hind-right foot, initially at 1, is planted at 2, at which point the green,
dotted triangle becomes the new support triangle. A highly conservative
controller would initially have the center of mass at 3 and move it to 4,
the incenter of the new support triangle, hence moving the center of mass
backwards. The distance from 3 to 4 is the COM travel. After relocating
the center of mass, the robot moves its front-right leg from 6 to 7.

III. THE METHOD
We begin by notionally constructing a stance graph, which

describes possible transitions between foothold configura-
tions of the robot. The goal of our footstep planner is to
find a low-cost path through this graph that leads from the
initial stance to a goal stance. This plan is incomplete in the
sense that it includes only partial stance configurations, and
does not include detailed joint positions or solutions for joint
movements necessary to effect the plan. At runtime, a sepa-
rate controller fills in these details, takes into account small
plan deviations, and executes the joint controls necessary to
follow the plan. We will first describe how the stance graph is
constructed and how costs are assigned to paths in the graph.
We will then describe details of the graph search algorithm
and conclude this section by describing the controller used
to follow the path.

A. Graph construction

Formally, we define the stance graph as a tuple (S, E),
where each node s ∈ S is a stance, and an edge e ∈ E ⊆
S×S in the graph represents a plausible transition from one
stance to another. A stance is a tuple (ffl, ffr, fhl, fhr, l) of
(in our case) four feet locations fi ∈ R2 and an index l rep-
resenting the next foot to move in the nominal gait. The feet
positions are defined in Cartesian coordinates with respect
to some two-dimensional coordinate system level with the
nominal ground. Subscripts fl, fr, hl, hr represent the front-
left, front-right, hind-left, and hind-right feet, respectively.

It is neither desirable nor necessary in our method to
actually store the entire stance graph in memory at once.
Instead, we only require a way to generate successor stances
(i.e., nodes adjacent to a given node in the stance graph)
of any given feasible stance. In order to do this efficiently,
we employ two fast pruning techniques; the first restricts



footholds to a sample of plausible candidate footholds, and
the second restricts successor stances to those that could be
reached by reaching for a candidate foothold in one step.

Candidate foothold selection is done as a preprocessing
step that occurs once before planning. The preprocessing
yields a set of “good” footholds spanning the entire terrain
under consideration, as shown in Figure 2. These footholds
are sampled with likelihood inversely proportional to the ter-
rain cost, which is described in section III-B.8. Additionally,
footholds are sampled so as to maintain a desired density per
unit area, which can be varied to trade-off planning speed
against precision.

Given a query stance, we can now generate a successor
stance by examining candidate footholds in the workspace of
the next foot to move according to the nominal (crawl) gait.
A “null move” successor is always generated to allow the
planner to bypass the nominal gait, with a certain associated
cost. The other successors are generated by calculating an
approximate workspace for the next foot to move. This
calculation is necessarily approximate, as the state does not
include the full pose of the robot, which affects the foot
workspace, along with the specific shape of the terrain.

Therefore, we compute a nominal body pose that approxi-
mates the pose the controller will effect when executing this
plan. Given this nominal body pose, we compute footholds
that are approximately reachable from that pose. This is
efficiently implemented by modeling the foot’s workspace
as a rectangle on the ground plane positioned with respect
to the shoulder of the moving leg. A set of valid footholds
is then generated by including all footholds on the terrain
that fall within this rectangle. We note that a rectangular
workspace was chosen for simplicity and efficiency, though
this shape does not exactly match the actual workspace of
the foot.

Since the successor-generating subroutine is called repeat-
edly by the planner, it is essential that it be as efficient as
possible. We therefore precompute the workspace calculation
by discretizing the set of possible support triangles. By
exploiting symmetry and carefully choosing an efficient
parametrization of the set of possible support triangles,
we are able to feasibly store workspaces for all relevant
configurations, using a 1cm resolution for footholds.

B. Cost function

As previously mentioned, we are not only interested in
finding a feasible path of stances leading to the goal; we
would also like to find one that is approximately optimal, in
some sense. We define a path to be an ordered list of edges
where each edge (si, sj) represents a transition between two
stances si and sj . We define the cost of a path c(P ) to be
the sum of edge costs c(si, sj) along the path P where the
edge cost is the sum of the stance transition cost and the cost
of being in stance sj itself.

c(P ) =
∑

(si,sj)∈P

c(si, sj) (1)

Fig. 2. Illustration of footholds selected for the rocks-with-gap scenario
used in experiments

An edge (si, sj) may represent a null move if si and sj

have the same foothold positions but different indices for
legs to be picked up, i.e. (ffl, ffr, fhl, fhr) are the same for
si and sj but li 6= lj . In this case, c(si, sj) is a constant
cost chosen to discourage the plan from skipping legs in the
gait cycle. Thus, the plan may choose to skip a leg in the
gait cycle for this cost, or it may follow the gait cycle at no
additional cost. For all other edges, for simplicity, c(si, sj)
is a nonnegatively weighted sum of nonnegative component
costs, with biases that can be used to set a nominal value for
each component cost:

c(si, sj) =
K∑

k=1

max(wk(ck(si, sj)− bk), 0) (2)

This obviously implies nonnegative costs, but it also
implies monotonicity of cost, which greatly simplifies our
choice of a heuristic function later on. Appropriate weights
wk were determined through a combination of intuition and
experimentation. Though the simple linear form of the total
cost admits more sophisticated ways of determining the
weights (e.g., learning them), this issue is beyond the scope
of this paper.

We now describe the component cost functions. As a
whole, they are designed to encourage stable, robust plans
that are also as efficient as possible.

1) Center of mass travel: the distance that the center of
mass would move in moving from the incenter of the first
support triangle to the incenter of the second support triangle
(Figure 1). The incenter is the point in the support triangle
farthest from all edges, and is therefore the most stable
location for the center of mass with respect to perturbation
or uncertainty, in one sense. Summing this distance along
the path yields the total distance traveled by the center of
mass. This cost is critical for the purposes of speed, since
it discourages the center of mass from moving backwards
(away from the goal). Unnecessarily moving the center of
mass is costly from both time and risk perspectives.
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Fig. 3. Figure illustrating collision cost. Bars are proportional to terrain
height, and circles indicate initial and final feet positions. Collision cost is
proportional to the length denoted h in the figure.

2) Overhead: a constant cost associated with each step
made. This encourages plans with few steps, since steps
incur overhead associated with shifting the body and other
miscellaneous effects. Note that this cost does not necessarily
scale with the center of mass travel cost, as in the case of
pure rotations, for instance.

3) Incircle radius: In order to make the plan as robust as
possible, it is helpful to ensure that the center of mass can
always move to a location such that small perturbations do
not result in the center of mass falling outside the support
triangle. The incircle radius is the radius of the largest circle
inscribed in the support triangle, and is equal to the minimum
distance from the incenter to any boundary. Therefore, it
is helpful to penalize support triangles with small incircle
radii, as these correspond to support triangles where it is
not possible to move the center of mass far away from the
support triangle boundaries. We assign a cost exp(−αr(ri−
r̂i)) to a radius ri, where r̂i is a nominal minimum incircle
radius, and αr is a parameter.

4) Reachability: Although obviously unreachable stances
are rejected by the successor-generating function, it may
generate stances that may yet be unreachable due to a variety
of factors. The reachability cost takes some of these factors
into account and assigns a cost to the stance transition corre-
sponding to the likelihood that the transition is unreachable.

This is done by computing nominal poses for both the
initial and final stances, given the footholds, the terrain,
and the expected controller behavior. A cost is computed
based on the distance from the initial shoulder position to
the desired foothold; a distance exceeding the leg length
is penalized quadratically, thus assigning a high cost to
footholds unreachable from the initial stance. Similarly, after
shifting the center of mass to the new support triangle, one
of the legs may get “left behind” (i.e., overextended). A cost
is therefore assigned in the same way for this leg, and the
two costs are summed to form the reachability cost.

5) Collision: Two types of collisions are accounted for in
the cost function: collisions of the feet with the terrain, and
collision of the body with the terrain. A body collision cost
is computed as the maximum height of the terrain under the
body, subtracting the mean height of the feet. A foot collision
cost is computed as the maximum terrain height exceeding
the height of a line connecting the initial and final footholds,
as depicted in Figure 3

1 while sgoal is not expanded
2 select unexpanded state s ∈ Γ (priority is given to states not labeled AVOID)
3 if path that corresponds to the edge bp(s) → s has not been computed yet
4 try to compute a path from bp(s) to any state equivalent to s using ARA*
5 if failed then label state s as AVOID
6 else
7 create a new state s′ to which a path was computed
8 add s′ and edge bp(s) → s′ to Γ, set bp(s′) = bp(s)
9 remove s from memory
10 update g(s′) based on the cost of the found path and g(bp(s′))
11 if g(s′) > w h(sstart, s′) label s′ as AVOID
12 else //expand state s (grow Γ)
13 let SUCCS(s) be K randomly chosen states at distance ∆ from s
14 if goal state within ∆ or s = sstart, then add it to SUCCS(s)
15 for each state s′ ∈ SUCCS(s)
16 add s′ and edge s → s′ to Γ, set bp(s′) = s

Fig. 4. High-level overview of the modified R* search

6) Foot height variance: The variance of the feet height
is penalized in order to encourage the robot to stay level.
High variation in the feet heights is usually associated with
undesirable rolling and pitching, which may cause instability.

7) Terrain slope: A high cost is assigned to hind feet
placed on slopes whose normals are opposed to the direction
of motion, which is a common cause of slippage.

8) Terrain cost: A high cost is also assigned to footholds
that are unstable. A foothold is stable if it does not reside
on the slope and small deviations from the foothold location
do not result in drastic drops in heights. On the other hand,
a foothold that is a local minimum in the height terrain is
considered to be stable since the slippage is less likely to
occur. The terrain cost is also set high for the footholds that
are surrounded by footholds of high height because the robot
foot can easily get stuck at such a location.

C. Graph search

We use a slightly modified version of R* [13] to search the
stance graph. Pseudocode is given in Figure 4. R* operates
by constructing a small graph Γ of sparsely placed states - in
our case, stances - connected to each other via edges. Each
edge represents a path in the original stance graph in between
the corresponding states in Γ. In this respect, Γ is related to
the graphs constructed by randomized motion planners [14],
[15]. The difference is that R* constructs Γ in such a way
as to provide explicit minimization of the solution cost and
probabilistic guarantees on the suboptimality of the solution.
To achieve these objectives, R* grows Γ in the same way
A* grows a search tree.

At every iteration, R* selects the next state s to expand
from Γ (see figure 4). While normal A* expands s by gener-
ating all the immediate successors of state s, R* expands s
by generating K states residing at some distance ∆ from s
(lines 12-16). The distance ∆ is some metric that measures
how far two states are from each other. In our domain,
this metric is Euclidean distance in between the center of
mass positions corresponding to these states. If a goal state
is within ∆ from state s then it is also generated as the
successor of s. A goal state is generated as any state whose
center of mass is within the desired goal location. We also
add a goal state to the list of successors of state sstart. This is
the first modification from the original R* algorithm [13] that



allows us to avoid randomization in planning if a problem
can be solved using a single execution of a deterministic
search. R* grows Γ by adding these successors of s and
edges from s to them.

A path that R* returns is a path in Γ from the start state
to the goal state. This path consists of edges in Γ. Each
such edge, however, is actually a path in the original stance
graph. Finding each of these (local) paths may potentially
be a challenging planning task. R* postpones finding these
paths until necessary and tries to concentrate on finding the
paths that are easy to find instead. It does this by labeling the
states to which it can not find paths easily as AVOID states.
Initially, when generating K successors, none of these states
are labeled as AVOID - R* does not try to compute paths
to all of the generated states. Instead, only when state s is
selected for expansion does R* try to compute a path from
the predecessor of s, stored in the backpointer of s bp(s),
to any state equivalent to s (lines 3-11). Two states s and s′

are assumed to be equivalent to each other if the distance in
between their center of masses is within small delta (three
centimeters in our experiments).

While the original version of R* uses weighted A* (A*
with heuristics multiplied by some weight w > 1) to compute
local paths, our version of R* uses ARA* [16] to compute
them (line 4). ARA* is an anytime version of A* that tries to
compute a potentially highly suboptimal solution quickly and
then tries to improve the solution as planning time allows.
This allows us to improve the quality of transitions, if time
permits us to do so.

R* stops the ARA* search, however, if it fails to find the
path easily. (Within few seconds.) If it does fail, then R*
labels state s as AVOID state since it assumes that it will
be time-consuming to find a path to state s. If ARA* search
does find a path, then the cost of the found path can be used
to assign the cost of the edge bp(s) → s. The cost of the
edge and the cost of the best path from sstart to bp(s), stored
in g(bp(s)), can then be used to update g(s) in the same way
A* updates g-values of states.

R* provides probabilistic guarantees on the suboptimality
of the solution. The uncertainty in the guarantee is purely
due to the randomness of selecting K successors during
each expansion. For a given graph Γ, on the other hand,
R* can state that the found path is no worse than w times
the cost of an optimal path that uses only the edges in
Γ. To provide the suboptimality guarantees and minimize
solution costs while avoiding as much as possible the states
labeled AVOID, R* selects states for expansion in the order
of smaller f(s) = g(s) + w h(s)), same as in weighted A*.
However, it selects these states from the pool of states not
labeled AVOID first. Only when there are no more such
states left, R* starts selecting AVOID states (in the same
order of f -values). In our domain, the heuristics h(s) is set
to Euclidean distance in between the center of mass of state
s and the desired goal location.

D. Plan execution

The output from the foothold planner is an ordered list of
stance transitions (si, sj) for the robot to follow. Each stance
transition requires moving only one foot of the robot. The
planner does not specify a body trajectory or joint trajectories
to achieve the desired footholds. Thus, the controller must
compute and specify time-parameterized trajectories for the
body and legs. The planner takes into account several factors
like static stability, reachability and speed. However, the
controller still must design the body trajectory carefully to
account for small deviations from the plan. In addition to
admitting static stability, the body trajectories must avoid
collision with the terrain.

Let P be a path through the stance graph generated by
the planner. Let pi ∈ P, i = 1, . . . , n denote the ith stance
transition in the path where n denotes the total number of
stance transitions in the path. The three feet that stay in
contact with the ground in the ith stance transition form the
triangle of support for the current stance.

We will now present the strategy followed by the con-
troller. We break the strategy into three parts (a) the motion
of the projected (x, y) positions of the center of gravity of
the robot, (b) control of the roll, pitch, yaw and height of
the center of gravity of the robot and (c) control of the flight
leg. Note that the body of the robot has a significantly higher
mass than the legs of the robot and thus we consider the
center of gravity of the robot to be the center of gravity of
the body alone. Further, the origin of the local coordinate
system of the robot is placed at the center of gravity of the
body and thus we can decouple the strategies for the different
degrees of freedom in this manner.

1) Motion of projected center of gravity: Intuitively, the
controller tries to minimize the time spent by the robot in
quad-support, i.e. the time spent with four feet on the ground.
Each transition between stances may consist of two parts
(a) a flight phase where the body of robot is moving with
three legs in contact while the flight leg moves to the next
foothold and (b) a quad phase where the body of the robot
is moving with four feet on the ground. The quad phase
facilitates the motion of the body to a new pose where it
is possible to initiate the flight phase of the next leg to be
picked up. However, we will show that the quad phase can be
eliminated from alternate stance transitions by an appropriate
choice of intermediate body poses.

Consider the robot to be initially in a stance sk with the
projection of the center of gravity of the robot onto the XY
plane given by the point P s

k as shown in Figure 5. The center
of gravity of the robot lies within its current triangle of
support (denoted by Tk in Figure 5). The controller must
now move the robot to the next stance sk+1 specified by the
planner. The first step in the stance transition is to initiate the
flight phase of the leg with index lk. During the flight phase,
the robot can move its body to any point within the current
triangle of support and still satisfy static stability. The flight
phase may need to be followed by a quad-support phase.
The choice of target body poses for the flight and quad-
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Fig. 5. Trajectory of projected position of center of gravity for transition
between two stances with overlapping triangles of support.
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Fig. 6. Trajectory of projected position of center of gravity for transition
between two stances whose triangles of support do not overlap.

support phases depends on the current stances and the next
two stances chosen by the planner. There are two different
cases depending on these stances that the controller needs to
deal with.

Case 1
There is an overlap between the current triangle of support

for the robot and the triangle of support corresponding to
the next stance (Figure 5). This occurs when the foot lk+1

specified for pickup in the next stance is not diagonally
opposite to the current foot lk being picked up. In this case,
the robot chooses a final body pose for the flight phase where
the center of gravity of the robot is at the centroid (P f

k in
Figure 5) of these two triangles of support corresponding
to pk and pk+1. Further, the quad-support phase of the
motion for the transition between stances is eliminated. The
projected motion of the center of gravity of the robot in the
flight phase is along the line from P s

k to P f
k .

Case 2
There is no overlap between the current triangle of support

and the next triangle of support. This occurs when foot lk+1

is on the opposite side of the robot with respect to foot lk.
This transition between stances now requires a quad-support
phase after the flight phase to get the projected center of
gravity over the common edge between the two triangles
of support. During the flight phase of leg lk, the controller
first moves the projected center of gravity to a point P f

k (see
Figure 6) close to the common edge of support while keeping
a distance δ away from the edge.

This reduces the distance traveled in the quad-support
phase where the controller moves the projected center of
gravity to a point P q

k within the next triangle of support,
again at a distance δ away from the common edge between
the two support triangles to provide a margin of stability
for the next flight phase (corresponding to the next stance

transition). The controller chooses not to move completely
to the incenter of the next triangle of support, electing
instead to travel a smaller distance in quad-support while
still maintaining a reasonable margin of stability.

The choice of P f
k and P q

k depends on the nature of the
next two stance transitions. If the triangles of support for
the next two stances overlap (as in Figure 6), P f

k and P q
k

are chosen on the line joining the current position P s
k of the

projected center of gravity and the incenter P c
k of the overlap

region. If the triangles of support of the next two stances do
not overlap, P f

k and P q
k are chosen on the line joining P s

k

and the incenter of the next triangle of support.
It is possible that at the beginning of a plan step, the

controller needs to move the projected center of gravity into
the triangle of support before initiating the flight phase of
the leg to be picked up. This happens in the first step of
the plan where the robot starts off in a nominal position
with all four feet on the ground and must first move its
projected center of gravity into the appropriate triangle of
support before initiating the flight phase.

2) Control of the roll, pitch, yaw and height of the body:
We will now specify the control strategy for the other four
degrees of freedom of the body, i.e. the roll, pitch and yaw of
the body and the height of the body above the ground. The
controller chooses target values for each of these degrees
of freedom and designs body pose trajectories to achieve
the target values at the end of the flight phase of a stance
transition. The controller uses these degrees of freedom
mainly to avoid collisions of the body with the terrain, to
allow generation of collision free trajectories for the legs
and increase the reachable workspace for the legs so that the
feet can reach the desired final footholds.

The roll degree of freedom is used to allow easier pickup
and collision avoidance for the flight leg by increasing the
workspace available to it. However, excessive rolling motions
of the robot can easily destabilize it and so the controller only
specifies very small rolling motions.

The yaw of the robot is controlled to keep the body of
the robot centered between the two sets of feet on the left
and right sides. Given a stance p = (ffl, ffr, fhl, fhr, l), the
desired yaw γd is calculated using the sum of the vectors
joining the left and right sets of feet of the robot, i.e.

γd = atan2(fy, fx),

where,

f = (fx, fy) = (ffr − fhr) + (ffl − fhl).

The target pitch of the robot at the end of a stance
transition is based on the difference between the average
positions of the front and rear feet of the robot in the next
stance. The pitch of the robot thus follows the contours of
the terrain. The controller pitches the front of the robot up
when the front feet are higher than the rear feet (e.g. when the
robot is climbing up), and it pitches the robot down when the
front feet are lower than the rear feet (i.e., climbing down).
Note that the target pose of the robot is based on the position
of the feet in the next stance. Thus, if the stance transition



involves picking up a front leg and putting it higher on a
step, the controller simultaneously pitches the body up. This
body motion is essential to make the new foothold of the
front leg reachable.

The height of the robot is the only additional parameter
available to the controller since all the other degrees of
freedom for the pose of the body at the end of the stance
transition have been chosen. The controller searches through
a pre-defined range of body heights and checks explicitly
for reachability of the next foothold with the given target
pose. It chooses the highest height in this range for which
the desired foothold is reachable.

3) Foot flight trajectories: The control strategy detailed
above specifies a complete body trajectory for the stance
transition. In addition, the controller must also specify tra-
jectories for the flight phase of the leg that will be moved
to the new foothold as part of the stance transition. The leg
trajectory is designed so that the foot of the robot follows the
contour of the terrain. Other alternatives include implement-
ing trapezoidal or rectangular trajectories where the foot is
raised a constant height above the ground. However, such
trajectories often lead to workspace violations or require
large motions of the joints and thus cannot be executed in
short times. Minimizing the height through which the leg is
lifted reduces the demands on the actuators and results in
faster trajectories to achieve the desired foothold. Figure 7
shows foot trajectories designed by this controller to move
the front left leg forward to the desired foothold over a
variety of terrains.

4) Trajectory time parameterization: The speed of exe-
cution of the trajectories is a key parameter that determines
the speed of completion of the gait and the robustness of
the gait to disturbances. Executing faster gaits places greater
demands on the actuators of the robot and so we modify
the trajectories online to prevent saturation of the actuators.
This is achieved by slowing down the gaits at points where
the controller sees the torques coming close to saturation.
However, since speed of completion is a primary objective,
trajectories are also sped up in cases where the actuators are
much below the saturation torques.

IV. EXPERIMENTAL RESULTS

We implemented and tested our approach on LittleDog,
a small quadrupedal robot built by Boston Dynamics. Our
experiments consisted of attempting to make LittleDog cross
a variety of rough terrains using our method. As mentioned
earlier, we assume accurate knowledge of the terrain and the
pose of LittleDog with respect to the terrain. To obtain this
information, we use a Vicon optical motion capture system to
track the poses of both LittleDog and the terrain. The terrain
consists of multiple rigid “terrain boards” that have been
accurately scanned with a laser scanner to produce height
maps. Fusing all this information yields a single, globally-
referenced height map and LittleDog’s pose with respect to
the same reference frame. Figure 7 shows visualizations of
the results of registering the terrain boards and LittleDog
using the motion capture data.

We validated our method by applying it to the four
scenarios depicted in Figure 7. In each scenario, LittleDog
was assigned a goal location on the terrain about 1.8m
away from its initial position that required it to traverse
irregular terrain. Hazards on these terrains included various
combinations of gaps, slopes, high steps, rocks, and crevices,
as well as other challenges. We allowed the R* planner to
plan for 85 seconds in each case, using a single-threaded C
implementation running on a dual-core, 3 GHz Intel Xeon
processor. We then executed the plans using our controller.
This process was repeated ten times for each of the four
terrain configurations, yielding the results shown in Table I.
A trial was considered successful if the robot managed to
reach the goal without falling over or becoming stuck. Video
stills from an accompanying video of a successful trial are
shown in Figure 8.

To provide a baseline for comparison, we also modi-
fied our R* implementation slightly to transform it into a
weighted A* implementation. We then used the weighted
A* planner to perform trials on the rocks-with-gap scenario,
while using the same controller as in the other experiments.
The ε parameter was set to the same ε as the starting ε
used in the R* trials. Table II summarizes the outcome of
this experiment. In each trial, the weighted A* planner did
successfully generate a feasible plan; however, the costs of
these plans were high compared to the plans generated by
R*, indicating a much higher risk of failure. Attempting to
execute these plans therefore predictably resulted in zero
successes in ten trials, whereas executing the R* plans
resulted in seven successes in ten trials.

This experiment illustrates both the ability of the R*
planner to adequately minimize the cost function and the
need to adequately minimize the cost function in the first
place. Simply finding feasible plans, as a more traditional
randomized planning algorithm might produce, is not suffi-
cient to ensure success in this domain.

An analysis of the failures of the R* experiments yielded a
few common causes. In multiple cases, failure resulted from
a knee or other leg part colliding with the terrain. Our present
cost function only explicitly penalizes feet collisions. Since
the absence of a foot collision along a trajectory does not
imply absence of collision with some other part of the leg,
this is to be expected. Slippage was also a major cause of
failure, particularly on the rocks board. Although some of the
terrain costs try to mitigate the risk of slippage, uncertainty in
foot placement tends to make it very difficult to completely
eliminate the risk.

V. CONCLUSIONS

We have presented a search-based planning and control
system for a legged robot over rough terrain. Central to
our system is the planning of a trajectory of footholds
using R*, a search-based method that combines strengths of
both deterministic and randomized planning methods. This
planner approximately minimizes a pathwise cost function
that encourages various stability, robustness, and efficiency
metrics. We have also presented a controller that is able to



(a) Sloped logs w/ gap (b) Slopes
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Fig. 7. Renderings of different terrain scenarios along with planned
footsteps as LittleDog executes plans from the experimental trials.

Fig. 8. Video stills from accompanying video of a successful trial on the
rocks-with-gap scenario.

Scenario Success rate Mean speed (cm/s)
Sloped logs w/ gap 90% 2.95
Slopes 70% 2.35
Steps 50% 1.98
Rocks w/ gap 70% 3.13

TABLE I
RESULTS OF EXPERIMENTS ON LITTLEDOG ROBOT WITH R* PLANNING.
10 TRIALS PER SCENARIO, SPEED AVERAGED OVER SUCCESSFUL RUNS

Planner Success rate Mean cost Cost st. dev.
R* 70% 1032 51.5
weighted A* 0% 3224 244.9

TABLE II
COMPARISON OF R* AND WEIGHTED A* PLANNERS ON

ROCKS-WITH-GAP TERRAIN

effectively follow the trajectories generated by the foothold
planner, thereby showing that this particular decomposition
approach is feasible.

Our experiments have demonstrated the feasibility of using
our system to control an actual quadruped over rough terrain.
However, we have also identified some common failure
modes that will need to be addressed in the future to
further improve reliability and robustness. In particular, it is
anticipated that better reactive recovery methods will greatly
help improve the reliability of our system. Although other
details such as improved collision modeling may also help,
they come at the expense of requiring greater computational
effort, which may degrade overall performance.
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