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ABSTRACT

Intervertebral disc herniation is a major reason for lower back pain (LBP), which is the second most common
neurological ailment in the United States. Automation of herniated disc diagnosis reduces the large burden
on radiologists who have to diagnose hundreds of cases each day using clinical MRI. We present a method
for automatic diagnosis of lumbar disc herniation using appearance and shape features. We jointly use the
intensity signal for modeling the appearance of herniated disc and the active shape model for modeling the
shape of herniated disc. We utilize a Gibbs distribution for classification of discs using appearance and shape
features. We use 33 clinical MRI cases of the lumbar area for training and testing both appearance and shape
models. We achieve over 91% accuracy in detection of herniation in a cross-validation experiment with specificity
of 91% and sensitivity of 94%.
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1. INTRODUCTION

Lower back pain (LBP) is the second most common neurological ailment in the United States after the headache.1

It is reported that Americans spend at least $50 billions each year on medical diagnosis and rehabilitations
related to lower back pain.1 Intervertebral disc degeneration (e.g., herniation) in the lumbar area is one of the
most common diseases that cause LBP and sciatica, a common term for pain in legs consequent to irritation of
the sciatic nerve.2, 3 Furthermore, Over 90% of surgical spine procedures are performed because of consequences
of the degenerative process.4

Diagnosis of most backbone abnormalities (including disc degeneration and herniation) are performed, in
clinics, by radiologists based on studying clinical MRI. Clinical MRI usually comprises sagittal T1- and T2-
weighted (manually) co-registered protocols beside others to help the radiologists in decision-making. For
diagnosis of herniation, they might also use axial views for confirmation of their decision (especially for quan-
tification of the herniation). Because disc signal intensity in T2-weighted MRI is the most sensitive sign for
intervertebral disc degeneration, radiologists tend to use T2-weighted for diagnosis of degenerative disc related
abnormalities in most cases.4

Building computer aided diagnosis (CAD) systems have been attracting many researchers and clinicians for
many decades. Many of them have been built such as 1) CAD using CT for detection (or diagnosis) of colonic
polyp5, 6 and lung nodules from CT,7 2) CAD using mammography for detection of breast cancer,8 3) CAD
using MRI for detection of breast9 and prostate10 cancer. More recently, major attention has been given to
incorporation of these CAD systems within the work flow of clinical diagnosis as this has been a a barrier for
CAD use in clinics.11, 12 We work on building a full CAD system that includes automation of most lumbar area
abnormalities diagnosis and, simultaneously, incorporating this CAD systems as plug ins into the work flow of
our collaborating radiologist in a testing environment.13–16

In this paper, we present a method that automates the diagnosis of disc herniation. Our method incorporates
shape and intensity features to model the herniated disc and flag it. We use both T1- and T2-weighted co-
registered sagittal views for building a 2D feature image I. We then train an active shape model (ASM)17 for
modeling the disc shape. We then extract a set of empirically-sound features to diagnose herniated discs. We
also model the appearance of the disc based on the normalized intensity signal similar to our previous work.13, 14

Then we build a probabilistic classifier by introducing the random variable n and solving:



n∗ = arg max
n

P (n|S, A) (1)

where n is a binary random variable stating whether it is a herniated or a normal disc, S represents the shape
features extracted from the lumbar disc ASM, and A represents the appearance features.

The remainder of this paper is organized as follows: Background and related work is discussed in section 2.
Then we provide a description of our dataset in section 3. We then present our method in section 4, our
experimental results in section 5, and conclude in section 6.

2. BACKGROUND AND RELATED WORK

Intervertebral disc herniation is a medical condition affecting the spine in which a tear in the outer ring, annulus
fibrosus, allows the inner soft jelly-like substance, nucleus pulposus, to bulge out. Fig. 2 shows an axial view
model for the anatomy of the disc and a description of the herniation.18 In MRI data, herniation can be detected
in the sagittal view and it typically appears as shown in Fig. 1.

Figure 1. A 7 mm herniated disc.

Figure 2. Herniated disc model18

Many researchers have proposed methods for the diagnosis of certain vertebral column abnormalities. Bounds
et al.,19 utilized a neural network for diagnosis of back pain and sciatica. Sciatica might be caused by lumbar
disc herniation as well as many other reasons. They have three groups of doctors to perform diagnosis as their
validation mechanism. They achieved better accuracy than the doctors in the diagnosis. However, the lack
of data prohibited them from full validation of their system. Similarly, Vaughn20 conducted a research study
on using neural network for assisting orthopedic surgeons in the diagnosis of lower back pain. They classified
LBP into three broad clinical categories. They used 25 features to train the Neural Network (NN) including
symptoms clinical assessment results. The NN achieved 99% of training accuracy and 78.5% of testing accuracy.
This clearly shows training data overfitting.

Tsai et al.21 used geometrical features (shape, size and location) to diagnose herniation from 3D MRI and
CT axial (transverse sections) volumes of the discs. In contrast, we do not presume the availability of the full
volume axial view as it is not a clinical standard. We also jointly make use of appearance and shape information.‘

Roberts et al.22 used ASM to detect and quantify vertebral fracture from x-ray radiographs for the lumbar
and thoracic area (L4 up to T7) using extracted shape and appearance features for performing quantitative
fracture classification. Because of differences in vertebrae, they trained a shape model for each of three classes:
upper thoracic (T7-T9), lower thoracic (T10-T12), and lumbar (L1-L4). They presented a comparison study
between appearance and shape effect on classification in each vertebral group.

In this paper, we diagnose disc herniation from sagittal views which is different from Tsai et al.21 However,
we utilize some features of the shape model that Roberts et al.22 used in detection and quantification of
fractures. Though we build our model on the discs and not on the vertebrae. Finally, our data is clinical MRI
and not x-rays.



3. DATASET AND PREPARATION

We use a clinical dataset where herniation is the major abnormality obtained by our collaborating clinical
research group. For this paper, we use thirty three cases where each case contains at least one herniated disc
in the lumbar area. However, many cases have only one herniated disc and the rest are normal. Each case has
two sagittal co-registered MRI protocols: T1- and T2-weighted. This registration is performed manually by the
MRI technician as this is the clinical standard.

These cases are acquired by Philips MRI 1.5 Tesla scanners that are used for clinical diagnosis of various
vertebral column abnormalities. To reduce the effect of magnetic field inhomogeneities in MRI, radiologists use
cerebrospinal fluid (CSF)23 or the spinal signal24 as a standard reference for disc intensity levels. We normalize
the intensity using the spinal signal to avoid related issues of magnetic field inhomogeneities.

(a) Normal Disc at L1-L2
level.

(b) Normal Disc at L2-L3
level.

(c) Herniated Disc at L4-
L5 level.

(d) Herniated Disc at L4-
L5 level.

Figure 3. Variations in normal and herniated disc shapes.

To localize the discs, we use our previous labeling method in Corso et al.,13 which results in a point inside
each of the lumbar discs. Then we obtain a fixed window of size 60x120 pixels centered at the labeling point
as shown in Fig. 3. We then manually check that the window size is suitable to enclose the whole disc with a
portion from the spine for the whole dataset for training purposes.

4. METHOD

Shape is a key player in detection of herniation due to the major shape-change caused by herniation, as shown
in Fig. 3(c). On the other hand, intensity signal levels for herniated discs are usually lower than normal discs
because when the inner pulposus leaks out (herniates), the water contents of the disc spreads over larger area
as shown in Fig. 3(d). However, lower intensity levels of a disc might indicate other abnormalities such as
desiccation.14 Thus, we jointly use both the shape and the appearance features for maximum effectiveness.

4.1 Shape (S)
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Figure 4. Point Distribution of the training data.

Sagittal views of lumbar intervertebral discs generally have ellip-
tical shapes as shown in Fig. 3, but the shape varies depending
on patient’s age, height, normality condition, and many other
reasons. The variations in disc shapes affect their size, major
and minor diameters as shown in Fig. 3(a) (b). Herniated discs
might, sometimes, change the shape of the exterior end of the
disc as shown in Fig. 3(c).

However, given the roughly elliptical disc shape, even under
herniation, we assume the underlying manifold of variations is roughly linear. We hence use an active shape
model25 for learning the shape variations of the lumbar disc. We use 11 landmark points S = {si : i = 1, . . . , 11}
to represent each shape which includes the disc boundary and the spine portion connected to the disc. Fig. 4
shows the distribution of these points on an illustrative model.

To increase the effectiveness of using the ASM, rather than working with the original T1 and T2 images, we
define a range filter, R, to compute a feature image, I:

I = R(T1 + T2) (2)



where T1 and T2 are the normalized T1- and T2-weighted MRI image for the same case. These two images are
physically co-registered during acquisition of MRI. R is the range filter operator where intensity levels in each
3x3 window are replaced by the range value (maximum - minimum) in that window. This operator R has high
values in abrupt-change regions and small values in smooth regions which results in a better feature image than
the original T2- or T1-weighted as shown in Fig. 5 compared to Fig. 3. For the ASM, this improves both the
convergence speed and accuracy to localize the model landmark points during inference.

We prepare the training data for the ASM manually by selecting the set of points on the feature image I as
shown in Fig. 5. The ASM learns the distribution of shapes by initially calculating the mean shape x̄ = 1

N

∑N

1 x

where N is the size of the training data. Then each disc shape xi, where i ∈ {1, . . . , N} and N is the size of
the training set, is recursively aligned to the mean shape x̄ using generalized Procrustes analysis to remove
translational, rotational, and isotropic scaling from the shape.17

(a) Normal Disc at L2-L3
level.

(b) Normal Disc at L5-S
level.

(c) Normal Disc at T12-
L1 level.

(d) Herniated Disc at L4-
L5 level.

Figure 5. Feature image with shape points distribution.

Then, we model the remaining variance around the mean shape with principal components analysis (PCA)
to extract the eigenvectors of the covariance matrix associated with 98% of the remaining point position variance
according to the standard method for deriving the ASM’s linear shape representation.17

4.2 Appearance (A)

Figure 6. Intensity distribution for normal discs.

Intensity levels of herniated discs are usually less than
normal discs because the nucleus pulposus spreads
over a larger area as shown in Fig. 3(d) and thus the
signal intensity becomes lower. We model the appear-
ance A of herniated discs based on a pixel neighbor-
hood σId

surrounding the disc point d, which is pro-
vided during the initial localization step. Herniated
disc intensities have a general Gaussian shape with
lower mean value µI than the normal disc intensities
distribution.13, 14 Fig. 6 shows the intensity distri-
bution of a set of normal discs in T2-weighted MRI.
We fit a Gaussian model for this distribution as illus-
trated by next section. We also assume a Gaussian
fit for herniated disc intensities due to the insufficient
amount of herniated discs to establish a well-defined
distribution, though this assumption is supported by
our empirical results.

4.3 Classification and Testing

Our classifier models both the shape S and the appearance A of the disc. The shape features are extracted from
the point distribution of the ASM while the appearance features are extracted from a pixel neighborhood σId

surrounding the point d inside the disc. We capture herniation n with a Gibbs model:

P (n|S, A) =
1

Z[n]
exp−[β1∗UA(A)+β2∗US(S)] (3)



where n is a binary random variable for the herniated disc, S represents the shape features defined by the ASM,
A represents the appearance features defined by a neighborhood of pixels σId

around the point d inside the disc,
Z[n] is the normalization factor of the Gibbs distribution, β1 and β2 are tuning parameters, UA and US are the
appearance and shape potentials, respectively.

The appearance potential UA models the intensity levels of the herniated disc as a Gaussian.13, 14 We take
the negative log and the potential is then given by:

UA(A; σId
) =

∑

j∈σI
d

(I(j) − µI)
2

2σ2
I

(4)

where d is the point inside the disc from the labeling operation, I(j) is the intensity at pixel location j, σd is
some pixel neighborhood of the location d, µI is the expected intensity levels of the herniated discs, σ2

I
is the

variance of the intensity levels of the herniated discs. Both µI and σ2
I

are learned from the labeled training
data.

On the other hand, the shape potential US is defined by the shape features resulting from the ASM. Upon
examining the shapes of both the herniated and normal discs, we find that the points [s1 − s8] always refer to
the shape of the disc while the points [s9−s11] help maintaining the alignment of the disc with the spine. Thus
we pick two potentials for defining US as follows: 1) US1 models the Euclidean distance e1 between point 2 (s2)
and point 8 (s8) as labeled in Fig. 4. 2) US2 models the sum e2 of the major and minor axes of the elliptic disc
shape. Both the linear nature of the ASM and the empirical analysis led us to choose Gaussian models for both
US1 and US2. Thus, we define the shape potential by:

US(S) = α1US1 + α2US2 (5)

where α1 and α2 are tuning parameters, US1 and US2 are the two potentials for modeling e1 and e2, respectively.
Thus, we define

US1 =
(e1 − µe1

)
2

2σ2
e1

(6)

where e1 = |s2−s8|2 where s2 and s8 are the location coordinates of points 2 and 8 as shown in Fig. 4, µe1
is the

expected Euclidean distance between the points s2 and s8, and σ2
e1

is the variance of the Euclidean distances
between the points s2 and s8. We learn both µe1

and σ2
e1

from the training data.

US2 =
(e2 − µe2

)2

2σ2
e2

(7)

where e2 = |s1 − s5|2 + |s3 − s7|2 where s1, s3, s5, and s7 are the location coordinates of points 1, 3, 5, and
7, respectively, as shown in Fig. 4, µe2

is the expected sum of the major and minor axes of the disc, σ2
e1

is the
variance of the sums of the major and minor axes of the disc. We learn both µe2

and σ2
e2

from the training
data.

5. EXPERIMENTAL RESULTS

We validate our proposed model with 33 clinical MRI cases. Each case contains two co-registered volumes:
T1- and T2-weighted. For training our model and learn the parameters, we pick the slide where the herniation
is present. We then annotate the ground truth by marking the herniated discs. We based this annotation
on actual clinical reports from our collaborating radiologist. We consider these reports as our gold standard.
We emphasize that inter-observer errors exist in lumbar diagnosis similar to most diagnosis tasks from various
imaging modalities. However, MRI shows high inter-observer reliability compared to plain x-ray radiographs



Table 1. Table shows the results of the cross validation experiment with an average detection accuracy of 91.7%.

Set E6 E5 E4 E3 E2 E1 Accuracy
1 11 12 10 13 13 13 92.3%
2 11 13 13 11 12 10 89.7%
3 13 12 11 12 13 13 94.9%
4 10 13 13 10 13 11 89.7%
5 12 12 13 13 12 9 91.0%
6 12 10 13 11 11 13 89.7%
7 13 11 12 11 13 12 92.3%
8 12 9 13 13 13 13 93.6%
9 13 11 12 13 10 13 92.3%
10 10 13 11 13 13 11 91.0%
(%) 90.0 89.2 93.1 92.3 94.6 90.8 -

Average Accuracy 91.7%

in lumbar area diagnosis, which indicates higher agreement between radiologists when diagnosing MRI than
x-rays radiographs. For example, Mulconrey et al.26 showed that abnormality detection for degenerative disc
and spondylolisthesis with MRI has κ = 0.773 and κ = 0.728, respectively, which is considered high in showing
inter-observer reliability where this reliability is considered perfect when 0.8 ≤ κ ≤ 1.

We perform a cross-validation experiment using the 33 cases to train and test our proposed method. In each
round, we separate 13 cases and train on the remaining 20 cases. We perform 10 rounds and each time the
cases are selected randomly. We define:

Accuracyi = (1 −
1

K

K∑

j=1

|gij − nij |) ∗ 100% (8)

where Accuracyi represents the classification accuracy (herniated disc detection) at the lumbar disc level i

where 1 ≤ i ≤ 6, K is the testing set size in each round (13 cases), gij is the ground truth binary assignment
for disc i in case j, and nij is the resulting binary assignment for disc i from the inference on our model. The
binary variables gi and ni are assigned the binary values such that they are 0 if i is a normal disc and 1 if it is
a herniated disc.

Table 1 shows the classification results from the cross validation experiment. We achieve an average of over
91% accuracy on classification of discs as herniated or normal. The table also shows the accuracy at each lumbar
level (column) in each cross validation round (row).

The lower two levels (E5: L4-L5) and (E6: L5-S) have the most variability in the lumbar area which misleads
the ASM and thus the error increases. However, the method is able to classify them with 90% accuracy which
is promising. The top level (E1: T12-L1) disc is usually small compared to the rest of the lumbar discs which
produces similar shape feature values for herniated collapsed discs. We may avoid this by having a separate
model for this disc as its shape is different. However, the method achieves over 90% accuracy which is promising
as well. The middle levels (E2: L1-L2), (E3: L2-L3), and (E4: L3-L4) achieve higher classification accuracy as
the discs are stable in these levels.

Table 2. Calculation of specificity (91%) of and sensitivity (94%).

Gold standard
herniated normal

R
es

u
lt herniated 185 (TP) 54 (FP)

normal 11 (FN) 530 (TN)



Normal: Correct 

Normal: Correct 

Normal: Correct. 

Herniated: Correct 

Normal: Correct 

Normal: Correct 

(a)

Normal: incorrect 

Normal: Correct 

Normal: Correct. 

Normal: Correct 

Normal: Correct 

Herniated: Correct 

(b)

Figure 7. (a) Level L4-L5 is herniated. All discs are correclty classified. (b) False positive at level T12-L1.

In this dataset, there are 44 herniated discs and the remaining 154 are normal. On average, we notice that
clinical cases contain one or two herniated discs, very rare cases we find more. In table 1, each row represents
a test on 13 cases (13 x 6 = 78 discs) which gives a total of 780 discs. Among these 780 discs, we count 196
herniated discs. The total misclassified discs, from the table is, 65. There are 11 misclassified herniated discs
and the remaining 54 misclassified discs are normal. This indicates that our specificity is around 91% while our
sensitivity is around 94%. Table 2 shows the counts of false positives (FP), true positives (TP), false negatives
(FN), and true negatives (TN) where:

Specificity =
TN

TN + FP
(9)

Sensitivity =
TP

TP + FN
(10)

Fig. 7(a) shows an example of a correctly classified case while Fig. 7(b) shows a case with a false positive
disc at the top level (T12-L1). In the later case, the disc is very narrow compared to other discs which causes
the shape features to mis-classify it as herniated similar to the herniated disc at level (L4-L5) in Fig. 7(a).
Most discs at this level are smaller than the rest of the lumbar discs which makes them appear as if the discs
collapsed as a result of hernation.

6. CONCLUSION

We proposed a probabilistic model for automatic herniation detection that incorporates appearance and shape
features of the lumbar intervertebral discs. We presented an application for the use of ASM to extract suitable
features for herniation shape detection. We validated our model using 33 abnormal clinical MRI cases. Each
case contains at least one herniated disc. We consider the clinical report of the radiologist as our gold standard
for herniation condition of each disc. We perform a cross-validation experiment on the 33 cases by leaving
13 cases for testing each round. The overall herniation detection accuracy is around 90%. We also reported
specificity of 91% and sensitivity of 94%.
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