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The widespread distribution and availability of small- 
scale sensors, actuators, and embedded processors 
is transforming the physical world into a computing 
platform. One such example is a sensor network con- 
sisting of a large number of sensor nodes that  combine 
physical sensing capabilities such as temperature, 
light, or seismic sensors with networking and com- 
putation capabilities. Applications range from envi- 
ronmental control, warehouse inventory, and health 
care to military environments. Existing sensor net- 
works assume that the sensors are preprogrammed 
and send data to a central frontend where the data is 
aggregated and stored for offline querying and anal- 
ysis. This approach has two major drawbacks. First, 
the user cannot change the behavior of the system 
on the fly. Second, conservation of battery power is 
a major design factor, but a central system cannot 
make use of in-network programming, which trades 
costly communication for cheap local computation. 

In this paper, we introduce the Cougar approach to 
tasking sensor networks through declarative queries. 
Given a user query, a query optimizer generates an 
efficient query plan for in-network query processing, 
which can vastly reduce resource usage and thus ex- 
tend the lifetime of a sensor network. In addition, 
since queries are asked in a declarative language, the 
user is shielded from the physical characteristics of 
the network. We give a short overview of sensor net- 
works, propose a natural architecture for a data  man- 
agement system for sensor networks, and describe 
open research problems in this area. 

1 I n t r o d u c t i o n  

One of the characteristics of the post-PC era is to 
push computation from desktops and data centers out 
into the physical world. This is an exciting time for 
systems research, as platforms emerge with character- 

istics quite different from traditional environments. 
Already today networked sensor nodes can be con- 
structed using commercial components using only a 
fraction of a watt  in power on the scale of a few cen- 
timeters. Figure 1 shows a Berkeley MICA Mote, 
one of the platforms a~i lable  today, and Figure 2 
shows the hardware characteristics of a mote. These 
prototypes measure about 5cm 3, and application of 
Moore's law tells us that  we will soon see components 
that  measure 1 cm 3 running Unix [45, 47] or an em- 
bedded microkernel [19], and there is a plethora of 
research to scale components down to about 1 mm 3 
(about the size of a large piece of dust) integrated 
into the physical environment potentially powered by 
ambient energy [25, 27]. 

Sensor networks have the following physical re- 
source constraints: 

C o m m u n i c a t i o n .  The bandwidth of wireless 
links connecting sensor nodes is usually limited, 
on the order of a few hundred Kbps. In addi- 
tion, the wireless network connecting the sensor 
nodes provides usually only very limited qual- 
ity of service, has latency of high variance, and 
drops packets frequently. 

P o w e r  c o n s u m p t i o n .  Sensor nodes have lim- 
ited supply of energy, and energy conservation 
is one of the main system design considerations. 
Current small batteries provide about 3000mAh 
of capacity, powering the MICA Mote for ap- 
proximately one year in the idle state and for 
one week under full load. Note that future sen- 
sor nodes will have sophisticated power manage- 
ment features; current nodes already have three 
different sleep modes with several orders of mag- 
nitude different power usages [20]. 

C o m p u t a t i o n .  Sensor nodes have limited com- 
puting power and memory sizes that restrict the 
types of data processing algorithms that can be 
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Figure 1: A Berkeley MICA Mote 

deployed and intermediate results that  can be 
stored on the sensor nodes. 

• U n c e r t a i n t y  in  s e n s o r  r e a d i n g s .  Signals de- 
tected at physical sensors have uncertainty due 
to limitations of the sensor, and they may con- 
rain environmental noise. Sensor malfunctions 
might generate inaccurate data, and unfortunate 
sensor placement (such as a temperature sensor 
directly next to the air conditioner) might bias 
individual readings. 

Potential applications for sensor networks abound. 
One possible example could be intelligent building 
management. Sensor nodes are deployed in offices 
and halls to measure noise, temperature, and the level 
of light, and interact with the control system to ad- 
just the environment automatically. People may pose 
queries of interest to the sensor network, such as "Is 
Johannes in his office", or "Is there an empty seat 
in the meeting room"? Sensor networks can also be 
used in physical environment to benefit scientific re- 
search. A biologist may want to know of the exis- 
tence of a specific bird, and when this particular bird 
is detected, the bird should be followed as closely as 
possible. In this case, the sensor network is used for 
automatic target recognition and tracking. More spe- 
cific applications in different fields will arise, and in- 
stead of deploying preprogrammed sensor networks 
only for specific applications, future networks will 
have sensor nodes with different physical sensors for 
a wide variety of application scenarios and different 
user groups. (The MICA motes already support tem- 
perature sensors, a magnetometer, an accelerometer, 
a microphone, and also several actuators.) 

In this paper, we advocate a database approach 
to sensor networks. Our approach is motivated by 
two main reasons. First, declarative queries are espe- 
ciaily suited for sensor network interaction: Users and 
application programs issue queries without knowing 
how the data is generated in the sensor network and 
how the data is processed to compute the query an- 
swer. Sophisticated catalog management, query op- 

Processor 4Mhz, 8bit MCU (ATMEL) 
128KB Flash, 

Memory 4KB RAM, 4KB ROM 
External Flash 512KB 

916Mhz Radio 
Radio (RF Monolithics) 
Communication 
Range 
Data Rate 
Transmit Current 
Receive Current 
Sleep Current 

200 ft 

50 Kbits/sec 
12 mA 
1.8 mA 
5 uA 

Figure 2: Hardware Characteristics of the MICA 
Motes 

timization, and query processing techniques will ab- 
stract the user from the physical details of contacting 
the relevant sensor nodes, processing the sensor data, 
and sending the results to the user. To enable declar- 
ative querying of sensor networks, we propose a query 
layer consisting of a query proxy on every sensor node. 
Architecturally, on the sensor node, the query proxy 
lies between the network layer and the application 
layer, and the query proxy provides higher-level ser- 
vices through queries that  can be injected into the 
network from a specified gateway node. x 

Our database approach is motivated by a second 
reason. Since nodes are usually powered by batteries, 
increasing network lifetime is a major design goal of 
any sensor network system. Data  transmission back 
to a central node for offline storage, querying, and 
data analysis is very expensive for sensor networks of 
non-trivial size since communication using the wire- 
less medium consumes a lot of energy [11, 38]. Since 
sensor nodes have local computation abilities, part  of 
the computation can be moved from a location out- 
side the network and pushed into the sensor network, 
aggregating records, or eliminating irrelevant records. 
In-network processing can reduce energy consump- 
tion and improve sensor network lifetime significantly 
compared to traditional centralized data extraction 
and analysis. Thus one of the main roles of the query 
proxy when processing user queries is to perform in- 
network processing. 

Given the view of the sensor network as a huge 
distributed database system where each sensor node 
corresponds to a database site that  holds part  of the 
data, we would like to adapt  existing techniques from 
distributed and heterogeneous database systems for 
the sensor network environment. But as we outline 

1 In some applications it might be desirable to inject queries 
into the system from axbitraxy nodes. 
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in Section 2, there are major differences between sen- 
sor networks and traditional distributed and hetero- 
geneous database systems that require us to rethink 
current approaches to distributed data management. 

The remainder of this paper is structured as fol- 
lows. In Section 2, we will give an introduction 
to sensor networks as a processing platform, de- 
scribe the properties of sensor networks and the as- 
sociated data, and introduce a natural architecture 
for a sensor data management system. In Section 
3, we outline open research problems in in-network 
query processing for sensor networks, and in Sec- 
tion 4, we briefly review related work. For technical 
papers related to the Cornell Cougar Project, visit 
http ://www. cs. cornell, edu/database/cougar. 

2 Sensor  N e t w o r k s  

2.1  P r o p e r t i e s  o f  S e n s o r  N e t w o r k s  

A sensor network consists of a large number (cur- 
rently up to several thousand) of sensor nodes. 2 In- 
dividual sensor nodes (or short, nodes) are connected 
to other nodes in their vicinity through a wireless 
communication interface, and they use a multihop 
routing protocol to communicate with sensor nodes 
that are spatially distant. Nodes also have limited 
computation and storage capabilities: a node has a 
general-purpose CPU to perform computation and a 
small amount of storage space to save program code 
and data. 

Since nodes are usually not connected to a fixed in- 
frastructure, they use batteries as their main power 
supply, and preservation of power is one of the main 
design goals in a sensor network. Since communica- 
tion consumes much more energy than computations, 
it is attractive to reduce the amount of traffic flow be- 
tween nodes by local computation. 

Sensor nodes might reside in a hostile environment, 
such as battlefields or in regions of recent disasters to 
support rescue missions, thus a sensor node might fail 
at any time. In addition, the communication links 
between adjacent nodes might break frequently due 
to environmental interferences and noise. Thus it is 
critical to design a robust system that recovers fast 
after failures. 

2 . 2  S e n s o r  D a t a  

A sensor node has one or nmre physical sensors at- 
tached that are connected to the physical world. Ex- 

2Hardware trends let us believe that the number of nodes 
in future sensor networks will drastically increase. 

ample sensors are temperature sensors, light sensors, 
or PIR sensors that can measure the occurrence of 
events (such as object detections) in their vicinity. 
Sensor readings are usually timestamped. If an ap- 
plication cares about the current state of the net- 
work, readings from the network have to be updated 
relatively frequently since sensor data becomes out- 
dated fast if new events are happening in the network. 
Long-running queries that recompute query results 
periodically are one possibility to keep query results 
up-to-date. 

Sensor networks are distributed to measure and 
monitor a physical environment, such as tracking ob- 
jects throughout an area or measuring environmental 
conditions in a large area. Due to the multitude of 
sensor nodes deployed, there is usually a huge number 
of data records generated. For example, in environ- 
mental monitoring applications, sensor readings are 
generated every few seconds (or even faster), thus 
the total volume of data generated is quite large. 
However, not all sensor readings are of interest to 
users. For some sensor types, their data might change 
rapidly, and thus be outdated rather quickly, whereas 
for other sensors, their value changes only slowly over 
time. Example sensors of the first type are PIR sen- 
sors that sense the presence of objects; example sen- 
sors of the second type are temperature sensors that 
in steady state have a small bounded derivative. For 
applications that require only approximate results, 
we can cache previous results for the second type of 
sensors and lower the query update rate to save en- 
ergy. 

Inherent to data from a physical measurement is 
uncertainty regarding the true value of the measured 
quantity. This uncertainty is often most properly de- 
scribed by a continuous probability distribution/unc- 
tion over the possible measurement values [12]. For 
exanlple, consider a temperature sensor in your office 
that reports an estimate T of the current temperature 
T; let this estimate be T = 68 ° Fahrenheit (F). Given 
this measurement, do we believe that the tempera- 
ture in your office is exactly 68 ° F? Assuming that 
the error introduced by the sensor has a Gaussian 
distribution with a known standard deviation of a°F, 
we can compute the probability that the true tem- 
perature T lies in the range IT1, Tz]. In the context 
of a sensor network, a user should be able to submit a 
query that retrieves all temperatures whose true val- 
ues lie in tile range IT1, T2] with a given probability. 
Moreover, as long as several sensors nodes measure 
the same physical phenomenon, their readings can be 
aggregated to construct a "super-node" whose tem- 
perature readings have a much lower variance than 
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the readings from individual sensor nodes. 
Another source of uncertainty in sensor readings is 

noise. For many applications individual sensor read- 
ings are of minor importance, and users are usually 
interested in aggregates that  fuse a set of sensor data 
readings (often from multiple different sensors) into 
a single, more robust statistic [16]. 

2 .3  A n  A r c h i t e c t u r e  f o r  a S e n s o r  

D a t a b a s e  S y s t e m  

Existing sensor networks work mainly as data collec- 
tors, and transfer data from sensor nodes to a central 
frontend where the data is aggregated and stored for 
offiine querying and analysis. Fjords improve the cen- 
tralized architecture by sharing scan operators at the 
sensor nodes and switching sensors on and off accord- 
ing to query specifications. They help to reduce en- 
ergy consumption, as nodes are aware of user queries, 
but they lack support for more advanced query pro- 
cessing techniques [29]. 

Since local computation is much cheaper than corn- 
munication, pushing partial computation out into the 
network could improve energy consumption signif- 
icantly. We propose a loosely-coupled distributed 
architecture to support both aggregation and more 
complicated in-network computation. In our archi- 
tecture, there is a new query proxy layer on each 
sensor node, interacting with both routing layer and 
application layer. A query optimizer is located on 
the gateway node to generate distributed query pro- 
cessing plans after receiving queries from the outside. 
The query plan is created according to catalog in- 
formation and the query specification. Such a query 
plan specifies both the data flow (between sensors) 
and an exact computation plan (at each sensor). The 
plan is then disseminated to all relevant sensor nodes. 
Control structures are created to synchronize sensor 
behavior, and the query is started. At run-time, data 
records flow back to the gateway node as in-network 
computation happens on-the-fly. 

2 . 4  A n  E x a m p l e  

Let us illustrate the individual components of the ar- 
chitecture with a simple example. Suppose we have 
a long-running query Q to monitor the average tem- 
perature of an office every t seconds. The query Q 
notifies (i.e., Q generates an output record) an ad- 
ministrator if the average temperature in the office is 
greater than a user-defined threshold. 

As a first step in evaluating this query, the query 
optimizer will optimize the query, taking the existing 

Towards the leader 

In-network 
aggregation 

Partially aggregated / 
data from other / 
sensors / 

Network 
interface 

Data from the 
ocal sensor 

Sensor 
scan 

Figure 3: Query Plan at a Source Sensor 

query workload into account by trying to merge the 
new query with existing, similar queries. Assuming 
that  the query Q is the only query that  is running in 
the network, the query optimizer will generate a new 
query plan QP. The query plan QP specifies how 
to deteiTnine the leader of this query, a designated 
node where the computation of the average temper- 
ature will take place. The leader could be a fixed 
sensor with more remaining power and energy, or a 
randomly selected node by some distributed leader 
election algorithm. Two computation plans are pro- 
duced, one for the leader node, and a second plan for 
the remaining nodes in the query region. 

Figure 3 shows the query plan for a non-leader node 
that  participates in the query. Non-leader nodes have 
a scan operator to read sensor values periodically and 
to send them to the leader node. In addition, their 
plan contains an aggregation operator to aggregate 
data from other sensors. Figure 4 shows the query 
plan for the leader node, which contains an AVG op- 
erator to compute the average value over all sensor 
readings received in the last round of the query, and 
a SELECT operator that  checks if the result is above 
the threshold. 

At query start  time, the query plans are dissemi- 
nated to the query proxies of all relevant sensor nodes. 
The query proxies will register the query, create a lo- 
cal operator tree, active relevant sensors, and return 
records according to the specification of the query 
plan. The leader will generate a record only if the 
average temperature is above the user-defined thresh- 
old. 
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Figure 4: Query Plan at the Leader 

3 R e s e a r c h  P r o b l e m s  

In this section, we give an overview of some research 
problems in in-network query processing for sensor 
networks using the architecture described in Section 
2.3 as a starting point. 

3 .1  A g g r e g a t i o n  

Aggregation refers to delivering data from distributed 
source sensor nodes to a central node for computa- 
tion. It is one of the most popular computation and 
communication pattern for sensor network. (Recall 
that example query Q from the previous section is an 
aggregation query.) A join of sensor readings from 
different groups could be another example; all records 
need to be collected at a central node where the join 
takes place. 

Aggregation involves two important issues. First, 
from a computational point of view, the aggregation 
has to complete at a "leader" node (unless the final 
computation of the aggregate is delegated to a gate- 
way node or happens outside of the network). Sec- 
ond, the data records have to be delivered from source 
sensor nodes to the designated leader. Note that the 
system has to be designed to tolerate the volatility of 
the underlying communication layer: messages could 
get lost, nodes could die, and the network could be 
partitioned for a while. Let us shortly contemplate 
leader selection and data delivery in the following two 

paragraphs. 
If the computation is designated to a leader node, 

such a leader needs to be selected among the sensor 
nodes. There are several basic requirements for the 
leader selection policy. First, the leader should be dy- 
namically maintained in case of sensor or link failure. 
(We imagine backup leaders to reduce the cost in case 
of leader failure.) Here we can draw upon a large lit- 
erature about algorithms in distributed systems and 
the leader election problem. Second, we would like to 
select a leader with physically advantageous location: 
The cost of data delivery from source sensors to the 
leader and the delivery cost from the leader to the 
gateway node need to be taken into account to save 
communication energy. 

How can we deliver data from sensor nodes to their 
leader node? The simplest way is to send all data 
records directly to the leader along multi-hop routes, 
and to do all the computation directly at the leader. 
This is a reasonable solution for a small networks. 
However, if we consider the computation of aggre- 
gates over larger regions, this scheme will generate 
many messages and consume a lot of sensor battery 
power. An alternative solution is to push partial com- 
putation from the leader to internal nodes along the 
path to reduce data size on-the-fly. This solution 
works for aggregation operators that are incremen- 
tally computable, such as avg, max, and moments of 
the data. The final answer can be computed from 
partially aggregated intermediate results, which are 
usually as small as the original data record. The only 
caveat is that this in-network computation requires 
synchronization between sensor nodes along the com- 
munication path, since a node has to "wait" to receive 
results to be aggregated. In networks with high loss 
rates, broken links are hard to differentiate from long 
delays due to high loss rates, making synchronization 
a non-trivial problem. 

3.2 Query Languages 

We believe that sensor networks will be deployed in 
various enviromnents, and they will be used by di- 
verse applications. By utilizing different types of sen- 
sors, it is very easy to extend the functionality of sen- 
sor networks to support more applications. Some of 
these applications have been around for quite a while 
and are already implemented in prototype systems 
(such as monitoring a physical environment or track- 
ing moving objects). In other cases, technology devel- 
opment is driving the applications, and applications 
of sensor networks in fields like biology or geology 
are just emerging. Thus the development of a query 
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language is at a difficult point: There are classes of 
queries such as aggregation queries for which we know 
that they are very useful and that  any query language 
for sensor data should support them. Other aspects 
of a query language m'e less clear at this point, and 
time and emerging applications will tell what com- 
mon functionality will be required. One possible ap- 
proach for the development of a query language is to 
look at the properties of the sensor data itself, and 
to abstract computational patterns that  are possible 
with the type of data  generated in sensor networks. 

3 .3  Q u e r y  O p t i m i z a t i o n  

In-network query processing can reduce energy con- 
sumption and thus prolong sensor network lifetime. 
A complex query may consist of a large number of 
parameters and operators, in addition to various user 
requirements on the query answers, such as specifica- 
tion of a maximum permissible latency and accuracy 
of the query result. There is usually a large space 
of query processing plans for such complex queries, 
and it is the query optimizer's responsibility to select 
a good plan within a large space of possible query 
execution plans. 

A good plan could be the plan with minimum en- 
ergy usage, or it could make a good tradeoff between 
various requirements given the limitations of avail- 
able resources. Thus the notion of the cost of a query 
plan has changed, as the critical resource in a sensor 
network is power, and query optimization and query 
processing have to be adapted to take this optimiza- 
tion criterion into account. 

Recall from our example, that  the plan generated 
by the query optimizer will describe both the data 
flow inside the network and the computation flow 
within each sensor node. Since a sensor network is 
highly dynamic, the optimizer needs to make these 
decisions with inherent uncertainty about the cata- 
log information. In addition, the query plan needs 
to react to changes in catalog information such as 
the network topology and the power level at sensor 
nodes. We can envision both semi-centralized as well 
as completely adaptive query processing strategies, 
but more research is needed to quantify the benefits 
of each approach. 

3 .4  C a t a l o g  M a n a g e m e n t  

To generate a good plan for a user query, the op- 
timizer requires metadata  about the status of the 
sensor network to evaluate the costs acid benefits 
(latency and accuracy) of different plans. A cat- 
alog could be built and maintained at the server 

to maintain important information, like sensor posi- 
tion (potentially aggregated), density and connectiv- 
ity, system workload, and network stability. System- 
generate queries could be used to update the catalog 
periodically, or the catalog could be assembled dy- 
namically through gossip-style information dissemi- 
nation. Due to the size of the metadata  and the dy- 
namics of the sensor network, it is likely prohibitive 
to collect all metadata  at a central node, and to keep 
them always sufficiently up-to-date. It  is an interest- 
ing research problem to define efficient synopsis data 
structures, that  are cheap to create and maintain, but 
still contain sufficient details for query optimization. 

3 . 5  M u l t i  Q u e r y  O p t i m i z a t i o n  

Multi query optimization is another challenging prob- 
lem. The sensor network is usually shared by many 
users (and this could be reflected in the architecture 
by having several gateway nodes that  connect to the 
different users). In this case, multiple queries flow 
into the network through different gateway nodes, 
and it is likely that  many users pose similar queries 
such that  queries can share intermediate results. 

4 R e l a t e d  W o r k  

In this section, we discuss past work that  is relevant 
to data management in sensor networks. We do not 
claim by any means that  the set of topics and cita- 
tions is exhaustive, and any omissions are uninten- 
tional. 

4 . 1  A d - h o c  a n d  W i r e l e s s  R o u t i n g  

Research in dynamic wireless communication net- 
works has a long history, dating back to DAI:tPA's 
PRNET (Packet Radio Network) [23] and SURAN 
(Survivable Adaptive Networks) projects [41], and 
a plethora of papers has been published on rout- 
ing protocols for ad-hoc mobile wireless networks 
[6, 10, 21, 22, 35, 36, 37]. Metrics for evaluating these 
protocols are packet loss, routing message overhead, 
message latency, and route length. We believe that  a 
sensor data management infrastructure requires ad- 
ditional metrics for evaluation, such as quality of the 
returned answer, and overhead for metadata  manage- 
ment. 

4 .2  P o w e r  A w a r e n e s s  

The networking community has recently started to 
investigate the issue of power-aware networking in- 
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frastructures. Chang and Tassiulas [8] and Pottie et 
al. [38] suggest to select routes in an ad-hoc network 
based on available energy in order to increase network 
lifetime. Heinzelman et al. present the SPIN family 
of network protocols for communication of large mes- 
sages in sensor networks [17]; they propose to first 
distribute metadata instead of flooding the network 
with actual data. The distribution of metadata elimi- 
nates duplicate transmission of the same data record. 

The PAMAS MAC-level protocol turns radios off 
when they are not transmitting or receiving pack- 
ets [44]. TDMA protocols have been proposed to 
reduce energy consumption in sensor networks [38]. 
By reducing the duty cycle these protocols can trade 
idle-time energy consumption for latency, similar to 
the tradeoffs we envision for query answers. We be- 
lieve TDMA MAC protocols will be important for 
power-constrained networks and use of application- 
level information from the database layer can further 
improve power conservation. 

l:tamanathan and Rosales-Hain developed proto- 
cols for adjusting transmit power in ad-hoc networks 
[40]. By controlling the radio transmission power 
they try regulate the number of neighbors of each 
node in the network with the goal to improve con- 
nectivity in sparse networks and collisions in dense 
networks. PicoNet proposes an integrated design of 
radios, small, battery powered nodes, and MAC and 
application protocols that minimize power consump- 
tion [5]. IEEE 802.11 supports ad-hoc network con- 
figuration and provides power management controls 
[31]. 

4 .3  D i s t r i b u t e d  D a t a b a s e  S y s t e m s .  

Work on query processing in distributed database 
systems is relevant to this field, although it is un- 
likely that existing techniques can be applied directly. 
There are several excellent surveys and books on dis- 
tributed query processing, such as work by Yu and 
Chang [51], Ceri and Pelagatti [7], Ozsu and Val- 
duriez [33], Yu and Meng [50], and Kossmann [26]. 

4 .4  A d a p t i v e  Q u e r y  P r o c e s s i n g .  

We believe that techniques for adaptive query pro- 
cessing will be very relevant for data management 
in sensor networks. Chen and Rousopoulos designed 
an adaptive selectivity estimation schema that adds 
statistics-gathering to regular query processing [9]; 
we can envision the use of similar techniques in a 
sensor network setting where small feedback is pig- 
gybacked on results to long-running queries. Lack of 
perfect global knowledge is also an inherent problem 

in distributed and heterogeneous database systems. 
One approach to adapting to this uncertainty is to 
send subqueries to remote sites for local processing 
[32, 46]. Query scrambling can deal with unexpected 
delays when processing queries in a wide-area net- 
work, a setting similar to a sensor network [3, 49]. 
Kabra and DeWitt proposed to reoptimize parts of 
queries after blocking operators [24]. 

There is also a lot of work on adaptive query oper- 
ators, an area we believe to be relevant to sensor net- 
works. Examples include work on memory-adaptive 
sorting and hashing [13, 28, 30, 34, 53, 54], and on- 
line aggregation algorithms [15, 18, 39, 48]. Eddies 
push the idea of feedback on a tuple-by-tuple basis 
in online aggregation to adapting join orders at the 
same frequency [4]. 

Other relevant work includes sequence query 
processing [42, 43], and temporal and time-series 
databases [52]. 

4 .5  R e l a t e d  P r o j e c t s  

We conclude our discussion of related work with a 
short collection of related projects. 

• The CoSense Project at Xerox PAR.C. 
http ://www2. parc. com/spl/proj ect s/cosense 
Object tracking and identification through col- 
laborative signal processing and distributed 
statistical hypothesis management. 

• The SCADDS Project at UCLA and ISI. 
http ://www. isi. edu/scadds/ 
Networking and coordination between sensor 
nodes. 

• The WebDust Project at Rutgers. 
http ://www. cs. rutgers, edu/dat aman/webdust 
Routing protocols and predictive monitoring. 

• Agent-based Tasking of Massive Sensor Net- 
works at Maryland. 
http ://www. cs. umd. edu/users/vs/senseit, html 
Concentrates on multi-query optimization and 
high-level languages. 

• Reactive Sensor Networks at Penn State. 
http ://strange. arl. psu. edu/RSN/ 
Object tracking and mobile code. 

• TinyOS at Berkeley. 
http ://'today. cs. berkeley, edu/tos/ 
Operating systems support for sensor networks. 

• The Telegraph Project at Berkeley. 
http ://telegraph. cs .berkeley. edu/ 
Adaptive query processing strategies. 
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• Location-Centfic Distributed Computation and 
Signal Processing at Wisconsin. 
ht~p ://www, ece. wisc. edu/- sensit/ 
Communication primitives, tracking, and data 
fusion. 

5 Conc lus ions  

Sensor networks will become ubiquitous, and the 
database community has tile right expertise to ad- 
dress the challenging problems of tasking the network 
and managing the data in the network. We described 
one possible architecture of a sensor data manage- 
ment system, and we discussed how previous work 
relates to the system we envision. We also laid out 
a set of challenging research problems, including dis- 
tributed in-network processing, query optimization, 
query languages, catalog management, and multi- 
query optimization. 

We have started at Cornell to design and imple- 
ment a prototype that allows us to experiment with 
the design space of various algorithms and data struc- 
tures. We are currently working on in-network ag- 
gregation, integration of query processing with the 
routing layer, query optinfization, and a probabilistic 
data model for sensor data. 

We anticipate that the emergence of new applica- 
tions, as well as the implementation and usage of our 
prototype system will lead to other research direc- 
tions. For more information on the current status, 
and to play with our prototype, visit: 

http:/lwww.cs.cornell.edu/database/cougar 

Acknowledgmen t s .  We thank the DAI:tPA Sen- 
s i t  Community for helpful discussions about the role 
of query processing in sensor networks. The Cornell 
Cougar Project was envisioned by Praveen Sheshadri, 
and Philippe Bonnet made influential initial contri- 
butions. The Cougar Project is supported by the 
DAI:tPA SensIT program, a National Science Foun- 
dation CAREER grant, the Cornell Information As- 
surance Institute, a grant from Lockheed Martin, and 
by gifts from Intel and Microsoft. Any opinions, find- 
ings, conclusions or recommendations expressed in 
this material are those of the authors and do not nec- 
essarily reflect the views of the sponsors. 

References  

[1] ACM SIGMOBILE. Proceedings of the 4th An- 
nual ACM/1BEE International Conference on Mo- 

bile Computing and Networking (MOBICOM-98). 
ACM Press, 1998. 

[2] ACM SIGMOBILE. Proceedings of the Fifth An- 
nual ACM/IEEE International Conference on Mo- 
bile Computing and Networking (MobiCom-99. ACM 
Press, 1999. 

[3] L. Amsaleg, M. J. Franklin, A. Tomasic, and 
T. Urhan. Scrambling query plans to cope with un- 
expected delays. In Proceedings of the Fourth In- 
ternational Conference on Parallel and Distributed 
Information Systems, December 18-20, 1996, Miami 
Beach, Florida, USA, pages 208-219. IEEE Com- 
puter Society, 1996. 

[4] R. Avnur and J. M. Hellerstein. Eddies: Continu- 
ously adaptive query processing. In W. Chen, J. F. 
Naughton, and P. A. Bernstein, editors, Proceedings 
of the 2000 A CM SIGMOD International Conference 
on Management of Data, May 16-18, 2000, Dallas, 
Texas, USA, pages 261-272. ACM, 2000. 

[5] F. Bennett, D. Clarke, J. Evans, A. Hopper, 
A. Jones, and D. Leask. Piconet: Embedded Mo- 
bile Networking. IEEE Personal Communications, 
4(5):8-15, Oct. 1997. 

[6] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and 
J. Jetcheva. A performance comparison of multi-hop 
wireless ad hoc network routing protocols. [1], pages 
85-97. 

[7] S. Ceri and G. Pelagatti. Distributed Database De- 
sign: Principles and Systems. MacGraw-HiU (New 
York NY), 1984. 

[8] J.-H. Chang and L. Tassiulas. Energy conserving 
routing in wireless ad-hoc networks. In Proceedings 
of the 2000 IEEE Computer and Communications 
Societies Conference on Computer Communications 
(INFOCOM-O0), pages 22-31, Los Alamitos, Mar. 
26-30 2000. IEEE. 

[9] C.-M. Chen and N. Ronssopoulos. Adaptive selec- 
tivity estimation using query feedback. In 1~. T. 
Snodgrass and M. Winslett, editors, Proceedings of 
the 1994 ACM SIGMOD International Conference 
on Management of Data, Minneapolis, Minnesota, 
May 2~-~7, 1994, pages 161-172. ACM Press, 1994. 

[10] S. Das, C. Perkins, and E. Koyer. Performance com- 
parison of two on-demand routing protocols for ad 
hoe networks. In Proceedings of the ~000 IEEE Com- 
puter and Communications Societies Conference on 
Computer Communications (INFOCOM-O0), pages 
3-12, Los Alamitos, Mar. 26-30 2000. IEEE. 

[11] D. Estrin, R. Govindan, J. Heidemann, and S. Ku- 
mar. Next century challenges: Scalable coordination 
in sensor networks. [2], pages 263-270. 

[12] A. Faradjian, J. Gehrke, and P. Bonnet. Gadt: A 
probability space adt for representing and querying 
the physical world. In International Conference on 
Data Engineering, 2002. 

16 SIGMOD Record, Vol. 31, No. 3, September 2002 



[13] G. Graefe, It. Bunker, and S. Cooper: Hash joins 
and hash teams in microsoft sql server. In A. Gupta, 
O. Shmueli, and 3. Widom, editors, VLDB'98, Pro- 
ceedings of ~$rd International Conference on Very 
Large Data Bases, August ~4-~7, 1998, New York 
City, New York, USA, pages 86-97. Morgan Kauf- 
mann, 1998. 

[14] L. M. Haas and A. Tiwary, editors. SIGMOD 1998, 
Proceedings ACM SIGMOD International Confer- 
ence on Management of Data, June 2-4, 1998, Seat- 
tle, Washington, USA. ACM Press, 1998. 

[15] P. J. Haas and J. M. Hellerstein. Ripple joins for 
online aggregation. In A. Delis, C. Faloutsos, and 
S. Ghandeharizadeh, editors, SIGMOD 1999, Pro- 
ceedings ACM SIGMOD International Conference 
on Management of Data, June 1-3, 1999, Philade- 
phia, Pennsylvania, USA, pages 287-298. ACM 
Press, 1999. 

[16] D. L. Hall and J. Llinas, editors. Handbook of Mul- 
tisensor Data Fusion. CRC Press, 2001. 

[17] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. 
Adaptive protocols for information dissemination in 
wireless sensor networks. [2], pages 174-185. 

[18] J. M. Hellerstein, P. J. Haas, and H. Wang. Online 
aggregation. In J. Peckham, editor, SIGMOD 1997, 
Proceedings ACM SIGMOD International Confer- 
ence on Management of Data, May 18-15, 1997, 
Tucson, Arizona, USA, pages 171-182. ACM Press, 
1997. 

[19] D. Hildebrand. An architectural overview of qnx. 
http: / /www.qnx.com[ , 2001. 

[20] J. Hill, It. Szewczyk, A. Woo, D. Culler, S. Hollar, 
and K. Pister. System architecture directions for net- 
worked sensors. ACM SIGPLAN Notices, 35(11):93- 
104, Nov. 2000. 

[21] P. Johansson, T. Larsson, N. Hedman, B. Miel- 
czarek, and M. Degermark. Scenario-based perfor- 
mance analysis of routing protocols for mobile ad- 
hoc networks. [2], pages 195-206. 

[22] D. B. Johnson and D. A. Maltz. Dynamic source 
routing in ad hoc wireless networks. In Imielinski 
and Korth, editors, Mobile Computing, volume 353 
of The Kluwer International Sereies in Engineering 
and Computer Science. Kluwer Academic Publishers, 
1996. 

[23] J. Jubin and J. D. Tornow. The DAItPA packet radio 
network protocol. Proceedings of the IEEE, 75(1):21- 
32, Jan. 1987. 

[24] N. Kabra and D. J. DeWitt. Efficient mid-query re- 
optimization of sub-optimal query execution plans. 
In Haas and Tiwary [14], pages 106-117. 

[25] J. M. Kahn, It. H. Katz, and K. S. J. Pister. Next 
century challenges: Mobile networking for "smart 
dust". [2], pages 271-278. 

[26] D. Kossmann. The state of the art in distributed 
query processing. Computing Surveys, 32, 2000. 

[27] J. Kymissis, C. Kendall, J. Paradiso, and N. Ger- 
shenfeld. Parasitic power hasvesting in shoes. In In 
Proceedings of the Second IEEE International Con- 
ference on Wearable Computing (ISWC), pages 132- 
139. IEEE Computer Society Press, October 1998. 

[28] P.-A. Larson and G. Graefe. Memory management 
during run generation in external sorting. In Haas 
and Tiwary [14], pages 472-483. 

[29] S. Madden and M. J. Franklin. Fjording the stream: 
An architecture for queries over streaming sensor 
data. In 18th International Conference on Data En- 
gineering, 2002. 

[30] M. Nakayama, M. Kitsuregawa, and M. Takagi. 
Hash-partitioned join method using dynamic destag- 
ing strategy. In F. Bancilhon and D. J. DeWitt, ed- 
itors, Fourteenth International Conference on Very 
Large Data Bases, August $9 - September I, 1988, 
Los Angeles, California, USA, Proceedings, pages 
468-478. Morgan Kaufmann, 1988. 

[31] L. M. S. C. of the IEEE Computer Society. Wireless 
Inn medium access control (mac) and physical layer 
(phy) specification. IEEE Std 802.11, 1999. 

[32] F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and 
A. Dogac. Dynamic query optimization on a dis- 
tributed object management platform. In CIKM '96, 
Proceedings of the Fifth International Conference on 
Information and Knowledge Management, November 
12 - 16, 1996, Rockville, Maryland, USA, pages 117- 
124. ACM, 1996. 

[33] M. T. Ozsy and P. Valduriez. Principles of Dis- 
tributed Database Systems. Prentice Hall, Englewood 
Cliffs, 1991. 

[34] H. Pang, M. J. Carey, and M. Livny. Partially pre- 
emptive hash joins. In P. Buneman and S. Jajo- 
dia, editors, Proceedings of the 1993 ACM SIGMOD 
International Conference on Management of Data, 
Washington, D.C., May 26-28, 1993, pages 59-68. 
ACM Press, 1993. 

[35] V. Park and S. Corson. Temporally-ordered routing 
algorithm (tora) version 1 functional specication. 
Internet Draft, 
http://www.ietf.org/internet-drafts/draft-ietf- 
manet-tora-spec-02.txt, 1999. 

[36] C. Perkins and P. Bhagwat. Highly dy- 
namic destination-sequenced distance-vector rout- 
ing (DSDV) for mobile computers. In ACM SIG- 
COMM'94 Conference on Communications Archi- 
tectures, Protocols and Applications, pages 234-244, 
Aug. 1994. 

[37] C. E. Perkins. Ad hoc on demand distance vector 
(aodv) routing. Internet Draft, 
http://www.iet f.org/internet-draft s/draft-iet f- 
manet-aodv-04.txt, October 1999. 

SIGMOD Record, Vol. 31, No. 3, September 2002 17 



[38] G. J. Pottle and W. J. Kaiser. Embedding the Inter- 
net: wireless integrated network sensors. Communi- 
cations of the ACM, 43(5):51-51, May 2000. 

[39] V. Raman, B. Raman, and J. M. Hellerstein. On- 
line dynamic reordering for interactive data process- 
ing. In M. P. Atkinson, M. E. Orlowska, P. Val- 
duriez, S. B. Zdonik, and M. L. Brodie, editors, 
VLDB'99, Proceedings off 25th International Con- 
ference on Very Large Data Bases, September 7-10, 
1999, Edinburgh, Scotland, UK, pages 709-720. Mor- 
gan Kaufmann, 1999. 

[40] It. Ramanathan and It. Rosales-Hain. Topology con- 
trol of multihop wireless networks using transmit 
power adjustment. In In Proceedings off the IEEE 
Infocom, pages pages 404-413, March 2000. 

[41] N. Schacham and J. Westcott. Future directions in 
packet radio architectures and protocols. Proceedings 
off the IEEE, 75(1):83-99, January 1987. 

[42] P. Seshadri, M. Livny, and It. Itamakrishnan. Seq: 
A model for sequence databases. In P. S. Yu 
and A. L. P. Chen, editors, Proceedings of the 
Eleventh International Conference on Data Engi- 
neering, March 6-10, 1995, Taipei, Taiwan, pages 
232-239. IEEE Computer Society, 1995. 

[43] P. Seshadri, M. Livny, and It. Rama.krishnan. The 
design and implementation of a sequence database 
system. In T. M. Vijayaraman, A. P. Buchmann~ 
C. Mohan, and N. L. Sarda, editors, VLDB'96, Pro- 
ceedings of 22th International Conference on Very 
Large Data Bases, September 3-6, 1996, Mumbai 
(Bombay), India, pages 99-110. Morgan Kaufmann, 
1996. 

[44] S. Singh, M. Woo, and C. S. Itaghavendra. Power- 
aware routing in mobile ad hoc networks. [1], pages 
181-190. 

[45] E. E. Systems. White dwarf linux. 
http://www.whitedwarflinux.org, 2001. 

[46] G. Thomas, G. It. Thompson, C.-W. Chung, 
E. Barkmeyer, F. Carter, M. Templeton, S. Fox, and 
B. Hartman. Heterogeneous distributed database 
systems for production use. ACM Computing Sur- 
veys, 22(3):237-266, 1990. 

[47] uClinux. The linux/microcontroller project. 
http://www.uclinux.org, 2001. 

[48] T. Urban and M. J. Franklin. X Join: A reactively- 
scheduled pipelined join operator. IEEE Data Engi- 
neering Bulletin, Feb. 2000. 

[49] T. Urban, M. J. Franklin, and L. Amsaleg. Cost 
based query scrambling for initial delays. In Haas 
and Tiwary [14], pages 130-141. 

[50] C. Yu and W. Meng. Principles of Database Query 
Processing for Advanced Applications. Morgan Kauf- 
mann, San Francisco, 1998. 

[51] C. T. Yu and C. C. Chang. Distributed query pro- 
cessing. ACM Computing Surveys, 16(4):399-433, 
Dec. 1984. 

[52] C. Zaniolo, S. Ceri, C. Faloutsos, It. Snodgrass, 
R. Zicari, and V. S. Subrahmanian. Advanced 
Database Systems. Morgan Kauffmann Publishers, 
1997. 

[53] H. Zeller and J. Gray. An adaptive hash join algo- 
rithm for multiuser environments. In D. McLeod, 
R. Sacks-Davis, and H.-J. Schek, editors, 16th In- 
ternational Conference on Very Large Data Bases, 
August 13-16, 1990, Brisbane, Queensland, Aus- 
tralia, Proceedings, pages 186-197. Morgan Kauf- 
mann, 1990. 

[54] W. Zhang and P.-A. Larson. Dynamic memory ad- 
justment for external mergesort. In M. Jarke, M. J. 
Carey, K. It. Dittrich, F. H. Lochovsky, P. Loucopou- 
los, and M. A. Jeusfeld, editors, VLDB'97, Proceed- 
ings off 23rd International Conference on Very Large 
Data Bases, August 25-29, 1997, Athens, Greece~ 
pages 376-385. Morgan Kaufmann, 1997. 

18 SIGMOD Record, Vol. 31, No. 3, September 2002 


